
Turn-Based Qualitative Solution of

Concurrent Parity Games∗

Krishnendu Chatterjee§ Luca de Alfaro§ Thomas A. Henzinger†‡

§ CE, University of California, Santa Cruz,USA
† EECS, University of California, Berkeley,USA

‡ Computer and Communication Sciences, EPFL, Switzerland
{c krish,tah}@eecs.berkeley.edu, luca@soe.ucsc.edu

June 2008
Technical Report No. UCSC-SOE-08-11

School of Engineering, University of California, Santa Cruz, CA, USA

Abstract

We consider two-player concurrent games played on graphs, where at each state both players
choose moves simultaneously and independently. We consider ω-regular winning conditions
specified as parity objectives and study the qualitative winning mode, i.e., whether a player can
win with probability arbitrarily close to 1 (limit-winning). We provide an efficient reduction
from limit-winning concurrent parity games to winning turn-based parity games, where at each
state only one player has a choice of moves. From a theoretical point of view, the reduction
shows that for the qualitative winning mode, one can eliminate the concurrent nature of a
game, and since turn-based games are well-studied, the reduction improves the understanding
of concurrent games. From a practical point of view, the reduction provides algorithms for limit-
winning concurrent parity games from algorithms for solving turn-based parity games. Every
improvement in the latter algorithms will carry over to the former. In particular, using recent
results on algorithms for turn-based parity games, we improve the best known time complexity
to solve concurrent parity games when the set of available moves at each state is small.

1 Introduction

Two-player games played on graphs with ω-regular winning conditions have deep theoretical con-
nections to logic and automata [17, 15, 10, 8, 21] as well as many applications in the synthesis and
verification of reactive systems [19, 16, 1, 6, 2]. These games come in two varieties. The simple
variety is referred to as turn-based games. In turn-based games, the vertices of a graph are par-
titioned into player-1 states and player-2 states. If the vertex of a game is a player-1 state, then
player 1 chooses an outgoing edge, whose destination is the next state of the game; and symmetri-
cally for player-2 states. The result of an infinite game is an infinite path through the graph, and

∗This research was suppored in part by the NSF grants CCR-0132780, CNS-0720884, and CCR-0225610, and by
the Swiss National Science Foundation.

1

player 1 wins iff that path lies within the winning set. We will focus on parity winning conditions,
which is a common and complete way of specifying ω-regular sets of winning paths. The algorith-
mics of turn-based games in general —and of turn-based parity games in particular— has been a
topic of intense study [15, 11, 24, 13, 20], not least because the exact computational complexity of
turn-based parity games is still open.

The more complicated variety of graph games is referred to as concurrent games. If the vertex
of a game is a state in a concurrent game graph, then both players choose simultaneously and
independently from a given set of moves, and the pair of chosen moves determines the next state of
the game. Such concurrent games—besides being the standard model of game theory for infinitely
repeating games of perfect information—arise in computer science applications when the players
represent components of a reactive system that interact synchronously, which is often the case [1].
The algorithmics of concurrent games is considerably more difficult than for turn-based games. A
principal reason is that while in turn-based games, pure (nonprobabilistic) stationary (memoryless)
strategies suffice for winning, in concurrent games, in general players need to use mixed infinite-
memory strategies [5, 3]. As a result, few algorithms are available for solving concurrent games.
Indeed, for general winning conditions such as parity, and qualitative winning mode, currently the
only available algorithm is presented in [5] (a complete version has been submitted to a journal [3]).

Since optimal strategies for concurrent games are in general probabilistic, the classical game-
theoretic definition of qualitative winning is that the supremum over all player-1 strategies of the
infimum over all player-2 strategies of the probability that the resulting path lies in the winning set
is 1; in other words, player 1 can win with probability arbitrarily close to 1. In [7, 5], where several
modes of qualitative winning have been studied, this is called limit winning. A stronger notion of
qualitative winning, called almost-sure winning, is that player 1 can win with probability 1. (While
limit winning and almost-sure winning differ in concurrent games [7], they coincide for turn-based
games, where pure strategies suffice for winning.)

In this paper, we provide a reduction from concurrent parity games to turn-based parity games
for limit-winning. This reduction allows us to transfer all knowledge that has been and will be
accumulated for turn-based games, all algorithms and optimizations and tools that are and will
become available for turn-based games, to the technically more involved case of concurrent games.
For example, as corollaries of our reduction, we obtain new algorithms for solving concurrent parity
games that in some cases (e.g., if only a constant number of moves is available for both players at
each state) offer better theoretical performance than the currently known algorithm for concurrent
parity games.

The only previously known reduction from concurrent to turn-based games is for the special
case of almost-sure winning with respect to Büchi and coBüchi conditions [12]. By contrast, our
reduction handles the general class of all parity conditions and the general case of limit winning.
Our reduction converts every concurrent state s by a turn-based gadget. The gadget is exponential
in the number of actions available to each player at s, and we establish the equivalence of limit
winning in the concurrent game and the turn-based game for parity conditions to obtain the desired
result.

2 Definitions

In this section we define game structures, strategies, objectives, the limit winning mode and other
preliminary definitions.

2

Game structures. We define concurrent game structures and its sub-classes.
Probability distributions. For a finite set A, a probability distribution on A is a function δ : A 7→ [0, 1]
such that

∑
a∈A δ(a) = 1. We denote the set of probability distributions on A by D(A). Given

δ ∈ D(A), we denote by Supp(δ) = {x ∈ A | δ(x) > 0} the support of the distribution δ.
Concurrent game structures. A concurrent (two-player) game structure G = 〈S,M,Γ1,Γ2, δ〉 con-
sists of the following components.

• A finite state space S and a finite set M of moves or actions.

• Two move assignments Γ1,Γ2 : S 7→ 2M \ ∅. For i ∈ {1, 2}, assignment Γi associates with each
state s ∈ S the nonempty set Γi(s) ⊆ M of moves available to player i at state s. For technical
convenience, we assume that Γi(s) ∩ Γj(t) = ∅ unless i = j and s = t, for all i, j ∈ {1, 2} and
s, t ∈ S.

• A probabilistic transition function δ : S ×M×M 7→ D(S), which associates with every state
s ∈ S and moves a1 ∈ Γ1(s) and a2 ∈ Γ2(s) a probability distribution δ(s, a1, a2) ∈ D(S) for
the successor state.

Plays. At every state s ∈ S, player 1 chooses a move a1 ∈ Γ1(s), and simultaneously and indepen-
dently player 2 chooses a move a2 ∈ Γ2(s). The game then proceeds to the successor state t with
probability δ(s, a1, a2)(t), for all t ∈ S. For all states s ∈ S and moves a1 ∈ Γ1(s) and a2 ∈ Γ2(s),
we indicate by Dest(s, a1, a2) = Supp(δ(s, a1, a2)) the set of possible successors of s when moves a1,
a2 are selected. A path or a play of G is an infinite sequence ω = 〈s0, s1, s2, . . .〉 of states in S such
that for all k ≥ 0, there are moves ak1 ∈ Γ1(sk) and ak2 ∈ Γ2(sk) such that sk+1 ∈ Dest(sk, ak1, a

k
2).

We denote by Ω the set of all paths.
Special classes of games. We distinguish the following subclasses of game structures:

• A game structure G is deterministic if |Dest(s, a1, a2)| = 1 for all s ∈ S and all a1 ∈ Γ1(s),
a2 ∈ Γ2(s).

• A game structure G is turn-based if at every state at most one player can choose among
multiple moves; that is, for every state s ∈ S there exists at most one i ∈ {1, 2} with
|Γi(s)| > 1. Given a turn-based game structure, a state s is a player i state if |Γj(s)| = 1 for
j = {1, 2} \ {i}, i.e., the set of available moves for the other player is singleton.

