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ABSTRACT
XML streams, such as RSS feeds or complex event streams, are
becoming increasingly pervasive as they provide the foundation for
a wide range of emerging applications. An important problem in
this context is the realization of continuous queries that can support
on-line monitoring and analysis of the streaming XML data. The
evaluation of exact results, however, can be prohibitively expensive
for the resource-restricted environment of a streaming application.
This leads naturally to the use of approximation techniques that can
provide an on-demand estimate for the result of a continuous XML
query.

In this paper, we introduce a new technique for approximately
answering a complex aggregate query over an XML stream using
limited memory. The main novelty of the proposed technique is
that it supports XML queries with any combination of the common
XPath axes, namely, ancestor, descendant, parent, child, following,
preceding, following-sibling, and preceding-sibling. At the heart
of our method lies an efficient transform that reduces a continuous
XML query to an equi-join query over relational streams. We detail
the transform and discuss its integration with randomized sketches
as a basic mechanism to estimate the result of the XML query. We
further enhance this mechanism with structural sieving, a technique
that takes advantage of the XML data and query characteristics in
order to improve the accuracy of the sketch-based approximation.
We present an extensive experimental study on real-life and syn-
thetic data sets that validates the effectiveness of our approach and
demonstrates its advantages over existing techniques.

1. INTRODUCTION
In recent years, the topic of processing streaming XML data has

gained significant importance. Emerging applications include the
management of complex event streams, such as those generated by
the modules of a running workflow, monitoring the messages ex-
changed by web-services, and publish/subscribe services for RSS
feeds. XML is obviously an attractive data model for this type of
data, as it allows the application to encode complex stream objects
without committing to a fixed schema.

The ability to perform data analytics over streaming XML data
can have significant value for large-scale systems. One type of
queries that arises naturally in this scenario is the continuous com-
putation of some aggregate (e.g., COUNT(*)) over the appearances
of a pattern in the XML stream. This type of queries can help detect
anomalies in the content of the stream, or test hypotheses as part of
a data mining task. As a concrete example, consider a stream that
represents the running workflow of a web-based retailer. Assume

that the stream contains information on the sessions of users, where
each session is modeled as an XML element. (Hence, the stream
acquires more session elements as users visit the online store.) A
session element, in turn, records in its children elements the web
browser of the user, the products that the user has looked at, the ad-
ditions of said products to the shopping cart, and requests to check-
out. A session may also include an exception object, if an error
occurred. Figure 1(a) shows the representation of a sample stream
of three sessions as an XML tree. Note that the ordering of ele-
ments in the tree is important and reflects the order in which the
corresponding events occur in the stream. Now, a system analyst
may pose the following query over the stream: “Count the times
that a session ends in an error when the browser is Safari and the
actions of the user involve a view of a product page followed by
an addition to the shopping cart.” Essentially, this query tests the
hypothesis that the use of a specific browser causes a bug in the
handling of the shopping cart when a specific sequence of actions
occurs. By examining this running count over the stream, the ana-
lyst may be able to verify the likelihood of this correlation.

The potentially large volume of data, the need for scalability, and
the desire for short response times impose severe restrictions on the
CPU and memory resources that are available for evaluating such
continuous queries. This leads naturally to the adoption of approx-
imate query answers as an alternative to the computation of exact
results. Under this scheme, the query processor maintains a con-
cise stream synopsis that enables the on-demand approximation of
the current query result with reasonable accuracy. We note that this
solution fits naturally with the exploratory nature of on-line analyt-
ics, where the typical intention is to identify interesting trends and
accuracy to the last decimal is not required.

Several recent studies [7, 19, 20, 22, 14] have investigated the
problem of XML summarization that underlies the generation of
approximate answers. The majority of the proposed techniques,
however, require multiple passes over the complete data set. Hence,
they cannot be used in a streaming environment, where the synop-
sis must be constructed in a single pass over the data. Moreover,
most summarization studies focus on the unordered XML model,
and thus cannot handle continuous queries that impose constraints
on the ordering of XML elements. This type of queries can occur
frequently in practice, as ordering is a natural property for several
types of XML streams, e.g., event streams, or workflow traces.

Our Contributions. In this paper, we introduce a new technique
for the problem of approximate query answering over XML streams.
Our technique expands significantly the scope of existing studies on
XML summarization, as it supports the ordered XML model and
tree pattern queries with the major XPath [3] axes, namely, par-
ent, ancestor, child, descendant, following, preceding, following-
sibling, and preceding-sibling. The key technical contributions of
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Figure 1: Part (a) depicts the tree representation of a stream S corresponding to the simplified execution trace of a web application.
The stream contains session elements that describe the interactions of users with an online store. A session contains elements
that describe the browser of the user, the products that the user has viewed, additions to the shopping cart, and check-out
actions. An exception element signals the occurrence of an error, whose type is described in the value content of the element. The
corresponding ranked node-labeled tree is shown in Part (b).
Part (b) depicts an example tree-pattern over the execution trace. We use the notation q : l to denote that variable q binds to elements
of label l. We extend the notation to q : l[constant] to add an equality condition on element content. The tree-pattern searches for
sessions that employ a specific browser and where an addition to the shopping cart causes a specific exception to be raised. For the
current contents of S, we can verify that Q(S) contains exactly one binding tuple, formed by the elements enclosed in squares.

our work can be summarized as follows:

• X2R Transform. Our techniques are based on a new transform,
termedX2R, that rewrites an aggregate XML query as a join query
over a relational database. The key property of X2R is that the re-
lational query belongs in the well studied class of tree-join queries
with equi-join predicates, which means that a rich set of existing
relational techniques becomes immediately available for the pro-
cessing and manipulation of XML queries. We provide a formal
definition of the X2R transform and its properties and discuss its
implementation in a streaming XML environment.

• Sketch-based Summarization for XML Streams. We cou-
ple the aforementioned transform with randomized sketching tech-
niques and propose the first synopsis structure that enables approx-
imate answers with provable guarantees for aggregate tree-pattern
queries. We further enhance the basic approximation scheme with
two techniques that improve significantly the quality of approxi-
mation: (a) structural filtering, that reduces the volume of sketched
data by filtering the stream on-the-fly against the constraints of the
query, and (b) structural partitioning, that partitions the stream in
sequential sub-streams which can be sketched more effectively. We
detail these mechanisms and present efficient algorithms for their
realization in a streaming environment.

• Experimental Validation. We evaluate the proposed technique
with an extensive experimental study over real-life and synthetic
data sets. The results validate the effectiveness of our technique
and demonstrate its advantages over other approaches.

To the best of our knowledge, this is the first work that tackles the
challenging problem of approximate query answering for ordered
XML streams and continuous aggregate tree-pattern queries that
combine different XPath axes.

2. RELATED WORK
Several recent studies [7, 19, 20, 22, 14] have focused on the

problem of off-line XML summarization, where the complete data
set is available and can be accessed repeatedly. It is interesting
to note that certain off-line techniques create one-pass synopses in
the process of constructing an XML summary, e.g., the kernel of
XSeed [22] or the count-stable graph of TreeSketch [14]. These
synopses, however, are either too inaccurate (e.g., the kernel) or too

large (e.g., the count-stable graph), and thus it is necessary to per-
form more passes over the data in order to improve their accuracy
or compress them. An alternative is to treat the XML stream as a se-
ries of insertions on an initially empty document, and subsequently
employ incremental techniques, such as IMax [15] or Bloom His-
togram [19], that maintain a synopsis as the data is updated. The
problem with these techniques is that they are designed for environ-
ments with infrequent batch updates, and this can make them pro-
hibitively expensive when the stream arrival rate is high. Finally,
previous studies have investigated summarization techniques that
rely on query feedback and thus do not access the data at all [12].
This approach is not relevant in our context due to the lack of query
feedback information.

SketchTree [16] directly supports single-pass synopses and is
thus the most relevant summarization technique for our setting.
SketchTree employs randomized sketching techniques in order to
summarize the frequency distribution of XML sub-trees up to a spe-
cific size. Given a query pattern, SketchTree first maps it to a set
of matching sub-trees and then probes the synopsis for the respec-
tive occurrence counts. For queries that contain recursive structural
constraints, e.g., the ancestor/descendant XPath axis, the first step
implies the use of schema information so that the recursion can be
“unfolded” in concrete paths. Unfortunately, a schema is not al-
ways available for the data, and inferring it from the stream is not
a trivial task. This makes SketchTree suitable mainly for queries
without recursion. Support for query recursion is crucial, however,
as it allows queries to reference the XML stream without requiring
precise knowledge of the underlying schema.

Several studies have investigated the problem of query evalua-
tion over streaming XML data [2, 5, 10, 11]. These works target a
complementary problem to approximate query answering, as they
assume that the query processor has the required resources to gen-
erate precise query results. In fact, a system can evaluate queries
for which there are enough computational resources, and fall back
on approximate answers for more expensive queries.

The topic of approximate query answering over relational streams
has gained significant traction in the recent literature [6, 9, 17].
The proposed techniques, however, are specific to the flat relational
model and the associated query operators. An interesting question
is whether they can be extended to handle the rich semantics of
semi-structured data, where the use of recursion is prevalent in the



data and query model.

3. PRELIMINARIES
In this section, we discuss formally the data and query model for

streaming XML data, and define the problem of approximate query
answering over XML streams.

3.1 Data and Query Model
Streaming Model for XML Data. At an abstract level, an XML
stream S represents the serialization of a (possibly infinite) XML
document. In our work, we model the stream as a sequence of
open, value, and close “parsing” events defined as follows:
open(L) signals the opening tag of an element with label L,
close(L) signals the closing tag of an element with label L, and
value(V ) specifies the value content V under the currently open
element. (We do not model attributes separately, but treat them
as leaf elements with value content.) We consider XML streams
where the value content appears under leaf elements only. We
note that the particular streaming model is readily implementable in
practice, as it follows closely the Simple API for XML specification
(a de-facto standard for the efficient parsing of XML documents).

Motivated by the context of on-line data analytics, we target ap-
plications that process the stream one event a time and perform a
limited amount of computation per parsing event. In what follows,
we use S to denote the event sequence that has been observed up
to the current point in time.

