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ABSTRACT

We examine a physical process that leads to the efficient formation of gas gi-

ant planets around intermediate mass stars. In the gaseous protoplanetary disks

surrounding rapidly-accreting intermediate-mass stars we show that the midplane

temperature (heated primarily by turbulent dissipation) can reach &1000 K out

to 1 AU. Thermal ionization of this hot gas couples the disk to the magnetic

field, allowing the magneto-rotational instability (MRI) to generate turbulence

and transport angular momentum. Further from the central star the ionization

fraction decreases, decoupling the disk from the magnetic field and reducing the

efficiency of angular momentum transport. As the disk evolves towards a quasi-

steady state, a local maximum in the surface density and in the midplane pressure

both develop at the inner edge of the MRI-dead zone, trapping inwardly migrat-

ing solid bodies. Small particles accumulate and coagulate into planetesimals

which grow rapidly until they reach isolation mass. In contrast to the situation

around solar type stars, we show that the isolation mass for cores at this critical

radius around the more massive stars is large enough to promote the accretion of

significant amounts of gas prior to disk depletion. Through this process, we an-

ticipate a prolific production of gas giants at ∼ 1 AU around intermediate-mass

stars.

Subject headings: planetary systems: formation, protoplanetary disks
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1. Introduction

The discovery of a plethora of extra-solar planets around solar-type main sequence stars

has established that planet formation must be a common process, not a peculiarity of our

own solar system. As observational techniques for planetary detection have become more

sophisticated, the discovery domain has expanded to include host stars with a wide range

of masses. While on the main sequence, intermediate mass stars (stars with 1.5M⊙ . M∗ .

3M⊙) make poor radial velocity (RV) survey candidates as they have few spectral lines which

also tend to be rotationally broadened (Griffin et al. (2000) but see Galland et al. (2006)).

However, once these stars evolve off the main sequence, their relatively cool and slowly

rotating outer layers make them more suitable candidates for high precision spectroscopic

studies. Recent RV surveys targeting evolved intermediate mass stars suggest that they differ

from solar-type stars as planetary hosts in at least two respects. First, the total frequency

of giant planets (with periods less than a few years) appears be higher around intermediate

mass stars. Second, the planets have different statistical properties. Their semi-major axis

distribution is concentrated at 1-2 AU and there is an apparent lack of short-period (days

to months) planets, despite observational selection effects favoring their discovery (Lovis &

Mayor 2007).

In this paper, we propose a common explanation for prolific gas giant formation with

semi-major axes comparable to 1 AU and for the rarity of close-in planets around intermediate-

mass stars. As it is unlikely that all planets within 1 AU have been engulfed or had their

orbits disrupted by the current expanded envelope of the host stars (Johnson et al. 2007),

we attribute both properties to the formation and early evolutionary processes rather than

to post-main-sequence evolution.

We begin by examining the physical properties of circumstellar disks which may affect

the probability of forming giant planets. In the core-accretion model of planet formation

(cf. Bodenheimer & Pollack (1986)), the emergence of Jupiter-like gas giants requires that

a population of solid cores form within a gaseous protoplanetary disk. These cores grow

through cohesive collisions with planetesimals, with a growth rate determined by the veloc-

ity dispersion of the planetesimal swarm. The magnitude of this velocity dispersion is set

by a balance between excitation by gravitational perturbations and damping by gas drag.

In the gas-rich environment of typical protostellar disk, gas drag dominates so that field

planetesimals only attain relatively small equilibrium velocity dispersion. As a result the

most massive protoplanetary embryos can access only those building blocks within their

gravitational feeding zones (Kokubo & Ida 1998). When these embryos have collected all

the planetesimals within about five times their Roche radius on either side of their orbits,

their growth stalls. This maximum embryo mass, a function of planetesimal surface density
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and distance from the central star, is referred to as the embryo’s isolation mass (Miso). Gas

giants can only form if the embryos’ Miso is sufficiently large for the cores to begin accreting

gas prior to the depletion of their nascent disks (Ida & Lin 2004).

Although the gravity of lunar-mass embryos is adequate to accrete disk gas with tem-

perature < 103 K, efficient dynamical gas accretion is only possible for cores with masses

greater than some critical value (Mcrit). In a minimum mass solar nebula (Hayashi 1981)

with an interstellar grain size distribution, Mcrit ∼ 10M⊕ at a semi-major axis a ∼ 5 AU

(Pollack et al. 1996), although this critical mass decreases both with lowered grain opacity

(Ikoma et al. 2000; Hubickyj et al. 2005) and with increased density of the ambient gas

(Bodenheimer & Pollack 1986; Papaloizou & Terquem 1999). Gas giant formation therefore

requires that the heavy-elements in the disk can be efficiently assembled into massive cores

with mass greater than Mcrit. In order to understand the spatial distribution of the gas giant

planets we must understand how the building blocks of these cores migrate and are retained

in gaseous disks.