We define the size of the game G to be equal to the number of entries of the transition function δ;
specifically, |G| =

∑
s∈S

∑
a∈Γ1(s)

∑
b∈Γ2(s) |Dest(s, a, b)|.

Strategies. A strategy for a player is a recipe that describes how to extend a play. Formally, a
strategy for player i ∈ {1, 2} is a mapping πi : S+ 7→ D(M) that associates with every nonempty
finite sequence x ∈ S+ of states, representing the past history of the game, a probability distribution
πi(x) used to select the next move. Thus, the choice of the next move can be history-dependent
and randomized. The strategy πi can prescribe only moves that are available to player i; that is,
for all sequences x ∈ S∗ and states s ∈ S, we require that Supp(πi(x · s)) ⊆ Γi(s). We denote by
Πi the set of all strategies for player i ∈ {1, 2}.

Once the starting state s and the strategies π1 and π2 for the two players have been chosen, the
game is reduced to an ordinary stochastic process. Hence, the probabilities of events are uniquely

3

defined, where an event A ⊆ Ω is a measurable set of paths. For an event A ⊆ Ω, we denote by
Prπ1,π2

s (A) the probability that a path belongs to A when the game starts from s and the players
use the strategies π1 and π2.
Deterministic strategies. A strategy π is deterministic if for all x ∈ S+ there exists a ∈ M such
that π(x)(a) = 1. Thus, deterministic strategies are equivalent to functions S+ 7→ M. We denote
by ΠD

i the set of deterministic strategies for player i.

Objectives. We specify objectives for the players by providing the set of winning plays Φ ⊆ Ω
for each player. In this paper we study only zero-sum games [18, 9], where the objectives of the
two players are complementary. In this paper we consider ω-regular objectives [21] specified as
Rabin-chain (parity) objectives. For a play ω = 〈s0, s1, s2, . . .〉 ∈ Ω, we define Inf (ω) = {s ∈ S |
sk = s for infinitely many k ≥ 0} to be the set of states that occur infinitely often in ω. The parity
objectives are defined as follows.

• Rabin-chain (parity) objectives. For c, d ∈ N, we let [c..d] = {c, c+1, . . . , d}. Let p : S 7→ [0..d]
be a function that assigns a priority p(s) to every state s ∈ S, where d ∈ N. The Even parity
objective is defined as Parity(p) = {ω ∈ Ω | max

(
p(Inf (ω))

)
is even }, and the Odd parity

objective as coParity(p) = {ω ∈ Ω | max
(
p(Inf (ω))

)
is odd }.

Limit winning mode. Given an objective Φ, for all initial states s ∈ S, the set of paths Φ
is measurable for all choices of the strategies of the player [23]. Given an initial state s ∈ S
and an objective Φ, we consider the following winning mode for player 1: we say that player 1
wins limit surely if the player has strategies to win with probability arbitrarily close to 1, or
supπ1∈Π1

infπ2∈Π2 Prπ1,π2
s (Φ) = 1. Analogous definitions apply for player 2. We abbreviate the

winning mode by limit . Using a notation derived from alternating temporal logic [1], given a player
i ∈ {1, 2}, and an objective Φ, we denote by 〈〈i〉〉limit

(
Φ
)

the set of states from which player i can
win in limit winning mode the game with objective Φ.

We remark that the ability of solving games with Rabin-chain objectives suffices for solving
games with respect to arbitrary ω-regular objectives. In fact, we can encode a general ω-regular
objective as a deterministic Rabin-chain automaton. By taking the synchronous product of the
automaton and the original game, we obtain an (enlarged) game with a Rabin-chain objective
[22, 14]. The set of winning states of the original structure can be computed by computing the set
of winning states of this enlarged game.

Mu-calculus, complementation, and levels. Consider a mu-calculus expression Y = µX .φ(X)
over a finite set S, where φ : 2S 7→ 2S is monotonic. The least fixpoint Y = µX .φ(X) of X = φ(X)
is equal to the limit Y = limk→∞Xk, where X0 = ∅, and Xk+1 = φ(Xk). For every state s ∈ Y , we
define the level k ≥ 0 of s in µX.φ(X) to be the integer such that s 6∈ Xk and s ∈ Xk+1. The greatest
fixpoint Y = νX . φ(X) of X = φ(X) is equal to the limit Y = limk→∞Xk, where X0 = S, and
Xk+1 = φ(Xk). For every state s 6∈ Y , we define the level k ≥ 0 of s in νX . φ(X) to be the integer
such that s ∈ Xk and s 6∈ Xk+1. The height of a mu-calculus expression Y = λX . φ(X), where
λ ∈ {µ, ν}, is the maximal level of any state in Y , i.e., the integer h such that Xh = limk→∞Xk.
An expression of height h can be computed in h + 1 iterations. Given a mu-calculus expression
Y = λX .φ(X), where λ ∈ {µ, ν}, the complement ¬Y = S \Y of λ is given by ¬Y = λX .¬φ(¬X),
where λ = µ if λ = ν, and λ = ν if λ = µ.

Distributions and one-step transitions. Given a state s ∈ S, we denote by χs1 = D(Γ1(s)) and
χs2 = D(Γ2(s)) the sets of probability distributions over the moves at s available to player 1 and 2,

4

respectively. Moreover, for s ∈ S, X ⊆ S, ξ1 ∈ χs1, and ξ2 ∈ χs2 we denote by

P ξ1,ξ2s (X) =
∑

a∈Γ1(s)

∑
b∈Γ2(s)

∑
t∈X

ξ1(a)ξ2(b)δ(s, a, b)(t)

the one-step probability of a transition into X when players 1 and 2 play at s with distributions
ξ1 and ξ2, respectively. Given a state s and distributions ξ1 ∈ χs1 and ξ2 ∈ χs2 we denote by
Dest(s, ξ1, ξ2) = {t ∈ S | P ξ1,ξ22 (t) > 0} the set of states that have positive probability of transition
from s when the players play ξ1 and ξ2 at s.

3 Limit Winning Set Characterization by µ-Calculus Formula

In this section we present several predecessor operators that are required for the computation of
the limit winning set in concurrent games with parity objectives. We then present the µ-calculus
formula that uses the predecessor operators to compute the limit winning set in concurrent parity
games. Finally, we present the µ-calculus formula that characterizes the predecessor operators.
The proofs of the above characterization are available in [3], the results first appeared in [5] and
the detailed proofs are available in [3].

The Lpre1, LPreOdd1 and LPreEven1 operators. For s ∈ S and X,Y ⊆ S, the Lpre1

predecessor operator is defined as follows:

Lpre1(Y,X) = {s ∈ S | ∀α > 0 . ∃ξ1 ∈ χs1 . ∀ξ2 ∈ χs2 .
[
P ξ1,ξ2s (X) > α · P ξ1,ξ2s (¬Y)

]
} .

The operator Lpre1(Y,X) states that player 1 can choose distributions to ensure that the probability
to progress to X can be made arbitrarily large as compared to the probability of escape from Y . The
Lpre1 operator is generalized to a 2i-argument predecessor operator, namely LPreOdd1 operator,
as follows: for i ≥ 0, and Yn, Xn, . . . , Yn−i, Xn−i ⊆ S, we have

LPreOdd1(i, Yn, Xn, . . . , Yn−i, Xn−i) =

{
s ∈ S | ∀α > 0 . ∃ξ1 ∈ χs1.∀ξ2 ∈ χs2.

