
Convolution Kernels on Discrete StructuresUCSC-CRL-99-10David HausslerDepartment of Computer ScienceUniversity of California at Santa CruzSanta Cruz, CA 95064email: haussler@cse.ucsc.eduURL: http://www.cse.ucsc.edu/ hausslerJuly 8, 1999AbstractWe introduce a new method of constructing kernels on sets whose elementsare discrete structures like strings, trees and graphs. The method can beapplied iteratively to build a kernel on a in�nite set from kernels involvinggenerators of the set. The family of kernels generated generalizes the familyof radial basis kernels. It can also be used to de�ne kernels in the form of jointGibbs probability distributions. Kernels can be built from hidden Markovrandom �elds, generalized regular expressions, pair-HMMs, or ANOVA de-compositions. Uses of the method lead to open problems involving the theoryof in�nitely divisible positive de�nite functions. Fundamentals of this theoryand the theory of reproducing kernel Hilbert spaces are reviewed and appliedin establishing the validity of the method.1 IntroductionMany problems in statistics and pattern recognition demand that discretestructures likes strings, trees, and graphs be classi�ed or clustered based on1



similarity. To do this, it is desirable to have a method to extract real-valuedfeatures �1(x); �2(x); : : : from any structure x in a class X of discrete struc-tures. If �nitely many features are extracted, the feature extraction processcan be represented by a mapping from X into d-dimensional Euclidean space<d, and if in�nitely many features are extracted, by a mapping into theHilbert space of all square-summable sequences, l2. In the latter case we getan in�nite series representation of x, much like the Fourier series represen-tation of a function in L2. Here we present some methods for de�ning seriesrepresentations for discrete structures using a general type of kernel functionwe call a convolution kernel.Because we use a kernel formulation, the series representations we developare implicit. That is, rather than giving an explicit formula for f�n(x)gn�1,we will give a formula for the inner product, or kernel,K(x; y) = Pn �n(x)�n(y)that can be computed for any structures x; y 2 X. Of course, this servesto de�ne a distance between structures x and y in the standard manner:d(x; y) = qK(x; x)� 2K(x; y) +K(y; y):We discuss other methods of de�n-ing a distance from a kernel as well. There is considerable recent work show-ing that most standard classi�cation, clustering and regression methods canbe \kernelized", that is, they can be accomplished without ever explicitly rep-resenting the feature vector f�n(x)gn�1, relying instead only on indirect com-putations of the kernel K(x; y) or the distance d(x; y) [28, 31, 2, 13, 23, 30, 17](see also the bibliography at http://svm.�rst.gmd.de.) The kernels and cor-responding distance functions we construct are suitable for all such methods.In particular, there is a 1-1 correspondence between kernels and Gaussianprocesses de�ned on the set X [3, 32, 21]. We do not pursue this avenue inthis paper, but the kernels we develop can be plugged directly into Gaussianprocess methods.Convolution kernels are obtained from other kernels by a certain sum overproducts that can be viewed as a generalized convolution (Section 2). Thatit is possible to construct kernels in this way follows from some simple closureproperties of the class of positive de�nite functions, which are the abstractembodiments of kernels (Sections 2 and 7). Convolution kernels generalizethe classes of radial basis and simple exponential kernels (Section 2.3) andthe class of ANOVA kernels (Section 2.4). They can be used to representjoint probability distributions on pairs of structures from a set X (Section 3).Classical methods of using convolutions and generating functions to analyse2



discrete distributions can be extended to convolution kernels (Section 3.2).By normalizing a positive convolution kernel we obtain a probability distri-bution on X � X that we call a Gibbs kernel (Section 3.5). These kernelsmay have promising applications in areas where structures can be modeledgeneratively by Hidden Markov Random Fields (HMRFs) [12, 18, 5].Convolution kernels can be applied iteratively to build a kernel on ain�nite set from kernels involving generators of the set. We introduce a classof generalized regular expressions to de�ne kernels in this manner (Section 4).We give an example by developing a kernel on �nite strings that describes therelationship between two strings that are derived from a common ancestorunder the operations of insertion, deletion and substitution of letters (Section4.4). This and similar kernels are related to the pair-HMMs de�ned in [4].This provides a new angle on the old �eld of syntactic pattern recognition,developed by Kung-Sun Fu and his colleagues [9, 10, 11].Attempts to control the \width" parameter in generalized radial basiskernels derived from convolution kernels lead us to the important notion ofin�nitely divisible kernels, which we review (Section 6). Some open problemsare mentioned in this regard. We also review the theory of reproducing kernelHilbert spaces [22, 32, 33] (Section 7), and use it to derive several resultsmentioned in earlier sections.2 Convolution kernels2.1 KernelsLet X be a set and K : X�X ! <, where < denotes the real numbers1 and� denotes set product. We say K is a kernel on X �X if K is symmetric,i.e. for any x and y 2 X, K(x; y) = K(y; x), and K is positive de�nite, in thesense that for any N � 1 and any x1; : : : ; xN 2 X, the matrix K de�ned byKij = K(xi; xj) is positive de�nite, i.e. Pij cicjKij � 0 for all c1; : : : ; cN 2 <.Equivalently, a symmetric matrix is positive de�nite if all its eigenvalues arenonnegative, see, e.g. [29].1Many authors consider the more general case of complex-valued kernels. The relation-ship between the de�nitions used for that case and the ones used here for the real case isdiscussed in [1], section 1.6, page 68. Virtually all of the results extend naturally to thecomplex case. 3



It is readily veri�ed that if each x 2 X is represented by the sequence2�(x) = f�n(x)gn�1 such that K : X � X ! < is the l2 inner productK(x; y) = Pn �n(x)�n(y) = h�(x); �(y)i, then K is a kernel, because for anyx1; : : : ; xN 2 X and c1; : : : ; cN 2 <,NXi;j=1 cicjK(xi; xj) = NXi;j=1 cicj h�(xi); �(xj)i (1)= * NXi=1 ci�(xi); NXj=1 cj�(xj)+= * NXi=1 ci�(xi); NXi=1 ci�(xi)+ � 0(see Equation (24) in Section 7.)It turns out that under reasonable assumptions onX andK, which nearlyalways hold in practice, any kernel K can be represented as K(x; y) =Pn �n(x)�n(y) for some choice of functions f�ng [22]. We give a proof ofthis in Section 7 (Theorem 5). In particular, this is true for all kernels onX �X for a countable set X, and more generally, it is true whenever X is aseparable metric space and K is a continuous function on X�X (see Section7.) Thus, in some sense, choosing a kernel on X �X is the same a choosinga series �(x) in l2 of \feature values" to represent each x 2 X.The class of kernels on a set X � X has wonderful closure propertiesthat can be used to great advantage. In particular, it is readily veri�ed thatthis class is closed under addition, multiplication by a positive constant andpointwise limits (see e.g. [1]). Hence they form a closed convex cone [1]. Itis also well-known that the class is closed under product, i.e. if K1(x; y) andK2(x; y) are kernels, then K(x; y) = K1(x; y)K2(x; y) is a kernel. This isequivalent to the fact that positive de�nite matrices are closed under Schurproduct, i.e. element-wise product [A �B]i;j = Ai;jBi;j: (see e.g. [1], Theorem1.12, page 69).Because kernels are closed under product, it is easy to see that they arealso closed under tensor product, i.e. if K1(x; y) is a kernel on X � X andK2(u; v) is a kernel on U �U then K1
K2((x; u); (y; v)) = K1(x; y)K2(u; v)is a kernel on (X � U) � (X � U) ([1], Corollary 1.13, page 70). Similarly,2Note that since Pn �2n(x) = K(x; x) <1, �(x) 2 l2 for all x.4