In protoplanetary disks solid retention first becomes an issue once grains grow beyond a

few cm in size. In most regions of protostellar disks, the midplane pressure (Pmid) decreases

with distance from the central star (r) so that the gas is slightly pressure supported, resulting

in a sub-Keplerian azimuthal velocity. Grains larger than a few cm are decoupled from the

gas and move at Keplerian speeds. Consequently, grains typically experience head winds

and undergo orbital decay (Weidenschilling 1977). However if Pmid does not monotonically

decrease with r then immediately interior to a local pressure maximum the gas attains super-

Keplerian velocities. This motion introduces a tail wind on the decoupled grains and causes

them to drift outwards towards local pressure maxima (Bryden et al. 2000; Haghighipour &

Boss 2003).

Solid retention again becomes an issue once planetesimals grow into earth-mass embryos

and tidal interactions with the gaseous disk become important. Before embryos are suffi-

ciently massive to open up gaps in the disks (Lin & Papaloizou 1986), they can exchange

angular momentum with the gas via their Lindblad and co-rotation resonances (Goldreich

& Tremaine 1980). A geometric bias causes an imbalance between the Lindblad resonances

which generally leads to a loss of angular momentum and orbital decay for the embryos (Ward

1986, 1997). However, embryos will gain angular momentum through their co-rotation reso-

nances if there is a positive Pmid gradient (Tanaka et al. 2002; Masset et al. 2006). Numerical

models which take into account these physical effects have reproduced the observed Mp − a

distribution around solar type stars (Ida & Lin 2008).

Several physical processes can lead to local maxima in Pmid. Various authors have

explored the potential accumulation of grains at transient pressure maxima formed by tur-
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bulent fluctuations (Johansen et al. 2006; Fromang & Nelson 2005) or spiral waves (Rice

et al. 2006). These mechanisms, while likely extremely important for forming planetesimals

at a large range of radii, are still quite “leaky” as a significant fraction of the solid material

simply undergoes a slightly slower random walk towards the central star. However, longer

lived pressure maxima may also exist due to large scale changes in the disk viscosity (Kretke

& Lin 2007).

We expect radial variations in viscosity if turbulence caused by the magneto-rotational

instability (MRI; Balbus & Hawley (1991)) is the primary mechanism for transporting an-

gular momentum. These variations result from changes in the ionization fraction at different

radii in the disk since free electrons are needed to couple the gas to the magnetic field. The

disk is thermally ionized in the hot inner regions, but further out stellar x-rays and diffuse

cosmic rays ionize only the surface layers, resulting in a viscously active turbulent surface

sandwiching an inactive “dead zone” (Gammie 1996). At the critical radius marking the

inner edge of the dead zone (acrit), the effective viscosity decreases with increasing distance

from the central star. In a quasi-steady state situation (expected to develop rapidly in the

inner regions of the disk) this decrease in viscosity leads to a local increase in the magnitude

of Σg and hence of Pmid with radius. This disk structure provides a promising barrier to the

orbital decay of both boulders and embryos. The radial location of acrit depends on the stellar

mass and the mass accretion rate which we argue explains the observed differences between

the statistical distributions of planets around solar-type stars and around intermediate mass

stars.

In this paper, we present a model for the formation of planets at the inner edge of the

dead zone and argue why this process is more relevant for intermediate mass than for solar

mass stars. In §2 we describe our quantitative numerical model for the evolution of solids in

the disk, based upon the work of Garaud (2007). An important aspect of this model is the

location of acrit (the inner edge of the dead zone) which we derive in §2.2 as a function of

stellar mass and mass accretion rate. In §3 we present the model results for a 2 M⊙ star and

estimate how this planet formation mechanism scales with stellar mass. In §4 we summarize

our conclusions.

