Symbolic Magnifying Lens Abstraction in Markov Decision Processes$

Pritam Roy David Parket Gethin Norma# Luca de Alfard

Computer Engineering Dept, UC Santa Cruz, Santa Cruz, CA US
Oxford University Computing Laboratory, Oxford, UK

May 2008
Technical Report No. UCSC-SOE-08-05
School of Engineering, University of California, Santa £rGA, USA

Abstract

In this paper, we combine abstraction-refinement and syimtedhniques to fight the state-space explosion problenmwhe
model checking Markov Decision Processes (MDPs). The atistefinement technique, callesagnifying-lens abstraction
(MLA), partitions the state-space into regions and compufgper and lower bounds for reachability and safety prapermn
the regions, rather than states. To compute such bounds,iMtates over the regions, analysing the concrete statescif
region in turn - as if one was sliding a magnifying lens acrtiessystem to view the states. The algorithm adaptivelya®fin
the regions, using smaller regions where more detail is megl) until the difference between the bounds is below aipdc
accuracy. The symbolic technique is based on Multi-TerhBirzary Decision Diagrams (MTBDDs) which have been used
extensively to provide compact encodings of probabilisticiels. We introduce a symbolic version of the MLA algorithm
called symbolic MLA, which combines the power of both practical techniques wheeifying MDPs. An implementation
of symbolic MLA in the probabilistic model checker PRISM amgerimental results to illustrate the advantages of our
approach are presented.

1 Introduction

Markov decision processes (MDPs) provide a model for systith both probabilistic and nondeterministic behaviod a
are widely used in probabilistic verification, planninggémtory optimal control, and performance analysis [13,63 & 25].
At every state of an MDP, one or moaetionsare available; each action is associated with a probaldigribution over
the successor states. We focussafietyandreachabilityproperties of MDPs. A safety property specifies that the MDP’
behavior should not leavesafesubset of states; a reachability property specifies thdiehavior should reach a settafget
states. A controller can choose the actions available &t&ate so as to maximize, or minimize, the probability ofségihg
reachability and safety properties. MDPs that model réalsystems tend to have very large state spaces, and thethéo
main challenge in analysing such MDPs consists in devidigpgrithms that work efficiently on large state spaces.

In the non-probabilistic setting, abstraction techniciugge been successful in coping with large state-spacegnioying
details not relevant to the property under study, abstractiakes it possible to answer questions about a system lysamga
a smaller, more concise abstract model. This has spurrednasinto the use of abstraction techniques for probdébilis
systems [7, 17, 22, 19]. The majority of these techniqudsvich full abstractionapproach: an abstract model is constructed
and, during its analysis, all details about the concreteesysire forgotten.

In [11], we proposed an alternative approach, cathedjnifying-lens abstractiofMLA) [11]. This is based on partitioning
the state space of an MDP into regions and then analysingfiiiiang”) the states of each region separately. The lower a
upper bounds for the magnified region are updated by congtti]mminimum and maximum values over the states of the

*This research was supported in part by NSF CCR-0132780 arg@t@20884 and EPSRC grants GR/S11107 and GR/S46727.

region. Figuratively, MLA slides a magnifying lens acroke abstraction, enabling the algorithm to see the concratiess
of one region at a time when updating the region values.

Regions are refined adaptively until the difference betw&enlower and upper bounds for all regions is within some
specified accuracy. In this way, the abstraction is refinethindaptive fashion: smaller regions are used when fineit deta
required, guaranteeing the convergence of the bounds aagel Iregions are used elsewhere, saving space. Wheingplitt
regions, MLA takes care to re-use information gained in thalysis of the coarser abstraction in the evaluation of the fi
one. In its ability to provide both upper and lower boundstfar quantities of interest, MLA is similar to [19].

Although experimental results have demonstrated thagugibA leads to space savings, the explicit representation of
the probabilistic transition system employed in [11] pkhedimit on the size of MDPs that could be analysed. A succéssf
approach to overcome the limitations of explicit repreagans has been to employ symbolic data structures. Inqoidati
BDDs (binary decision diagrams) [4] and MTBDDs (multi-ténal binary decision diagrams) [6, 1] have been shown to
enable the compact representation and analysis of very MBPs [9, 23, 15].

In this work we combine MLA with symbolic representationsngprove scalability. More precisely, we adapt the MLA
algorithm of [11] to the symbolic domain, yielding an appzbahat we call Symbolic Magnifying-Lens Abstraction (SMLA
We show that the “magnified” computation performed on théoreg and the “sliding” of the magnification from one region
to the next, can be performed symbolically in a natural afidiefit fashion. We have implemented SMLA in the probabdist
model checking tool PRISM [16, 24] and, through a number skcstudies, demonstrate that SMLA leads to useful space
savings.

MLA, and its symbolic variant SMLA, differ from other apprdaes to MDP abstraction [19] in that they can be profitably
applied to systems where there are many states with siméliarey but not necessarily similar transition structure.r Fo
instance, consider a system with an integer state variglvléth range[0, . . ., N], and assume that from every state where
has valug) < n < N, there are transitions to states wherbkas values. — 1, n, andn + 1. Classical abstraction schemes
associate with each region (set of states) a single abstetet whose transition relation over-approximates alttansition
relations of the concrete states it represents. In sucmsiti@n-based abstraction, it is not useful to group thecoete values
[0,..., N]for z into regions consisting of intervals, ..., I. In fact, since the states at the endpoints of each intearal ¢
leave the interval, but the states in the interior cannetatbstract transition relation associated with each iateveuld have
to be a gross over-approximation of the concrete transittations, leading to considerable loss of precision.