It is straightforward to map S to a node-labeled, ranked tree that
represents the underlying XML structure. More concretely, each
open(L) event in S is mapped to a node with label L, and the nest-
ing between two opening tags is represented as an edge between the
corresponding nodes. We henceforth refer to a node e in this tree as
an element observed in S. Given two elements e and e′, we define
the following common relations: e is a child of e′ if the edge (e′, e)
exists; e is a sibling of e′ if they are children of the same element;
and, e follows e′ in document order if e′ is encountered first in a
pre-order traversal of the tree.

Query Model. We focus on queries of the form “Compute aggre-
gate Aggr on the binding tuples of a tree-pattern Q.” This class
of queries is natural within the scenario that we consider in this pa-
per, namely, on-line trend analysis over streaming XML content.
In what follows, we define the class of tree-pattern queries and the
types of aggregates that we consider.

A tree-pattern query Q selects a subset of elements from an XML
tree according to certain structural constraints. We model Q as
a tree of labeled nodes q1, . . . , qn, and refer to a node in Q as
a query variable. Each variable qj is assigned a label from the
same alphabet as element labels, and can also be associated with
an optional predicate that specifies a condition on element content.
Each edge (qk, qj) is assigned an axis specification that describes
the structural relationship between the two variables. In our work,
we consider the following axes that are also defined in the XPath
standard [3]: ancestor, descendant, parent, child, following, pre-
ceding, following-sibling, and preceding-sibling. Table 1 summa-
rizes the semantics of these structural relationships. We often re-
fer to the ancestor/descendant and following/preceding axes as re-
cursive constraints, since they essentially allow the query to skip
over an arbitrarily large portion of the XML structure. We also
note that following/preceding and following-/preceding-sibling ap-
ply constraints on the ordering of elements in the XML tree. In
what follows, we use Xa(q, q′) to denote that the edge (q, q′) is as-
signed axis α, and overload Xα(e, e′) to denote that two elements
e and e′ satisfy the structural constraint of the specific axis.

Let e = (e1, . . . , en) be a vector of elements. The vector is
called a binding tuple for Q if element ei matches the label and
value predicate of variable qi, and for each edge (qk, qj), 1 ≤ k 6=
j ≤ n, the corresponding elements match the structural constraint
of the edge, i.e., Xα(qk, qj) ⇒ Xα(ek, ej). The result of Q over
S, denoted as Q(S), is defined as the set of binding tuples that
involve elements observed in S. Given that S grows continuously,
it becomes clear that Q(S) may be updated with more results as
more of the stream is accessed. Figure 1(b) depicts an example
tree-pattern query and its set of binding tuples over the stream.

As mentioned earlier, we are interested in the computation of an
aggregate Aggr over Q(S). In this paper, we assume that Aggr
can be one of the following: Count, Sum, or Average. (The last two
operate over the values of elements that are found in a specific slot
of the binding tuples.)

Structural element labeling. Let e be an element observed in S
such that the corresponding closing tag also appears in S. The
structural identifier of e is defined as the triplet (start, end, pstart),
where start and end are the positions in S of the open and close
events corresponding to e, and pstart is the position of the open
event corresponding to the parent of e. The definition implies that
the start and end values are unique across elements, and also that
start < end for each structural identifier. We note that structural
identifiers can be generated on-the-fly by maintaining a counter for
the current length of the stream and a stack with the start positions
of the open elements.

Structural identifiers are commonly used in XML query engines
to evaluate structural constraints, including the constraints spec-
ified in our query model [18, 21]. As an example, Xprec(e, e

′)
implies that the close of e′ appears before the open of e, and
hence 1 < end′ < start. As another example, the constraint
XprecSib(e, e

′) implies that e and e′ are opened after their common
parent element and that e′ is closed before e. This can be expressed
as pstart < end′ < start ∧ pstart = pstart′. Table 1 summa-
rizes the correspondence between structural constraints and condi-
tions on structural identifiers.

In the remainder of the paper, we assume the existence of a
conceptual relation StructId(Start, End, PStart) that stores the
structural identifiers of elements in S. Given that start positions are
unique, we often use start as a key in this relation and as an iden-
tifier for elements.

3.2 Problem Definition
In this paper, we tackle the problem of approximate query an-

swering over XML streams defined as follows:

Given an XML stream S, a tree-pattern query Q, and an ag-
gregate Aggr that is either Count, Sum, or Average, maintain a
bounded-size synopsis of S that can approximate the value of Aggr
over Q(S).

The sequential access model of S implies that the approxima-
tion algorithm must maintain the stream synopsis incrementally as
new events are accessed from the stream. Moreover, the algorithm
can examine each new event exactly once, and can perform only
limited processing in order to keep up with the potentially high ar-
rival rate of S. (Note that buffering the stream and backtracking
on it is not a viable option given our scenario of limited compu-
tational resources.) Finally, following the paradigm of previous
works on relational stream processing [6, 9, 17], the formulation
of the problem focuses on a stream synopsis that is specific to the
query Q. This single-query/single-stream variant is still relevant
for real-world applications, and, as we show in our work, it in-
volves significant technical challenges. Therefore, it forms a good



Axis Semantics Condition
Xchild (e, e′)⇔ Xpar (e′, e) e′ is a child of e pstart′ = start
Xdesc(e, e

′)⇔ Xanc(e′, e) Xchild (e, e′) ∨ ∃e′′ : Xchild (e′′, e′) ∧ Xdesc(e, e
′′) start < start′ < end

Xprec(e, e′)⇔ Xfol (e
′, e) (e follows e′) ∧ ¬Xdesc(e

′, e) 1 < end′ < start
XprecSib(e, e

′)⇔ XfolSib(e
′, e) (e′ is a sibling of e) ∧ Xprec(e, e′) pstart < end′ < start ∧ pstart = pstart′

Table 1: Semantics and evaluation of structural relationships.

first step in the study of approximate query answering over XML
streams. Extending the problem to multiple queries and multiple
streams is an interesting direction for future work.

At this point, it is interesting to examine the aforementioned
problem assuming that the input query Q can use only the descen-
dant and child axes. This restricted query model has been studied
extensively in previous works on XML summarization [7, 19, 20,
22, 14] and thus presents an interesting case for the approxima-
tion problem that we defined earlier. We show that the approxima-
tion problem becomes very easy for this type of queries, as there is
a straightforward dynamic-programming algorithm that computes
the precise value of Aggr over Q(S) using limited memory and
processing resources. The main properties of the algorithm can be
summarized as follows:

PROPOSITION 3.1. Let S be an XML stream where the maxi-
mum depth is hmax. Let Q be a tree-pattern query with n vari-
ables. Let Aggr be an aggregate that is either Count, Sum, or Av-
erage. There exists an algorithm that computes the value of Aggr
on Q(S) by performing O(hmaxn) computation for each event in
S, and using O(hmaxn) memory in total.

Procedure DP-ALGORITHM.processEvent(ev)
Input: An event ev in the document stream.
Global Variables: Level h of current element in S;

tree query Q with nodes q1 . . . qn;
2-d int array descCount ; 2-d int array childCount .

Initialization:
for i = 1 . . . n do childCount [0][i]← 0 done
for i = 1 . . . n do descCount [0][i]← 0 done
h← 1

begin
1.if ev = open(L) then
2. for i = 1 . . . n do childCount [h][i]← 0 done
3. for i = 1 . . . n do descCount [h][i]← 0 done
4. h← h + 1
5.else if ev = close(L)
6. h← h− 1
7. for i = 1 . . . n do count[i]← 0 done
8. for each qi that matches L do
9. count[i]← 1
10. for each constraint Xchild (qi, qj) do
11. count[i]← count[i] ∗ childCount [h][j]
12. done
13. for each constraint Xdesc(qi, qj) do
14. count[i]← count[i] ∗ descCount [h][j]
15. done
16. done
17. for each qi ∈ Q do
18. childCount [h− 1][i]← childCount [h− 1][i] + count[i]
19. descCount [h− 1][i]← descCount [h− 1][i] + count[i]
20. descCount [h− 1][i]← descCount [h− 1][i] + descCount [h][i]
21. done
22.fi
end

Figure 2: DP algorithm pseudo-code.

Figure 2 shows the pseudo-code for the algorithm. At the time
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that the given element e at depth h is opened, the algorithm instanti-
ates the counters descendantCount[h][i] and childrenCount[h][i]
to 0 for each node qi in Q. These counters will be updated by the
children of e. Let Qqi be the subtree of the tree query Q rooted
at qi and let Se be the subtree of the XML Stream S rooted at the
element e. At the time that the element e closes, the algorithm cal-
culates the count of the number of binding tuples of Qqi(Se) in
count[i] for each query node qi that matches the currently open el-
ement e. Before e closes, the algorithm aggregates count[i] to the
counters descendantCount[h − 1][i] and childrenCount[h −
1][i] of its parent node for i = 1 . . . n. Since the descendants of e
are also the descendants of the parent of e, the descendantCount[h][i]
is also added to descendantCount[h − 1][i]. The algorithm re-
turns the count accumulated in descendantCount[0][r], where r
is the index of the root node of Q.

Given that hmax and n are expected to be small in practice, it
becomes clear that the approximation problem can be solved very
efficiently for the restricted query model. The restricted query
model, however, supports a limited set of tree patterns and, most
importantly, it ignores element ordering. The latter is especially
important in the context of stream monitoring, as ordering is a nat-
ural property in several application domains (e.g., event streams, or
streams that capture execution traces). Overall, these observations
provide strong motivation for the study of approximate query an-
swering under the extended query model presented in Section 3.1.

To simplify presentation, we henceforth assume that Aggr is
Count and we use COUNTQ(S) to denote the value of the ag-
gregate over Q(S), or simply COUNTQ when S is clear from the
context. The extension to Sum and Average is straightforward and
is discussed in a later section.

4. SKETCH-BASED SUMMARIZATION OF
XML STREAMS

In this section, we introduce a sketch-based XML stream synop-
sis for the approximate query answering problem defined in Sec-
tion 3.2. In what follows, we first present an overview of our tech-
nique, and then discuss the details in the coming subsections.

Figure 3 provides a conceptual illustration of the proposed ap-
proach. The XML stream S is initially processed by the SIEVE op-
erator that generates n output streams ES1, . . . , ESn. The output
stream ESj corresponds to variable qj in the query, 1 ≤ j ≤ n,
and it contains the structural identifiers of the elements in S that
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match qj . More concretely, the SIEVE accesses S one event at a
time, monitoring the appearance of close events. When such an
event is encountered, the structural identifier of the corresponding
element e is appended to stream ESj if e matches the label and
value predicate of qj , 1 ≤ j ≤ n. (The generation of structural
identifiers is described in Section 3.1.) This process implies that
the ordering of elements in each output stream is consistent with
the ordering of the corresponding close events in S. We hence-
forth refer to this simple SIEVE implementation as basic sieving.

