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Abstract

This note describes a numerically stable procedure to eaicanonical coordinate system for a 2D linear
transformation. The determinant of the transformatiomfithe given coordinate system to the canonical coordinate
system is 1; thus area is preserved. The transformationrgosed of a short sequence of rotations and area-
preserving nonuniform scales. If the eigenvectors are tkay map into axes in the canonical coordinate system. If
the eigenvectors are complex, the transformation becootatianally invariant in the canonical coordinate system.
The numerically difficult case is when the transformationassingular, yet the eigenvectors are very nearly colinear

1 Introduction

The characterization of solutions to linear ordinary difietial equations in 2D can be accomplished by finding a tinea
transformation into a so-called canonical coordinateesysiThis is also called critical point analysis.

Vector fields are often approximated linearly for numerigatposes. Theritical point of a linear vector field is
the (normally unique) point at which the field is zero. Strdamas in a vector field are everywhere tangent to the field,
and they represent solutions of the associated diffedergigtion. The qualitative nature of stream lines is detesch
by classifying the critical point.

Although the theory of classifying critical points is coraf#ly known for two and three dimensions (see any text
on linear differential equations), in practice there maybmerical issues. When the eigenvalues of the transfoomati
are complex, straightforward application of the theoryolwes complex computations and gives little intuition. §hi
note describes a procedure that uses only real computatimhgives intuition, as well as numerical stability. For
omitted background, the reader should consult a text omtiddéferential equations.

2 TheProblem
Suppose we are given a coordinate systgmy) and a nonsingular affine transformation
Ap+c  p= { § 1)

whereA is 2x 2 andc andp are 2x 1. This expression also defines a 2D vector field. The crippcaht, where the
vector field = 0, is given by
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If we make the translatiop’ = p — pgit, then in the coordinates pf the critical point is at zero and the transformation
is simply Ap’. We assume that this translation has been done as a pregirgcstep from now on, and assume that
the critical point is at the origin in thex,y) system and the transformation under consideratidxpis

Suppose we define a new coordinate system by

®3)

s

p = Pq q= { t

whereP is 2x 2. Then it is well known that the matrix for the linear transfation that is represented Byin the
given(x,y) system is given by themilarity transformation:

Ap =P AP (4)

In other words, ifo, = Ap; andq; = Pp1 andqgz = Pp2, theng, = ApQs.

The problem that we address is to find a suitable transfoam&iwith determinant 1 such that the classification
of the critical point can be determined by inspectiomgf

We use the following notation for the elementsfaf

A =

o 9
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2.1 Matricesin Canonical Form
In a canonical coordinate system the matrix has one of a fewiapforms:

a 0 a b a 0 a b
0 f -b a e a 0 a

a b
aa ob

Thus the problem is, given a matu, find a transformatiof® such thaP~1AP is in one of these forms.

We included the last case for completeness. The matrix gutn The vector field has a uniform direction with
slopea. There are infinitely many critical points, of the forfnbt, at), wheret is a real parameter. After a rotation,
the problem is essentially one-dimensional. Hereafterovdine our attention to nonsingular cases, in which there is
one isolated critical point.

3 Area-Preserving Similarity Transformations

For coordinate transformatid®, a similarity transformation i® *AP. As mentioned, the transformation preserves
area if the determinant ¢ is 1.

Our main result is that a canonical coordinate system canebgedl with a short sequence of area-preserving
transformations of two familiar types:

2D rotation: R= [ €O Sme} Rl—{ cosd  sin@ }

sin@  cosB —sinB cosh
(6)
Nonuniformscale: Sy = [ ‘g 17W } Sl= [ 1{)W v?/ }

3.1 Invariantsof Similarity Transformations

Several invariants of similarity transformations guideimshe composition of a transformation into canonical form.
Section 3.2 contains the details of the transformationswliabe needed. Recall that theace of A (trA) is a+ f.
This is invariant under any similarity transformation.

Let therotation matrix R be given by
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wherec = cosB, s = sinf. Recall thaR™ 1 = R'.

The similarity transformation based &preserves thdifference between the off-diagonal elements/Af

LetM = Ar =R AR Thenitis possible to chooseands (i.e., choos®) so thatmy; = mp,, that is, the diagonal
elements are equal.

Now we turn our attention tarea-preserving scale transformations. The similarity transformationAfbased on
an area-preserving scale preserves the diagonal elemanitsf, and preserves the produmt. It may be chosen to
cause the off-diagonal elements of the new matrix to havalegagnitudes.

3.2 Details

The results stated in this section can be obtained by stdmdethods of linear algebra and trigonometry. Derivations
are omitted.

With the notation of the previous section (Eq. 7), qyrd’ denoting the positive square root, Mt= Agr = R AR
We define these quantities:
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e ifa>fand(b+e) <0
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The expressiorib + €)/(2y/D) is evaluated as 0 whefb + €) = 0, even if(f — a) is also 0. TheR defined by these
values ofc ands produces the following value fov:

[ la+f) %\/5+%b—%e]
ivD+3e-1b la+f)

=

M = (11)

Thus the diagonal elements have been equalized.
The reason for choosing the signs of square roots as spefifiequations 9 and 10 is to ensure stability in the
values of the elements bf when(f —a) and/or(b+ €) are close to 0. That is, a small change in one of these quemntiti
that causes its sign to change should not cause a disconsichange iM.
To choose the nonuniform scalg that equalizes the magnitudes of the off-diagonal elemem@sote that
a b/w?
o 1]

a b
e f

SH (12)
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sow = /|b/e| is the desired scale factor, provided that neithaor e is zero or “too close to zero.” This is discussed
further in Section 5.