P ξ1,ξ2s (Xn) > α · P ξ1,ξ2s (¬Yn)∨
P ξ1,ξ2s (Xn−1) > α · P ξ1,ξ2s (¬Yn−1)∨

...∨
P ξ1,ξ2s (Xn−i) > α · P ξ1,ξ2s (¬Yn−i)

}
.

The generalization is obtained as follows: the operator LPreOdd1 requires that for all α > 0, there
is a player 1 distribution that can ensure the condition similar to Lpre1 for a disjunction of state
pairs Xn−j , Yn−j for 0 ≤ j ≤ i, and in particular we have LPreOdd1(0, Yn, Xn) = Lpre1(Yn, Xn).
The operator LPreEven1 is defined as follows: for i ≥ 0 and Yn, Xn, . . . , Yn−i, Xn−i, Yn−i−1 ⊆ S,

5

we have

LPreEven1(i, Yn, Xn, . . . , Yn−i, Xn−i, Yn−i−1) =

{
s ∈ S | ∀α > 0 . ∃ξ1 ∈ χs1.∀ξ2 ∈ χs2.

P ξ1,ξ2s (Xn) > α · P ξ1,ξ2s (¬Yn)∨
P ξ1,ξ2s (Xn−1) > α · P ξ1,ξ2s (¬Yn−1)∨

...∨
P ξ1,ξ2s (Xn−i) > α · P ξ1,ξ2s (¬Yn−i)∨

P ξ1,ξ2s (Yn−i−1) = 1

}
.

The operator LPreEven1 requires that there for all α > 0, there is player 1 distribution that can
ensure that either in the next step all the successor states belong to Yn−i−1 or else the conditions of
LPreOdd1 are satisfied. The results of [3] characterizes the limit-winning sets of concurrent parity
games by µ-calculus formulas with the predecessor operators defined above. Formally, the following
theorem is proved in [3].

Theorem 1 (Concurrent parity games[3]). Given a concurrent game structure G with a parity
objective Parity(p), where p : S 7→ {0, 1, . . . , 2n − 1}, let Bi = p−1(i) be the set of states with
priority i. Then 〈〈1〉〉limit

(
Parity(p)

)
= W , where W is defined as follows

νYn.µXn. · · · νY1.µX1.νY0.

B2n−1 ∩ LPreOdd1(0, Yn, Xn)
∪

B2n−2 ∩ LPreEven1(0, Yn, Xn, Yn−1)
∪

B2n−3 ∩ LPreOdd1(1, Yn, Xn, Yn−1, Xn−1)
∪

B2n−4 ∩ LPreEven1(1, Yn, Xn, Yn−1, Xn−1, Yn−2)
...

B1 ∩ LPreOdd1(n− 1, Yn, Xn, . . . , Y1, X1)
∪

B0 ∩ LPreEven1(n− 1, Yn, Xn, . . . , Y1, X1, Y0)

Our goal is to obtain turn-based reductions to mimic the evaluation of the predecessor oper-

ators. In concurrent games edges are labelled by a pair of actions and for every state we will
obtain turn-based gadgets containing auxiliary states so that the questions about the predecessor
operators on the concurrent games can be answered by evaluating similar questions on the turn-
based gadgets. On the concurrent game structures the predecessor operators can be computed as
fixed-point expressions over the set of actions and our turn-based gadgets will mimic the fixed-point
evaluation. We now present the fixed-point characterization of the predecessor operators.

The µ-calculus characterization of the predecessor operators. The definitions of Lpre1,
LPreOdd1 and LPreEven1 are not computational. We now present the µ-calculus characterization of
the predecessor operators, and the µ-calculus expressions to compute the predecessor operators are

6

over the set Γs = Γ1(s) ∪ Γ2(s). For X,Y ⊆ S and A ⊆ Γs, we define two predicates, Stayi(s, Y,A)
and Coveri(s,X,A) by:

Stay1(s, Y,A) = {a ∈ Γ1(s) | ∀b ∈ Γ2(s) \A .
[
Dest(s, a, b) ⊆ Y

]
} (1)

Cover1(s,X,A) = {b ∈ Γ2(s) | ∃a ∈ Γ1(s) ∩A .Dest(s, a, b) ∩X 6= ∅} ; (2)

The set Stay1(s, Y,A) ⊆ Γ1(s) consists of the set of player 1 moves a such that for all moves b for
player 2 that are not in A, the next state given moves a and b is in Y with probability 1. The set
Cover1(s,X,A) ⊆ Γ2(s) consists of player 2 moves b such that there is a move a for player 1 in A
such that the next state given moves a and b is in X with positive probability.

Lemma 1 ([3]) For all X0 ⊆ Y0 ⊆ S, s ∈ S, the following assertion hold: s ∈ Lpre1(Y0, X0) iff
Γ2(s) ⊆ µW .

[
Stay1(s, Y0,W) ∪ Cover1(s,X0,W)

]
.

Lemma 2 ([3]) For all Xn ⊆ Xn−1 ⊆ · · · ⊆ Xn−i ⊆ Yn−i ⊆ Yn−i+1 ⊆ · · · ⊆ Yn and s ∈ S, the
following assertion hold: let

W ∗2i = µW2i . νW2i−1 . · · · . µW0 .

(
Stay1(s, Yn,W0) ∩

⋂i
j=1 Stay1(s, Yn−j ,W2j−1)

)
∪⋂i

j=0 Cover1(s,Xn−j ,W2j)

 .
We have s ∈ LPreOdd1(i, Yn, Xn, . . . , Yn−i, Xn−i) iff Γ2(s) ⊆W ∗2i.

Lemma 3 ([3]) For all Xn ⊆ Xn−1 ⊆ · · · ⊆ Xn−i ⊆ Yn−i−1 ⊆ Yn−i ⊆ Yn−i+1 ⊆ · · · ⊆ Yn and
s ∈ S, the following assertion hold: let

W ∗2i+1 = νW2i+1 . µW2i . νW2i−1 . · · · . µW0 .

(
Stay1(s, Yn,W0) ∩

⋂i
j=1 Stay1(s, Yn−j ,W2j−1)

∩ Stay1(s, Yn−i−1,W2i+1)
)

∪⋂i
j=0 Cover1(s,Xn−j ,W2j)

 .
We have s ∈ LPreEven1(i, Yn, Xn, . . . , Yn−i, Xn−i, Yn−i−1) iff Γ1(s) ∩W ∗2i+1 6= ∅.

Theorem 1 and Lemmas 1, 2, 3 first appeared in [5], and the detailed proofs are given in [3].

4 Reduction for Limit-winning

In this section we present turn-based reduction gadgets for the Lpre, LPreOdd and LPreEven
operators and then reduce concurrent game structures to turn-based game structures preserving
limit-winning for parity objectives. We first present a basic reduction gadget.

Basic gadget for reduction. Given a concurrent game structure G = (S,M,Γ1,Γ2, δ) we con-
struct a basic reduction gadget g̃ad(s,A,B) for a state s ∈ S, A ⊆ Γ1(s), and B ⊆ Γ2(s) as
follows:

7

1. The set of states for the gadget g̃ad(s,A,B) is as follows:

{(s,A,B, 1) | A ⊆ A,B ⊆ B,B 6= ∅}
∪ {(s,A1, A2, B1, B2, 2) | A1, A2 ⊆ A,B1, B2 ⊆ B,B1 6= ∅}.

We refer to (s,A,B, 1) as the starting state of g̃ad(s,A,B).

2. The move assignments are as follows: (a) Γ̃1((s,A,B, 1)) = {(Ai, Bi) | Ai ⊆ A,Bi ⊆
B} and Γ̃2((s,A,B, 1)) = {⊥}; i.e., a state (s,A,B, 1) is a player 1 state; and
(b) Γ̃1((s,A1, A2, B1, B2, 2)) = {⊥} and Γ̃2((s,A1, A2, B1, B2, 2)) = B1 ∪ {B2} if B2 6= ∅
and B1 otherwise, i.e., (s,A1, A2, B1, B2, 2) is a player 2 state.