Each stream of structural identifiers ESj is subsequently trans-
formed to a relational stream Rj through a transform termed X2R.
The transform also defines a join query RQ over R1, . . . , Rn that
has the following key property: the result cardinality of RQ is equal
to COUNTQ. In essence, the computation of the XML aggregate
is reduced to counting the result-set of a join query over relational
streams.

The last component, termed the SKETCHER, reads the relational
streams R1, . . . , Rn and builds a sketch-based synopsis that can
estimate the result cardinality of RQ . By virtue of the X2R trans-
form, the estimate is also an approximation for COUNTQ.

Before proceeding with our presentation, we review the basic
mechanism of dyadic decompositions that is used in the develop-
ment of our approximation technique. Let D be a positive integer
such that the length of S is not greater than 2D , i.e., the [start, end]
interval of every structural identifier falls in [1, 2D]. The dyadic de-
composition of [1, 2D] at level d, 0 ≤ d ≤ D consists of 2D−d dis-
joint intervals of length 2d, termed dyadic intervals, whose union
is equal to [1, 2D]. Figure 4 illustrates this definition for D = 3.
It is possible to show that any interval [a, b] in [1, 2D] has a unique
minimal representation, termed a dyadic cover, as the union of dis-
joint dyadic intervals from different levels. Similarly, we define
the dyadic cut of a point c in [1, 2D] as the set of dyadic inter-
vals that contain it. Figure 4 illustrates these definitions for interval
[1, 7] and point 3 respectively. The cover and cut can be computed
very efficiently based solely on the level D of the decomposition,
i.e., the complete decomposition does not have to be stored. In
what follows, we use the relational predicate DCover(a, b, ι) to
denote that dyadic interval ι belongs in the cover of [a, b], and de-
fine DCut(c, ι) similarly.

As shown in the work of Das et al. [4], the dyadic cut and cover
provide a mechanism to check for interval containment through
set intersection. More formally, point c is included in [a, b] if
and only if there exists a dyadic interval ι such that DCut(c, ι) ∧
DCover(a, b, ι). Moreover, there exists at most one such inter-
val ι. Figure 4 shows an example of this property for c = 3 and
[a, b] = [1, 7].

4.1 X2R Transform

As mentioned earlier, X2R transforms the input stream of struc-
tural identifiers ESj to an output relational stream Rj . Moreover,
it defines a query RQ over the generated streams R1, . . . , Rn such
that the following key properties are satisfied: RQ is a tree-join
query over R1, . . . , Rn that involves only equality join predicates;
and, the result cardinality of RQ is equal to COUNTQ.

The details of the transform are described below. Our presen-
tation employs a notation whereby a relation is treated as a predi-
cate. Thus, given a relation R and a tuple τ that conforms to the
schema of R, we say that R(τ) is true if and only if τ belongs
in the extent of R. In this fashion, we use a relational predicate
ESj(start, end, pstart) to denote that the corresponding struc-
tural identifier appears in the input stream ESj , 1 ≤ j ≤ n. Given
that start values are unique, for convenience we use the shorthand
notation ESj(start).

Single structural constraints. Let e and e′ be two arbitrary el-
ements in S with structural identifiers (start, end, pstart) and
(start′, end′, pstart′) respectively. As the first step in the devel-
opment of X2R, we define a relational predicate Rα for each axis
Xα of the query model such that Xα(e, e′) ⇔ Rα(start, start′),
i.e., the two elements satisfy the structural constraint if and only if
the unique pair of the corresponding start positions appears in the
extent of a relation. As described in Section 3.1, the start position
can serve as a key for the structural identifier of an element. The
intuition, therefore, is to translate the constraints over elements to
constraints over structural identifiers.

We begin our presentation by considering the translation of a
specific constraint, namely, XprecSib(e, e

′). As shown in Table 1,
the constraint is encoded as pstart < end′ < start ∧ pstart′ =
pstart. The relational predicate RprecSib encodes this condition
as follows:

Rsrc
precSib(Start, I, PStart) ← StructId(Start, _, PStart),

DCover(PStart, Start, I)

Rtgt
precSib(Start′, I′, PStart′) ← StructId(Start′, End′, PStart′),

DCut(End′, I′)

RprecSib(Start, Start′) ← Rsrc
precSib(Start, I, PStart),

Rtgt
precSib(Start′, I′, PStart′),

I = I′, PStart = PStart′

(Recall that StructId is the set of all structural identifiers in S.
We also use the symbol “_” to denote an unnamed variable.) As-
sume now that RprecSib(start, start′) is true, i.e., (start, start′)
appears in the extent of RprecSib. For this to happen, there must be
witnesses Rsrc

precSib(start, ι, pstart) and Rtgt
precSib(start′, ι′, pstart′)

such that ι = ι′ ∧ pstart = pstart′. Based on the proper-
ties of the dyadic cover and cut, ι = ι′ implies that pstart ≤
end′ ≤ start. Since pstart = pstart′, then pstart′ ≤ end′.
Since e cannot be its own parent and start and end values are
unique across elements, it follows that pstart′ < end′ and hence
pstart < end′. Since start < end for all elements and end′ ≤
start, it follows e and e′ must be distinct. Since e and e′ are
distinct and start and end values are unique across elements, it
follows that end′ < start. Thus, pstart < end′ < start ∧
pstart = pstart′, and hence it follows that XprecSib(e, e

′) is true.
Using a similar argument, we can also show XprecSib(e, e

′) ⇒
RprecSib(start, start′).

Overall, the main idea is to express the XML constraint as a con-
dition on structural identifiers, and then use dyadic decompositions



Constraint Predicate

Xdesc

Rsrc
desc(Start, X)← StructId(Start, End, _), DCover(Start + ζ, End, I), X = I

Rtgt
desc(Start′, Y )← StructId(Start′, _, _), DCut(Start′, I′), Y = I′

Rdesc(Start, Start′)← Rsrc
desc(Start, X), Rtgt

desc(Start′, Y ), X = Y
Xanc Ranc(Start, Start′)← Rdesc(Start′, Start)

Xchild

Rsrc
child(Start, X)← StructId(Start, _, _), X = Start

Rtgt
child(Start′, Y )← StructId(Start, _, PStart′), Y = PStart′

Rchild(Start, Start′)← Rsrc
child(Start, X), Rtgt

child(Start′, Y ), X = Y
Xpar Rpar(Start, Start′)← Rchild(Start′, Start)

Xprec

Rsrc
prec(Start, X)← StructId(Start, _, _),DCover(1, Start, I), X = I

Rtgt
prec(Start′, Y )← StructId(Start′, End′, _),DCut(End′, I′), Y = I′

Rprec(Start, Start′)← Rsrc
prec(Start, X),Rtgt

prec(Start′, Y ), X = Y
Xfol Rfol(Start, Start′)← Rprec(Start′, Start)

XprecSib

Rsrc
precSib(Start, X)← StructId(Start, _, PStart),DCover(PStart, Start, I), X = (I, PStart)

Rtgt
precSib(Start′, Y )← StructId(Start′, End′, PStart′), DCut(End′, I′), Y = (I′, PStart′)

RprecSib(Start, Start′)← Rsrc
precSib(Start, X), Rtgt

precSib(Start′, Y ), X = Y

XfolSib RfolSib(Start, Start′)← RprecSib(Start′, Start)

Table 2: Encoding of structural constraints as relational predicates with equi-joins.

to express interval containment as an equality of dyadic intervals.
For reasons that will become apparent below, each relational predi-
cate Rα is defined as the equi-join of two relations Rsrc

α and Rtgt
α .

The intuition is that Rsrc
α contains information on the elements that

appear in the “source” position of the constraint, i.e., element e in
the expression Xα(e, e′). Similarly, Rtgt

α corresponds to elements
that appear in the target position. The evaluation of Rsrc

α 1 Rtgt
α

satisfies the property that a pair (start, start′) is generated at most
once, which in turn ensures that the extent of Rα is duplicate-free
under bag semantics. The latter becomes important in proving the
correctness of the overall transform.

One technical detail pertinent to Rdesc is the use of a displace-
ment 0 < ζ < 1 on the structural identifiers of source elements.
This is necessary in order to avoid asserting Rdesc(start, start),
i.e., that e is a descendant of itself. It is straightforward to show that
the displacement ζ does not change the descendant relationship if
e 6= e′ (since 0 < ζ < 1), and it does not alter the asymptotic
complexity of computing the dyadic cut and cover.

We can generalize the previous methodology to the other struc-
tural constraints of the query model, as shown in Table 2. We state
this formally with the following lemma:

LEMMA 4.1. Rα(start, start′) ⇔ Xα(e, e′), and a pair
(start, start′) is generated at most once in the computation of Rα.

Proof: Consider the case where α = desc. Assume
Rdesc(start, start′) is true, i.e., (start, start′) appears in the ex-
tent of Rdesc. For this to happen, there must be witnesses
Rsrc

desc(start, ι) and Rtgt
desc(start′, ι′) such that ι = ι′. Due to the

property of the dyadic cover and cut, this implies that start + ζ ≤
start′ ≤ end. Since ζ > 0, then start < start′. Since start 6=
start′, this means that the corresponding elements e and e′ are dis-
tinct. Because start and end values are unique across elements,
it follows that start′ 6= end; therefore, start < start′ < end.
Hence, it follows that Xdesc(e, e

′).
Assume Xdesc(e, e

′) is true, i.e., the structural constraint spec-
ified by the descendant axis is satisfied by e and e′. Hence, the
condition between the structural identifiers of e and e′ for the de-
scendant axis in Table 1 holds. In this case, it holds that start <
start′ < end. Since ζ < 1, start + ζ < start′ < end.
Due to the property of the dyadic cover and cut, this implies that
there is an interval ι, such that Rsrc

desc(start, ι) and Rtgt
desc(start′, ι)

and there is at most one such interval ι. Hence, it follows that

Rdesc(start, start′) and (start, start) appears at most once in
the extent of Rdesc.

Since Rdesc(start, start′) ⇒ Xdesc(e, e
′) and Xdesc(e, e

′) ⇒
Rdesc(start, start′), then Rdesc(start, start′)⇔ Xdesc(e, e

′).
The same can be shown for the remaining axes in Table 2 in a

similar manner.