2. Model Description

In order to assess the probability of forming of gas giants at the inner edge of the dead

zone, we must calculate the expected isolation mass of the cores (Miso) at this location

(acrit). From the work of Kokubo & Ida (1998), it has been established that the embryo’s

isolation mass is sensitive both to the distance from the host star and to the surface density
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of solids. For the purpose of computing the efficiency of solid retention we calculate the

dynamical evolution of the solids in the disk using a modification of the numerical scheme

developed by Garaud (2007) (hereafter G07). For full details we refer the readers to G07 but

for reference the salient points are described here. In this model we assume that particles, as

a result of a collisional cascade, maintain a power-law size distribution in which the number

density of particles of size s goes as dn/ds ∝ s−3.5, with sizes ranging from a fixed smin to

smax and where smax is allowed to vary with time and distance from the central star. This

simplifying assumption allows us to completely describe the evolution of the gas and solids

in the disk by the total gas surface density (Σg(r, t)), the solid and vapor surface densities

of the different species in the disk (Σp,i(r, t) and Σv,i(r, t) respectively), and the maximum

size of the particles smax(r, t).

In the following sections we describe how we have modified the G07 scheme. In §2.1, we

describe how we account for the presence of an evolving dead zone. In particular we describe

in §2.2 how we calculate the location of the inner edge of the dead zone (acrit) using a simple

model of the vertical thermal structure. Finally, in §2.3 we model the drag on the gas caused

by the particles in the limit of large Z = Σp/Σg, an effect important near acrit where solids

are seen to accumulate.

2.1. Viscosity at a function of r and t

The original G07 model uses the standard α viscosity prescription (ν(r) = αeffcs(r)h(r))

where cs is the midplane sound-speed, h is the disk scale-height (h ≡ cs,midΩ
−1
K ) and αeff is

constant. In this paper we consider αeff = αeff(r, t) to model the presence of an evolving

MRI-dead zone. In fully MRI-active regions (eg. interior to acrit) we assume that αeff = αMRI,

while exterior to acrit, αeff is modified to take into account the lower viscosity of the dead

zone. In §2.2 we describe in detail how we calculate the location of acrit.

Exterior to acrit the disk is ionized by x-rays and cosmic rays, so only the surface layers

are MRI active. The column density of this active layer (ΣA) is strongly dependent on the

ionizing source (ie. the ability of cosmic rays to penetrate the stellar magnetosphere) and

on the recombination rate, which is dominated by the amount of small grains. Due to these

uncertainties, and the fact that the exact evolution of the outer parts of the dead zone are

relatively unimportant in these calculations, we follow previous studies and assume that

ΣA = 100 g cm−2 at all radii (outside of the thermally ionized region) (eg. Gammie (1996)).

Additionally, we assume that there is some amount of angular momentum transport in

the dead zone. This transport may be due to the propagation of MRI-driven waves into
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the laminar dead zone (Fleming & Stone (2003); Turner et al. (2007)) or to a mechanism

unrelated to the MRI. This motivates the following prescription in regions beyond acrit

αeff(r, t) =

{

2αMRIΣA+αeff,dead(Σg−2ΣA)

Σg(r,t)
, if Σg ≥ 2ΣA,

αMRI, otherwise,
(1)

where αeff,dead is the effective viscosity in the dead zone.

2.2. Location of acrit

As the degree of thermal ionization is a sensitive function of temperature, we must

calculate the vertical structure of the disk in order to find the location of acrit, the inner edge

of the dead zone. In the innermost regions of the disk viscous heating dominates the energy

budget, and stellar irradiation can be neglected (Garaud & Lin 2007).

We assume that the disk is in hydrostatic equilibrium

dP

dz
= −ρgΩ

2
Kz, (2)

and is viscously heated so that the vertical energy flux (F ) is described by

dF

dz
=

9

4
νρgΩ

2
K . (3)

Here we consider that ν(r, z) is a function of both height and radius in the disk and assume

that the orbital frequency can be approximated by the Keplerian frequency.

We also assume radiative energy transport so that

F = −4ac

3

T 3

κρg

dT

dz
, (4)

where κ is the Rosseland mean opacity. For the temperature range of interest (400-1,200K)

the dominant opacity sources are silicate and iron grains. We adopt a grey opacity approxi-

mation in which κ = 1 cm2 g−1. This approximation is consistent with the Ferguson et al.

(2005) dust opacities. We solve only the optically thick region of the disk and use photo-

spheric boundary conditions at z = ze, namely P (ze) = (2/3)Ω2
Kze/κ and F (ze) = σT (ze)

4.

Finally we assume symmetry about the midplane.