since they are closed under sum, they are also closed under direct sum, i.e.K1�K2((x; u); (y; v)) = K1(x; y)+K2(u; v) is a kernel on (X�U)�(X�U).Going in the other direction, if K((x; u); (y; v)) is a kernel on (X�X)�(X�X), then the diagonal projection K�(x; y) = K((x; x); (y; y)) is a kernel onX �X. It is clear that (K1 
K2)� = K1K2 and (K1 �K2)� = K1 +K2.Lastly, it is easy to see that if S � X and K is a kernel on S�S, then Kmay be extended to a kernel on X �X by de�ning K(x; y) = 0 if either x ory is not in S. This follows directly from the de�nition of a positive de�nitefunction. We call this the zero extension of K.2.2 R-Convolution kernelsSuppose x 2 X is a composite structure and x1; : : : ; xD are its \parts", wherexd is in the set Xd for each 1 � d � D, and D is a positive integer. Through-out this paper we assume that X;X1; : : : ; XD are nonempty, separable metricspaces. This includes the special case that X;X1; : : : ; XD are countable sets(see Section 7.) This countable case is the primary focus of the paper.We can represent the relation "x1; : : : ; xd are the parts of x" by a relationR on the setX1�� � ��XD�X, where R(x1; : : : ; xD; x) is true i� x1; : : : ; xD arethe parts of x. For brevity, let ~x = x1; : : : ; xD, and denote R(x1; : : : ; xD; x)by R(~x; x). Let R�1(x) = f~x : R(~x; x)g. We say R is �nite if R�1(x) is �nitefor all x 2 X. Here are some examples:1. If x is a D-tuple in X = X1� � � ��XD, and each component of x 2 Xis a part of x, then R(~x; x) i� ~x = x.2. If X1 = X2 = X, where X is the set of all �nite strings over a �nitealphabet A, then we can de�ne R(x1; x2; x) i� x1�x2 = x, where x1�x2denotes the concatenation of strings x1 and x2.3. Continuing the previous example, if the alphabet A has only one letter,then a �nite string can be represented by the nonnegative integer nthat is its length, so X1 = X2 = X = f0; 1; : : :g and R(n1; n2; n) i�n1 + n2 = n.4. If X1 = : : : = XD = X, where X is the set of all D-degree orderedand rooted trees, then we can de�ne R(~x; x) i� x1; : : : ; xD are the Dsubtrees of the root of the tree x 2 X.5



Note that examples 2 and 3 show it is possible that a given object x may bedecomposable into parts in multiple ways. Examples 2-4 demonstrate howthe relation between part and structure can be used iteratively to de�ne morecomplex structures in X when X1 = � � � = XD = X for an in�nite set X.Suppose x; y 2 X and for some decompositions of x and y, ~x = x1; : : : ; xDare the parts of x, and ~y = y1; : : : ; yD are the parts of y. Suppose furtherthat for each 1 � d � D, we have a kernel Kd on Xd that we can use tomeasure the similarity Kd(xd; yd) between the part xd and the part yd. IfXd is uncountable, then we assume Kd is continuous. Then we de�ne thesimilarity K(x; y) between x and y as the following generalized convolutionK(x; y) = X~x2R�1(x);~y2R�1(y) DYd=1Kd(xd; yd) (2)This de�nes a symmetric function on S�S, where S = fx : R�1(x) is not empty g.We de�ne R-convolution of K1; : : : ; KD, denoted K1 ? � � � ? KD(x; y), to bethe zero extension of K to X � X. We refer to K as a �nite convolution ifR is �nite.Theorem 1 If K1; : : : ; KD are kernels on X1 � X1; : : : ; XD � XD, respec-tively, and R is a �nite relation on X1 � � � � �XD �X, then K1 ? : : : ? KDis a kernel on X �X.To prove this theorem we needLemma 1 Let K be a kernel on a set U � U and for all �nite, nonemptyA;B � U de�ne K 0(A;B) = Px2A;y2BK(x; y): Then K 0 is a kernel on theproduct of the set of all �nite, nonempty subsets of U with itself.The proof of this lemma is given in Section 7.Proof of the theorem: Let U denote X1 � � � � � XD. Since K1; : : : ; KDare kernels by assumption, it is clear from the closure of kernels under tensorproduct that ~K(~x; ~y) = DYd=1Kd(xd; yd)is a kernel on U � U .Since R is �nite, by Lemma 1, ~K 0(R�1(x); R�1(y)) is a kernel on theproduct of the set of all nonempty R�1(x) such that x 2 X with itself. Since6



K1 ? � � � ? KD(x; y) is the zero extension of K(x; y) = ~K 0(R�1(x); R�1(y)), itfollows that it is a kernel on X �X. 2In the case that X is uncountable, in what follows we assume it is aseparable metric space with a metric de�ned such that K is a continuousfunction.2.3 Example: radial basis and simple exponential ker-nelsIn example 1 in Section 2, because there is only one way to decompose eachx, the R-convolution kernel reduces toK1 ? � � � ? KD(x; y) = DYd=1Kd(xd; yd):For each 1 � d � D, let fd : Xd ! <, �d > 0, andKd(x; y) = e�(fd(x)�fd(y))2=2�2d :It is well-known that Kd is a kernel (see, e.g., [1], Section 1.10 on page 69and Theorem 2.2 on page 74). ThenK1 ? � � � ? KD(x; y) = e�PDd=1(fd(xd)�fd(yd))2=2�2d : (3)Kernels of this form are called radial basis kernels [28]. In radial basis kernels,each function fd is used to extract a primitive real-valued feature from thecomponent xd of x. These features are then used to de�ne a kernel K thatin fact maps x implicitly into an in�nite dimensional feature space. Suchkernels have proven quite useful in practice [27].Continuing with Example 1 from Section 2, using the same primitivefeatures ffd(xd) : 1 � d � Dg, we can de�ne the simple exponential kernelK1 ? � � � ? KD(x; y) = ePDd=1 fd(xd)fd(yd)=�2d = DYd=1Kd(xd; yd);where here Kd(x; y) = efd(x)fd(y)=�2d ;which is also a kernel for any real-valued function fd (see, e.g., [1], Corollary1.14, page 70). This is closely related to the radial basis kernel de�ned above.7