4 General Procedure

At a high level the general procedure to construct the carabebordinate system is the following:

1. Translate critical point to the origin (assumed done kfand).

a b
e f

2. Apply arotation that equalizes the diagonal elementsEpel1.

a b

e a

a b
e f

3. Apply an area-preserving scale to equalize magnitude-afiagonal elements, per Eq. 12.

X

a b
+b a

a b
e a

If the off-diagonal elements have opposite signs, this igreoaical form; otherwise, continue with step 4.

4. If the off-diagonal elements have the same sign (i.e.rthgix is symmetric), rotate by-45 degrees<{1/4).

a o0
o f/

ab
b a

The coordinate transformatidd is the left-to-right composition of the transformationsthre stepsP = RgS, or
P = ReSwR_y/4, WhereRy is given by Equations 8-10. The case in which step 3 is illregfiis discussed in Section 5;
for this case, simply = Rs.



4.1 Streamline Characteristics and the Canonical Matrix

Let us look at the case in which the off-diagonal element®lepposite signs after step 3. Note that the matrix can
be rewritten as the product of a uniform scale and a rotatfidrus this matrix is invariant under any rotation of the
coordinate system. The streamlines are spirals.

e If a< 0, they spiral in toward the origin.
¢ If a> 0, they spiral out from the origin.
e If a= 0, streamlines are circles.

Whether the spirals are clockwise or counter-clockwiseatils on the signs @ andb.
Now suppose the off-diagonal elements have the same sigmsédp 3, and let’s look at the situation after step 4.

¢ If af < 0, the streamlines are hyperbolic.
¢ If a< 0andf <0, all streamlines proceed in a straight line toward theiorig
e If a> 0 andf > 0, all streamlines proceed in a straight line away from thgior

There are two distinct real eigenvectors, which align wiith axes.

Finally, suppose that the matrix is singular or nearly singular. With the aid of the Schwantzquality it can be
shown that the off-diagonal elements have the same signséffe 2, and therefore after step 3. After step 4, eigher
or f’ will be 0, within numerical accuracy.

4.2 An Example

Suppose we start with the matrix

SEHE

: ¢]

Note that the determinant is dét) = —5. We have f —a) = 4, (b+¢€) = 3,D = 25,/D = 5. By Equations 9 and 10,
¢ = /0.8 ands = +/0.2. These values determine the matfby Eq. 7. After the similarity transformation b,
according to Eq. 11:

1 3
o= |55 14)
For the next step, choose= y/3/2 and apply the similarity transformation I8, (see Equations 6 and 12):
B 1 V6
ress = | o V3 (15)

The final step, since the matrix is symmetric, is to apply atioh of —11/4 as a similarity transformation. Thus the
composite coordinate transformation is

_ VR VR o ;i
N A | R e .
_ VB[ 2v3+v2 2/3-v2] _ [ 0986 0414 17
- m[\/ﬁ—zﬁ \/§+2ﬁ} ~ [0.222 0921} (A7)
giving
Ap = {1\/2 1+\/g} (19)



We can easily verify that deAp) = —5, as it should for any similarity transformation. More inrfamtly, de{P) = 1.
Since the canonical matrix is diagonal, the eigenvaluesesgehvectors oA are real. The diagonal elements of
Ap define the eigenvalues. The columndadefine the eigenvectors. Sindeis asymmetric, the eigenvectors are not
orthogonal. Also, they are not of unit length because werddsle{P) = 1. The eigenvectors map into the axes of the
canonical coordinate system.
The vector field is hyperbolic because the eigenvalues hapedite signs. The streamlines’ asymptotic directions
are given by the eigenvectors. They approach the origin fieendirection of the eigenvector whose eigenvalue

is negative,( %)) in this case, and from the opposite direction. They appraafthity in the direction of the

eigenvector whose eigenvalue is positive, whic(ﬁigl‘), and in the opposite direction.

5 Numerically Unstable Case

The only problematical case occurs when the matrix is asytmcradter the diagonal elements are equalized in step 2
of the general procedure, and one of the off-diagonal el¢sriemearly zero. For example,

a =+¢
b a

An extremely uneven nonuniform scale would be needed in&tdjthe general procedure. Depending on whether the
sign ofe is the same as that bfor opposite, the eigenvalues are real or complex. This ¢immdinight be determined
by rounding accidents of numerical operations.

If €is exactly zero, the matrix is already in a canonical fornd aa transformation is appropriate. We recommend
a practical treatment as follows: Whési < |b|, do not rescale, and treass 0.

A suitable threshold ratio depends on the accuracy of tha. dabr example, if there are about four significant
digits of accuracy, then the criterion might ks < 10~4|b|. This cut-off would mean that the scale valeén step 3
of the general procedure would never exceed 10 or fall beld® (see Eq. 12).

With one off-diagonal element being 0, the streamlines e&bsociated vector field behave like “defective” spirals.
There is only one distinct eigenvect@f, 1) in the case in which the upper off-diagonal element is 0,(@nd) when
the lower off-diagonal element is 0. Thus streamlines drasgimptotically parallel to thg-axis in the first case and
to thex-axis in the second case.

6 Conclusion

We have presented a “cookbook” procedure for finding a 2D @ioate transformation that puts a given matrix into a
canonical form useful for critical point classificationwbuld be useful to extend the technique to three dimensions.



