
A Numerically Stable Procedure for Canonical Coordinates in 2D

UCSC–CRL–99–12

Allen Van Gelder�
Computer Science Department

University of California, Santa Cruz, USA
avg@cs.ucsc.edu

June 20, 1999

Abstract

This note describes a numerically stable procedure to derive a canonical coordinate system for a 2D linear
transformation. The determinant of the transformation from the given coordinate system to the canonical coordinate
system is 1; thus area is preserved. The transformation is composed of a short sequence of rotations and area-
preserving nonuniform scales. If the eigenvectors are real, they map into axes in the canonical coordinate system. If
the eigenvectors are complex, the transformation becomes rotationally invariant in the canonical coordinate system.
The numerically difficult case is when the transformation isnonsingular, yet the eigenvectors are very nearly colinear.

1 Introduction

The characterization of solutions to linear ordinary differential equations in 2D can be accomplished by finding a linear
transformation into a so-called canonical coordinate system. This is also called critical point analysis.

Vector fields are often approximated linearly for numericalpurposes. Thecritical point of a linear vector field is
the (normally unique) point at which the field is zero. Streamlines in a vector field are everywhere tangent to the field,
and they represent solutions of the associated differential equation. The qualitative nature of stream lines is determined
by classifying the critical point.

Although the theory of classifying critical points is completely known for two and three dimensions (see any text
on linear differential equations), in practice there may benumerical issues. When the eigenvalues of the transformation
are complex, straightforward application of the theory involves complex computations and gives little intuition. This
note describes a procedure that uses only real computationsand gives intuition, as well as numerical stability. For
omitted background, the reader should consult a text on linear differential equations.

2 The Problem

Suppose we are given a coordinate system(x;y) and a nonsingular affine transformation

Ap+ c p = � x
y

�
(1)

whereA is 2�2 andc andp are 2�1. This expression also defines a 2D vector field. The criticalpoint, where the
vector field = 0, is given by

pcrit = �A�1c (2)�Work supported in part by NASA-Ames grant NAG2-1239 and NSF grant CCR-9503829.
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If we make the translationp0 = p�pcrit , then in the coordinates ofp0 the critical point is at zero and the transformation
is simplyAp0. We assume that this translation has been done as a preprocessing step from now on, and assume that
the critical point is at the origin in the(x;y) system and the transformation under consideration isAp.

Suppose we define a new coordinate system by

p = Pq q = � s
t

�
(3)

whereP is 2�2. Then it is well known that the matrix for the linear transformation that is represented byA in the
given(x;y) system is given by thesimilarity transformation:

AP = P�1AP (4)

In other words, ifp2 = Ap1 andq1 = Pp1 andq2 = Pp2, thenq2 = APq1.
The problem that we address is to find a suitable transformation P with determinant 1 such that the classification

of the critical point can be determined by inspection ofAP.
We use the following notation for the elements ofA:

A = �
a b
e f

�
(5)

2.1 Matrices in Canonical Form

In a canonical coordinate system the matrix has one of a few special forms:�
a 0
0 f

� �
a b�b a

� �
a 0
e a

� �
a b
0 a

� �
a b

αa αb

�
Thus the problem is, given a matrixA, find a transformationP such thatP�1AP is in one of these forms.

We included the last case for completeness. The matrix is singular. The vector field has a uniform direction with
slopeα. There are infinitely many critical points, of the form(�bt;at), wheret is a real parameter. After a rotation,
the problem is essentially one-dimensional. Hereafter we confine our attention to nonsingular cases, in which there is
one isolated critical point.

3 Area-Preserving Similarity Transformations

For coordinate transformationP, a similarity transformation isP�1AP. As mentioned, the transformation preserves
area if the determinant ofP is 1.

Our main result is that a canonical coordinate system can be derived with a short sequence of area-preserving
transformations of two familiar types:

2D rotation: R = � cosθ �sinθ
sinθ cosθ

�
R�1 = � cosθ sinθ�sinθ cosθ

�
Nonuniform scale: Sw = � w 0

0 1=w

�
S�1

w = � 1=w 0
0 w

� (6)

3.1 Invariants of Similarity Transformations

Several invariants of similarity transformations guide usin the composition of a transformation into canonical form.
Section 3.2 contains the details of the transformations that will be needed. Recall that thetrace of A (trA) is a+ f .
This is invariant under any similarity transformation.