In MLA and SMLA, as long as the value of the property of int¢iiesimilar in states in the same interval, abstraction is
possible and useful. Indeed, experimentally we noticed3MLA performs well in many problems with integer-valuedtst
variables, where the properties vary gradually with theiealf the state variables. Problems in planning, inventontrol,
and similar often belong to this category. On the other haingn it is possible to use symmetry or structural knowledge o
an example, and aggregate states of similar transitiotior|approaches such as [7, 19, 20] yield superior results.

The outline of the paper is the following: Section 2 presdaiskground material, including Markov decision processes
(MDPs), the Magnifying-Lens Abstraction (MLA) algorithrmd symbolic (MTBDD) representations. In Section 3, we
describe the symbolic version of MLA and, in Section 4, presad discuss experimental results for its implementadion
a range of MDP case studies. Section 5 concludes the paper.

2 Background

For a countable sef, aprobability distributionon S'is a functionp : S — [0, 1] such thafy " __¢ p(s) = 1; we denote the
set of probability distributions 0§ by D(S). A valuationover a setS is a functionv : S — R associating a real number
v(s) with everys € S. Forz € R, we denote by the valuation with constant valug for 7' C S, we indicate by{T'| the
valuation having value 1 iffi' and O elsewhere. For two valuations: on S, we defing|v — u|| = sup g |v(s) — u(s)].

A partition of a setS is a setk C 27, such that J{s|s € R} = Sandrn+’ = (forallr # ' € R. Fors € Sand a
partition R of S, we denote bys]r the element € R with s € r. We say that a partitiof® is finer than a partitionr’ if for
anyr € R there exists’ € R’ such that C ’.

2.1 Markov Decision Processes (MDPs)

Definition 1 A Markov decision proceg®1DP) M = (S, s;nit, A, T, p) consists of the following components:

¢ afinite state spacs;
e an initial states;,;; € S;

Algorithm 1 Vallter(T, f, g,en0ar) Value iteration

1ov:=1T]
2. repeat
3. v:=w

4, forall s € Sdo
o(6) = 1 ({7160, 9 S plovas)i) | ac o))
s'e
5. until ||U - 'l/>|| S Efloat
6. return v

¢ afinite setA of actions (moves);
e amove assignmeiit: S — 24\ ;
e A probabilistic transition functiop : S x A — D(S).

At every states € S, the controller can choose an actiere I'(s); the MDP then proceeds to a successor stateS with
probabilityp(s, a, t). A pathof the MDP M is an infinite sequence= sy, s1, so, . . . Of states of5; we denote bys“ the set
of all paths, and we denote By the k-th states;, of the paths.

We model the choice of actions, i.e. the role of the contralfeoughstrategieqthese are also variously calledhedulers
[26] or policies[13]). A strategyis a mappingr : ST — D(A) from finite paths to distributions over actions. Given a past
historyos € ST for the MDP, the strategy chooses the actione I'(s) with probabilityr(os)(a). Since, by definition, any
actionb € A\ I'(s) is not enabled i, for any strategyr we requirer(os)(b) = 0forallb € A\ I'(s). Under the operation
of strategyr, we can define a probability measuré RPwer the set of infinite paths starting from stat the standard way
[18]. We denote byT the set of all strategies.

We considesafetyandreachabilitygoals. Given a subs#t C S of states, the reachability goal’ = {5 € S« | 3k.35;, €
T} consists of the paths that rea€hand the safety go&lll’ = {5 € S“ | Vk.5, € T’} consists of the paths that remain in
T. More precisely, we consider computing, for ak S, the probabilities:

Vir(s) = maxPri(0T) Ver™(s) = maxPri(0T)
V" (s) = min Pri(07) Ver"(s) = min Pri(0T)

that is, over all strategies, the minimum and maximum prditials of satisfying safety and reachability goals. Thetfthat
we can consider minimum and maximum as opposed to infimum@meésum is a consequence of the existence of optimal
strategies [13].

Such reachability and safety probabilities can be compuiadhe classical value-iteration scheme [13, 3, 10]. The
algorithm, given in Algorithm 1, is parameterized by two otersf,g € {max, min}. The operatorf specifies how to
merge the valuation of the current state with the expectatistate valuation;f=max is used for reachability goals, and
f=min for safety ones. The operatgrspecifies whether to select the action that maximizes, ommiues, the expected
next-state valuationj=max is used for computing maximal probabilities, age min for minimal probabilities. Table
1 summarizes the effect of different parameter combinatiorhe algorithm is also parameterizedday.>0: this is the
absolute error threshold below which we consider valuatfien to have converged. Some value iteration algorithnes us
relative error bounds to check convergence.

In the remainder of the paper, unless explicitly noted, wesent algorithms and definitions for a fixed MDP =
(S, sinit, A, T, p) and set of states.

2.2 Magnifying-Lens Abstraction (MLA)

Magnifying-lens abstraction®ILA) [11] is a technique for the analysis of reachabilitydesafety properties of MDPs. MLA
can cluster states based on value only, disregarding @ifters in their transition relation. This feature can leackimpact
abstractions for systems where full abstraction providesenefit. In our experience, MLA is particularly well-suté
problems where there is a notionlotality in the state space, so that it makes sense to cluster stated dwavariable values
— even though their transition relations may not be simN&ainy inventory, planning and control problems are of thjsety

Property f g Converges
| max. safety min | max | from above
Vi min. safety min | min | from above
Vor™ max. reachability) max | max | from below
V3g® min. reachability| max | min | from below

Table 1. Parameters of Vallter (T, f, g, en0at) USed to compute reachability and safety properties.