Intuitively at state (s,A,B, 1) player 1 can play a subset Ai ⊆ A of moves and propose to
cover Bi ⊆ B of moves. At state (s,A1, A2, B1, B2, 2) player 2 can check if B1 is indeed
covered by A1 and if so it proceeds to the next level by going to state (s,A2, B2, 1).

3. We now describe the transition function δ̃. For a set A ⊆ Γ1(s) we denote by unif(A) the
uniform distribution over A, i.e., unif(A)(a) = 0 for a 6∈ A, and 1

|A| otherwise, and for a
move b ∈ Γ2(s), by a slight abuse of notation, we also use b to denote the distribution that
deterministically chooses b (i.e., chooses b with probability 1) The transition function is as
follows:

δ̃((s,A,B, 1), (Ai, Bi),⊥) = (s,Ai, A \Ai, Bi, B \Bi, 2)

δ̃((s,A1, A2, B1, B2, 2),⊥, b)(s′) = P
unif(A\A2),b
s (s′) b ∈ B1

δ̃((s,A1, A2, B1, B2, 2),⊥, {B2}) = (s,A2, B2, 1)

The states (s, ∅, B, 1) are absorbing states that are winning for player 2, i.e., absorbing states
assigned odd priority.

The transition function captures the following idea: at (s,A,B, 1) player 1 can choose (Ai, Bi)
to indicate that it covers Bi by playing Ai in the present level and then has A \ Ai to cover
B \Bi in a top-down fashion in the next level. Intuitively, covering a set Bi of player 2 moves
means that player 1 exhibit witness that it can achieve its goal of satisfying the required
predecessor operator if player 2 is restricted to choose from the set Bi of moves. Given the
game is at state (s,A,B, 1), player 1 has already played the actions A\A, and effectively it has
the set Ai∪ (A\A) to cover Bi. At (s,A1, A2, B1, B2, 2) player 2 can either challenge player 1
by playing a move b ∈ B1 to check if A1 along with actions already played before indeed
covers B1, or else can move to the next level with the set of moves for player 1 and player 2
being A2 and B2, respectively. Given player 2 plays a action b ∈ B1, the transition function
is given by the uniform distribution over the actions A \ A2 (the actions that are already
played by player 1) and the action b of player 2. Observe that for s̃ = (s,A1, A2, B1, B2, 2)
and b ∈ B1 we have Dest(s̃,⊥, b) =

⋃
a∈A\A2

Dest(s, a, b). A state (s, ∅, B, 1) indicates that
player 1 cannot cover all the moves for player 2 and hence it is converted to a loosing state for
player 1. Observe that for state (s,A,B, 1) we do not allow B = ∅: if B = ∅, then it means
player 1 can successfully cover all the moves of player 2 and achieve its goal of satisfying the
required predecessor operator.

Reduction for Lpre. The gadget LimOdd(s) for a state s for the Lpre operator is as follows:
the state s is converted to a player 1 state with a deterministic transition to the starting state of

8

g̃ad(s,Γ1(s),Γ2(s)). Let all the states in S be labelled by a proposition r and all the other states
by proposition ¬r. We assume that every state (s, ∅, B, 1) which are absorbing loosing state for
player 1 are labeled by proposition `. We will follow the same notations for the later reductions as
well.

The L̃pre1 operator. We use the until operator U of LTL with the standard semantics. The
L̃pre1 operator is defined as follows: for X,Y ⊆ S we have

L̃pre1(Y,X) =

{
s ∈ S | ∃α ∈ IR>0.∃π̃1.∀π̃2.

 Preπ1,eπ2
s

(
(¬r U Y)

)
= 1

∧
Preπ1,eπ2

s

(
(¬r U X)

)
≥ α

 in LimOdd(s).

}

Lemma 4 For all X0 ⊆ Y0 ⊆ S we have Lpre1(Y0, X0) = L̃pre1(Y0, X0).

Proof. To prove the desired result we consider the fixed-point characterization of Lpre by
Lemma 1. We prove inclusion in both directions.

1. We first show that Lpre1(Y0, X0) ⊆ L̃pre1(Y0, X0). If s ∈ Lpre1(Y0, X0), then by Lemma 1
we have Γ2(s) ⊆ µW .

[
Stay1(s, Y0,W) ∪ Cover1(s,X0,W)

]
. Let

W−1 = ∅; for i ≥ 0, Wi = Stay1(s, Y0,Wi−1) ∪ Cover1(s,X0,Wi−1).

Then we have µW .
[
Stay1(s, Y0,W) ∪ Cover1(s,X0,W)

]
=
⋃
i≥0Wi; and hence Γ2(s) ⊆⋃

i≥0Wi. For i ≥ 0, let Ai = (Wi \Wi−1)∩ Γ1(s) and Bi = (Wi \Wi−1)∩ Γ2(s). We have the
following properties of the moves. Consider a move b in Bi (i.e., a player 2 move in Wi\Wi−1).

(a) Property 1. Since b ∈ Wi, by definition of Cover1(s,X0,Wi−1) there exists a ∈ Wi−1

such that Dest(s, a, b) ∩X0 6= ∅.
(b) Property 2. By definition of Stay1(s, Y0,Wi−1) for all a ∈ Wi, for all b′ ∈ Γ2(s) \Wi−1

we have Dest(s, a, b′) ⊆ Y0. Since b ∈ Wi \Wi−1 (i.e., b 6∈ Wi−1), it follows that for all
a ∈Wi we have Dest(s, a, b) ⊆ Y0.

The strategy π̃1 for player 1 as a witness that s ∈ L̃pre1(Y0, X0) is obtained as follows:

• π̃1((s,Γ1(s),Γ2(s), 1)) = (A0, B0); and
• for i > 0, π̃1((s,Γ1(s) \Wi−1,Γ2(s) \Wi−1, 1)) = (Ai, Bi).

For i ≥ 0, for the state s̃ = (s,Ai,Γ1(s) \Wi, Bi,Γ2(s) \Wi, 2), the following assertions hold:
(a) for all b ∈ Bi we have Dest(s̃,⊥, b)∩X0 = (

⋃
a∈Wi

Dest(s, a, b))∩X0 6= ∅ (by property 1);
(b) for all b ∈ Bi we have Dest(s̃,⊥, b) =

⋃
a∈Wi

Dest(s, a, b) ⊆ Y0 (by property 2). Since
Γ2(s) ⊆

⋃
i≥0Wi it follows that π̃1 ensures that absorbing states (s, ∅, B, 1) are never reached.

The assertions that follow from property 1 and property 2 ensure that the set Y0 is reached
with probability 1 and the set X0 is reached with positive probability. The desired result
follows.

2. We now show that L̃pre1(Y0, X0) ⊆ Lpre1(Y0, X0). If there is witness strategy π̃1 to sat-
isfy L̃pre1(Y0, X0), then since the reduction gadget is turn-based there is also a determin-
istic witness strategy π̃D1 . We inductively define the following pairs of actions: (a) let
π̃D1 ((s,Γ1(s),Γ2(s), 1)) = (Ã0, B̃0); and (b) for k > 0, let π̃D1 ((s,Γ1(s) \

⋃
i<k Ãi,Γ2(s) \⋃

i<k B̃i, 1)) = (Ãk, B̃k). Then for a move b ∈ B̃k the following assertions hold:

9

(a) Condition 1. exists a ∈
⋃
i<k Ãi such that Dest(s, a, b) ∩X0 6= ∅; and

(b) Condition 2. for all a ∈
⋃
i<k Ãi we have Dest(s, a, b) ⊆ Y0.