In order to parametrize the variation of the viscosity with height above the midplane we

follow the results of 3D MHD simulations which demonstrate that, in fully developed MRI-

turbulence, the shear stress(w ≡ νρgr(dΩ/dr) = (3/2)νρgΩK) is approximately constant
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with height (Miller & Stone 2000). Based on these numerical results, we model the viscosity

at a given radius as

ν(z) =

{

2
3

αPmid

ρg(z)ΩK
, if |z| < zν ,

0, otherwise,
(5)

where zν ≈ 2h. Note that this differs from the more common 2D parametrization sometime

referred to as the “αP -formalism” (e.g. Cannizzo (1992)) where να−P = αc2
s(z)Ω−1

K . Viscosity

described by equation (5) increases with height, which leads to a cooler midplane more

consistent with multi-dimensional MHD simulations than the αP -formalism (Hirose et al.

2006).

Equation (5) is applicable to MRI-active regions where the partially ionized gas is well

coupled to the turbulent magnetic field through the entire thickness of the disk. As long

as the midplane temperature is high enough to sufficiently ionize the gas this structure

is self-consistent. We can therefore use it to determine acrit, the outermost radius where

this condition is satisfied. In practice we combine the equations for the vertical structure

with the Saha equation to calculate the location at which the midplane just satisfies the

ionization criteria of xe ≥ 10−12 (where xe is the fractional number density of electrons)

which corresponds to T ∼ 1000K for typical disk midplane densities (Umebayashi 1983).

In Figure 2 the curves show the location of the inner edge of the dead zone as a function

of stellar mass and accretion rate assuming that in the active region α = 10−2. These

theoretical curves can be approximated by

acrit = 0.77

(

Ṁ

1.4 × 10−7M⊙yr−1

)4/9
(

M∗

2M⊙

)1/3

×
( α

10−2

)−1/5
(

κD

1 cm2 g−1

)1/4

AU, (6)

where the quasi-steady-state approximation for the mass accretion rate

Ṁ = 3π

∫

∞

−∞

ρgνdz = 4παPmidΩ
−1
K zν (7)

was used to eliminate Pmid. We find that this value for acrit varies significantly from the

∼ 0.1 AU often quoted (ie. Gammie (1996)) if the stellar mass or the mass accretion rate

are large. By using the relationship

Ṁ = 3πνΣg = 3παeffc2
sΩ

−1
K Σg (8)

(Pringle 1981) we can relate the α in equation (6) to the the vertically averaged αeff when

the disk is fully MRI active and find that αMRI ≈ α.
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Observationally, Ṁ appears to be correlated with M∗, although the exact relationship

is both uncertain and shows significant scatter. For reference the symbols in Figure 2 in-

dicate measurements of mass accretion rates onto young stars. The solid points are from

observations of the young cluster (< 1 Myr) ρ-Oph by Natta et al. (2006) and the dashed

line shows the best fit to their data which is

Ṁ ≃ 4 × 10−8(M∗/M⊙)1.8M⊙yr−1. (9)

As the mass accretion rate for the higher mass stars in the Natta et al. sample is dominated

by a single object, we have also plotted (as open points) similar data from older, hetero-

geneously distributed intermediate mass stars with estimated ages ranging from 1-10 Myr

(Garcia Lopez et al. 2006). As suggested in this study, these systematically older stars may

have had higher mass accretion rates consistent with the extrapolation from ρ-Oph, when

they were younger.

Using the best fit relationship from ρ-Oph implies that acrit ∝ M1.1
∗

. Clarke & Pringle

(2006) suggest that the correlation between stellar mass and mass accretion rate may not

be this steep due to observational biases. If instead we use their estimation that Ṁ ∝ M∗,

then acrit ∝ M0.8
∗

, which is a slightly less sensitive but nevertheless increasing function of

M∗. Therefore, in the light of these the uncertainties, we will simply assume that acrit ∝ M∗.

2.3. Gas-Particle Feedback

In a thin disk, the global evolution of the gas surface density Σg is determined by the

equation
∂Σg

∂t
+

1

r

∂

∂r
(Σgurr) = 0. (10)

In a standard viscous accretion disk the radial velocity (ur) of gas equals uν where

uν ≡ − 3

r1/2Σg

∂

∂r
(r1/2νΣg). (11)

In our analysis, we consider the possibility that the radial velocity of the gas ur is not only

determined by the viscosity but also by momentum transferred via drag between the gas

and the solid particles. We calculate the equation of motion for a parcel of gas and dust in

a similar fashion to Nakagawa et al. (1986). However, instead of assuming a single particle

size for the solids we consider the power-law distribution (dn/ds ∝ s−3.5). The equation of

motion for a given particle of size s is

dV (s)

dt
= − 1

τs(s)
(V (s) − U) − GM∗

r3
r (12)
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where τs(s) = sρs/(ρgcs) is the stopping time for a particle of size s and density ρs (in the

Epstein regime, see G07 for a full description), where V (s) is the size dependent particle

velocity and U is the gas velocity.