Algorithm 2 MLA (T, f, g, €fioat; £abs) Magnifying-Lens Abstraction

1. R:=some initial partition.

2. if f=maxthenu :=0;u":=0elseu :=1; u":=1

3. loop

4. if f=maxthenu™ =u~ elseu™ =u™

5. repeat

6. ot =ut; 0 i =u";

7. for r € Rdo

8. ut(r):=Ml(r, R, T, 0", 4~ ,4", max, f, g, Efoat)
9. u=(r):=Ml(r, R,T,4~,4~,4", min, f, g, €foat)
10. end for

11, until max(|jut —at|], ||lu” —47]|) < Efioat

12. if ||u+ —u”|| > €aps

13. then R, v, u™:= SplitRegion$R, u ™, u™, caps)
14, elsereturn R, u—,u™

15. endif

16. endloop

Let v* be the valuation oves that is to be computed:* is one of V5", V2™, V", V™. Given a desired accuracy
caps>0, MLA computes upper and lower bounds fot, spaced less thanys apart. MLA starts from an initial partition (set
of regions)R of S. The initial partitionR is obtained either from the user or from the property. MLA qutes the lower
and upper bounds as valuatioms andu™ over R. The partition is refined, until the difference betwaenandw™, for all
regions, is below a specified threshold. To comptiteandu™, MLA iteratively considers each regionc R in turn, and
performs amagnified iterationit improves the bounds= () andu™ () by performing value iteration on the concrete states
inr.

The MLA algorithm is shown in Algorithm 2. The algorithm haarameters”, f, g, which have the same meaning
as Vallter in Algorithm 1. The algorithm also has parametgsg>0 andegps>0. Parametet s indicates the maximum
difference between the lower and upper bounds returned bj.NHarametekso,;, as in Vallter, specifies the degree of
precision to which the local, magnified value iteration ddaonverge. MLA should be called withs greater thamsoa: by
at least one order of magnitude: otherwise, errors in thenifiad iteration can cause errors in the estimation of thendsu
Statement 2 initializes the valuations andu™ according to the property to be computed: reachability prig@s are
computed as least fixpoints, while safety properties arepeet as greatest fixpoints [10]. A regisnis called successor
to a regionr; if at least one concrete state i has non-zero probability to reach concrete state(s)inA useful time
optimization, not shown in Algorithm 2, consists in exengtthe loop at lines 6-9 only for regionswvhere at least one of
the successor regions has changed value by moresfhan

Magnified iteration. The algorithm performing the magnified iteration is giverAlgorithm 3. This is very similar to
Vallter in Algorithm 1, except for three points.

First, the valuatiorv (which here is local ter) is initialized not to[T'], but rather, tou™ (r) if f=max, and tou™(r)
if f/=min. Indeed, if f=max, value iteration converges from below, and(r) is a better starting point thdfl’], since
[T](s) <u(r) < v*(s) atalls € r. The case foff = min is symmetrical.

Second, fors € S\ r, the algorithm uses, in place of the valu@) which is not available, the value (") or u™ (1),
as appropriate, wherg is such thats € /. In other words, the algorithm replaces values at concretess outside

Algorithm 3 MI(r, R, T, u,u~,u", h, f, g, €foat)
v: a valuation over

1.if f=max

2. thenfor s € rdov(s)=u"(r)

3. elsefors € rdowv(s)=u™(r)

4. repeat

5 o:=v

6. forall s €rdo

6a. t:gaep(s){ ST p(s,a,8") - o(s")

s'er

LY psas) -u([s]R>}

s'eS\r

6b. v(s):=f <[T](s), t

7. Untl| ||U - 'l/>|| S Efloat
8.return h{v(s) | s € r}

with the “abstract” values of the regions to which the stdtelong. To this end, we need to be able to efficiently find the
“abstract” counterpar] r of a states € S. We use the following scheme, similar to schemes used in AbtRyjtive mesh
refinement) [2]. The state-spaSeof the MDP consists of value assignments to a set of variables {z1, z2,...,z;}. In
[11] we represented a partitidh of S, together with the valuations®, «~, via a binary decision tree. The leaves of the tree
correspond to regions, and they are labeled withu™* values. Givers, findings]z in such a tree requires time logarithmic
in|S|.

Third, once the concrete valuatianis computed at alk € r, Algorithm 3 returns the minimum (ih=min) or the
maximum (if = max) of v(s) at all s € r, thus providing a new estimates for (r), u™ (r), respectively.

Adaptive abstraction refinement. We denote thémprecisionof a regionr by A(r) = u*(r) — ™ (r). MLA adaptively
refines a partitiorR by splitting all regions: havingA(r) > eaps. This is perhaps the simplest possible refinement scheme.
We have experimented with alternative refinement schenuésidne were consistently better [11].

As previously explained, the partitiadR is represented by a decision tree, whose leaves correspahd tegions. In the
refinement phase, we split a leaf according to the value ofravagiable (not present in that leaf), following the variabl
ordering given by the user.

A call to SplitRegion§R, u™t, u™, eaps) returns a tripleR, @, @™, consisting of the new partition with its upper and lower
bounds for the valuation.

Correctness. The following theorem summarizes the correctness of the Mlgdrithm.

Theorem 2 [11] Forany MDP M = (S, sinit, A, T, p), set of state§” C .S, and error bound >0, the following assertions
hold.

1. Termination.For all efoa>0 and f, g € {min, max}, the call MLAT, f, g, €fioat, €abs) t€rminates.

2. (Partial) correctnessetg € {max, min}, eaps>0 andA € {00, O}. If f=min whenA=0, and f=max whenA=0,
then for all6>0, there existgfo4:>0 such that:
VreR: Tr)—u~

u < Eabs
Vse S u

(r)
“([slr)=0 < VA4 (s) < u*([s]r)+0
Where(Ra U, U+) = MLA(T7 f7 g, Efloat, Eabs)-

We note that the theorem establishes the correctness of &wdeupper bounds only within a constant0, which depends
ONeqoar- Tis limitation is inherited from the value-iteration gche used over the magnified regions. If linear programming

[13, 3] were used instead, then MLA would provide true lowed aipper bounds. However, in practice value iteration is
preferred over linear programming, due to its simplicitd ajreater efficiency, and the concerns abduare solved - in
practice, albeit not in theory - by choosing a sufficientlyadiraggas.