Indeed, if ~K is the radial basis kernel above and K is the simple exponentialkernel, then it is easily veri�ed that~K(x; y) = K(x; y)qK(x; x)qK(y; y) (4)We will introduce a more general version of the radial basis kernels in Section5 below.2.4 Example: ANOVA kernelsHere is a quite di�erent type of R-convolution kernel that is used in practiceand called an analysis of variance (ANOVA) kernel [31, 30]. Let X = Sn forsome set S and K(i) be a kernel on S�S for each 1 � i � n. For 1 � D � n,the ANOVA kernel of order D is de�ned by3K(x; y) = X1�i1<���<iD�n DYd=1K(id)(xid ; yid):For each 1 � d � D, let Xd = S � f1; : : : ; ng, and let ~K((s; i); (t; j)) =K(i)(s; t) if i = j and 0 else. It is readily veri�ed that ~K is a kernel if theK(i) are. Let Kd = ~K for all 1 � d � D. De�ne R((s1; i1); : : : ; (sD; iD); x) i�sd = xid for 1 � d � D and i1 < � � � < iD. Since the cardinality of R�1(x) is nD !, R is �nite. Clearly K(x; y) is the R-convolution of K1; : : : ; KD.IfD = n, then it is clear thatK = K(1)
� � �
K(n). At the other extreme,if D = 1, then K = K(1) � � � � �K(n). Thus by playing with the de�nitionof the \parts of" relation R in ANOVA kernels, we get a spectrum of kernelsfrom direct sum to tensor product. We can play further with this de�nitionto get a spectrum from (normal) sums to products. De�ne everything thesame as above, except let X = S, and R((s1; i1); : : : ; (sD; iD); x) i� sd = xfor 1 � d � D and i1 < � � � < iD. We call the resulting kernel K a diagonalprojection ANOVA kernel. For such a kernel, it is easily veri�ed that ifD = nthen K = (K(1) 
 � � � 
K(n))� = K(1) � � �K(n)3Typically all K(i) are the same and the superscript is dropped.8



and if D = 1 K = (K(1) � � � � �K(n))� = K(1) + � � �+K(n):Hence R convolutions generalize both products and sums of kernels. Interest-ing variations on the radial basis and simple exponential kernels discussed inthe previous sections are possible using diagonal projection ANOVA kernelsin place of the simple products used there. Although these kernels can havean exponential number of terms, e.g. when D = n=2, there is a recursiveformula that allows them to be computed e�ciently, which is critical for theirpractical utility [31].3 P -KernelsWe say a kernel K is positive if K(x; y) � 0 for all x; y. If K is a positivekernel and Px;yK(x; y) = 1, then K is a probability distribution on X �X,and is called a P -kernel.3.1 Closure propertiesThe class of positive kernels is closed under addition, multiplication, mul-tiplication by a positive scalar, pointwise limits, and R-convolution with a�nite relation R. These closure properties are clear: since we already knowthat each closure property holds for the class of all kernels, to verify that theyhold for the class of positive kernels, it su�ces to notice that they preservepositivity.Let us say that the relation R is is a function if for every ~x there is one xsuch that R(~x; x). In Examples 1-4 in Section 2, the relation R is a function.Theorem 2 The class of P -kernels is closed under convex combination andR-convolution for a �nite function R.Proof: The closure of P -kernels under convex combination is clear for �niteconvex combinations, since kernels are closed under addition and multiplica-tion by a positive constant, and convex combination preserves the propertythat the kernel is positive and sums to 1. To verify this closure propertyfor in�nite convex combinations of the form K(x; y) = Pn pnKn(x; y), where9



each Kn is a P -kernel, pn > 0, and Pn pn = 1, we can additionally use theclosure of kernels under pointwise limits, since 0 � Kn(x; y) � 1 for all n; x; y.To see that the second closure property holds, assume the kernel Kd isa probability distribution on Xd � Xd for 1 � d � D and let Q be theproduct distribution on X1� � � ��XD�X1� � � ��XD de�ned by Q(~x; ~y) =QDd=1Kd(xd; yd). The R-convolution K is the zero extension of the image ofthis distribution under the function R, and hence is a probability distributionon X �X. 23.2 Simple R-convolutions and generating functionsFor each 1 � d � D, let gd : Xd ! <. We say that g : X ! < is the simpleR-convolution of g1; : : : ; gD ifg(x) = X~x2R�1(x) DYd=1 gd(xd) (5)whenever R�1(x) is not empty and g(x) = 0 otherwise. We denote thisconvolution by g = g1 ? � � � ? gD.As demonstrated above for P -kernels, it is easily veri�ed that if eachgd is a probability distribution on X and R is a function, then g1 ? � � � ?gD is a probability distribution on X. Thus, since the class of probabilitydistributions on X is also clearly closed under convex combinations, it hasthe same closure properties as those given for P -kernels in Theorem 2, butusing simple convolutions.Simple convolutions of probability distributions are illustrated by classicalconvolutions of discrete random variables. As in Example 3 of Section 2, letD = 2, X1 = X2 = X = f0; 1; : : :g and R(n1; n2; n) i� n1 + n2 = n. If X is arandom variable taking values in X with distribution g(n) = P (X = n), andY is a random variable with distribution h(n) = P (Y = n), theng ? h(n) = P (X+Y = n):The generating function for X is de�ned by G(s) = P1n=0 g(n)sn where s is aformal variable, and similarly, the generating function for Y may be de�nedby H(s) = P1n=0 h(n)sn. Then the generating function for X +Y is clearlyG(s)H(s). So convolution of distributions with this relation R corresponds10