Assuming that deviations from Keplerian orbital velocity are small, we write V (s) =

vr(s)r̂ + (rΩK + vφ(s))φ̂ and U = urr̂ + (rΩK + uφ)φ̂). The linearization of equation (12)

yields

∂vr

∂t
= − 1

τs(s)
(vr(s) − ur) + 2ΩKvφ(s),

∂vφ

∂t
= − 1

τs(s)
(vφ(s) − uφ) −

1

2
ΩKvr(s), (13)

The particles and gas adjust to a steady motion with respect to each other within a few

stopping times, so we solve for the steady-state solutions only. Multiplying by the particle

mass and integrating over the whole size distribution function yields
∫ smax

smin

[

−m(s)
dn

ds

1

τs(s)
(vr(s) − ur) + 2ΩKm(s)

dn

ds
vφ(s)

]

ds = 0,

∫ smax

smin

[

−m(s)
dn

ds

1

τs(s)
(vφ(s) − uφ) −

1

2
ΩKm(s)

dn

ds
vr(s)

]

ds = 0. (14)

The momentum lost by the solids is acquired by the gas, so that the steady state gas-dynamic

can be described by
∫ smax

smin

m(s)
dn

ds

1

τs(s)
(vr(s) − ur)ds + 2ΩKρg(uφ + ηvK) = 0,

∫ smax

smin

m(s)
dn

ds

1

τs(s)
(vφ(s) − uφ)ds − 1

2
ΩKρg(ur − uν) = 0, (15)

where η is the non-dimensional pressure gradient

η ≡ −1

2

h2

r2

∂ ln P

∂ ln r
, (16)

and vK = rΩK. In most regions of the disk η is positive due to the negative pressure gradient,

but its sign will change around pressure maxima. In the absence of particles, the gas will

have an azimuthal velocity (relative to the Keplerian motion) of uφ = −ηvK and a radial

velocity of ur = uν .

Combining these equations and defining the mass–weighted average particle velocities

as

v̄φ ≡ 1

ρp

∫ smax

smin

m(s)
dn

ds
vφ(s)ds,

v̄r ≡ 1

ρp

∫ smax

smin

m(s)
dn

ds
vr(s)ds (17)
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allows us to write

uφ = −ρp

ρg

v̄φ,

ur = uν −
ρp

ρg

v̄r. (18)

Combining this with equation (13) we can solve for

vr(s) =
ur + 2ΩKτs(s)uφ

1 + Ω2
Kτs(s)2

,

vφ(s) =
uφ − (1/2)ΩKτs(s)ur

1 + Ω2
Kτs(s)2

. (19)

Using the definition for the Stokes number St(s) = ΩKτs(s)/(2π) and taking the mass–

weighted integral over all particle sizes yields

v̄r = I
(

√

2πStmax

)

ur + 2J
(

√

2πStmax

)

uφ,

v̄φ = I
(

√

2πStmax

)

uφ − 1

2
J
(

√

2πStmax

)

ur, (20)

where I and J are the same as equation (52) in G07 (reproduced in Appendix A for reference)

and Stmax = St(smax). Combining equations (18) and (20) yields the final steady-state

velocities for the particles and the gas where I ≡ I
(√

2πStmax

)

, J ≡ J
(√

2πStmax

)

, and

χ ≡ ρp/ρg.

v̄r =
[I + χ(I2 + J2)]uν − 2JηvK

1 + 2χI + χ2(I2 + J2)
,

v̄φ = −1

2

[

Juν + 2[I + χ(I2 + J2)]ηvK

1 + 2χI + χ2(I2 + J2)

]

, (21)

ur =
(1 + χI)uν + 2JχηvK

1 + 2χI + χ2(I2 + J2)
, and

uφ =
1

2

[

χJuν − 2(1 + χI)ηvK

1 + 2χI + χ2(I2 + J2)

]

. (22)

In the gas dominated limit (χ → 0) these equations reduce to those in G07. If Stmax

is large and Stmax ≫ χ2, the solids will be decoupled from the gas and will not migrate

significantly (vr = 0) while the gas evolves viscously (ur = uν). In the limit Stmax ≪ 1,

the grains are well-coupled to the gas so there will be little relative motion between the two

(ur = vr = uν/(1 + χ)).
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3. Model Results