2.3 Symbolic model checking of MDPs

Due to the sizes of the MDPs that typically arise in probatdiverification case studies, considerable effort has bee
invested into building efficient model checking impleméiatas. In particularsymbolictechniques, which use extensions of
Binary Decision Diagrams (BDDs), have proved successfthimarea. In this paper we focus on the use of Multi-Terminal
Binary Decision Diagrams (MTBDDs). This data structures lgg the heart of the probabilistic model checker PRISM and
has been used to model check quantitative properties ofpilidtic models with as many a9)'° states (see for example
[21, 14]). In this section, we give a brief overview of thesehniques. For more detailed coverage of the MTBDD-based
implementation of MDP model checking in PRISM, see [23].

MTBDDs. Multi-terminal BDDs (MTBDDS) are rooted, directed acyafjcaphs associated with a set of ordered, Boolean
variablesz; < ... < z,. An MTBDD M represents a functiofim(z1,...,z,) : B® — R over these variables. The
graph contains two types of nodeson-terminalandterminal A non-terminal noden is labeled by a variablear(m) €
{z1,...,2,} and has two childrerthen(m) andelse(m). A terminal nodem is labeled by a real numbew!(m). The
Boolean variable ordering: is imposed onto the graph by requiring that a chid of a non-terminal noden is either
terminal or non-terminal and satisfiear(m) < var(m’). The value offu(x1,...,z,), the function which the MTBDD
represents, is determined by traversiidrom the root node, and at each subsequent modigking the edge tohen(m) or
else(m) if var(m) is 1 or O respectively. A BDD is simply an MTBDD with the restion that labels on terminal nodes can
only 0/1.

Representation of MDPs using MTBDDs. MTBDDs have been used, from their inception [1, 6], to encadg-valued
vectors and matrices. An MTBDW over variablegz, ..., z,) represents a functiofi, : B* — R. A real vectorv of
length2™ is simply a mapping from{1, ..., 2"} to the realR. Using the standard binary encoding of integers, the viesab
{z1,...,z,} canrepresentl,...,2"}. Hence, an MTBDDy can represent the vecteor

In a similar way, we can consider a square maldxof size2™ by 2" to be a mapping fronf1,...,2"} x {1,...,2"}
to R. This can be represented by an MTBDD over variables,n for rows (current-state variables) andfor columns
(next-state variables). According to the commonly-usadgtisgéc for minimizing MTBDD size, the variables for rows@n
columns are ordered alternately.

MTBDDs can thus easily represent the probabilistic trémsitmatrix of a Markov chain. Furthermore, with a simple
extension of this scheme, the probabilistic transitioncfionp : S x A — D(S) of an MDP can also be represented.
Since the set of actiond is finite, we can view as a functiorS x A x S — [0, 1]. For an MDP with2™ states, and letting
k = ceil(log, | A|), the probabilistic transition functigmis equivalently seen as a function frih, ..., 2"} x{1,...,2F} x
{1,...,2"} toR, which can easily be represented by an MTBDD der- k variables.

MTBDDs are efficient because they are stored in reduced feith duplicate nodes merged and redundant ones removed.
Their size (number of nodes) is heavily dependent on therimglef their Boolean variables. Although the problem of
deriving the optimal ordering for a given MTBDD is an NP-hambblem, by using heuristics [15, 23], probabilistic madel
with a degree of regularity can be represented extremelypaatty by MTBDDs.

Model checking of MDPs using MTBDDs. Once a model's MTBDD representation has been construdtednibe an-
alyzed, for example using value iteration to compute minimand maximum reachability and safety probabilities. This
comprises two stages. First, a graph-based analysis isrpeél to find the states for which the corresponding proltais!

0 or 1[9]. This can be implemented using standard BDD teakagdor calculating fixpoints. Secondly, numerical computa
tion is applied to compute probabilities for the remainitgies. For this, standard iterative methods such as valtsiiin,
can be implemented using standard MTBDD operations, imctutbr example algorithms from [1, 6] for matrix-vector
multiplication.

3 Symbolic MLA

In this section, we present a symbolic implementation oM@ algorithm using MTBDDs. Before doing so, we highlight
some important aspects of the implementation.

We first note that a potential obstacle in the use of MLA is,thlihough substantial savings in terms of storage for mmiut
vectors can be made, there is still a need to store the pilatiEtiransition function of the MDP in full. A symbolic appach
alleviates this problem: it is often the case that a very cachp TBDD representation of the probabilistic transitionétion
of the MDP can be constructed.

Secondly, it is also common thgualitative probabilistic verification (i.e. checking for which statethe MDP the
probabilities for a reachability/safety property are éka@ or 1) can be applied to much larger models than can beg/sedl
guantitatively. This is because qualitative propertias lsa model checked using only graph-based algorithms thexttg
on the underlying transition relation, allowing an effidienplementation with BDDs. This means that a symbolic versif
MLA can also benefit from this: qualitative verification ismied to the full MDPbeforeapplying the MLA algorithm (this
process is often referred to pee-computation Numerical computation need then only be done for statdsawrobability
that is neither O or 1. Furthermore, states with probabditgr 1 can be removed from the MDP completely, reducing
computation significantly (and decreasing round-off esyor

Finally, we observe that symbolic techniques are very weited to MLA, in terms of the representation of solution
vectors. Recall that, because of the way that MLA operatesqjuires separate storage of the numerical solution vémtthe
current region being magnified (by algorithm Ml see Secti®) and the lower/upper bounds for each region. Furthermore
when the value for a state not in the current magnified regioedquired, the region contains that state must be detedmine
before the relevant value can be looked up. Because of theheayMTBDDs exploit regularity, representing real-valued
vectors with many similar values is often very efficient. §hllows us to store the solution vector for all states of tH2RVI
concurrently, avoiding potentially expensive partitiook-ups. Since MLA considers each region sequentiallysttetion
vector will contain fewer distinct values than would be riegd for standard value iteration. Thus, we expect a syroboli
implementation of MLA to be less memory-intensive than asgtic version of value iteration.