The above claim is proved as follows. Assume towards contradiction, that there exists b∗ ∈ B̃k
such that one of the above two conditions do not hold. Given the strategy π̃D1 player 2
can ensure that the state s̃ = (s, Ãk,Γ1(s) \

⋃
i≤k Ãi, B̃k,Γ2(s) \

⋃
i≤k B̃i, 2) is reached with

probability 1 (by choosing for a state (s, Ãj ,Γ1(s)\
⋃
i≤j Ãi, B̃j ,Γ2(s)\

⋃
i≤j B̃i, 2) the successor

(s,Γ1(s)\
⋃
i≤j Ãi,Γ2(s)\

⋃
i≤j B̃i, 1), for j < k); and then play b∗ to ensure that either (a) X0

is not reached with positive probability (if Condition 1 fails for b∗) or (b) Y0 is not reached
with probability 1 (if Condition 2 fails for b∗). This would contradict that π̃D1 is a witness
that s ∈ L̃pre1(Y0, X0). Hence it follows that Condition 1 and Condition 2 holds for all
b ∈ B̃k. The strategy π̃D1 must also ensure that the absorbing states (s, ∅, B, 1) are never
reached and hence Γ2(s) ⊆

⋃
k≥0 B̃k. We now produce witness distributions to show that

s ∈ Lpre1(Y0, X0). Given ε > 0, consider the distribution ξ1[ε] in the concurrent game G
that plays moves in Ãk with probability proportional to εk. Consider a move b ∈ B̃k. Given
player 2 plays move b we have:

• the probability of going to X0 is proportional to at least εk−1, since for some move
a ∈

⋃
i<k Ãi we have Dest(s, a, b) ∩X0 6= ∅ (by Condition 1); and

• the probability of leaving Y0 is at most proportional to εk, since for all moves a ∈
⋃
i<k Ãi

we have Dest(s, a, b) ⊆ Y0 (by Condition 2).

It follows that for all distributions ξ2 ∈ χs2, the ratio of the probability of going to X0 as
compared to the probability of leaving Y0 is proportional to at least 1

ε . Since ε > 0 is
arbitrary, it follows that s ∈ Lpre1(Y0, X0).

The ˜LPreOdd1 operator. Similar to the definition the L̃pre1 operator we use the until operator
U of LTL to define the ˜LPreOdd1 operator. The ˜LPreOdd1 operator is defined as follows: for

10

Yn, Xn, . . . , Yn−i, Xn−i ⊆ S we have

˜LPreOdd1(i, Yn, Xn, . . . , Yn−i, Xn−i) =

{
s ∈ S | ∃α ∈ IR>0.∃π̃1.∀π̃2.

(
Preπ1,eπ2

s

(
(¬r U Yn)

)
= 1

∧

Preπ1,eπ2
s

(
(¬r U Xn)

)
≥ α

)
∨(

Preπ1,eπ2
s

(
(¬r U Yn−1)

)
= 1

∧

Preπ1,eπ2
s

(
(¬r U Xn−1)

)
≥ α

)
∨
...∨(

Preπ1,eπ2
s

(
(¬r U Yn−i)

)
= 1

∧

Preπ1,eπ2
s

(
(¬r U Xn−i)

)
≥ α

)

in LimOdd(s).

}

We extend the results of Lemma 4 to LPreOdd1 operators, and for simplicity we present the
details of the result for LPreOdd1(1, Y1, X1, Y0, X0).

Lemma 5 For all X1 ⊆ X0 ⊆ Y0 ⊆ Y1 ⊆ S, we have LPreOdd1(1, Y1, X1, Y0, X0) =
˜LPreOdd1(1, Y1, X1, Y0, X0).

Proof. We prove inclusion in both directions.

1. We show LPreOdd1(1, Y1, X1, Y0, X0) ⊆ ˜LPreOdd1(1, Y1, X1, Y0, X0). We will use the µ-
calculus characterization of Lemma 2. If s ∈ LPreOdd1(1, Y1, X1, Y0, X0), then let

W ∗2 = µW2 . νW1 . µW0 .

 Stay1(s, Y1,W0) ∩ Stay1(s, Y0,W1)
∪

Cover1(s,X1,W0) ∩ Cover1(s,X0,W2)

 .
We have Γ2(s) ⊆ W ∗2 . We first analyze the computation of W ∗2 . The set W ∗2 of moves is
obtained as follows:

∅ = W 0
2 ⊆W 1

2 ⊆W 2
2 ⊆ · · · ⊆W `−1

2 ⊆W `
2 = W `+1

2 = W ∗2 ;

and the set W i+1
2 is obtained from W i

2 as follows:

W i+1
2 = νW1 . µW0 .

 Stay1(s, Y1,W0) ∩ Stay1(s, Y0,W1)
∪

Cover1(s,X1,W0) ∩ Cover1(s,X0,W
i
2)

 .
11

Alternatively we have

W i+1
2 = µW0 .

 Stay1(s, Y1,W0) ∩ Stay1(s, Y0,W
i+1
2)

∪
Cover1(s,X1,W0) ∩ Cover1(s,X0,W

i
2)

 .
Equivalently, we can characterize the computation of W i+1

2 as follows:

W i+1,0
2 = W i

2 ∪ Cover1(s,X0,W
i
2);

W i+1,j+1
2 = W i+1,j

2 ∪ (Stay1(s, Y1,W
i+1,j
2) ∩ Stay1(s, Y0,W

i+1
2)) ∪ Cover1(s,X1,W

i+1,j
2).

Properties. We now describe the following key properties of the moves.

(a) Property 1. For all b ∈ (W i+1,0
2 \W i

2) ∩ Γ2(s), there exists a ∈ W i
2 ∩ Γ1(s) such that

Dest(s, a, b) ∩X0 6= ∅ (by property of Cover1(s,X0,W
i
2)).

(b) Property 2. For all b ∈ (W i+1,j+1
2 \W i+1,j

2)∩ Γ2(s), there exists a ∈W i+1,j
2 ∩ Γ1(s) such

that Dest(s, a, b) ∩X1 6= ∅ (by property of Cover1(s,X1,W
i+1,j
2)).

(c) Property 3. For all a ∈ W i+1
2 ∩ Γ1(s), for all b ∈ Γ2(s) \W i+1

2 we have Dest(s, a, b) ⊆
Y0 ⊆ Y1 (by property of Stay1(s, Y0,W

i+1
2)).

(d) Property 4. For all a ∈W i+1,j+1
2 ∩Γ1(s), for all b ∈ Γ2(s)\W i+1,j

2 we have Dest(s, a, b) ⊆
Y1 (by property of Stay1(s, Y1,W

i+1,j
2)).

We now define the following move sets for player 1 and player 2 at s; (a) for i ≥ 0, let

Ai+1,0 = (W i+1,0
2 \W i

2) ∩ Γ1(s) Bi+1,0 = (W i+1,0
2 \W i

2) ∩ Γ2(s);

and (b) for i ≥ 0 and j ≥ 1, let

Ai+1,j = (W i+1,j
2 \W i+1,j−1

2) ∩ Γ1(s) Bi+1,j = (W i+1,j
2 \W i+1,j−1

2) ∩ Γ2(s).