to multiplication of generating functions. By di�erentiating the generatingfunction, one obtains the moments of the distribution (see, e.g., [6]).Other kinds of convolutions can be used to represent combinatorial count-ing problems, because if gd(xd) = 1 for all xd, then g1 ? � � � ? gD(x) is thecardinality of R�1(x). As an example, let D = 2, X1 = X2 = X = f1; 2; : : :g,R(n1; n2; n) i� n = n1n2, and g1(n) = g2(n) = 1 for all n. Then g1 ? g2(n) =n+1��(n), where �(n) is Euler's totient function, which counts the numberof non negative integers less than n that are relatively prime to n.3.3 Independent and diagonal kernelsWe say the kernel K is independent if there is a function g : X ! < suchthat K(x; y) = g(x)g(y). It is clear that if K is an independent P -kernel,then K is a product of two independent and identical distributions on X.Convolutions of independent kernels decompose into an independent ker-nel consisting of the product of two simple convolutions:if Kd(xd; yd) = gd(xd)gd(yd) for all 1 � d � D, thenK(x; y) = K1 ? � � � ? KD(x; y) = (g1 ? � � � ? gD(x)) (g1 ? � � � ? gD(y)) : (6)Hence convolutions of independent P -kernels under a function R are againindependent P -kernels.We say the kernel K is diagonal if there is a (necessarily positive) func-tion g such that K(x; y) = g(x)�(x; y), where the � function is de�ned by�(x; y) = 0 if x 6= y and �(x; x) = 1. The identity kernel is the diagonalkernel K(x; y) = �(x; y). For a function R, a convolution of diagonal kernelsis a diagonal kernel of simple convolutions:if Kd(xd; yd) = gd(xd)�(xd; yd), thenK(x; y) = K1 ? � � � ? KD(x; y) = g1 ? � � � ? gD(x)�(x; y): (7)Hence convolutions of diagonal P -kernels under a function R are again diag-onal P -kernels.3.4 Positive simple convolutions, Gibbs distributions,and hidden Markov random �eldsWe say g is positive if g(x) � 0 for all x. Like the class of positive kernels,the class of positive functions is closed under addition, multiplication, multi-11



plication by a positive scalar, pointwise limits, and simple R-convolution forany relation R.Suppose that Z = Px2X g(x) is �nite and nonzero. Then we may nor-malize g to a probability distributionP (x) = g(x)Z (8)If g is a simple R convolution, then we call P (x) the Gibbs distribution forthis R convolution, an refer to it as an R-Gibbs distribution. We call Z thepartition function. The central example is a �nite Markov random �eld, ormore generally, a �nite Markov random �eld with latent variables, which wewill call a Hidden Markov Random Field (HMRF).A �nite HMRF is de�ned as joint distribution on a �nite set of visiblerandom variables V1; : : : ; Vn and a �nite set of unobserved (hidden, latent)random variables U1; : : : ; Um. We assume here that these variables have a�nite range. The HMRF is de�ned in terms of the cliques of a graph onn + m vertices representing these variables, along with auxiliary functionsassociated with these cliques. We give a brief de�nition here; details can befound in [18, 5].For each 1 � d � D, let Cd be a distinct subset of fV1; : : : ; Vng [fU1; : : : ; Umg: These will be the cliques. We assume all variables are con-tained in at least one clique. Let Xd denote the set of all possible (joint)assignments to the variables in Cd. We call Xd the variable assignment setfor Cd. Let U = (U1; : : : ; Um) and V = (V1; : : : ; Vn), and u; v denote assign-ments to the random vectors U and V respectively. Let u(d) denote the jointassignment u restricted to the variables in Cd \ fU1; : : : ; Umg, and similarlyfor v(d). Thus (u(d); v(d)) 2 Xd denotes the assignment to the variables in theclique Cd induced by the global joint assignments u and v.For each 1 � d � D, let hd : Xd ! < be a positive function. We call hdthe compatibility function for the clique Cd. Leth(v) =Xu DYd=1 hd(u(d); v(d)) (9)Then this de�nes a HMRF with Gibbs distribution on the visible variablesV given by 12



P (v) = h(v)Z (10)where Z =Xv h(v):Let X be the set of all assignments to V . De�ne R(~x; x) i� there existassignments u and v such that x = v and xd = (u(d); v(d)) for all 1 � d � D.We callR the assignment checking relation for the HMRF. Since the variableshave a �nite range, R is a �nite relation. Then it is clear thath(v) = h1 ? � � � ? hD(v);and hence P (v) is the Gibbs distribution de�ned from the convolution ofh1; : : : ; hD under R.3.5 Gibbs kernelsIf K is a positive kernel and Z = Px;y2X K(x; y) is �nite and nonzero, thenwe may normalize K to a P -kernelP (x; y) = K(x; y)Z (11)If K is an R-convolution, then we call P an R-Gibbs kernel. For example,radial basis, simple exponential and positive ANOVA kernels can be usedto generate Gibbs kernels in this way. More interesting is to use a hiddenMarkov random �eld.Assume we have an HMRF with D cliques as in Section 3.4. Let X bethe set of assignments to the observed variables, X1; : : : ; XD be the vari-able assignment sets for the cliques, R be the assignment checking relation,h1; : : : ; hD be the compatibility functions for the cliques, and h = h1?� � �?hD.Then, as given in Equation (10), the probability distribution de�ned by theHMRF is P (x) = h(x)=Z. Let us set Kd(xd; yd) = hd(xd)hd(yd). Then fromEquation (6) it follows thatK(x; y) = K1 ?� ? KD(x; y) = h(x)h(y);13



thus K is an independent positive kernel. Clearly the Gibbs kernelP (x; y) = P (x)P (y):So in this case the Gibbs kernel is just the product of two independent copiesof the Gibbs distribution.Alternatively, we can de�ne Kd(xd; yd) = hd(xd)�(xd; yd); obtaining thediagonal kernel K(x; y) = K1 ? � � � ? KD(x; y) = h(x)�(x; y)using Equation (7). In this caseP (x; y) = P (x)�(x; y);i.e. the HMRF appears on the diagonal of the Gibbs kernel P . Here theassignments x and y to the observed variables are completely correlated.Now let K1; : : : ; KD be any positive kernels on the clique variable as-signments X1; : : : ; XD of the HMRF. These kernels replace the compatibilityfunctions h1; : : : ; hD, and can be de�ned, e.g. by convex combination, so thatthey interpolate between the two extremes above. LetP (x; y) = K1 ? � � � ? KD(x; y)Z :The Gibbs kernel P models a dependency between two assignments x and yto the visible variables of the HMRF. If the variables in V represent partsof an observed structure, then this Gibbs kernel provides a way of usingthe generative probability model inherent in a HMRF to de�ne a notion ofsimilarity between related structures. This idea will be further developed ina separate paper. (See also [16, 15] for an alternate way to do this.)4 Iterated convolution kernels and general-ized regular expressionsWhen X is countably in�nite and Xd = X for 1 � d � D, as in the examplesof kernels for strings and natural numbers given in Section 2 above, it is veryuseful to be able to build more complex kernels from simpler kernels using the14