With these modifications to the G07 prescription we calculate the evolution of a disk

around a 2M⊙ star including an MRI-dead zone (αMRI = 10−2, αeff,dead = 10−3). The initial

disk has a surface density profile of

Σg = Σ0

( r

1AU

)−1

exp

(−r

R0

)

(23)

where R0 = 30AU, and Σ0 = 104 g cm−2 has been chosen such that the quasi-steady state

accretion rate Ṁ from equation (8) is 1.4×10−7Ṁ yr−1 when αeff = αeff,dead. For the chosen

value of αeff,dead the total disk mass is 0.1M∗. This relatively massive disk is still stable

according to the Toomre criterion at all radii. For simplicity we only track one species

of solids, a generic refractory material which we take to be a combination of silicates and

metals, materials which are assumed to sublimate at 1500K. Using the solar composition from

Lodders (2003) we begin with a dust-to-gas ratio of 0.005 for these refractory materials. We

do not track volatile ices as they will not contribute to the solid cores formed in the hot

regions of interest. For other model parameters we use the values presented in the fiducial

model of G07.

3.1. Accumulation of Solids

We first study the accumulation of solids near the edge of the dead zone and emphasize

the importance of feedback in terms of momentum exchange between the solids and the gas.

We present two runs, the first neglecting momentum transfer from the dust to the gas and

then including this feedback.

The top and middle panels of figure 3 show the evolution of the gas and solids neglecting

the feedback of the dust on the gas. For reference, figure 4 shows αeff at 104 years and at 105

years to indicate the location of the dead zone. Early on the dead zone extends from 0.9 to

20 AU, but as the disk evolves the dead zone shrinks. Within the first 104 years the gaseous

disk adjusts to a quasi-steady-state profile in the inner regions. The surface density of the

gas in the fully MRI-active inner region (r . 1 AU) is reduced by a factor of αeff,dead/αMRI

compared with that in the dead zone (r ∈ [1, 10] AU), thus creating a local pressure maximum

near 1 AU. In this calculation neglecting feedback, the solids accumulate in a very narrow

ring corresponding to this pressure maximum. After only 5.3 × 105 years the largest-size

body at this location reaches 5M⊕ and the core thus formed is expected to continue to grow

significantly due to accretion of gas, not included in this numerical calculation. Crucially, in

this model tidal interactions will not affect the orbital evolution of the core as the effect of
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Type I migration would be to keep the core at the pressure maximum (Masset et al. 2006).

It is also interesting to note that when feedback is neglected, virtually all solids are trapped

at the pressure maximum and negligible amounts of heavy elements accrete onto the star.

This effect is associated with the clear spatial separation of the pressure maximum and the

sublimation line (here at ∼ 0.3 AU) and would appear to predict that intermediate-mass

stars should be strongly depleted in refractory elements. However we now show that this is

in fact unrealistic as the large build up of material makes it necessary to include the transfer

of momentum from the solids to the gas.

The bottom panels of figure 3 show the evolution of the same initial disk including this

momentum feedback. The early evolution is essentially similar for t < 104 yrs. However,

once the amount of solids in the inner edge of the dead zone has increased by an order of

magnitude, it begins affecting the gas properties (compare the middle and bottom panels of

fig 3). The mass accretion rate onto the star decreases as the gas receives angular momentum

from the solids. The decrease in Ṁ reduces the surface density and thus the midplane

temperature, causing acrit to move inwards. As acrit moves inwards the particles of different

sizes respond to this shift in location at different rates, smoothing the sharp peak in the solid

surface density and allowing the trapped gasses to accrete onto the central star. In this way

both Ṁ and the position of acrit oscillate with time as seen in figure 5. It is also interesting

to note that these oscillations allow heavy elements to accrete onto the star since when acrit

moves outwards it leaves some solids interior to the “trap” of the pressure maximum. Thus

intermediate-mass stars will not, in fact, be significantly depleted in refractory elements. In

these simulations we find that the total amount of solids trapped near the pressure maximum

is of the order of 100 M⊕ and that the dust-to-gas ratio in this region is of order unity. The

core growth is slower than in the simulation without feedback as material is deposited over

a wider range of radii. In 5.3×105 yrs the largest body has grown to 0.5M⊕ but the amount

of material in its vicinity suggests that it will continue to grow larger still.