3.1 Symbolic Magnifying-Lens Abstraction (SMLA)

The symbolic version of MLA is shown in Algorithm 4. As for sidard MLA (Algorithm 2), the symbolic version is param-
eterized by operator§ g € {max, min} (used to select maximum/minimum reachability/safety prtps) and convergence
thresholds0at @andeaps The other parameter is a BDDrepresenting the set of target statésirf Algorithm 2). We also
assume a BDDReach representing the set of reachable states of the MDP and arD@TiBans representing its probabilistic
transition function. In the latter, the MTBDD variables regenting the rows (source states), columns (target yiaes
nondeterminism (actions) are denotedrs, cvars andndvars, respectively.

The first part of Algorithm 4 (lines 1-5) shows the use of BDBsbd pre-computation steps [9, 23] in order to obtain
the BDDsyes andno, representing the sets of states for which the probabgigxactly 1 or 0, respectively. If this covers
all states of the MDP, no further work is required. Otherwigsvs corresponding to statesyies or no are removed from
the probabilistic transition functiotrans (line 5). Here (and elsewhere in the algorithms) we use alsiimfix notation to
denote the application of binary operators (suclvas x) to BDDs or MTBDDs. This is done using the standargRAy
operator [4].

The remainder of Algorithm 4 comprises the symbolic versibtMLA. We start with an initial partitionR, returned
by the CreatelnitialPartition() routine (see Section 2B8details). The partition is implemented as a list of BDDacle
one representing a region iR. The main part of Algorithm 4 corresponds quite closely te griginal MLA algorithm
(Algorithm 2). Initialization of solution vectors (linesa&nd 9) is easily achieved using the MTBDD operaticoNST(k)
which returns the trivial MTBDD representing the real vakueSimilarly, checking for convergence of the main loop can be
done with the operation WX DIFF(uy, uz) which computes the maximum point-wise difference betwed@BBIDs u; and
UQ).

The MTBDDs representing the lowen) and upper ™) bounds for each region are computed by the SMI function,
described below. After a global iteration terminates, tigedthm calls the Split . .) method to refine the regions for which
the difference between the lower and upper boundsgndu™) is greater thamans After each refinement, the algorithm
copiesu~ values tou™ for the reachability objectives and™ values tou™ for safety objectives.

Algorithm 4 SMLA(T, f, g, €fioat, €abs) Symbolic Magnifying-Lens Abstraction

1. if g = max

2 then no := PROBOA(T) ; yes := PROB1E(T)
3 elseno := PROBOE(T) ; yes := PROB1A(T)
4. if noV yes = reach then return yes

5. trans’ := trans x —(no V yes)

6. R :=CreatelnitialPartition()

7. if f =max

8. thenu™ :=u™ := CoNnsT(0)

9. elseu™ :=ut := CoNsT(1)

10.loop

11. repeat

12. ot :=ut; 0" :=u"

13. foreachr € R do

14. aF:= SMI(r, R, trans’, yes, 0", max, f, g, Efoat)
15. (7= SMI(r, R, trans’, yes, 0™, min, f, g, Efioat)
16. end for

17. until MAXDIFF(ut, i) < gfoar &
MAXDIFF(u™, 07) < &ioat

18. if MAXDIFF(u™,u™) > eaps

19. then R, u=,u™ := Split(R,u™, u™, eaps)

20. else return (u= +u™)/2

21. endif
22. if f =maxthenu™ :=u~ elseu™ :=ut
23.end loop

3.2 Symbolic Magnified Iteration (SMI)

The core part of the MTBDD-based implementation of MLA isledlSymbolic Magnified Iteration (SMBnd is shown
in Algorithm 5. It performs a symbolic value iteration alibm inside the region represented by BBErom the current
partition R. The algorithm is also passed the MTBREns’ representing the (filtered) probabilistic transition ftioo of the
MDP, the BDDT representing the set of target states, and the MTBD®hich stores the (upper or lower) bound for every
state’s corresponding region. The other paraméitefs g andefoqr, are as for the non-symbolic version in Algorithm 3.

The algorithm initializes the solution vectewith the vecton (line 1) and then the MTBDDrans’ is filtered further to
include only transitions for the current region (line 2).€llbop (lines 3-12) updates the solution vectamtil the results of
two successive iterations differ less thaga. The first two lines of the loop perform a matrix-vector mpiitation of the
transition probability matrix of the MDP with (a permutedoyoof) the solution vector. This corresponds to the summations
in line 6a of Algorithm 3. In line 7, the operatgre {max, min} is applied over the nondeterministic variabte®ars of the
resulting MTBDD (the first part of line 6a from Algorithm 3)n line 8, the operatof is applied point-wise with the BDD
T representing the target states (line 6b of Algorithm 3)afynthe new solution vectar is computed by setting values for
all states not in the current regior) {o their values iru, using the MTBDD operation ITE (If-Then-Else).

Once the while loop terminates, the algorithm computes taeimum (if ~= max) or minimum (if A= min) valueval of
the region by using IRkDMAX (or FINDMIN). Finally the algorithm returns a solution vector with vaku! for the current
region and the old solution value fromrfor all other regions.

3.3 The Splitting Order

The creation of the initial partition and the way in whichdtdubsequently split are governed by two user paramedteed:
andlevel Splitting operations are based on a priority order.; = (x1, z2, ..., z,) of the MTBDD variables representing
the state space of the MDP. In the adaptive refinement scheliA, each call to the routine Split subdivides a region into
two using the next MTBDD variable from the ord&t,,.; (we call this thesplitting indey. Since the MLA algorithm does
not refine regions withi ™ (1) — ™ (r) < eaps, after a refinement, different regions may have differefittsyy indices.