Composing constraints. The next step in the development of the
transform is the composition of the aforementioned relational pred-
icates in order to generate the output streams Rk, 1 ≤ k ≤ n. We
present the main idea with an example and then provide the general
definition of the transform.

Consider a query with variables q1, q2, q3 and the constraints
XprecSib(q1, q2) and Xdesc(q2, q3). Let e1, e2, e3 be elements in
S and let (starti, endi, pstarti) denote the structural identifier
of element ei, i ∈ {1, 2, 3}. We will define a relational predi-
cate RQ such that the following holds: (e1, e2, e3) is a binding
tuple if and only if RQ(start1, start2, start3). First, we observe
that ei must match qi, i ∈ {1, 2, 3}, in order for (e1, e2, e3) to
be considered as a binding tuple. This can be expressed as the re-
lational predicate ESi(starti) that tests for the existence of the
corresponding identifier in the input stream ESi. (Recall that each
input stream ESi contains the structural identifiers of elements that
match qi.) Second, the elements must satisfy the following con-
straints: XprecSib(e1, e2)∧ Xdesc(e2, e3). Using the equivalent re-
lational predicates, this can be checked as RprecSib(start1, start2)∧
Rdesc(start2, start3). We thus arrive at the following definition
for RQ :

RQ (Start1, Start2, Start3)← ES1(Start1),

ES2(Start2), ES3(Start3),

RprecSib(Start1, Start2),Rdesc(Start2, Start3)

By expanding each relational predicate Rα based on its definition
in Table 2, we can rewrite the previous expression as follows:

R1(Start1, X) ← ES1(Start1),Rsrc
precSib(Start1, X)

R2(Start2, Y, X′) ← ES2(Start2),Rtgt
precSib(Start2, Y ),

Rsrc
desc(Start2, X′)

R3(Start3, Y ′) ← ES3(Start3),Rtgt
desc(Start3, Y ′)

RQ (Start1, Start2, Start3) ← R1(Start1, X), R2(Start2, Y, X′),

R3(Start3, Y ′), X = Y, X′ = Y ′

The final rewriting expresses RQ as an equi-join query over three
relations R1, R2, R3. Moreover, (e1, e2, e3) is a binding tuple if



and only if (start1, start2, start3) appears in the result of RQ .
It is interesting to note that each relation Ri captures the query
constraints that reference variable qi. As an example, R2 involves
Rtgt

precSib that corresponds to the target of constraintXprecSib(q1, q2),
and Rsrc

desc that corresponds to the source of Xdesc(q2, q3). A struc-
tural identifier (start2, end2, pstart2) in stream ES2 contributes
a distinct tuple-set to R2 that is formed essentially by the cross
product of Rsrc

desc(start2, X
′) and Rtgt

precSib(start2, Y
′). (Hence,

it is possible to generate R2 on-the-fly by processing each struc-
tural identifier in ES2, computing the aforementioned cross prod-
uct, and appending it to stream R2.) This cross product can be
viewed as an encoding of the structural identifier relative to the
constraints of variable q2. Using the same intuition, we can view
the join predicates in RQ as the means to couple the encoded infor-
mation for each edge (qi, qj) in the query.

We now define formally the transform for an arbitrary query Q.
Consider a variable qk, 1 ≤ k ≤ n, and assume for simplicity
that the children of qk can be enumerated as qlk , qlk+1, . . . , qhk .
For each “outgoing” constraint Xα(qk, qj), lk ≤ j ≤ hk, we
define Rsrc

j as the source predicate of Rα in Table 2. For in-
stance, Rsrc

j (Start, Xj)← Rsrc
precSib(Start, Xj) if the constraint

is XprecSib(qk, qj). (Notice that we perform a renaming X 7→
Xj .) Similarly, for the “incoming” constraint Xα(qp, qk), we de-
fine a relation Rtgt

k as the target predicate of Rα. For instance,
Rtgt

k (Start, Yk) ← Rtgt
precSib(Start, Yk) if the constraint is

XprecSib(qp, qk). We define Rk as the relation that composes these
per-edge target and source predicates for elements that match vari-
able qk:

Rk(Start, Yk, Xlk , . . . , Xhk
)← ESk(Start, End, PStart),

Rtgt
k (Start, Yk), Rsrc

lk
(Start, Xlk ), . . . , Rsrc

hk
(Start, Xhk

)

Relation R1 for the root variable q1 is defined similarly, except that
we drop variable Y1 and predicate Rtgt

1 (Start, Y1) since there is
no incoming edge. We observe that Rk includes a distinct tuple-
set for each structural identifier in ESk and can thus be generated
on-the-fly from the input stream. The tuple-set for each identifier
is computed as the cross product of source and target relations cor-
responding to the incoming and outgoing constraints of variable
qk. Again, this cross product can be viewed as an encoding of the
structural identifier in terms of these constraints.

The query RQ of the transform joins the output streams R1, . . . , Rn,
applying an equi-join predicate per edge that couples the corre-
sponding source and target predicates:

RQ (Start1, . . . , Startn)← R1(Start1, Xl1 , . . . , Xh1 ),^
2≤k≤n

Rk(Startk, Yk, Xlk , . . . , Xhk
),

^
2≤k≤n

Xk = Yk

The following result states formally that the transform achieves the
properties stated at the beginning of the section.

THEOREM 4.1. RQ is a tree-join query over R1, . . . , Rn with
equi-join predicates. The result cardinality of RQ under bag se-
mantics is equal to COUNTQ.

Proof: The first property stems directly from the tree structure
of Q and the fact that an equi-join predicate is inserted per query
edge. The proof of the second property is based on Lemma 4.1.

First, we want to show that |Q(S)| ≤ |RQ |. Let t = (e1, . . . , en)
be a binding tuple in Q(S). Since t ∈ Q(S), then all ei ∈ t have
the same label as the corresponding query variable qi and match
any corresponding value predicate; hence, starti appears in the

stream ESi. In addition, for every (qi, qj) ∈ Q, it holds that
Xα(ei, ej) since the structural constraint Xα(qi, qj) of the edge
is satisfied by t. It follows from the second property stated above
that Rα(starti, startj).

Without loss of generality assume q1 is the root of Q. For each
variable qi ∈ Q there is a set of tuples Ri corresponding to ei ∈ t.
For e1, there is

R1(start1, Xl1 , . . . , Xh1 )← ES1(start1, end1, pstart1),

Rsrc
l1

(start1, Xl1 ), . . . , Rsrc
h1

(start1, Xh1 )

and for e2, . . . , en

Ri(starti, Yi, Xli , . . . , Xhi
)← ESi(starti, endi, pstarti),

Rtgt
i (starti, Yi), R

src
li

(starti, Xli ), . . . , R
src
hi

(starti, Xhi
).

We can rewrite

R1(start1, Xl1 , . . . , Xh1 ),^
2≤k≤n

Rk(startk, Yk, Xlk , . . . , Xhk
),

^
2≤k≤n

Xk = Yk

as ^
(qi,qj)∈Q

Rsrc
i (starti, Xi), R

tgt
j (startj , Yj), Xi = Yj ,

^
1≤k≤n

ESk(startk, endk, pstartk)

From the definition of Rα(Starti, Startj) and the conjunction of
Rα(starti, startj) over all (qi, qj) ∈ Q, it follows that for the
binding tuple t, there is at least one binding tuple in RQ . Hence,
under bag semantics |Q(S)| ≤ |RQ |.

Let r = (start1, . . . , startn) be a tuple in RQ . It follows
that the expression above is satisfied. Then for every (qi, qj) ∈
Q, there exists elements ei and ej that satisfy Rsrc

i (starti, Xi),
Rtgt

j (startj , Yj), Xi = Yj . Hence, they also satisfy Xα(ei, ej).
Since they appear in ESi and satisfy the edge constraints in Q,
then (e1, . . . , en) must be a binding tuple in Q(S). Hence, |RQ | ≤
|Q(S)|.

Since |RQ | ≤ |Q(S)| and |Q(S)| ≤ |RQ |, then |RQ | = |Q(S)|.

As mentioned earlier, it is possible to compute Rk on-the-fly
from the input stream of structural identifiers. A natural question,
however, concerns the efficiency of the transform, as the contri-
bution of each structural identifier involves the computation of a
cross product of several relations. We address this issue of effi-
ciency in Section 4.2, where we present an optimization that avoids
completely the computation of the cross product.

It should be noted that previous studies have proposed similar
transforms from XML to relational queries. The distinguishing
property of theX2R transform is that it generates relational rewrit-
ings in the specific class of tree-join queries with equi-join predi-
cates. Existing transforms, such as start/end/level, pre/post/level, or
Dewey, do not enable this property for all the XPath axes that we
consider in the query model. For instance, the previous transforms
would translate a following-/preceding-sibling constraint to a join
predicate with a range condition.

Extensions to Unbounded Streams. Up to this point, we have as-
sumed that the length of the document stream is bounded by 2D .
There are cases, however, where this a-priori bounding is not pos-
sible, e.g., when the stream is infinite or its length is unknown. It is



straightforward to overcome this limitation by using virtual copies
of the decomposition as the stream grows. Returning to the exam-
ple of Figure 4, this would amount to using a virtual copy of the
interval hierarchy in order to extend the decomposition to the in-
terval [1, 16]. The downside is that the dyadic cover can become
larger compared to a decomposition that uses a higher level D. We
note that the dyadic cut and cover are computed using a similar al-
gorithm as in the case of a single decomposition. In addition to
the level D, the algorithm also keeps track of the number of virtual
copies that have been added so far. (Again, it is not necessary to
materialize the decomposition or any of the copies.)

The choice of the specific D depends heavily on the characteris-
tics of the data. A useful feature of theX2R transform is that it can
employ a different decomposition level per query edge and thus tai-
lor it to the characteristics of the corresponding axis. For the case
of a descendant edge, for instance, the intervals [start, end] tend
to be narrow in practice (since XML trees are typically shallow and
bushy) and hence a low dyadic level yields small dyadic covers and
cuts. As a different example, the preceding axis involves intervals
of the form [1, start] which tend to be wider. In this case, a higher
D is likely to compress the representation of these large intervals.