closure properties of kernels. This is most conveniently done for P -kernels;hence we restrict ourselves to that case in this section. Accordingly, we willassume that the relation R is a �nite function, so that we may exploit boththe closure under convex combination and the closure under R-convolution.The essence of these constructions is to exploit the recursive nature of therelation R by iterating the closure properties.4.1 Iteration of a simple convolutionFirst let us de�ne the �nite iteration of a simple convolution. Let X1 =X2 = X, and R be a �nite function. Let x1 � x2 be the (unique) x such thatR(x1; x2; x). We say that R is associative if x1 � (x2 � x3) = (x1 � x2) � x3for all x1; x2; x3 2 X. In this case (X; �) is a semigroup. The relation R isassociative in Examples 2 and 3 in Section 2. We assume associativity of Rin what follows.Let g : X ! < be a probability distribution on X. Then we de�neg(1) = g, and for every r � 2 we de�ne g(r) = g ? g(r�1), where g ? h isthe simple R-convolution de�ned in Equation (5). Technically, this is theleft iteration of g, but it is easily veri�ed that since R is associative, thenthis is the same as the right iteration g(r) = g(r�1) ? g, and so there is noloss of speci�city in using this notation. It is clear that g(r) is a probabilitydistribution on X for all r � 1.Iteration of a simple convolution is used extensively in the application ofgenerating functions. For example, if X1; : : : ;Xr are independent randomvariables with a geometric distribution g(n) = qnp where p + q = 1, and Gis the generating function for this distribution, thenG(s) = p1� qs:Thus Y = Pri=1Xi has generating function p1� qs!r ;and it follows that Y has the negative binomial distributiong(r)(n) =  r + n� 1n ! qnpr:15



These and other classical examples, as found in, e.g., [6], use iterated convo-lution under the semigroup (f0; 1; : : :g;+) de�ned by the associative relationin Example 3 of Section 2.4.2 In�nite iteration of a simple convolution and prob-ability distributions on regular languagesLet 0 �  < 1. We de�ne the -in�nite iteration of g byg? = (1� ) 1Xr=1 r�1g(r):We call this the (generalized) Kleene star operation for reasons discussedbelow4. Clearly, g? is a convex combination of the g(r) using a geometricdistribution with parameter . Hence g? is a probability distribution on X.Let X be the set of all �nite strings over a �nite alphabet A and � bethe operation of string concatenation, as in Example 2 of Section 2. Let �denote the empty string. A subset of X is called a language. The operationof concatenation is extended to languages by de�ningL1 � L2 = fx � y : x 2 L1 and y 2 L2g:The iteration of this operation is de�ned by L(1) = L, and L(r) = L � L(r�1),r � 2. The Kleene star operation is de�ned byL? = f�g [ [r�1L(r):Finally, the regular languages are de�ned to be the smallest set of languagesthat contain f�g and fag for all letters a 2 A, and are closed under union,concatenation and Kleene star [14].The operations of convex combination, simple convolution, and -iteratedconvolution may be used to de�ne a class of probability distributions onregular languages called regular probability distributions For any string x, wecall the distribution gx(y) = �(x; y) the indicator distribution for x. Let g andh be two probability distributions on X. Corresponding to the operation ofunion, for any 0 <  < 1, we can form the (binary) convex combination g+4It is actually more like the regular operator X+ than X?.16



(1�)h, which is clearly also a probability distribution on X. Correspondingto the operation of concatenation, we have the convolution g ? h. It is clearthat gx ? gy = gx�y. Finally, corresponding to Kleene star, we have the -iterated convolution g? . The class of regular probability distributions on Xis the smallest class of probability distributions that contains the indicatorfunctions for the empty string and all letters of the alphabet A, and is closedunder binary convex combination, convolution, and -iterated convolutionfor any .Notice that f�g [ A forms the (minimal) set of generators for the semi-group (X; �), in the sense that any element of X can be constructed byapplying the operation � �nitely many times to these generators. The abovede�nition of regular probability distributions is easily extended to any semi-group by de�ning it to be the smallest class of probability distributions thatcontains the indicator functions for the generators and is closed under binaryconvex combination, convolution, and -iterated convolution for any . Wedenote this set of distributions by G.4.3 Iterated convolution of P -kernelsAnalogous operations can be de�ned for P -kernels. Let K : X �X ! < bea P -kernel, and R be a �nite associative function representing an operation�. Then K(r) denotes the R-convolution of K with itself r times, andK? = (1� ) 1Xr=1 r�1K(r)is the -in�nite iteration ofK. These are P -kernels on the semigroup (X; �)�(X; �).Building on the set G of regular distributions on (X; �), we de�ne the setof regular P -kernels on (X; �) � (X; �), denoted K, as the smallest class ofP -kernels that contains the the kernel K(x; y) = g(x)g(y) for every g 2 Gand is closed under binary convex combination, convolution, and -in�niteconvolution for any . If (X; �) is the semigroup of strings over a �nitealphabet with the operation of concatenation, then we call K the class ofregular string kernels.A fuller theory of regular P -kernels, along with their representations asmachines and grammars, and their extension to stochastic context-free gram-17



mar kernels is in preparation as a separate paper. Here we present a simpleapplication of this theory.4.4 Application of regular string kernelsHere we derive a regular string kernel that can be used to measure the simi-larity between strings, based on an underlying generative probability modelfor pairs of strings. This application will be discussed in detail, and experi-mental results presented, in a separate paper. In pattern recognition, a stringmay represent a sequence of elementary objects derived from the decompo-sition of a structured object. Each elementary object can be denoted by aletter in the �nite alphabet A. The set X of all objects is thus identi�edwith the semigroup of all �nite strings over the alphabet A.In many pattern recognition applications, we can not assume that allobject strings from similar objects have the same length. This occurs, forexample, when the strings consist of amino acids representing proteins, nu-cleic acids representing genes, or phonemes representing spoken words [26,4, 9, 24]. In these contexts, some objects may be missing components thatother similar objects have. However, we can align any two object strings sothat their corresponding components are adjacent, using a special symbol`-' to indicate that a component is missing at a certain place in one of thestrings. For example, using the alphabet A = fA;B;Cg, and the strings x =BCABBCBAACACAACCCAAB and y = BCCABBCABBAABACAACCAAB,x = BC-ABBC--BAACACAACCCAABy = BCCABBCABBAABACAACC-AABrepresents an alignment between x and y with four insertions or deletions ofcomponents and one substitution (a component of type `C' exchanged withone of type `B' in one place.)One way to de�ne a generative probability model that captures the es-sential properties of such string alignments is to model the strings x and y ashaving been derived from a common \ancestor" string z. For example, onechoice would be to take z = BCABBCBAACACAACCAAB and show thederivation of x and y from z asz = BCABBCBAACACAACC-AABx = BCABBCBAACACAACCCAAB 18