3.2. Core Formation

As the core mass increases much beyond 0.5 M⊕ many effects not included in the

numerical algorithm could affect its growth. For example, it may be important to include

the effects of tidal interactions since the oscillations of the position of the pressure maximum

could affect the orbital evolution of the core. Additionally, gravitational interactions between

solids may start to impact their radial distribution. The cores may scatter each other out

of the region of interest and radially migrating solids will be trapped into resonances with

the existing core, stalling radial migration (Weidenschilling & Davis 1985). As a result,
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we do not continue integrating the simulations beyond this point but instead estimate the

achievable core mass with simpler but robust scalings based on our most important results

from the previous section: (1) the presence of a large reservoir of solids (> 100M⊕) around

acrit and (2) the saturation of the dust-to-gas surface density ratio to Z ∼ 1 near acrit (as

seen in fig. 3), which is a simple consequence of the saturation of the nonlinear momentum

feedback between the solids and the gas.

Using these ideas, we estimate the maximum achievable core size from the isolation

mass (Ida & Lin 2005) at acrit is

Miso = 2πΣpacritbrH(acrit), (24)

where rH(acrit) = acrit(2Miso/(3M∗))
1/3 is the Hill’s radius and b ≃ 10 (Lissauer 1987). We

assume that Σg is related to Ṁ by the quasi-steady-state approximation (8), and that Σp is

related to the gas density via Z = Σp/Σg where Z ∼ 1. We find that

Miso ≃ 60 Z3/2

(

Ṁ

1.4 × 10−7M⊙yr

)11/6

×
(

M∗

M⊙

)1/2(
T

103K

)−3/2
(αMRI

10−2

)−4/3

M⊕. (25)

Note that this estimate should be considered as a maximum achievable size and that, more

realistically, cores may only reach a fraction of Miso. Therefore in the following section we

select the core mass Mc = fMiso. The isolation mass of the core at acrit goes as Miso ∝
Ṁ11/6M

1/2
∗ . If we assume that Ṁ is related to M∗ as discussed in §2.2 then Miso ∝ M2

∗
to

M4
∗
. Therefore, super-earth cores form preferentially at the inner boundary of the dead zone

around more massive stars.

3.3. Gas Giant Formation

As our numerical algorithm does not include gas accretion onto the cores we can use

the estimate of core mass derived in the previous section to look at the potential for further

growth using the approximations of Ida & Lin (2005). The growth of a planet of mass Mp

due to the gas capture can be approximated as

dMp

dt
≈ Mp

τ
(26)

where

τ ≈ τ0

(

Mp

M⊕

)−3

(27)
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with τ0 ≈ 1010 years (see Ida & Lin (2005), although τ0 is likely to be smaller in the inner

regions of the disk where ρg is relatively large). As long at the final mass of the planet is

much greater than the original core mass, the timescale for giant planet formation is then

tgiant ≈
τ0

3

(

Mc

M⊕

)−3

. (28)

This inference effectively means that in order for a gas giant to form within the lifetime

of the evolving disk, the core mass must at least be of the order of 10 M⊕. Using the

relationship derived in equation (25) implies that tgiant ∝ Ṁ−11/2M
−3/2
∗ . Folding in the

relationship between Ṁ and M∗ yields tgiant ∝ M−7
∗

to M−12
∗

. This very steep function

demonstrates that giant planets will not have time to form at the inner edge of the dead

zone around less massive stars, but will form ubiquitously around higher mass stars with

higher accretion rates.

3.4. Asymptotic Mass and Multiple Planet Systems

The observationally inferred mass of the known planets around stars with M∗ > 2M⊙

is in the range of 2 − 20MJ which is near the upper end of the Mp distribution of known

planets around solar-type stars. In the core-accretion scenario, the asymptotic mass of gas

giants is determined by a thermal truncation condition (Lin & Papaloizou 1993) such that

Mp ≃ fa(h/r)3M∗, (29)

where the constant fa is of the order of 1 to 10 and depends on the detailed thermal structure

of the disk (Dobbs-Dixon et al. 2007; Ida & Lin 2005). We use equation (6) to determine

the value of h/r = cs/vK at acrit. The temperature and sound speed at the inner edge of

partially dead zone is, by construction, independent of M∗ and Ṁ . We find from equations

(6) and (9) that, at acrit, h/r ∼ 0.05 during the main phase of disk evolution. From this

result, we estimate that

Mp ≈ 0.3fa

(

h/r

0.05

)3(
M∗

2M⊙

)

MJ . (30)

Figure 2 shows that the dependence of Ṁ on M∗ in equation (9) is an average relation

with considerable dispersion. Furthermore, Ṁ declines with the stellar age t∗. Within our

model planets with larger Mp on longer period orbits can form during the early epochs of disk

evolution when Ṁ is much larger and acrit is correspondingly further out. However, the rapid-

accretion phase may be too brief for embryos to reach their isolation mass. Nevertheless,
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cores with sufficient mass to initiate efficient gas accretion are likely to emerge when Ṁ is

reduced to that approximated by equation (9) and when the timescale for core formation at

acrit becomes comparable to the disk evolution timescale. Additionally, due to this spread in

Ṁ around stars with similar M∗ we anticipate there will be a wide distribution of planetary

masses, albeit the mean value of Mp should vary with M∗.