Let therotation matrix R be given by

R = �
c �s
s c

� ; (7)
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wherec = cosθ, s = sinθ. Recall thatR�1 = RT .
The similarity transformation based onR preserves thedifference between the off-diagonal elements ofA.
Let M =AR = R�1AR. Then it is possible to choosec ands (i.e., chooseθ) so thatm11=m22, that is, the diagonal

elements are equal.
Now we turn our attention toarea-preserving scale transformations. The similarity transformation ofA based on

an area-preserving scale preserves the diagonal elementsa and f , and preserves the productbe. It may be chosen to
cause the off-diagonal elements of the new matrix to have equal magnitudes.

3.2 Details

The results stated in this section can be obtained by standard methods of linear algebra and trigonometry. Derivations
are omitted.

With the notation of the previous section (Eq. 7), andp denoting the positive square root, letM =AR =R�1AR.
We define these quantities:

D = ( f �a)2+(b+ e)2 (8)

c = 8>><>>: �q1
2 + b+e

2
p

D
if a > f and(b+ e)� 0q

1
2 + b+e

2
p

D
otherwise.

(9)

s = 8>><>>: �q1
2� b+e

2
p

D
if a > f and(b+ e)> 0q

1
2� b+e

2
p

D
otherwise.

(10)

The expression(b+ e)=(2pD) is evaluated as 0 when(b+ e) = 0, even if( f � a) is also 0. TheR defined by these
values ofc ands produces the following value forM:

M = " 1
2(a+ f ) 1

2

p
D+ 1

2b� 1
2e

1
2

p
D+ 1

2e� 1
2b 1

2(a+ f ) #
(11)

Thus the diagonal elements have been equalized.
The reason for choosing the signs of square roots as specifiedin Equations 9 and 10 is to ensure stability in the

values of the elements ofM when( f �a) and/or(b+e) are close to 0. That is, a small change in one of these quantities
that causes its sign to change should not cause a discontinuous change inM.

To choose the nonuniform scaleSw that equalizes the magnitudes of the off-diagonal elements, we note that

S�1
w

�
a b
e f

�
Sw = �

a b=w2

ew2 f

�
(12)

sow = 4
pjb=ej is the desired scale factor, provided that neitherb nore is zero or “too close to zero.” This is discussed

further in Section 5.
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4 General Procedure

At a high level the general procedure to construct the canonical coordinate system is the following:

1. Translate critical point to the origin (assumed done beforehand).

�
a b
e f

�
2. Apply a rotation that equalizes the diagonal elements, per Eq. 11.

�
a b
e f

� �
a0 b0
e0 a0 �

3. Apply an area-preserving scale to equalize magnitudes ofoff-diagonal elements, per Eq. 12.

�
a b
e a

� �
a b0�b0 a

�
If the off-diagonal elements have opposite signs, this is a canonical form; otherwise, continue with step 4.

4. If the off-diagonal elements have the same sign (i.e., thematrix is symmetric), rotate by�45 degrees (�π=4).

�
a b
b a

� �
a0 0
0 f 0 �

The coordinate transformationP is the left-to-right composition of the transformations inthe steps,P = RθSw or
P=RθSwR�π=4, whereRθ is given by Equations 8–10. The case in which step 3 is ill-defined is discussed in Section 5;
for this case, simplyP = Rθ.
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4.1 Streamline Characteristics and the Canonical Matrix

Let us look at the case in which the off-diagonal elements have opposite signs after step 3. Note that the matrix can
be rewritten as the product of a uniform scale and a rotation.Thus this matrix is invariant under any rotation of the
coordinate system. The streamlines are spirals.� If a < 0, they spiral in toward the origin.� If a > 0, they spiral out from the origin.� If a = 0, streamlines are circles.