andz = BC-ABBC--BAACACAACCAABy = BCCABBCABBAABACAACCAABHere we have chosen z such that in going from z to either x or y, weonly make insertions and substitutions, no deletions. It is always possible tochoose such a z to represent a common ancestor of two aligned strings, so wewill assume that the derivation is always done in that way.In order to model this derivation process, we start by de�ning a kernelthat models the substitution process on a single letter. We assume that givenan ancestor letter a 2 A, p(bja) denotes the probability that this ancestorderives the letter b in the string x. We assume that this probability is thesame for the string y, and that the derivation of the two letters, one in x andone in y, is independent, given the ancestor letter a in z. Finally, we assumethat the probability of the ancestor letter a is given by p(a).For every a 2 A, the zero extension to all �nite strings in X of the kernelKa on A�A de�ned by Ka(b; c) = p(bja)p(cja) is a regular string kernel bythe basis case of the inductive de�nition. For any strings x; y 2 X, de�neK1(x; y) = Xa2A p(a)Ka(x; y):Since the class of regular string kernels is closed under �nite convex com-bination, K1 is a regular string kernel as well. K1 models the substitutionprocess for single letters, and is zero for all strings that are not single letters.Next we model the insertion process. Between any two consecutive let-ters of the ancestor z, arbitrary stings can be inserted in the correspondingplaces in x and y. We assume that the inserted string in x is independentfrom the inserted string in y. Let g be any regular probability distributionon strings. For example, it is easy to see that the distribution in which thelength of the string has a geometric distribution and the letters are indepen-dently chosen according to any �xed distribution on the alphabet is a regularprobability distribution. We may take K2(x; y) = g(x)g(y) as a model of ourinsertion process, which again is a regular string kernel by the basis case ofthe inductive de�nition.Finally, to generate a pair of strings x and y that are derived randomlyfrom a common ancestor, we have to iterate the processes of insertion and19



substitution. For some parameter 0 �  < 1, letK(x; y) = K2 ? (K1 ? K2)? + (1� )K2: (12)ClearlyK(x; y) is a regular string kernel, and it models the generative processwe have de�ned. To see this more clearly, it is useful to look at some specialcases.� If  = 0 then K(x; y) = k2(x; y) = g(x)g(y), i.e. K is an indepen-dent kernel, so the strings x and y are modeled as being independentlygenerated according to the same underlying insertion process, with theempty common ancestor. The \similarity" K(x; y) depends only onthe magnitude of the individual probabilities g(x) and g(y).� IfK2(x; y) = g�(x)g�(y), where � denotes the empty string, thenK2(x; y) =0 unless both x and y are empty. Thus no insertions whatsoever areallowed. In this case it is easily veri�ed that K1 ? K2 = K1, andthat if x = x1 : : : xs and y = y1; : : : ; yt, where xi; yj 2 A, then forr � 1, K(r)1 (x; y) = 0 unless r = s = t, in which case K(r)1 (x; y) =Qri=1K1(xi; yi). From this, it follows easily that K(x; y) = 0 if x and yhave di�erent lengths, else if they have the same length r thenK(x; y) = (1� )r rYi=1K1(xi; yi): (13)Here we take the product to be 1 if r = 0. Thus in this case the kernelKdecomposes into a geometric mixture of disjoint product distributionson pairs of strings of di�erent lengths. Stings x and y are completelydissimilar (\orthogonal") if they have di�erent lengths, else they aresimilar to the extent that their corresponding letters are similar (=\likely to have been derived from a common ancestor letter".) A furtherspecial case is obtained if A = f0; 1g, K1(0; 0) = K1(1; 1) = � andK1(0; 1) = K1(1; 0) = � where 0 < � < � < 1 and � + � = 1=2. Thenif x and y have the same length r,K(x; y) = (1� )(�)r  ��!�dH(x;y) ; (14)where dH(x; y) is the Hamming distance between the binary strings xand y, de�ned as the number of components in which they di�er.20



In general, K interpolates between the two extremes given in these cases, sostrings that have similar overall structure, with a few likely insertions, dele-tions, and substitutions, are more similar under K than strings of comparablelength that don't share this property.It can be shown that regular string kernels can all be modeled by pair-HMMs, as de�ned in [4]. This means that there is an e�cient dynamicprogramming algorithm to evaluate these kernels, which is a very importantpractical consideration. However, not all pair-HMMs de�ne regular stringkernels. For example, it is possible to de�ne a pair-HMM that represents adistribution on pairs of strings that is not symmetric, and hence not a kernel.The regular string kernel K de�ned above is closely related to the jointprobability distribution de�ned by the pairwise local alignment pair-HMMon page 86 (Figure 4.3) of [4]. That distribution incorporates a few bellsand whistles that are easily accomplished by using a slightly more complexregular string kernel, with the exception of one feature: in the de�nitionof that pair-HMM, between consecutive letters of a hypothetical ancestorstring, a string can be inserted in the corresponding position in either x ory, but not in both. This kind of distribution also cannot be modeled by akernel, because it fails to be positive de�nite. However, if one replaces thispart of the model by an independent distribution on the insertions in x andy like those used at the beginning and ends of this pair-HMM from [4], thenthe distribution of the resulting pair-HMM is a regular string kernel.Pair-HMMs have already proven useful in pattern recognition applica-tions involving strings by virtue of the generative models they de�ne. Bydeveloping them further into regular string kernels, we can take advantageof other kinds of pattern recognition and clustering methods that use animplicit feature-space representation, obtained from the kernel.5 Generalized radial basis kernels and radialdistancesIn Section 3.4, we showed how to derive a Gibbs kernel from an arbitrarypositive kernel by normalizing it. A di�erent kind of normalization of apositive kernel K is to convert it into a generalized radial basis kernel, de�ned21



in analogy with Equation (4) of Section 2.3 by~K(x; y) = K(x; y)qK(x; x)qK(y; y) = e�((1=2)(logK(x;x)+logK(y;y))�logK(x;y)): (15)Here we assume K(x; x) > 0 for all x. If K(x; x) = 0, it is easy to see thatwe must have K(x; y) = 0 for all y, else K is not positive de�nite. Hence wecan remove all x such that K(x; x) = 0 if necessary.It is clear that ~K is a kernel, since it is the product of K with the ker-nel K 0(x; y) = qK�1(x; x)qK�1(y; y). Furthermore, because K is positivede�nite, for any x; y 2 X, the matrix K(x; x) K(x; y)K(y; x) K(y; y) !is symmetric and has nonnegative eigenvalues, and hence its determinant isnonnegative. It follows thatjK(x; y)j � qK(x; x)qK(y; y) (16)for all x; y 2 X, which can be viewed as a generalized Cauchy-Schwarz in-equality, since any semi-inner product is a kernel (see Equation (24) in Section7). Thus for a positive kernel K0 � ~K(x; y) � 1 (17)and the \radial distance"d2(x; y) = 12(logK(x; x) + logK(y; y))� logK(x; y) (18)is always nonnegative, is 0 when x = y, and is in�nite when K(x; y) = 0. Thenormalization of the kernel values to the range [0; 1] can be quite importantin practice.As an example, consider the regular string kernel K de�ned in Equation(12) from Section 4.4. The square of the corresponding generalized radialbasis kernel ~K represents a kind of odds ratio, comparing the probabilityK2(x; y) that x and y would be generated together from a common ancestoron two independent occasions to the probability K(x; x)K(y; y) that two22