In disks with protracted high-Ṁ evolution, the first generation of gas giants forms

rapidly. Once the first planet has formed and grown large enough to open a gap, the outer

edge of this gap provides another pressure maximum capable of trapping solids and promoting

the formation of the next planet (Bryden et al. (2000)). We anticipate a prolific production

of multiple planetary systems for intermediate-mass stars.

4. Summary and Discussion

While planets are likely to form by the same basic mechanisms regardless of the envi-

ronment in which they form, the properties of their host stars and the detailed structure

of their nascent disks will strongly affect the statistical outcome of the formation process.

Observations hint that planets may form systematically more efficiently around intermediate

mass stars, and that there is a statistically significant lack of giant planets on orbits with

semi-major axes much smaller than 1 AU. In this paper we propose a mechanism which

forms giant planets preferentially around intermediate mass stars with radial distributions

roughly consistent with these observations. In this model the gaseous protoplanetary disk

evolves due to MRI-driven turbulence, creating a pressure maximum at the inner edge of the

dead zone (acrit) which traps solid material. In order for the cores formed at this location to

grow large enough to seed giant planets, the inner edge of the dead zone must be sufficiently

far from the host star. We demonstrate that, as acrit is roughly proportional to M∗, this

condition is only likely to be met around intermediate mass stars.

The amount of solids which accumulates near acrit is limited by momentum feedback

on the gas by the solids. This is interesting as it means that the surface density of solids

at acrit depends on the gas surface density and not on the initial fraction of solids, except

in extremely metal poor disks. This suggests that while there may be a critical metallicity

required in order to form planets by the mechanism described in this paper, beyond that

critical value the frequency of giant planets should depend only weakly on stellar metallicity.

The prolific production of gas giants near acrit can also promote the emergence of addi-

tional gas giants at larger distances from the same host stars. We may expect the fraction

of intermediate-mass stars with multiple Jupiter-mass planets is likely to be larger than that
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around solar-type stars. Nevertheless, we anticipate the peak in the planets’ semi-major axis

distribution to be around 1 AU. This corresponds to the location of the original pressure

maximum at the inner edge of the dead zone. Quantitative verification of this expectation

requires population synthesis which will be carried out and presented elsewhere. Observa-

tional confirmation of this peaked period distribution will provide clues and constraints on

the outstanding issue of magnetic turbulent transport in protostellar disks.
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A. Functions I and J

The functions I and J used in equation (20) and (22) are

I(x) =

√
2

4x
[f1(x) + f2(x)],

J(x) =

√
2

4x
[−f1(x) + f2(x)],

f1(x) =
1

2
ln

(

x2 + x
√

2 + 1

x2 − x
√

2 + 1

)

,

f2(x) = arctan
(

x
√

2 + 1
)

+ arctan
(

x
√

2 − 1
)

. (A1)

In the limit of x ≪ 1, I = 1 and J = x2/3, and in the limit of x ≫ 1, I = J =
√

2π/(4x) ≈
1/x.
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Fig. 1.— A comparison of the disk structure resulting from the viscosity prescription from

eq. (5) (solid curves) to disks with the traditional “α-P formalism” (dashed curves). The

panel (a) shows the accretion stress, panel (b) the viscosity, and panel (c) the temperature.
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Fig. 2.— The curves show the position of the inner edge of the dead zone as a function of

stellar mass and mass accretion rate. Symbols represent observations of mass accretion rates

for stars of various masses (see text for details). The dashed line shows the best-fit for the

ρ-Oph cluster from Natta et al. (2006).
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Fig. 3.— Evolution of the surface density of solids (solid curve), gas (dashed curve) and

heavy element in vapor form (dotted curve). The middle panels show the evolution neglecting

feedback of the dust on the gas while the bottom panels include feedback.
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Fig. 4.— The calculated αeff as a function of radius at 104 and 105 years. The inner edge of

the dead zone, acrit is indicated by the dotted line.
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Fig. 5.— The mass accretion rate onto the star as a function of time. The solid curve

indicates the mass accretion rate when feedback is included while the dashed curve neglects

feedback.