Algorithm 5 SMI(r, R, trans’, T, u, h, f,g,¢em0a) Symbolic Magnified Iteration

1. vi=u

2. trans” :=trans’ x r

3. done :=false

4. while (done = true) do

tmp := PERMUTE(v, rvars, cvars)

tmp := MVM ULT (trans”, tmp)

tmp := REPLACE(g, tmp, ndvars)

tmp := APPLY(f,tmp, T)

9. Vv :=ITE(r,tmp,u)

10. if MAXDIFF(V/,v) < efioat then done :=true

©No !

11. v:=V
12.end while
13.if (h = max)

14. thenwal := FINDMAX(ITE(r,v, CONST(0)))
15. elseval := FINDMIN(ITE(r,v, CONST(1)))
16.return ITE(r, CONST(val), u)

The orderX,,.q is determined by the choice of a splitting stratesgsat either ‘consecutivéor “interleaved. In the
default MTBDD variable ordering (for an MDP derived from alBRl model), MTBDD variables are grouped according to
the (model-level) variable to which they correspond aneogd consecutively. Fatrat=consecutivewe takeX .4 to be this
default ordering. Fostrat=interleaved on the other hand, the MTBDD variables corresponding tfedifit (model-level)
variables are interleaved.

The initial creation of a partition (by routine Createlalffartition) is determined byX,,.¢ = (x1,2,...,x,) and the
parametetevel Each region in the initial partition is created by splittion MTBDD variablesty, zo, . . ., Zjeve (i.€. the
splitting index for each region igve).

4 The Case Studies and Results

We have implemented the symbolic MLA algorithm within thevlpabilistic model checker PRISM and, in this section,
present results for the following MDP case studies.

Inventory Problem. We have modeled an inventory as an MDP. The variakleck” denotes the current number of items
in the inventory and #nit” denotes the initial item count. The variablérhe” keeps track of time elapsing. At each time
step, the demand of the itemlisvith a probabilityp and0 with 1 — p. The probabilityp is a function of current number of
items present in the inventory. The manager of the inventimiys the inventory every time units and he has two actions
to choose from: either place an order or do not place one. Tdyepty we are checking is the “minimum probability that
the stock reach its minimum amount within MAXTIME time uriitén PCTL, the reachability property can be expressed as

Prin=2[0 (stock=1 A time< MAXTIME))].

Robot in a Minefield. We consider the problem of navigating an n minefield. The minefield contaings mines, each
with coordinategz;, y;), for 1 < i < m, wherel < z; < n, 1 < y; < n. We consider the problem of computing the
maximal probability with which a robot can reach the targater(n, n), from all n x n states. At interior states of the
field, the robot can choose among four actiddp; Down, Left, Rightat the border of the field, actions that lead outside of
the field are missing. From a state= (z,y) € {1,...,n}? with coordinatesz, y), each action causes the robot to move to
square(z’, y') with probability¢(z’,y'), and to “blow up” (move to an additional sink state) with pabbity 1 — ¢(2’, ¢').

For actionRight, we havex’ = = + 1, ¥’ = y; similarly for the other actions. The probabiligyz’, y') depends on the
proximity to mines, and is given by

q(@,y') =TI exp(=0.7- (&' — 2:)* + (v —:)*)).

Example Parameters States Transitions PRISM MLA
Time Nodes | Time Nodes Regiong
Inventory | stock=512, MAXTIME=512 26,870 34,568 14 13,885 15 2,612 340
stock=1024, MAXTIME=1,024 106,734 135,308 54 26,005 61 4,825 676
stock=2048, MAXTIME=2,048 425,438 535,508 | 233 50,563| 270 9,192 1,348
stock=4096, MAXTIME=4,096 1,698,750 2,130,788| 896 99,084| 1,056 17,882 2,692
stock=5120, MAXTIME=5,120 2,653,358| 3,325,868 1,243 120,220 1,424 21,875 3,364
stock=10240, MAXTIME=10,240, 10,605,918| 13,275,668| 7,118 240,639 7,551 43,563 3,363
Minefield | n=256,m=100 65,537 299,748 75 56,971| 263 8,173 2,041
n=512,m=200 262,145| 1,128,522 627 91,285| 1,493 14,070 4,164
n=1024,m=300 1,048,577| 4,316,719| 3,625 126,603| 5,463 20,244 6,324
Hotel €c=127 bk=63 MAXTIME=15 131,072 645,168 4 30,580 46 8,710 903
Booking | ¢=255 bk=127 MAXTIME=31 1,048,576| 5,202,016 44 118,080| 1,013 37,696 6,35(
¢=511,bk=255,MAXTIME=31 4,194,304 | 20,889,696| 2,072 373,536 9,971 118,310 25,491
Secretary| ¢=100 MAXTIME=100 30,697 61,388 2 14,577 7 3,269 269
¢=100 MAXTIME=200 90,496 180,587 3 17,146 11 3,716 345
€c=200 MAXTIME=200 121,397 242,788 10 32,728 27 6,967 471
¢=300,MAXTIME=400 451,896 903,387 24 55,430 62 9,748 463
¢=500,MAXTIME=1000 2,252,496| 4,502,987 88 105,971 199 17,425 733
¢=1000,MAXTIME=2000 9,004,996| 18,005,987| 392 232,946| 802 32,438 768
Zeroconf | N=4,M=32,K=4 26,121 50,624 88 126,731 50 14,430 22
N=8, M=32, K=4 552,097 | 1,728,272| 1,307 722,224 650 49,464 64
N=8, M=128, K=4 2,092,513 6,552,368 3,221 857,577| 2,593 151,289 19
Figure 1. Experimental results: Symbolic MLA, compared to PRISM
strat level | Nodes | Time (ins) | Regions strat level | Nodes | Time(ins) | Regions
consecutive 1 | 60,563 50 191 || interleaved 1| 60,563 254 942
consecutive 4] 19,732 57 191 || interleaved 4 | 40,599 255 942
consecutive 7| 12,129 60 214 || interleaved 7 | 18,054 258 946
consecutive| 11 | 11,491 95 752 || interleaved 11 | 10,060 307 1057
consecutive] 15 | 13,194 191 3043 || interleaved 15 | 11,632 441 2705