copies of x would be generated from a common ancestor on one occasion,and two copies of y would be generated from a common ancestor on anindependent occasion. An analogous interpretation for ~K can be given forany P -kernel K. For P -kernels K such as that in Equation (12), where thevalues of K rapidly get exponentially small as the size of x and y increase,moving from K to ~K also has the advantage of normalizing the similaritymeasurement to remove some undesirable aspects of this length dependency,and helping to keep the values of K within a representable range. They stillget extremely small, however, and in practice, one would prefer to deal onlywith the generalized radial distance � log ~K(x; y) = d2(x; y).In fact, there is a large literature on closely related types of distancesbetween strings, going back to early work of Ulam and colleagues, and fur-ther developed by many others [26]. The earlier work did not derive thesedistances from probability models for insertions deletions and substitutions;this idea was introduced fairly recently [4]. Most theoretical discussions ofsuch string distances have only been concerned with the question of whetheror not a certain distance function d(x; y) is a metric, i.e. if it is symmet-ric, satis�es the triangle inequality d(x; y) � d(x; z) + d(z; y), and has theproperty that d(x; x) = 0. However, for many pattern recognition applica-tions, this is not su�cient for d to be a useful distance [20]. For a distanced to be useful, we need to actually embed the metric space (X; d) in a �-nite dimensional Euclidean space <N , or in the space of all in�nite squaresummable sequences l2, via some feature extraction mapping �(x) = f�n(x)gsuch that d2(x; y) = Pn(�(x) � �(y))2. This is called an isometric embed-ding. String distances cannot in general be isometrically embedded into a�nite dimensional Euclidean space, hence Linial et al. develop general meth-ods by which these distances, and in fact any general metric distance, can beapproximately embedded in a �nite dimensional Euclidean space, in the sensethat the Euclidean distance between �(x) and �(y) is close to the originaldistance d(x; y) for all x and y [20]. They apply these results to the problemof classifying protein sequences [19]. However, if (X; d) can be embeddedin l2, as mentioned in the introduction, we can still take advantage of mostof the classical pattern recognition, clustering, regression and classi�cationmethods via the kernel formulation. Thus an interesting open question is thefollowing.Question 1 If K is a regular string kernel as de�ned in (12), and d2(x; y) =23



12(logK(x; x) + logK(y; y)) � logK(x; y), when can (X; d) be isometricallyembedded in l2? More generally, if K is an arbitrary positive kernel on X�X,and d2(x; y) = 12(logK(x; x) + logK(y; y))� logK(x; y), when can (X; d) beisometrically embedded in l2?If we allow K(x; y) = 0 for some x and y, then d2(x; y) = 1 for thesex and y, thus (X; d) cannot be isometrically embedded in l2. However, d2might still be a useful distance if it decomposed X into sets X1; X2; : : : suchthat d2(x; y) < 1 for x; y 2 Xn, d2(x; y) = 1 for x 2 Xn and y 2 Xm,n 6= m, and if (Xn; d) is isometrically embedded in l2 for each Xn. In thiscase we say that (X; d) can be isometrically embedded in a disjoint union ofl2 spaces. More generally, we have the following question.Question 2 If K is an arbitrary positive kernel on X � X, and d2(x; y) =12(logK(x; x) + logK(y; y)) � logK(x; y), when can (X; d) be isometricallyembedded in a disjoint union of l2 spaces?It is interesting to consider this question in the extreme special cases forthe regular string kernel discussed in Section 4.4. In particular, if K(x; y) =g(x)g(y) for some g, which we will assume is strictly positive, then ~K(x; y) =1 for all x; y, and hence d2(x; y) = 0 for all x; y. Thus (X; d) can be isomet-rically embedded into a zero dimensional space. On the other hand, if, as in(14), K(x; y) = 0 for x and y of di�erent lengths, and for x and y of lengthr, K(x; y) = (1� )(�)r  ��!�dH(x;y) ;then d2(x; y) = � log ~K(x; y) = log(�=�)dH(x; y)if x and y have the same length, else d2(x; y) = 1. The Hamming distancedH(x; y) is clearly the squared Euclidean distance Pi(xi � yi)2 in the caseof binary sequences x and y. Thus in this case (x; d) can be isometricallyembedded into the disjoint union of <N for N � 0.Even if (X; d) cannot be isometrically embedded into a useful space, then,using kernel methods of pattern recognition, we can still work directly withthe generalized radial basis function ~K(x; y), which has the form~K(x; y) = e�d2(x;y): (19)24



It is very important in practice to be able to scale the radial distance d2(x; y)in such a radial basis kernel by a positive \width" parameter �2, to obtain~K(x; y) = e�d2(x;y)=�2 = ~K1=�2(x; y): (20)If the width is too large, then ~K(x; y) is nearly 1 for all x; y, and if thewidth is too small, ~K(x; y) � �(x; y). The kernel is not useful in eithercase. The width parameter is often set by cross-validation to optimize agiven performance measure. If K is a P -kernel, then we might get awayby keeping � = 1, and adjusting parameters internal to the P -kernel tomake it either more or less peaked on the diagonal, which would have ane�ect similar to that of adjusting the width parameter. For example, we canadjust the parameter , and the de�nition of the kernels K1 and K2 modelingsubstitution and insertion, to control how much the regular string kernel Kfrom (12) is peaked on the diagonal. However, it would be more convenient tosimply adjust the width parameter �, and truer to the underlying generativeprobability model.Unfortunately, if 1=�2 is positive but not a positive integer, then wehave no reason to believe that the kernel e�d2(x;y)=�2 de�ned above is positivede�nite. Thus we are lead to another general question:Question 3 If K(x; y) is a positive kernel, and d2(x; y) = 12(logK(x; x) +logK(y; y))� logK(x; y), when is ~K(x; y) = e�d2(x;y)=�2 = ~K1=�2(x; y) also akernel for all � > 0?It turns out that the answer to Questions 2 and 3 are the same, and thatthese properties hold if and only if K is in�nitely divisible. We briey reviewthe relevant theory in the following section.6 In�nitely Divisible Kernels6.1 De�nition of in�nitely divisible kernelsLet K(x; y) be a positive kernel on a set X � X. The kernel K is calledin�nitely divisible if for each positive integer n there is a kernel Kn such thatK = Knn . Such kernels are related to the family of in�nitely divisible prob-ability distributions, which are the limits of sums of independent variables(see [7]). To describe the properties of in�nitely divisible kernels, we needsome additional de�nitions. 25