4.2 Sketch-Based Approximation
At an abstract level, the SKETCHER solves the following prob-

lem: Maintain a synopsis of streams R1, . . . , Rn that can estimate
the cardinality of RQ (equivalently, COUNTQ). This particular
problem has been the topic of active research in recent years and
previous studies have introduced several techniques that match our
setting [6, 8, 17]. In this paper we adopt the techniques proposed
by Dobra et al. [6], but we stress that this choice is orthogonal to
the other components of our framework.

Basic Sketching Technique [6]. Consider a pair of joining vari-
ables Xk and Yk in RQ , and let {1, . . . , Nk} denote their do-
main. (For instance, if Xk and Yk correspond to the Rdesc pred-
icate, then {1, . . . , Nk} is simply an enumeration1 of the inter-
vals in the dyadic decomposition.) We assume the existence of a
family ξk = {ξk

i |1 ≤ i ≤ Nk} of four-wise independent ran-
dom variables such that ξk

i ∈ {−1, 1} and Prob[ξk
i = −1] =

Prob[ξk
i = 1] = 1/2. Informally, four-wise independence implies

that the probability of any combination (ξk
i1 , ξk

i2 , ξk
i3 , ξk

i4) match-
ing a specific 4-tuple of {−1, +1} is equal to 1/16, i.e., all 4-
tuples of {−1, +1} are equiprobable. By employing known tools
(e.g., orthogonal arrays) for the explicit construction of small sam-
ple spaces supporting four-wise independence, such families can
be efficiently constructed on-line using only O(log Nk) space [1].

For each input stream Rk, 1 ≤ k ≤ n, we define a counter Ξk,
termed an atomic sketch, as follows:

Ξk =
X

Rk(Start,Yk,Xlk
,...,Xhk

)

ξk
Yk

Y
lk≤j≤hk

ξj
Xj

(1)

Accordingly, we define the random variable Φ =
Q

1≤j≤n Ξj as
the product of the per-relation atomic sketches and refer to it as
an atomic estimator. As shown in the work of Dobra et al. [6],
Φ is an unbiased, bounded-variance estimator of the cardinality
of RQ . The variance of the estimator is bounded as V ar[Φ] ≤
22(n−1) Qn

j=1 SJ(Rj), where SJ(Rj) = |Rj 1 Rj | is the self-
join size of relation Rj .

Application to XML Streams. The realization of the XML stream
synopsis is a straightforward application of the basic sketching tech-
1This enumeration can be generated on-the-fly by using pairing
functions or approximate techniques such as Rabin fingerprints.

nique. More concretely, the synopsis comprises the atomic sketches
Ξ1, . . . , Ξn that are maintained incrementally over the stream. When
an estimate is requested, the stream S is first “patched” with a vir-
tual close for each currently open element. This has the effect of
“pushing” all currently open elements through the X2R transform
and thus to the atomic counters. After this update, the estimate is
computed as the product of the atomic sketch counters. By virtue
of the X2R transform and the properties of randomized sketches,
we can assert the following property.

PROPOSITION 4.1. Φ =
Qn

j=1 Ξj is an unbiased estimator of
COUNTQ.

Proof: Recall from Section 4.2 that Φ =
Q

1≤k≤n Ξk where
Ξk is given by Equation 1. Here we will use the short hand nota-
tion R1 to represent R1(Start, Xl1 , . . . , Xh1) and Rk to represent
Rk(Start, Yk, Xlk , . . . , Xhk ) for k = 2, . . . , n. Thus,

Φ = (
X
R1

Y
l1≤j≤h1

ξj
Xj

)
Y

2≤k≤n

24X
Rk

(ξk
Yk

Y
lk≤j≤hk

ξj
Xj

)
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The expression for Φ can be rewritten as follows:

Φ =
X

R1×···×Rn

Y
2≤k≤n

ξk
Yk

ξk
Xk

Furthermore, the expression for Φ can be separated into the sum
over the tuples in the cross product of the streams R1 . . . Rn where
∀k : Yk = Xk plus the sum over the tuples where ∃k : Yk 6= Xk.
In addition, since the random variable ξk

i ∈ {−1, 1} for a value i,
then (ξk

i )2 = 1. Therefore,

Φ =
X

R1×···×Rn
∃k:Yk 6=Xk

Y
2≤k≤n

ξk
Yk

ξk
Xk

+
X

R1×···×Rn
∀k:Yk=Xk

Y
2≤k≤n

1
(2)

Because different ξk families are independent, it follows that

E[Φ] =
X

R1×···×Rn
∃k:Yk 6=Xk

Y
2≤k≤n

E[ξk
Yk

ξk
Xk

]

+
X

R1×···×Rn
∀k:Yk=Xk

Y
2≤k≤n

1.

Because random variables within each family ξk are four wise
independent, the first set of terms sums to 0. In addition, the second
set of terms sums to COUNTQ since the corresponding tuple for
each term is such that yk = xk for all k and thus it contributes 1 to
the sum.

E[Φ] =
X

R1×···×Rn
∀k:Yk=Xk

Y
2≤k≤n

1 (3)

E[Φ] = COUNTQ

After the estimate is generated, the synopsis is brought to a con-
sistent state by re-processing the virtual close events and decre-
menting the atomic sketch counters by the corresponding ξk

i ’s.
The accuracy of approximation can be improved through a stan-

dard boosting technique [6] that combines several i.i.d. atomic es-
timates. More concretely, the synopsis computes s1s2 atomic es-
timates Φij , 1 ≤ i ≤ s1, 1 ≤ j ≤ s2 as described previously.



The final estimator is generated as the median of s2 estimators
Φ̄1, . . . , Φ̄s2 , where each Φ̄j is computed as the average of s1 es-
timators Φij , 1 ≤ i ≤ s1. The following proposition describes the
error guarantees that can be achieved by this process and follows
directly from Theorem 3.1 in [6]:

PROPOSITION 4.2. Let ε and δ be constants in the range (0,1].

Setting s1 = 8
22(n−1) Qn

j=1 SJ(Rj)

COUNT2
Q

ε2
and s2 = 2log(1/δ), it is pos-

sible to approximate COUNTQ so that the relative error of the
estimate is at most ε with probability at least 1− δ.

One caveat of the previous guarantees is that they involve the
self-join sizes of the input relations and also the value of COUNTQ,
which is the precise quantity that we wish to estimate. This para-
dox is common in randomized approximation techniques, and it is
typically handled by employing bounds on the unknown factors.
(Such bounds can be derived using domain knowledge or historic
data.) We also observe that the required storage increases sharply
with the number of variables n participating in the query. While
it is difficult to predict a-priori the maximum number of variables
used in Q, it is reasonable to expect that real-world queries will
have a low number of variables.

Maintenance of Atomic Sketches. TheX2R transform maps each
identifier in stream ESk to a tuple-set in the corresponding relation
stream Rk, which is in turn translated to several updates (one per
tuple) to the corresponding atomic counter Ξk. We now discuss
two optimizations that we incorporate in the SKETCHER in order
to improve the efficiency of updating the atomic counters for each
structural identifier in ESk.

The first optimization reduces the size of the tuple-set by remov-
ing unnecessary tuples. More specifically, it is straightforward to
show that the properties of the X2R transform are not compro-
mised if we omit unit-length intervals from DCover and DCut .
(This stems from the fact that start and end positions are unique
and therefore the equi-join of DCover and DCut will never con-
tain unit-length intervals.) This optimization may reduce the size of
the cross product for each identifier, and thus lead to fewer updates
of the atomic sketches.

The second optimization targets the update of the atomic counter
for the tuples in the cross product. The main idea is to avoid
updating the atomic counter for each tuple in the cross product,
but rather to perform one cumulative update. More concretely,
let Rk(start, Yk, Xlk , . . . , Xhk ) be the tuple-set generated by the
X2R transform for a particular identifier sid ≡ (start, end, pstart).
Let ∆k(sid) be the total change to Ξk after sketching all the tuples
in the tuple-set according to Equation 1. By performing standard
algebraic manipulations on the expression that defines ∆k(sid), we
arrive at the following result:

∆k(sid) =

0B@ X
R

tgt
k

(start,Yk)

ξk
Yk

1CA Y
lk≤j≤hk

0B@ X
Rsrc

j (start,Xj)

ξj
Xj

1CA (4)

Essentially, the update can be realized by sketching separately the
tuples in the source and target predicates and then adding their
product to Ξk. This suggests the following optimization: Instead of
computing a cross product for each identifier in ESk, the X2R op-
erator pushes directly the tuple-sets Rtgt

k (start, Yk) and
Rsrc

j (start, Xj), lk ≤ j ≤ hk, to the SKETCHER; in turn, the
SKETCHER employs the previous expression to compute the change
to Ξk. This optimization implies a linear complexity O(hk − lk)
to process an identifier in ESk through the X2R transform and the

SKETCHER, whereas the complexity of the straightforward imple-
mentation (based on the computation of the cross product) has an
exponential dependency to hk−lk. We have found in our empirical
study that this optimization can yield significant time savings in the
maintenance of the synopsis.

4.3 Extension to Sum
In this section, we discuss the extension to Sum . Note that once

estimates for Sum and Count are obtained, an estimate for Average
can be obtained. As before, we have a tree-pattern query Q, an
XML Stream S, and the set of binding tuples Q(S). As mentioned
earlier, Sum operates over the values of elements that are found in
a specific slot of the binding tuples Q(S). We denote the value of
Sum over the values of the elements in the specific slot i of Q(S)
as SUMQi .

We extend the conceptual relation StructId to include the value
of the elements as follows: StructId(Start, End, PStart, V alue).
The stream ESi of structural identifiers that correspond to the ith
position is extended to include the value of the elements, and we
use the relational predicate ESi(start, end, pstart, value) to de-
note the corresponding structural identifiers and values that appear
in ESi. The relational stream Ri that is output by the X2R opera-
tor for the specified position i is defined as follows:

Ri(Start, V alue, Yi, Xli , . . . , Xhi
)← ESi(Start, End, PStart, V alue),

Rtgt
i (Start, Yi), R

src
li

(Start, Xli ), . . . , R
src
hi

(Start, Xhi
)

All other streams ESk and Rk, for k 6= i, are defined as before.
We can define a Sum query RQ over R1 . . . Rn with the same equi-
join predicates as for the Count query except now we sum over the
V alue attribute of Ri. The result of the Sum query RQ is equal to
SUMQi .