Figure 2. Effect of splitting strategy and initial splitting index (Secretary: ¢=300, M AXT 1M E=400)

Optimal Stopping Game: Secretary Selection. We have modeled one application of the optimal stopping ga@me
boss starts interviewing candidates for the post of secretary. After each interviavcan either select the candidate or
continue the process with the remaining candidates. If tiss does not select the candidate, then the candidate in&iéd
from the selection process. The variablénie” is used to keep track of the time that has elapsed.The bossaapare
whether the current candidate is the best so far or if a bettedidate was interviewed previously. If the current cdat#

is the best among all candidates seen, then the variabd€’*is assigned to 1. The boss does not know the (merit) order of
the candidates; hence we model assignment of the variabileawrobabilistic update. The probability that the curreme

is the best among candidates is set equal igc. If the boss selects a candidate, then the variallep” is assigned to 1.
The property we are checking is the “maximum probabilityt the interviewer has selected a non-best candidate béfere t
timeout”. In PCTL, the reachability property can be expeesasPax—2[0 (stop=1 A best=0 A time< MAXTIME)].

Hotel Booking Problem. We have modeled an instance of the overbooking problem fastal lduring a multiple-day
conference. The conference-chairperson baakems for the registered participants in a hotel wittboms. The variable
“days” keeps track of days that have elapsed since the start ofdheience. The participants can appear at any day
during the conference but some of the booked rooms remaemvaluring the conference season due to “no-show” of the
participants. The hotel manager takes this factor into @ctand overbooks the hotel during the peak seasons. When he
books a hotel room and the conference participant does petapthe manager suffers a loss. Similarly he will be inkifeu
whenever he allows a non-conference visitor without keggimoom booked and the conference guest appears, requiring
him to find an alternative room for the guest at higher cose atrival of the participants is probabilistic. The progese

are checking will be the “maximum probability that a confeze guest arrives within the duration of the conference aed d

10

not get a room”. In PCTL, the reachability property can beresped a$yax—2[0 (v=0 A b>0 A days<MAXTIME)).

Zeroconf Protocol. The Zeroconf protocol [5] is used for the dynamic self-comfggion of a host joining a network; it has
been used as a testbed for the abstraction method considdd&d]. We consider a network with N existing hosts, and M
total IP addresses; protocol messages have a certain fligbaftbeing lost during transmission. The variable K déesthe
maximum number of probes can be sent by the new host. We agrikigl problem of determining the maximal probability
of a host eventually acquiring an IP address.

Results. Our experiments were run on an Intel 2.16 GHz machine with 281, We usedsqoat = 0.01,650=0.1 and,
unless otherwise stated (see next section), an initiattisliindex (eve) of |k/2], wherek is the number of MTBDD
variables representing the MDP’s state space. For thdisglatrategy $trat), we used tonsecutivefor all model, except
the minefield.

Figure 1 summarizes the results for all case studies. Thewvicscolumns show the name and parameters of the MDP
model. The third and fourth columns gives the number of statel transitions for each model. The remaining columns
show the performance of analysing the MDPs, using both PRaS&¥symbolic MLA. In both cases, we give the total time
required (which includes model building and model checkamd the peak MTBDD node count (which includes the partial
transition relation and the solution vectors). For MLA, weacashow the final number of generated regions. We used the
MTBDD engine of PRISM, since (a) it is generally the best parfing engine for MDPs; and (b) it is the only one that can
scale to the size of models we are aiming towards. More @etaikperimental data is available from:
www.soe.ucsc.edu/ pritam/gest08.html.

Discussion. The “Nodes” columns of Figure 1 demonstrate the efficiencthefsymbolic implementation of MLA: the
memory requirements are significantly lower than the edeiastatistics for PRISM’s MTBDD engine. As discussediearl
in Section 3, this is due to the fact that MLA analyzes eacforemp isolation, resulting in a smaller number of distinatues

in the solution vectors. For the Zeroconf example, this piheenon actually results in MLA also outperforming PRISM in
terms of solution time.

It is also clear, from the sizes of the MDPs in the table, that symbolic version of MLA is able to handle MDPs
considerably larger than were previously feasible for tkisting explicit implementation of [11]. Thanks to this,ather
positive conclusion which we can draw from the results i4 MBA generates relatively small numbers of regions for the
analysis of even large MDPs.

Finally, we also experimented with different parameteuealfor the splitting strategyttat) and initial splitting index
(leve). Figure 2 shows results for the secretary selection casy ¢t = 300 and M AXTIM E = 400). For smaller values
of the initial splitting index, there are less regions wliff but these regions are relatively large, resulting ghier memory
consumption. Increasing the splitting index produces Ema¢gions, which take less space and time to analyse, lewev
more global iterations are required, resulting in longéaltsolution times. Hence, in our results (Figure 1), we dfite a
trade-off by using a splitting index close kg2, wherek is the number of MTBDD variables representing the stateespac

For the results in Figure 2 (and for most of our case studibs),'consecutivéstrategy performs better than then*
terleaved strategy, both in terms of memory usage, time and numbeegibns. For the minefield problem, however, the
reverse is true. This is due to the “grid-like” nature of thedual and the fact that the state-space is described by afpair o
co-ordinatesy andy. It is more effective to refine the state space into squatiemsgf the grid.