We now construct a strategy π̃1 for player 1 to witness that s ∈ ˜LPreOdd1(1, Y1, X1, Y0, X0).
The strategy π̃1 is as follows:

(a) π̃1

(
(s,Γ1(s),Γ2(s), 1)

)
= (A1,0, B1,0);

(b) for i ≥ 1, let π̃1

(
(s,Γ1(s) \W i

2,Γ2(s) \W i
2, 1)

)
= (Ai+1,0, Bi+1,0); and

(c) for i ≥ 1 and j ≥ 0, let π̃1

(
(s,Γ1(s) \W i,j

2 ,Γ2(s) \W i,j
2 , 1)

)
= (Ai,j , Bi,j), where W i,j

2 is
a strict subset of W i+1

2 .

Given the strategy we have the following case analysis.

(a) Case 1. For a state s̃ = (s,Ai+1,0,Γ1(s) \W i+1,0
2 , Bi+1,0,Γ2(s) \W i+1,0

2 , 2), for all b ∈
Bi+1,0 we have (a) Dest(s̃,⊥, b)∩X0 6= ∅ (by Property 1); and (b) Dest(s̃,⊥, b) ⊆ Y0 ⊆ Y1

(by Property 3).

(b) Case 2. For a state s̃ = (s,Ai,j ,Γ2(s)\W i,j
2 , Bi,j ,Γ1(s)\W i,j

2 , 2), for all b ∈ Bi,j we have
(a) Dest(s̃,⊥, b) ∩X1 6= ∅ (by Property 2); and (b) Dest(s̃,⊥, b) ⊆ Y1 (by Property 4).

12

Given the strategy π̃1 consider a counter-strategy for player 2, and since the reduction is a
turn-based gadget it suffices to consider deterministic counter-strategy for player 2. From
the above case analysis the following assertions hold: (a) for a player-2 state s̃ in the gadget,
if player 2 plays any action b ∈ Γ2(s), then the set Y1 is reached with probability 1; (b) if
on reaching a player-2 state s̃ in the gadget, player 2 plays an action b ∈ Γ2(s), satisfying
case 2 above, then X1 is reached with positive probability; and (c) if on reaching a player-2
state s̃ in the gadget, player 2 plays an action b ∈ Γ2(s) satisfying case 1 above, then the set
Y0 is reached with probability 1 and the set X0 is reached with positive probability. Since
Γ2(s) ⊆W ∗2 , it follows that π̃1 is a witness that s ∈ ˜LPreOdd1(1, Y1, X1, Y0, X0).

2. We now show the inclusion in other direction. If there is witness strategy π̃1 to satisfy
˜LPreOdd1(1, Y1, X1, Y0, X0), then since the reduction gadget is turn-based there is also a

deterministic witness strategy π̃D1 . We inductively define the following pairs of actions:
(a) let π̃D1 ((s,Γ1(s),Γ2(s), 1) = (Ã0, B̃0); and (b) for k > 0, let π̃D1 ((s,Γ1(s) \

⋃
i<k Ãi,Γ2(s) \⋃

i<k B̃i, 1)) = (Ãk, B̃k). Then for a move b ∈ B̃k the following assertions hold:

(a) Condition 1. either (i) exists a ∈
⋃
i<k Ãi such that Dest(s, a, b)∩X1 6= ∅ or (ii) exists a ∈⋃

i<k Ãi such that Dest(s, a, b) ∩X0 6= ∅ and for all a ∈
⋃
i<k Ãi we have Dest(s, a, b) ⊆

Y0 ⊆ Y1; and
(b) Condition 2. for all a ∈

⋃
i<k Ãi we have Dest(s, a, b) ⊆ Y1.

If one of the above claim fails, then similar to Lemma 5, it can be contradicted that π̃D1 is
a witness strategy. The strategy π̃D1 must also ensure that the absorbing states (s, ∅, B, 1)
are never reached and hence Γ2(s) ⊆

⋃
k≥0 B̃k. We now produce witness distributions to

show that s ∈ LPreOdd1(1, Y1, X1, Y0, X0). Given ε > 0, consider the distribution ξ1[ε] in
the concurrent game G that plays moves in Ãk with probability proportional to εk. Consider
a distribution ξ2 ∈ χs2 for player 2. Suppose for all b ∈ Supp(ξ2) condition 1.(ii) is satisfied,
then it follows that for all b ∈ Supp(ξ2), there exists j, such that for some a ∈

⋃
i<j Ãi we

have Dest(s, a, b) ∩ X0 6= ∅ and for all a ∈
⋃
i<j Ãi we have Dest(s, a, b) ⊆ Y0. Hence the

ratio of the probability of going to X0 as compared to leaving Y0 is proportional to at least
1
ε . Otherwise, there exists b∗ ∈ Supp(ξ2) such that condition 1.(i) holds. In this case, for
all b ∈ B̃k, for all a ∈

⋃
i<k Ãi we have Dest(s, a, b) ⊆ Y1 and for all b ∈ B̃k that satisfies

condition 1.(i), for some a ∈
⋃
i<k Ãi we have Dest(s, a, b) ∩X1 6= ∅. Hence the ratio of the

probability of going to X1 as compared to leaving Y1 is proportional to at least 1
ε . Since ε > 0

is arbitrary, it follows that s ∈ LPreOdd1(1, Y1, X1, Y0, X0).

The result of Lemma 5 can be generalized to give us the following result: the argument is similar
to Lemma 5 and in the general case the argument is extended using the ranking function of general
µ-calculus formula.

Lemma 6 For all Xn ⊆ Xn−1 ⊆ · · · ⊆ Xn−i ⊆ Yn−i ⊆ Yn−i+1 ⊆ · · · ⊆ Yn we have
LPreOdd1(i, Yn, Xn, . . . , Yn−i, Xn−i) = ˜LPreOdd1(i, Yn, Xn, . . . , Yn−i, Xn−i).

Reduction for LPreEven1. The reduction of a state s to turn-based gadget LimEven(s) for the
LPreEven1 operator requires one more level as compared to the LPreOdd1 operator. The idea is
as follows.

13

• Set of states. In the gadget LimEven(s) the starting state is s and s is player 1 state. The
gadget LimEven(s) along with s has the gadgets g̃ad(s,A,B) for A ⊆ Γ1(s) and B ⊆ Γ2(s);
and there are also states of the form (s,A,B) where A ⊆ Γ1(s) and B ⊆ Γ2(s) and each state
(s,A,B) is a player 2 state.

• Move assignment. We have Γ̃1(s) = {(A,B) | A ⊆ Γ1(s), B ⊆ Γ2(s), A 6= ∅} and Γ̃2(s) = {⊥};
and Γ̃1((s,A,B)) = {⊥} and Γ̃2((s,A,B)) = (Γ2(s) \B) ∪ {B}.

• Transition function. We have δ̃(s, (A,B),⊥) = (s,A,B); δ̃((s,A,B),⊥, b)(s′) =
P

unif(A),b
s ({s′}) for b ∈ Γ̃2((s,A,B)) and δ̃((s,A,B),⊥, B) = (s,A,B, 1), i.e., goes to the

starting state of g̃ad(s,A,B).

The ˜LPreEven1 operator. The ˜LPreEven1 operator is defined in a fashion similar to the
˜LPreOdd1 operator: for Yn, Xn, . . . , Yn−i, Xn−i, Yn−i−1 ⊆ S we have

˜LPreEven1(i, Yn, Xn, . . . , Yn−i, Xn−i, Yn−i−1) ={
s ∈ S | ∃(A,B). A ⊆ Γ1(s), B ⊆ Γ2(s),∀b ∈ Γ2(s) \B, (i) either

⋃
a∈A Dest(s, a, b) ⊆ Yn−i−1,

or for some 0 ≤ jb ≤ i.
⋃
a∈A

Dest(s, a, b) ⊆ Yn−i+jb and
⋃
a∈A

Dest(s, a, b) ∩Xn−i+jb 6= ∅;

and (ii) the starting state of g̃ad(s,A,B) satisfies ˜LPreOdd1(i, Yn, Xn, . . . , Yn−i, Xn−i)

}

Lemma 7 For all Xn ⊆ Xn−1 ⊆ · · · ⊆ Xn−i ⊆ Yn−i−1 ⊆ Yn−i ⊆ Yn−i+1 ⊆ · · · ⊆ Yn we have
LPreEven1(i, Yn, Xn, . . . , Yn−i, Xn−i, Yn−i−1) = ˜LPreEven1(i, Yn, Xn, . . . , Yn−i, Xn−i, Yn−i−1).