We define the atomic sketch Ξi for the input relational stream Ri

as follows:

Ξi =
X

Ri(Start,V alue,Yi,Xli
,...,Xhi

)

V alue · ξi
Yi

Y
li≤j≤hi

ξj
Xj

(5)

All other atomic sketches Ξk, for k 6= i, are defined as before. We
define the random variable Φ as before but with the new definition
for the atomic sketch Ξi. As shown by Dobra et al. [6], this is an
unbiased estimator for the Sum query RQ and hence for SUMQi .

5. STRUCTURAL SIEVING
Up to this point, we have assumed the basic sieving strategy that

routes a structural identifier to stream ESj if the corresponding
element matches variable qj , 1 ≤ j ≤ n. In this section, we in-
troduce a more elaborate strategy, termed structural sieving, that
improves the accuracy of the sketch-based approximation by re-
ducing the variance of the estimator. The new strategy is based on
two techniques: (a) structural filtering, which utilizes stricter crite-
ria to match elements to variables and thus reduces the volume of
data that is sketched, and (b) structural partitioning, which divides
S into sub-streams that can be sketched more accurately.

Figure 5 depicts the pseudo-code for the new SIEVE operator.
Given an element e that is currently open at depth h, the SIEVE
maintains the current number of preceding and descendant ele-
ments in precCount [h] and descCount [h] respectively. The SIEVE
also maintains a set currentMatch[h] with the variables matched
by e. The contents of currentMatch[h] are initialized when e
opens, and they are used to route e to the output streams when the
element closes. In between, the application of structural filtering



(FilterOpen and FilterClose) may reduce the set of matching vari-
ables thus routing e to fewer streams. In addition, after an element
is routed to the output streams, the SIEVE invokes structural parti-
tioning (CheckPartition) to check whether e identifies a portion of
the stream that can be sketched separately. The following sections
discuss these two techniques in more detail.

Procedure STRUCTURALSIEVE.processEvent(ev)
Input: An event ev in the document stream.
Global Variables: Level h of current element in S;

int array descCount ; int array precCount .
Initialization: h← 0; descCount [0]← 0; precCount [0]← 0
begin
1.if ev = open(L) then
2. h← h + 1
3. precCount [h]← precCount [h− 1] + descCount [h− 1]
4. descCount [h]← 0
5. currentMatch[h]← {q | q matches L}
6. FilterOpen()
7.else if ev = value(V ) then
8. remove q from currentMatch[h] if predicate does not match V
9.else if ev = close(L)
10. FilterClose()
11. for each q ∈ currentMatch[h] do
12. append the structural identifier to ESj : qj ≡ q
13. done
14. CheckPartition()
15. descCount [h− 1]← descCount [h− 1] + descCount [h] + 1
16. h← h− 1
17.fi
end

Figure 5: Structural Sieve pseudo-code.

5.1 Structural Filtering
Structural filtering reduces the size of streams ES1, . . . , ESn by

removing elements that are irrelevant to the computation of bind-
ing tuples. This has the effect of reducing the size of relations
R1, . . . , Rn and hence the self-join factors that have a crucial effect
on the variance of the estimator.

Figure 6 shows the pseudo-code for the structural filtering al-
gorithm. The algorithm maintains state for the currently open ele-
ments using arrays ancMatch , descMatch , childMatch , and
prevMatch . Given an element that is currently open at level h, the
entries ancMatch[h], descMatch[h], childMatch[h], and
prevMatch[h] store the set of query variables that may match with
ancestor, descendant, child, and preceding elements respectively.

The state of an element e is initialized when it is opened, based
on the state of its parent element. This initialization includes the
previously mentioned arrays and two local variable-sets parentMatch
and prevSiblingMatch that track the variables matched by the par-
ent and the preceding-sibling elements respectively. Subsequently,
the algorithm examines each q in currentMatch[h] and the edges
that are adjacent to it. The goal is to verify that e can indeed appear
in a binding tuple along with other elements so that the structural
constraints of the edges are satisfied. As an example, assume that
Q contains the constraint Xdesc(q

′, q). If there is no ancestor ele-
ment of e that is a match for q′, i.e., q′ 6∈ ancMatch[h], then it is
clear that e cannot appear in Q(S) as a binding of q. Similar condi-
tions are checked for the other axes using information that is known
when e is opened, namely, the matches for ancestor, parent, preced-
ing, and preceding sibling elements. If any condition fails, then q
is removed from currentMatch[h]. We note that it is not possible
to use information on the descendants or following elements of e,
since those have not been explored yet. Hence, the edges that rely

Procedure FilterOpen()
Global Variables: Arrays of variable-sets childMatch , descMatch ,

prevMatch , ancMatch
Initialization: childMatch[0]← ∅; ancMatch[0]← ∅;

prevMatch[0]← ∅; descMatch[0]← ∅
begin
1.parentMatch ← currentMatch[h− 1]
2.ancMatch[h]← ancMatch[h− 1] ∪ parentMatch
3.prevMatch[h]← prevMatch[h− 1] ∪ descMatch[h− 1]
4.prevSiblingMatch ← childMatch[h− 1]
5.descMatch[h]← childMatch[h]← ∅
6.for each q ∈ currentMatch[h] do
7. match← true
8. for each constraint Xα(q′, q) : α ∈ {desc, child , fol , folSib} do
9. match ← (α = desc ∧ q′ ∈ ancMatch[h])∨

(α = child ∧ q′ ∈ parentMatch)∨
(α = fol ∧ q′ ∈ prevMatch[h])∨
(α = folSib ∧ q′ ∈ prevSiblingMatch)

10. done
11. for each constraint Xα(q, q′) : α ∈ {par , anc, prec, precSib} do
12. match ← match ∧ ((α = par ∧ q′ ∈ parentMatch)∨

(α = anc ∧ q′ ∈ ancMatch[h])∨
(α = prec ∧ q′ ∈ prevMatch[h])∨
(α = precSib ∧ q′ ∈ prevSiblingMatch))

13. done
14. if ¬match then remove q from currentMatch[h] end if
15.done
end

Procedure FilterClose()
begin
1.for each q ∈ currentMatch[h] do
2. match← true
3. for each constraint Xα(q′, q) : α ∈ {par , anc} do
4. match ← (α = anc ∧ q′ ∈ descMatch[h])∨

(α = par ∧ q′ ∈ childMatch[h])
5. done
6. for each constraint Xα(q, q′) : α ∈ {desc, child} do
7. match ← match ∧ ((α = desc ∧ q′ ∈ descMatch[h])∨

(α = child ∧ q′ ∈ childMatch[h]))
8. done
9. if ¬match then remove q from currentMatch[h] end if
10.done
11.subtreeMatch ← descMatch[h] ∪ currentMatch[h]
12.descMatch[h− 1]← descMatch[h− 1] ∪ subtreeMatch
13.childMatch[h− 1]← childMatch[h− 1] ∪ currentMatch[h]
end

Figure 6: Structural filtering.

on this information cannot be filtered at this point in time.
When the element is closed, the algorithm performs a final set

of checks for each variable in currentMatch[h] using information
from the sub-tree of e, i.e., childMatch[h] and descMatch[h]. For
instance, it becomes possible to filter an outgoing edgeXdesc(q, qc)
by checking if qc ∈ descMatch[h]. As the final step, the algorithm
updates the matched variables in the parent element’s descMatch[h−
1] and childMatch[h− 1].

The filtering algorithm ensures the following property: if a vari-
able q is not present in currentMatch[h] after e closes, then e can-
not bind to q in any tuple in Q(S). This essentially preserves the
properties of theX2R transform and guarantees that the SKETCHER
will generate an unbiased estimator. Moreover, the algorithm can
be implemented efficiently in practice, as its complexity per ele-
ment is linear to the number of variables in the query and the num-
ber of variables in the query is expected to be small in real-word
queries.

5.2 Structural Partitioning



The idea behind structural partitioning is to break S into disjoint
sub-streams S1, . . . , Sm such that COUNTQ =

Pm
i=1 COUNTQ(Si)

and the aggregate of each sub-stream Si is estimated separately us-
ing the sketch-based synopsis. This approach can yield a more ac-
curate approximation compared to the “monolithic” estimator that
is based on the sketch of the complete stream.

Partitioning Points. The development of our technique is based
on the concept of a continuation S′ of S which is defined as any
valid XML stream that includes S as a prefix. Intuitively, a con-
tinuation S′ represents one possibility for the contents of S at a
future point in time. Now, let e be an element whose close event
appears in S and let Se be the sub-stream that contains the parsing
events for the sub-tree of e. We say that e is a partitioning point
with respect to S and Q if Q(S′) = Q(Se) ∪Q(S′ − Se) for any
continuation S′ of S. This property essentially states that there is
no binding tuple that combines elements inside and outside of Se,
and this holds independently of the future elements that appear in
the stream. In turn, this implies that Se makes a separate contri-
bution to COUNTQ(S′) for any continuation S′. As an example,
consider again the stream and query shown in Figure 1. We can
verify that every s element is a partitioning point, since it matches
the root variable q1 and the constraints of the query specify that
the binding tuples can only contain elements from the sub-tree of
q1. Accordingly, the sub-tree of each s element makes a separate
contribution to the total count of binding tuples.

Let us now consider a stream S where the last parsing event
corresponds to the close of a partitioning element e and e does
not have any preceding elements. Let S′ denote an arbitrary con-
tinuation of S. Due to the partitioning property, it follows that
COUNTQ(S′) = COUNTQ(Se)+COUNTQ(S′−Se) for any
continuation S′. We observe that the current state of the synop-
sis is formed solely by the elements in Se, since e does not have
any preceding elements and it is the last element to be closed.
Hence, the SKETCHER readily provides an unbiased estimator for
COUNTQ(Se). Moreover, a reset2 of the sketches removes the in-
formation on Se from the synopsis, thus ensuring that the SKETCHER
will provide an unbiased estimator of COUNTQ(S′ − Se) when
the processing of S′ is finished. Hence, the estimate of COUNTQ(S′)
can be generated as the sum of two sub-estimates: an estimate of
COUNTQ(Se) that is obtained when e is closed, and an estimate
of COUNTQ(S′ − Se) that is obtained when S′ has been pro-
cessed. The crucial point is that the sub-estimates are obtained us-
ing the full resources of the SKETCHER on streams that are smaller
than S′. Thus, the COUNTQ(Se)+COUNTQ(S′−Se) estimator
has higher accuracy compared to the estimator of COUNTQ(S′)
that is based on a complete sketch of S′.