5 Conclusion

We have presented a symbolic implementation of the magmgfléns abstraction (MLA) technique of [11], using the rirult
terminal binary decision diagram (MTBDD) data structurgisiwas implemented in the probabilistic model checker RRIS
and applied to a range of MDP case studies. The results deratmthat symbolic MLA yields significant gains in memory
usage over standard (symbolic) implementations of MDFfigation, as provided by PRISM. Furthermore, in some cases
this also produce better performance in terms of time. Osulte also show that symbolic MLA can be applied to much
larger MDPs than its explicit counterpart.

In the future, we plan to make a comparison of our approadhether MDP abstraction techniques, including the game-
based approach of [19]. We aso plan to investigate the iatiegrof more advanced symbolic representations of stateesp
partitions, such as [12].

11

Acknowledgment

Parker and Norman are supported in part by EPSRC grants GR03land GR/S46727. Luca and Pritam are supported by
the grants NSF CCR-0132780 and CNS-0720884.

References

[1] R.I. Bahar, E.A. Frohm, C.M. Gaona, G.D. Hachtel, E. Ma#i. Pardo, and F. Somenzi. Algebraic decision diagramsthed
applications.Journal of Formal Methods in System Desid0(2/3):171-206, 1997.

[2] J.B. Berger and J. Oliger. Adaptive mesh refinement farnigolic partial differential equationdournal of Computational Physics
53:484-512, 1984.

[3] D.P. BertsekasDynamic Programming and Optimal ControAthena Scientific, 1995. Volumes | and II.
[4] R.E. Bryant. Graph-based algorithms for boolean furctnanipulationlEEE Transactions on ComputerS-35(8):677—691, 1986.

[5] S. Cheshire, B. Adoba, and E. Gutterman. Dynamic condiiom of IPv4 link local addresses. Available from
http://www.ietf.org/rfc/rfc3927.txt.

[6] E. Clarke, M. Fuijita, P. McGeer, K. McMillan, J. Yang, aid Zhao. Multi-terminal binary decision diagrams: An eféot data
structure for matrix representatioformal Methods in System Desigi0((2/3):149-169, 1997.

[7]1 P. D’Argenio, B. Jeannet, H. Jensen, and K. Larsen. Razitity analysis of probabilistic systems by successiiemeznents. In
Proc. PAPM/PROBMIV’01volume 2165 of NCS pages 39-56. Springer, 2001.

[8] L. de Alfaro. Formal Verification of Probabilistic SystemPhD thesis, Stanford University, 1997. Technical Rep®Al$-CS-TR-
98-1601.

[9] L.de Alfaro, M. Kwiatkowska, G. Norman, D. Parker, and$egala. Symbolic model checking of concurrent probalilmiocesses
using MTBDDs and the Kronecker representationPtoc. TACAS’'00volume 1785 oL NCS pages 395-410. Springer, 2000.

[10] L.de Alfaro and R. Majumdar. Quantitative solution ofiega-regular gamegournal of Computer and System Sciené&s374—-397,
2004.

[11] Luca de Alfaro and Pritam Roy. Magnifying-lens abstiait for Markov decision processes. Rroc. CAV’'07 volume 4590 of
LNCS pages 325-338. Springer, 2007.

[12] S. Derisavi. A symbolic algorithm for optimal Markov &im lumping. In O. Grumberg and M. Huth, editoRroc. TACAS'07
volume 4424 oL.NCS pages 139-154. Springer, 2007.

[13] C. Derman.Finite State Markovian Decision Procességademic Press, 1970.

[14] M. Duflot, M. Kwiatkowska, G. Norman, and D. Parker. Affieal analysis of Bluetooth device discoveipt. Journal on Software
Tools for Technology Transfe8(6):621-632, 2006.

[15] H. Hermanns, M. Kwiatkowska, G. Norman, D. Parker, and3iegle. On the use of MTBDDs for performability analysisian
verification of stochastic systemdournal of Logic and Algebraic Programming6(1-2):23-67, 2003.

[16] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. BIM: A tool for automatic verification of probabilistic systs. InProc.
TACAS'06 volume 3920 of NCS pages 441-444. Springer, 2006.

[17] M. Huth. On finite-state approximations for probatiiscomputational-tree logicTheor. Comp. Sci346(1):113-134, 2005.
[18] J.G. Kemeny, J.L. Snell, and A.W. Knappenumerable Markov Chain®. Van Nostrand Company, 1966.

[19] M. Kwiatkowska, G. Norman, and D. Parker. Game-basestrabtion for markov decision processes. Proc. QEST'06 pages
157-166. IEEE CS, 2006.

[20] M. Kwiatkowska, G. Norman, and D. Parker. Symmetry etthn for probabilistic model checking. In T. Ball and R. &sneditors,
Proc. CAV'06 volume 4114 ot NCS pages 234-248. Springer, 2006.

[21] M. Kwiatkowska, G. Norman, and R. Segala. Automatedfieation of a randomized distributed consensus protocioigu€adence
SMV and PRISM. In G. Berry, H. Comon, and A. Finkel, editdPspc. CAV’01 volume 2102 oLNCS pages 194-206. Springer,
2001.

[22] D. Monniaux. Abstract interpretation of programs asrkte decision processeScience of Computer Programmirifi(1-2):179—
205, 2005.

[23] D. Parker.Implementation of Symbolic Model Checking for ProbahdiSystemsPhD thesis, University of Birmingham, 2002.
[24] PRISM web site. www.prismmodelchecker.org.

[25] J. Rutten, M. Kwiatkowska, G. Norman, and D. Parkéiathematical Techniques for Analyzing Concurrent and Bhilistic
Systemsp. Panangaden and F. van Breugel (eds.), volume ERd Monograph SeriesAmerican Mathematical Society, 2004.

[26] R. Segala.Modeling and Verification of Randomized Distributed Reatel Systems PhD thesis, MIT, 1995. Technical Report
MIT/LCS/TR-676.

12