Proof. We prove inclusion in both directions.

1. We first show that LPreEven1(i, Yn, Xn, . . . , Yn−i, Xn−i, Yn−i−1) ⊆
˜LPreEven1(i, Yn, Xn, . . . , Yn−i, Xn−i, Yn−i−1). If s ∈ LPreEven1(i, Yn, Xn, . . . , Yn−i, Xn−i, Yn−i−1),

then from the proofs of the µ-calculus characterization of LPreOdd1 and LPreEven1

the following property follows (see [3]): there exists (A∗, B∗) with A∗ ⊆ Γ1(s) and
B∗ ⊆ Γ2(s) such that (a) for all b ∈ Γ2(s) \ B∗ and for all a ∈ A∗ we have
Dest(s, a, b) ⊆ Yn−i−1; and (b) if player 2’s move are restricted to B∗, then player 1
can ensure LPreOdd1(i, Yn, Xn, . . . , Yn−i, Xn−i). The witness (A∗, B∗) is obtained as
follows. Let W ∗2i+1 be the result of the µ-calculus formula over moves for Lemma 3,
then A∗ = W ∗2i+1 ∩ Γ1(s) and B∗ = W ∗2i+1 ∩ Γ2(s). The witness strategy for player 1 to

show s ∈ ˜LPreEven1(i, Yn, Xn, . . . , Yn−i, Xn−i, Yn−i−1) is as follows: the strategy chooses
(A∗, B∗) at s, and then plays a strategy π̃1 from the starting state of g̃ad(s,A∗, B∗)
to satisfy ˜LPreOdd1(i, Yn, Xn, . . . , Yn−i, Xn−i) (the existence of such a witness strat-
egy π̃1 follows from Lemma 6 and the fact that given player 2’s move are restricted
to B∗, then player 1 can ensure LPreOdd1(i, Yn, Xn, . . . , Yn−i, Xn−i)). It follows that
s ∈ ˜LPreEven1(i, Yn, Xn, . . . , Yn−i, Xn−i, Yn−i−1).

14

2. We now prove the other inclusion to complete the proof. If there is witness strategy π̃1 to
satisfy ˜LPreEven1(i, Yn, Xn, . . . , Yn−i, Xn−i, Yn−i−1), then since the reduction gadget is turn-
based there is also a deterministic witness strategy π̃D1 . We inductively define the following
pairs of actions: (a) let π̃D1 (s) = (Ã, B̃); and (b) let π̃D1 ((s, Ã, B̃, 1)) = (Ã0, B̃0); and (c) for
k > 0, let π̃D1 ((s, Ã \

⋃
i<k Ãi, B̃ \

⋃
i<k B̃i, 1)) = (Ãk, B̃k). Then the following assertions hold.

(a) Condition 1. For all moves b ∈ Γ2(s) \ B̃, either (i)
⋃
a∈A Dest(s, a, b) ⊆ Yn−i−1 ⊆

Yn−i ⊆ . . . ⊆ Yn, or (ii) for some 0 ≤ jb ≤ i we have
⋃
a∈A Dest(s, a, b) ⊆ Yn−i+jb and⋃

a∈A Dest(s, a, b) ∩Xn−i+jb 6= ∅.

(b) Condition 2. For all b ∈ B̃k, there exists 0 ≤ jb ≤ i, such that (i) for all a ∈
⋃
i<k Ãi

we have Dest(s, a, b) ⊆ Yn−i+jb , and (ii) for some a ∈
⋃
i<k Ãi we have Dest(s, a, b) ∩

Xn−i+jb 6= ∅.

If one of the above claim fails, then it can be contradicted that π̃D1 is a witness strategy.
The strategy π̃D1 must also ensure that the absorbing states (s, ∅, B, 1) are never reached
and hence Γ2(s) ⊆

⋃
k≥0 B̃k. Let B̂ be the moves of player 2 that satisfies Condition 1.(i),

and B = Γ2(s) \ B̂. Observe that for a move b ∈ B if Condition 1.(ii) or Condition 2 is
satisfied for 1 ≤ jb ≤ i, then it also holds for j such that jb ≤ j ≤ i. Let j∗ ≥ 0 be
such that for all moves b ∈ B Condition 1.(ii) or Condition 2 are satisfied for j∗ (simply
choose j∗ to be the maximum of jb for b ∈ B). The witness distributions to show that
s ∈ LPreEven1(i, Yn, Xn, . . . , Yn−i, Xn−i, Yn−i−1) is as follows: given ε > 0, consider the
distribution ξ1[ε] in the concurrent game G such that Supp(ξ1[ε]) = Ã and that plays moves
in Ãk with probability proportional to εk. Consider a counter-distribution ξ2 for player 2:
the following case analysis completes the proof.

• If Supp(ξ2) ⊆ B̂, then from s the successor states given ξ1[ε] and ξ2 are in Yn−i−1;

• otherwise, for j∗ the ratio of the probability of going to Xn−j∗ as compared to leaving
Yn−j∗ is proportional to at least 1

ε .

Since ε > 0 is arbitrary, it follows that s ∈ LPreEven1(i, Yn, Xn, . . . , Yn−i, Xn−i, Yn−i−1). The
result follows.

Reduction for limit-winning. Given a concurrent game structure G with a priority function p,
we construct a turn-based game structure G̃L with a priority function p̃ as follows.

• Reduction for odd states. For a state s such that p(s) is odd, s is replaced by the gadget
LimOdd(s), the priority p̃ is assigned as follows: p̃(s) = p(s) and for a state s̃ we have
p̃(s̃) = p(s). Observe that it is taken care that absorbing states of the form (s, ∅, B, 1) are
assigned an odd priority.

• Reduction for even states. For a state s such that p(s) is even, s is replaced by the gadget
LimEven(s), the priority p̃ is assigned as follows: (i) p̃(s) = p(s), (ii) for s̃ = (s,A,B) we
have p̃(s̃) = p(s), and (iii) for all other states s̃ in the gadget we have p̃(s̃) = p(s) + 1.
We briefly explain the reason of assigning priority p(s) + 1 to certain states in the gadget.
The proof of Lemma 7 shows that s ∈ ˜LPreEven1(i, Yn, Xn, . . . , Yn−i, Xn−i, Yn−i+1) can be

15

characterized as follows: from s player 1 can play a pair of action sets such that in the
immediate successor either player 2 plays in a way such that the condition for ˜LPreEven1

holds, or else from the next states player 1 satisfies ˜LPreOdd1(i, Yn, Xn, . . . , Yn−i, Xn−i).
The correspondence of ˜LPreOdd1 and LPreOdd1 operator, and the fact that in the µ-
calculus characterization of winning set (by the µ-calculus formula of Theorem 1) if
LPreEven1(i, Yn, Xn, . . . , Yn−i, Xn−i, Yn−i−i) operator is used for states with even prior-
ity p(s), then LPreOdd1(i, Yn, Xn, . . . , Yn−i, Xn−i) operator is used for states with priority
p(s) + 1, along with the above priority assignment ensures a correspondence of winning set
of the concurrent game and the turn-based game obtained. Also observe that it is taken care
that absorbing states of the form (s, ∅, B, 1) are assigned an odd priority.