Whether the spirals are clockwise or counter-clockwise depends on the signs ofa andb.
Now suppose the off-diagonal elements have the same sign after step 3, and let’s look at the situation after step 4.� If a f < 0, the streamlines are hyperbolic.� If a < 0 and f < 0, all streamlines proceed in a straight line toward the origin.� If a > 0 and f > 0, all streamlines proceed in a straight line away from the origin.

There are two distinct real eigenvectors, which align with the axes.
Finally, suppose that the matrixA is singular or nearly singular. With the aid of the Schwartz inequality it can be

shown that the off-diagonal elements have the same sign after step 2, and therefore after step 3. After step 4, eithera0
or f 0 will be 0, within numerical accuracy.

4.2 An Example

Suppose we start with the matrix

A = � �1 2
1 3

� = �
a b
e f

�
(13)

Note that the determinant is det(A) =�5. We have( f �a) = 4, (b+e) = 3, D= 25,
p

D= 5. By Equations 9 and 10,
c = p0:8 ands = p0:2. These values determine the matrixR by Eq. 7. After the similarity transformation byR,
according to Eq. 11:

AR = �
1 3
2 1

�
(14)

For the next step, choosew = 4
p

3=2 and apply the similarity transformation bySw (see Equations 6 and 12):

ARSw = �
1

p
6p

6 1

�
(15)

The final step, since the matrix is symmetric, is to apply a rotation of�π=4 as a similarity transformation. Thus the
composite coordinate transformation is

P = RSw R�π=4 = 24 q
4
5 �q1

5q
1
5

q
4
5

3524 4
q

3
2 0

0 4
q

2
3

3524 q
1
2

q
1
2�q1

2

q
1
2

35 (16)= 4
p

6p
60

�
2
p

3+p2 2
p

3�p2p
3�2

p
2

p
3+2

p
2

� � �
0:986 0:414�0:222 0:921

�
(17)

giving

AP = �
1�p6 0

0 1+p6

�
(18)
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We can easily verify that det(AP) =�5, as it should for any similarity transformation. More importantly, det(P) = 1.
Since the canonical matrix is diagonal, the eigenvalues andeigenvectors ofA are real. The diagonal elements of

AP define the eigenvalues. The columns ofP define the eigenvectors. SinceA is asymmetric, the eigenvectors are not
orthogonal. Also, they are not of unit length because we desired det(P) = 1. The eigenvectors map into the axes of the
canonical coordinate system.

The vector field is hyperbolic because the eigenvalues have opposite signs. The streamlines’ asymptotic directions
are given by the eigenvectors. They approach the origin fromthe direction of the eigenvector whose eigenvalue
is negative,

� 0:986�0:222

�
in this case, and from the opposite direction. They approachinfinity in the direction of the

eigenvector whose eigenvalue is positive, which is
�0:414

0:921

�
, and in the opposite direction.

5 Numerically Unstable Case

The only problematical case occurs when the matrix is asymmetric after the diagonal elements are equalized in step 2
of the general procedure, and one of the off-diagonal elements is nearly zero. For example,�

a �ε
b a

�
An extremely uneven nonuniform scale would be needed in step3 of the general procedure. Depending on whether the
sign ofε is the same as that ofb or opposite, the eigenvalues are real or complex. This condition might be determined
by rounding accidents of numerical operations.

If ε is exactly zero, the matrix is already in a canonical form, and no transformation is appropriate. We recommend
a practical treatment as follows: Whenjεj � jbj, do not rescale, and treatε as 0.

A suitable threshold ratio depends on the accuracy of the data. For example, if there are about four significant
digits of accuracy, then the criterion might bejεj < 10�4jbj. This cut-off would mean that the scale valuew in step 3
of the general procedure would never exceed 10 or fall below 1/10 (see Eq. 12).

With one off-diagonal element being 0, the streamlines of the associated vector field behave like “defective” spirals.
There is only one distinct eigenvector:(0;1) in the case in which the upper off-diagonal element is 0, and(1;0) when
the lower off-diagonal element is 0. Thus streamlines are all asymptotically parallel to they-axis in the first case and
to thex-axis in the second case.

6 Conclusion

We have presented a “cookbook” procedure for finding a 2D coordinate transformation that puts a given matrix into a
canonical form useful for critical point classification. Itwould be useful to extend the technique to three dimensions.
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