Of course, the same method can be applied recursively on S′−Se

in order to improve the approximation of COUNTQ(S′ − Se).
This leads to the idea of a sequence of partition points e1, . . . , em

that contribute an independent count estimate to the estimator for
COUNTQ(S′). In fact, as the following theorem states, each par-
titioning point that is identified and exploited, provides an opportu-
nity to reduce the overall variance of the estimator.

THEOREM 5.1. Let Φ be the sketch-based estimator for the con-
tinuation stream S′ without partitioning, and let Φ′ be the sketch-
based estimator where the partitioning point e is identified. Let
Φ′ = Φ1 + Φ2, where Φ1 is the sketch-based unbiased estimator
for COUNTQ(Se) and Φ2 is the sketch-based unbiased estimator

2A reset is achieved by zeroing the atomic sketches and obtaining
new ξ families

for COUNTQ(S′ − Se). Then, Φ′ is an unbiased estimator for
COUNTQ(S′). In addition, Var Φ′ ≤ Var Φ .

Proof: Since Φ1 and Φ2 are unbiased estimators, by the linear-
ity of expectation it follows that Φ′ is an unbiased estimator for
COUNTQ(S′).

By definition Var Φ = E[(Φ − E[Φ])2]. Using the expressions
for Φ and E[Φ] from Equations 2 and 3, respectively, it follows that

Var Φ = E[(
X

R1×···×Rn,
∃k:Yk 6=Xk

Y
2≤k≤n

ξk
Yk

ξk
Xk

)2].

Since Φ1 and Φ2 are independent, Var Φ′ = Var Φ1 + Var Φ2. In a
similar manner, we obtain expressions for Var Φ1 and Var Φ2, then
by substitution we obtain the following expression for Var Φ′:

Var Φ′ = E[(
X

R′1×···×R′n,

∃k:Yk 6=Xk

Y
2≤k≤n

ξk
Yk

ξk
Xk

)2]

+ E[(
X

R′′1×···×R′′n,

∃k:Yk 6=Xk

Y
2≤k≤n

ξk
Yk

ξk
Xk

)2].

Observe that since Ri = R′
i ∪ R′′

i for i = 1, . . . n using bag
semantics, then it follows that R′

1 × · · · ×R′
n ∪R′′

1 × · · · ×R′′
n ⊆

R1 × · · · × Rn. Therefore, we can write the expression for Var Φ
as follows where MT0 represents 0 or more terms:

Var Φ = E[(
X

R′1×···×R′n,

∃k:Yk 6=Xk

Y
2≤k≤n

ξk
Yk

ξk
Xk

+
X

R′′1×···×R′′n,

∃k:Yk 6=Xk

Y
2≤k≤n

ξk
Yk

ξk
Xk

+ MT0)2].

Note that a partitioning point e is identified at the time that e is
closed; therefore, it is possible that S′ − Se is empty. In this case,
R′′

i for i = 1, ..., n would be empty and MT0 would represent 0
terms.

We can rewrite the above expression for Var Φ as follows where
MT1 represents the remaining sum of terms after expanding the
square:

Var Φ = E[(
X

R′1×···×R′n,

∃k:Yk 6=Xk

Y
2≤k≤n

ξk
Yk

ξk
Xk

)2]

+ E[(
X

R′′1×···×R′′n,

∃k:Yk 6=Xk

Y
2≤k≤n

ξk
Yk

ξk
Xk

)2] + E[(MT1)].

Note that

MT1 = MT 2
0 + 2(Φ1 − E[Φ1])(Φ2 − E[Φ2])

+ 2(Φ1 − E[Φ1])MT0 + 2(Φ2 − E[Φ2])MT0

Observe that after fully expanding the squares and MT1 in the
above expression for Var Φ, each term can have a product of at
most four different random variables for each family of random
variables ξk. Thus, since each family of random variables ξk is in-
dependent for different k and each family is four-wise independent,
the expected value of each term after expanding will be either 0 or
1. In addition, the expected value of each term after expanding is
determined by values of the attributes in the corresponding tuples.
Since the expected value of every term in MT1 after expanding is
either 0 or 1, it follows that Var Φ′ ≤ Var Φ.

Algorithm Description. Figure 7 shows the pseudo-code for the
structural partitioning algorithm based on the previous method. Re-
call that the algorithm is invoked after the matches of the element



Procedure CheckPartition()
begin
1.if ¬(Banc ∨Bpar ∨Bfol ∨BfolSib) ∧ precCount [h] = 0 then
2. Accumulate estimate from SKETCHER and reset sketches
3. descMatch[h− 1]← childMatch[h− 1]← ∅
4. descCount [h− 1]← descCount [h]← 0
5.end if
end

Figure 7: Structural partitioning.

have been finalized in the SIEVE (Figure 5). The algorithm exam-
ines the current element e and verifies whether it is a partitioning
point with no preceding elements. If so, the SKETCHER accumu-
lates the current estimate, resets the sketches, and sets descMatch[h−
1] and descCount [h − 1] to indicate the removal of Se from the
state of the synopsis.

The algorithm requires some means to verify that e is indeed a
partitioning point. Since the partitioning property involves reason-
ing about the possible continuations of S, the derivation of a tight
condition is likely to be a hard problem. In this paper, we develop
a sufficient condition that works well in practice. More concretely,
we define a boolean condition Banc ∨ Bpar ∨ Bfol ∨ BfolSib that
checks whether an element in Se can participate in a binding tuple
with an ancestor, parent, following, or following-sibling element of
e respectively. (Preceding elements are not considered as e is as-
sumed to not have any.) The definition of these conditions employs
the data structures maintained by the structural filter at the time that
the close event of e is processed (Figure 6). Their definition is as
follows:

Banc ≡
_

q∈subtreeMatch

q′ ∈ ancMatch[h] ∧ (Xdesc(q
′, q) ∨ Xanc(q, q

′))

Bpar ≡
_

q∈currentMatch

q′ ∈ parentMatch ∧ (Xchild(q′, q) ∨ Xpar (q, q
′))

Bfol ≡
_

q∈subtreeMatch

q′ ∈ Q ∧ (Xfol(q, q
′) ∨ Xprec(q

′, q))

BfolSib ≡
_

q∈currentMatch

q′ ∈ Q ∧ (XfolSib(q, q
′) ∨ XprecSib(q

′, q))

For instance, Banc checks whether there is a constraintXdesc(q
′, q)

or Xanc(q, q
′) such that q has a match in Se and q′ has a match to

an ancestor e′ of e. If no such constraint exists, then there can be no
binding tuple that combines an element of Se and an ancestor of e
in the same binding tuple in order to satisfy an ancestor/descendant
relationship. More generally, we can formulate the following im-
plication:

PROPOSITION 5.1. If e does not have any preceding elements
and ¬(Banc ∨Bpar ∨Bfol ∨BfolSib), then e is a partitioning point.

Proof: By contradiction. Assume that e is not a partitioning
point. Since e is not a partitioning point with respect to the XML
stream S, there exists a continuation of S′ and there exists a binding
tuple t and there exists an edge (q′, q) ∈ Q such that (t[q] ∈ Se

and t[q′] /∈ Se ) or (t[q] /∈ Se and t[q′] ∈ Se). We distinguish the
following cases for the axis of (q′, q).

Case Xdesc(q
′, q): Assume t[q] /∈ Se and t[q′] ∈ Se. Since t[q′]

is the ancestor of t[q], t[q] is in the subtree rooted by t[q′]. This
means that t[q′] ∈ Se which is a contradiction; therefore, t[q] ∈ Se

and t[q′] /∈ Se. Since t[q] ∈ Se, it follows that q ∈ subtreeMatch .
Since Xdesc(q

′, q) and t is a valid binding tuple, then t[q′] is an

Data Set #Elements Depth Type Size
(MB)

XMark 167864 11 Synthetic 10
IMDB 155898 5 Real-Life 7

TreeBank 2437666 35 Real-Life 29

Table 3: Data set characteristics.

ancestor of t[q] that binds q′; therefore, ancMatch[h] 6= ∅. Hence,
Banc = true which is a contradiction.

Case Xanc(q
′, q): This is similar to Xdesc(q, q

′).
Case Xchild(q′, q): Similar to Xdesc(q, q

′), we can show that
t[q] ∈ Se and t[q′] /∈ Se. In addition, since t[q′] is the parent
of t[q], it must be that t[q] = e. From t[q] = e, it follows that
q ∈ currentMatch . Since Xchild(q′, q) and t is a valid binding
tuple, it follows that q′ ∈ parentMatch . Hence, Banc = true
which is a contradiction.

Case Xpar (q
′, q): This is similar to Xchild(q, q′).

Case Xfol(q
′, q): Assume that t[q] ∈ Se and t[q′] /∈ Se. Then

t[q′] is either an ancestor of t[q] or it follows t[q]. It cannot pre-
cede t[q] because e does not have any preceding elements. But this
means that Xfol(t[q

′], t[q]) is false and hence t cannot be a binding
tuple. Therefore, t[q] /∈ Se and t[q′] ∈ Se. Since t[q′] ∈ Se, it
follows that q′ ∈ subtreeMatch . In turn, given that q is a vari-
able such that Xfol(q

′, q), it follows that Bfol = true which is a
contradiction.

Case Xprec(q
′, q): This is similar to Xfol(q, q

′).
CaseXfolSib(q

′, q): Similar toXfol(q
′, q) we can show that t[q′] ∈

Se and t[q] /∈ Se. Given that t[q] is the sibling of t[q′], this can
happen only if t[q′] = e. Since t[q′] = e, it follows that q ∈
currentMatch . Moreover, the variable q is such that Xdesc(q, q

′).
Hence, BfolSib = true which is a contradiction.

Case XprecSib(q
′, q): This is similar to XfolSib(q, q

′).

The complexity of evaluating the condition is linear to the number
of query variables, which is expected to be low in practice. Hence,
structural partitioning can be accomplished efficiently in real-world
applications.

6. EXPERIMENTS
This section presents the empirical study that we conducted to

evaluate the proposed approximation framework. We employ a pro-
totype implementation of the framework in C++. The SKETCHER
is implemented with the sketching technique of Dobra et al.[6], fix-
ing s2 = 3 and setting s1 according to the total size of the syn-
opsis. We note that the prototype works on unbounded streams
(Section 4.1).