Analogous to the characterization of the limit-winning states in concurrent games by Theorem 1,
it can be shown that the set of limit-winning states in G̃L that intersects with S can be obtained by
the µ-calculus expression of Theorem 1 by replacing the LPreOdd1 and LPreEven1 operator with

˜LPreOdd1 and ˜LPreEven1, respectively. Also observe that for the µ-calculus formula characterizing
the limit-winning set, for all calls to the LPreOdd1 and LPreEven1 operators, the arguments satisfy
the inclusion relation assumptions of Lemma 6 and and Lemma 7. The above characterization, the
characterization of limit-winning states in concurrent games by µ-calculus expression of Theorem 1
along with Lemma 6 and Lemma 7 yield the following result.

Theorem 2 Given a concurrent game structure G with a parity objective Parity(p), consider the
turn-based game structure G̃L with the objective Parity(p̃). Let Wl = 〈〈1〉〉limit

(
Parity(p)

)
in G and

W̃l = 〈〈1〉〉limit

(
Parity(p̃)

)
in G̃L, then Wl = W̃l ∩ S.

Algorithms. Given a state s let β(s) = 2O(|Γ1(s)+Γ2(s)|), and β(S) =
∑

s∈S β(s). The reduction
of a concurrent game structure G to turn-based game structures GL for limit-winning satisfy that
|GL| = O(β(S)). A turn-based game structure GT with a parity objective Parity(p) of d-priorities
can be reduced to a turn-based deterministic game structure GTD with a parity objective Parity(p̂)
such that |GTD| = |GT | ·d, the priority function p̂ has d+1 priorities and the limit-winning states in
GT can be obtained by solving GTD. The above reduction of GT to GTD was established in [4]. Our
reduction of concurrent game structures to turn-based game structures (Theorem 2) along with the
reduction of [4] makes the rich class of algorithms for turn-based deterministic parity games (such
as classical recursive algorithm [15], small-progress measure algorithm [11], strategy improvement
algorithm [24], deterministic sub-exponential algorithm [13], solving parity games in big steps [20])
available to compute limit-winning sets for concurrent games with parity objectives. This gives us
Theorem 3: the bound for part 2 is obtained by applying the algorithm of [20] and the bound for
part 3 is obtained by applying the deterministic sub-exponential algorithm [13].

Theorem 3 Given a concurrent game structure G with a parity objective Parity(p) with d priori-
ties the following assertions hold.

1. There is a deterministic turn-based game GTD with a parity function p̃ with d+1 priorities such
that if Wl = 〈〈1〉〉limit

(
Parity(p)

)
in G and W̃l = 〈〈1〉〉limit

(
Parity(p̃)

)
in G̃L, then Wl = W̃l ∩S.

Moreover, |GTD| = β(S) · d, and the game GTD can be constructed in time O(β(S) · d).

2. The set 〈〈1〉〉limit

(
Parity(p)

)
can be computed in time O

(
(β(S) · d)b

d
3
c+3
)
.

16

3. The set 〈〈1〉〉limit

(
Parity(p)

)
can be computed in time O

(
(β(S) · d)

√
β(S)·d).

The running time of the previous best known algorithm to compute the limit-winning states is
O(|G|2d+2) [5, 3]; if β(S) is O(|G|) (which is typically the case since the number of available moves
at a state is constant), then Theorem 3 (part 2) yields a better complexity bound. If β(S) = O(|G|)
and d = O(|S|1−ε) for ε > 0, then Theorem 3 (part 3) yields a sub-exponential bound to compute
the limit-winning states.

References

[1] R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic. In Proc. 38th
IEEE Symp. Found. of Comp. Sci., pages 100–109. IEEE Computer Society Press, 1997.

[2] A. Blass, Y. Gurevich, L. Nachmanson, and M. Veanes. Play to test. In FATES’05, 2005.

[3] K. Chatterjee, L. de Alfaro, and T.A. Henzinger. Qualitative concurrent
parity games. In Technical Report UCSC-CRL-08-02, 2008. (Available at
http://www.eecs.berkeley.edu/∼c krish/publications/qualitative concurrent.ps).

[4] K. Chatterjee, M. Jurdziński, and T.A. Henzinger. Simple stochastic parity games. In CSL’03,
volume 2803 of LNCS, pages 100–113. Springer, 2003.

[5] L. de Alfaro and T.A. Henzinger. Concurrent omega-regular games. In LICS’00, pages 141–154.
IEEE, 2000.

[6] L. de Alfaro and T.A. Henzinger. Interface automata. In Proceedings of the Ninth Annual
Symposium on Foundations of Software Engineering, pages 109–120. ACM Press, 2001.

[7] L. de Alfaro, T.A. Henzinger, and O. Kupferman. Concurrent reachability games. Theoretical
Computer Science, 386(3):188–217, 2007.

[8] E.A. Emerson and C.S. Jutla. Tree automata, mu-calculus and determinacy (extended ab-
stract). In 32nd Symp. on Foundations of Computer Science (FOCS), pages 368–377, 1991.

[9] J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer-Verlag, 1997.

[10] Y. Gurevich and L. Harrington. Trees, automata, and games. In Proc. 14th ACM Symp.
Theory of Comp., 1982.

[11] M. Jurdzinski. Small progress measures for solving parity games. In STACS’00, pages 290–301.
LNCS 1770, Springer, 2000.

[12] M. Jurdziński, O. Kupferman, and T.A. Henzinger. Trading probability for fairness. In CSL:
Computer Science Logic, Lecture Notes in Computer Science 2471, pages 292–305. Springer,
2002.

[13] M. Jurdziński, M. Paterson, and U. Zwick. A deterministic subexponential algorithm for
solving parity games. In SODA’06, pages 117–123. ACM-SIAM, 2006.

17

[14] H. Lescow and T. Wilke. On polynomial-size programs winning finite-state games. In Proc.
7th Intl. Conference on Computer Aided Verification, volume 939 of Lect. Notes in Comp. Sci.,
pages 239–252. Springer-Verlag, 1995.

[15] R. McNaughton. Infinite games played on finite graphs. Annals of Pure and Applied Logic,
65:149–184, 1993.

[16] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Symposium on Principles
of Programming Languages, 1989.

[17] M.O. Rabin. Automata on Infinite Objects and Church’s Problem. Number 13 in Conference
Series in Mathematics. American Mathematical Society, 1969.

[18] T.E.S. Raghavan and J.A. Filar. Algorithms for stochastic games — a survey. ZOR — Methods
and Models of Op. Res., 35:437–472, 1991.

[19] P.J.G. Ramadge and W.M. Wonham. The control of discrete event systems. IEEE Transactions
on Control Theory, 77:81–98, 1989.

[20] S. Schewe. Solving parity games in big steps. In FSTTCS’07, pages 449–460. LNCS 4855,
Springer, 2007.

[21] W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook of Theoretical
Computer Science, volume B, chapter 4, pages 135–191. Elsevier Science Publishers (North-
Holland), Amsterdam, 1990.

[22] W. Thomas. On the synthesis of strategies in infinite games. In Proc. of 12th Annual Symp.
on Theor. Asp. of Comp. Sci., volume 900 of Lect. Notes in Comp. Sci., pages 1–13. Springer-
Verlag, 1995.

[23] M.Y. Vardi. Automatic verification of probabilistic concurrent finite-state systems. In Proc.
26th IEEE Symp. Found. of Comp. Sci., pages 327–338, 1985.

[24] J. Vöge and M. Jurdziński. A discrete strategy improvement algorithm for solving parity
games. In CAV’00, pages 202–215. LNCS 1855, Springer, 2000.

18