6.1 Methodology
Data Sets. Table 3 summarizes the characteristics of the data sets
employed in our study. The chosen data sets cover a wide range of
properties, e.g., real-life versus synthetic, small versus big, semi-
regular versus irregular, and are sufficiently complex to provide an
interesting testbed for experimentation. To model a stream, the data
sets are accessed through a SAX parser.

Workloads. For each data set, we generate three types of work-
loads of increasing complexity: Basic contains queries that employ
only the ancestor/descendant and parent/child axes; Basic+Sib aug-
ments Basic with the preceding-/following-sibling axes; and Ba-
sic+Fol augments Basic with the following/preceding axes. All
workloads contain 100 randomly generated tree-patterns of 4 vari-
ables. We ensure that each query has at most one occurrence of the
child axis so that the workload is sufficiently complex. We only



consider test queries that generate at least one binding tuple (i.e.,
positive queries), since our techniques yield near-zero estimates for
negative queries.

Evaluation Metrics. We measure the performance of an approxi-
mation technique in terms of the sanitized relative error of estima-
tion. For a single query Q, the error metric is defined as |COUNTQ−
Est|/ max(COUNTQ, s), where Est is the estimated value of
COUNTQ, and s is a sanity bound that avoids artificially high er-
rors when COUNTQ is low. Following common practice, we set
s to the 10-percentile of true counts in the workload. We have also
performed experiments with the absolute error metric |COUNTQ−
Est|, and the symmetric relative error metric
|COUNTQ − Est|/ min(COUNTQ, Est). In all cases, the re-
sults remained qualitatively the same as with the sanitized relative
error.

We report the error for a given workload using the cumulative
frequency distribution (CFD) of the per-query metrics. A point
(x, y) in the distribution denotes that y percent of the workload
has an error that is less than or equal to x. Thus, an approxima-
tion technique A is more accurate than technique B on a specific
workload if the CFD of A dominates the CFD of B. We adopt this
reporting method as it provides greater detail compared to a single
statistic (e.g., average or median) over the per-query metrics.

6.2 Results
Sensitivity Analysis. We first evaluate the accuracy of our tech-
nique with respect to the synopsis size, the workload type, and the
use of structural sieving. By default, the synopsis size is set to
10KB, Basic-Sib is used as the workload, and structural sieving is
on. All the experiments that follow employ the synthetic XMark
data set.

Figure 8 depicts the CFD of the estimation error as we vary the
size of the synopsis. Overall, the results show that the proposed
technique can provide accurate estimates for the vast majority of
queries in the workload. For instance, the 10KB synopsis results
in less than 10% error for 70% of the test queries. Moreover, we
observe a clear trend of diminishing errors as more space is allo-
cated to the synopsis. Essentially, increasing the number of atomic
estimates reduces the variance of the estimator, which in turn yields
more accurate approximations.

Figure 9 shows the effect of structural sieving on the estimation
error. The CDF shows clearly that the use of filtering and partition-
ing yield a significant improvement (close to 5 orders of magnitude)
on the vast majority of test queries. Overall, the results validate the
effectiveness of structural sieving and basically show that it is es-
sential in obtaining accurate estimates.

Figure 10 depicts the estimation error for the three different types
of workload. We note that the results are generated using a smaller
version (1MB) of the XMark data set, as we were not able to obtain
reliable estimates for the Basic+Fol workload on the bigger data
set. We observe that our technique has similar high accuracy for the
Basic and Basic+Sib workloads, but the performance deteriorates
significantly for Basic+Fol. Essentially, the following/preceding
axes cancel the ability to perform structural partitioning, as it is
always possible to construct a continuation S′ such that a binding
tuple combines an element in S and a following element in S′ −
S. The power of structural filtering is also reduced, since it is not
possible to filter elements along the following/preceding axis. Yet
another factor is that the conditions on the full order axes employ
larger structural intervals and thus contribute to larger sizes (and in
effect, self-join sizes) of the relations of the X2R transform.

Overall, the results demonstrate that our technique enables ac-

curate approximations for a large class of practical queries. At the
same time, it is clear that the following/preceding axes increase
significantly the complexity of the problem. One possible solution
is to allow the query to constrain the following/sibling axes to a
“window” over the XML data tree, e.g., within the sub-tree of ele-
ments with a specific tag. This query model may enable a refined
definition of structural partitioning that can lead to higher accu-
racy. Moreover, a constrained following/preceding axis feels more
practical for real-world applications, since the unconstrained axis
essentially combines elements that are arbitrarily far in the stream.
We intend to investigate this idea as part of our future work.

Timing Experiments. The next set of experiments evaluates the
performance of our technique in terms of execution time. We em-
ploy the same experimental settings as the previous section. The
experiments were carried out on an Intel Xeon 3.40GHz CPU with
3GB of RAM, running Fedora Core R5.

Figure 11 shows a breakdown of the average execution time per
test query. The breakdown includes the following components: up-
dating the atomic sketch counters (sketching); filtering; partition-
ing, which includes obtaining estimates at partitioning points and
resetting the sketches; and, computing the X2R transform. The
three bars refer to different variants of our technique: NoOpt em-
ploys basic sieving without the optimization of Section 4.2; Ba-
sic applies the optimization; and, Struct employs structural sieving
with the optimization.

We focus first on the last bar that depicts the total execution time
of the full technique. The results show that sketching is clearly the
dominant component in terms of execution cost. We note that this
component can be readily improved by using more sophisticated
sketching techniques to implement the SKETCHER [17]. Even so,
our prototype achieves a low average processing time of 15.93 mi-
croseconds per element, which includes the overhead of the XML
parser. This translates roughly to an average throughput of 60K
elements/second. Another interesting observation is that the X2R
transform is really efficient to compute, incurring a cost that is less
than 1% of the total execution time

Comparing across the different variants, it becomes clear that
the optimized maintenance of atomic sketches reduces significantly
the total execution time. This optimization reduces the number of
sketch-update operations which form the dominant cost factor. A
similar observation holds for structural sieving (in particular, struc-
tural filtering), even though the improvement is less drastic.

Results on Real-life data sets. We next evaluate the performance
of our technique on the real-life data sets. We restrict the synopsis
size to 10KB and employ the Prec-Sib workload.

Figure 12 shows the CFD of the estimation error on the IMDB
and TreeBank data sets. (We repeat the results of the XMark data
set for comparison.) As shown, our technique enables estimates
with low error for the majority of test queries. Even for the Tree-
Bank data set, which is known as a difficult test case for summa-
rization, the estimation error is less than 20% for 60% of the test
queries. This level of accuracy is significant if we take into ac-
count the complexity of the data and the workload (twig queries
with a combination of XPath axes). Moreover, it is important to
note that our technique supports probabilistic error bounds that al-
low the user to gauge the accuracy of the estimate.

Comparison to SketchTree. We compare our approach to the
SketchTree summary of Rao and Moon [16]. Due to the limitations
of SketchTree, the comparison is limited to queries that employ
solely the child and following-sibling axis. We employ the Tree-
Bank data set on which SketchTree has been tested successfully,
and we form a test workload by picking at random 100 queries
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Figure 8: Effect of synopsis size on estimation error.
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Figure 10: Effect of workload-type on estimation error.
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Figure 11: Execution time breakdown.
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Figure 12:Estimation error on TreeBank and IMDB.
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Figure 13: Comparison against SketchTree.



from a workload provided by the authors3. Following the pub-
lished study, the construction parameters of the SketchTree are set
to s1 = 50, s2 = 7, and top − k = 50. This yields a synopsis that
occupies 460KB and that can estimate the count of any tree-pattern
query with child and following-sibling constraints. Since our tech-
nique works on a per-query basis, we restrict the size of our sketch
synopsis to 1% of the total size of the SketchTree summary.

Figure 13 shows the estimation error of the two techniques on
the TreeBank data set. The results clearly demonstrate that our
sketch-based synopsis enables significantly lower estimation errors
compared to SketchTree. Essentially, SketchTree can estimate the
count of any tree-pattern up to a specific size and, in that sense,
the statistical information that it stores is “diluted” over a very big
set of queries. The sketching technique that we propose is targeted
towards a specific continuous query that is installed over the stream,
and thus irrelevant information can be filtered.

Comparison to MXQuery. Finally, we compare our technique
against MXQuery [2], a lightweight XQuery engine that supports
streaming XML data and has a low memory footprint. We focus the
experiment on the memory consumed by query processing, since
this forms the primary motivation behind our sketch-based tech-
nique. We do not report on the CPU time requirements because we
could not obtain reliable measurements using the statistics supplied
by MXQuery itself. (We note that the CPU usage reported by the
Linux time command shows that we outperform MXQuery in this
respect.)

Our test was conducted on an Intel Xeon 3.40GHz CPU with
3GB of RAM, running Fedora Core R5. MXQuery was executed
using J2RE v1.5.0. We used the XMark dataset, and we restricted
the comparison to the Basic workload because MXQuery does not
support the order axes. Since MXQuery does not report its mem-
ory consumption, we resorted to the Linux top command in order
to measure the maximum data resident set size (data + stack size)
required per query for each technique. We averaged the metric over
10 trials for each query.

The results show that, on the average, our sketch-based approxi-
mation requires 618KB of memory compared to 962,757KB for the
full query evaluation performed by MXQuery. At the same time,
our technique provides estimates of high accuracy, following the
error trends shown in Figure 10 for the Basic workload. We note
that the memory measurement for MXQuery includes the overhead
of the JVM, but this alone does not account the large difference of
3 orders of magnitude. Overall, the results demonstrate the efficacy
of our technique as a substitute for full query evaluation in environ-
ments where resources are limited and an approximate answer is
sufficient.

7. CONCLUSIONS
In this paper, we present a novel technique for approximate query

answering over XML streams. Our technique advances the state-of-
art as it provides provable approximation guarantees for the class of
aggregate XML queries that employ the ordered XML model and
recursive structural constraints. The foundation of our approach
is the X2R transform that essentially reduces an aggregate XML
query to a relational query with equi-join predicates. This rewriting
enables us to develop a XML stream synopsis by leveraging exist-
ing relational techniques. We enhance this synopsis with structural
filtering and partitioning, two variance-reduction techniques that
improve significantly the accuracy of approximation. Experiments

3We are grateful to the authors for providing us with their source-
code and experimental data, and for advising us in the evaluation
of SketchTree.

on real-life and synthetic data sets have verified the effectiveness of
our approach.
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