6.2 Negative de�nite kernelsA function N(x; y) is negative de�nite if it is symmetric and for all x1; : : : ; xnin X and real c1; : : : ; cn such that Pni=1 ci = 0,Xij cicjN(xi; xj) � 0:Note the extra condition that Pni=1 ci = 0. This means that if K is positivede�nite, then �K is negative de�nite, but the converse does not generallyhold. Clearly the class of negative de�nite functions also forms a closedconvex cone, as does the class of kernels.Negative de�nite kernels have one useful closure property that positivede�nite kernels do not.Lemma 2 Let N be a function on X �X and f : X ! <. Then N(x; y) isnegative de�nite i� N(x; y) + f(x) + f(y) is negative de�nite.Proof: Clearly N is symmetric i� N(x; y)+f(x)+f(y) is. For any x1; : : : ; xnin X and real c1; : : : ; cn such that Pni=1 ci = 0,Xij cicj(N(xi; xj) + f(xi) + f(xj))= Xij cicjN(xi; xj) + (Xj cj)(Xi cif(xi)) + (Xi ci)(Xj cjf(xj))= Xij cicjN(xi; xj)Hence the former is negative for any c1; : : : ; cn such that Pni=1 ci = 0 i� thelatter is. 2We say that two negative de�nite functions are equivalent if they di�erby f(x) + f(y) for some function f . We say that a function N on X � Xhas a zero diagonal if N(x; x) = 0 for all x 2 X. Note that if N is negativede�nite, then N 0(x; y) = N(x; y)� (1=2)(N(x; x) +N(y; y)) is equivalent toN and has a zero diagonal, so up to equivalence, we may assume that allnegative de�nite functions have a zero diagonal.There is a close relationship between positive and negative de�nite func-tions.Lemma 3 Let N(x; y) be a symmetric function on X�X with zero diagonal,and z be any element of X. Let K(x; y) = N(x; z)+N(y; z)�N(x; y). ThenK is positive de�nite i� N is negative de�nite.26



Proof: Like the previous lemma, this follows easily from the de�nitions. See,e.g., [1], Lemma 2.1, page 74 for a proof. 2As we will see below, there is also a close relationship between negativede�nite functions and squared distances. Here is some intuition about this.Assume N(x; y) is a symmetric function with a zero diagonal. We say thatN(x; y) satis�es the 2n-gonal inequalities if for every positive integer n andevery x1; : : : ; xn; y1; : : : ; yn in X,Xi<j N(xi; xj) +Xi<j N(yi; yj) �Xij N(xi; yj):The 2-gonal inequality says that N is positive, and the 4-gonal inequalitysays (basically) that the sum of squared lengths of the two diagonals of aquadrilateral is always less than or equal to the sum of the squares of theside lengths, which is true of any Euclidean distance.Here is a simple result that is well-known.Theorem 3 Let N(x; y) be a symmetric function with a zero diagonal. ThenN(x; y) is negative de�nite i� it satis�es the 2n-gonal inequalities for everypositive integer n.Proof: First note that in the conditionPij cicjN(xi; xj) � 0 in the de�nitionof a negative de�nite function, we can restrict to integer c1; : : : ; cn. Thisfollows easily from the fact that negative de�nite kernels are closed underpointwise limits and multiplication by a positive constant. Furthermore,by duplicating elements in x1; : : : ; xn as needed, we can even stipulate thatci 2 f�1g. Now the condition Pi ci = 0 implies that half the ci are +1 andthe other half are �1. Rename the xi associated with the negative ci as yi,and assume we end up with x1; : : : ; xn and yi; : : : ; yn. If you now write outthe condition Pij cicjN(xi; xj) � 0 you get the 2n-gonal inequality. 26.3 Main result on in�nitely divisible kernelsFor convenience, it is useful to allow negative de�nite functions to have thevalue N(x; y) = 1 for some x 6= y. This way, for any positive kernel K,� logK(x; y) is de�ned, and equals 1 when K(x; y) is zero. Assume N is asymmetric function with some o�-diagonal values of in�nity, x1; : : : ; xn 2 X,I = f(i; j) : N(xi; xj) =1g, and J = f(i; j) : N(xi; xj) <1g. Then for anyreal c1; : : : ; cn we de�ne Pi;j cicjN(xi; xj) to be27



� 1 if Pi;j2I cicj > 0;� �1 if Pi;j2I cicj < 0; and� Pi;j2J cicjN(xi; xj) if Pi;j2I cicj = 0:We say that N is negative de�nite if Pi;j cicjN(xi; xj) � 0 for all c1; : : : ; cnsuch that Pni=1 ci = 0:We de�ne the relation x �N y i� N(x; y) < 1. It is easily veri�ed thatN is negative de�nite i� �N is an equivalence relation and N is negativede�nite in the usual sense (as de�ned at the beginning of this section) on eachequivalence class of this equivalence relation. Furthermore, these extendednegative de�nite kernels remain closed under pointwise limits.A characterization of in�nitely divisible kernels is the following, primarilyobtained by Sch�onberg around 1940.Theorem 4 Let K be a positive kernel, N = � logK, and d2(x; y) = 12(logK(x; x)+logK(y; y))� logK(x; y). Then the following are equivalent1. K is in�nitely divisible2. Kt(x; y) is a kernel for every t > 03. N is negative de�nite4. d2 is negative de�nite5. �d2 is an equivalence relation on X and (S; d) can be isometricallyembedded5 in l2 for every equivalence class S in this equivalence rela-tion.Proof: Our treatment follows [1], Proposition 2.7, page 77. To see that1 implies 3, �rst note that if K is in�nitely divisible then K1=n = e�N=nis positive de�nite for all positive integers n. Hence 1 � e�N=n is negativede�nite for all positive integers n. It is clear that N = limn!1 n �1� e�N=n�.Thus, since the negative de�nite kernels are closed under pointwise limits, Nis negative de�nite.5Recall that we are assuming that K is a continuous function and X is a separablemetric spaceX . Without this assumption, this result holds with l2 replaced by an arbitraryHilbert space. 28



To see that 3 implies 2, note that if N is negative de�nite, then so is tNfor any t > 0. De�ne N 0(x; y) = tN(x; y)� (1=2)t(N(x; x) +N(y; y)), whichis also negative de�nite by Lemma (2), and has zero diagonal. Assume z 2 Xand de�neK 0(x; y) = N 0(x; z)+N 0(y; z)�N 0(x; y) = t(N(x; z)+N(y; z)�N(x; y)�N(z; z)):K 0 is positive de�nite by Lemma 3. Note thate�tN(x;y) = �eK0(x;y)� �e�tN(x;z)e�tN(y;z)� �etN(z;z)� :The last two terms are clearly positive de�nite functions of x and y, andthe �rst is positive de�nite since by Taylor expansion it is a limit of sums ofpowers of K 0 with positive coe�cients, which are all positive de�nite by theclosure under product. Thus e�tN(x;y) is positive de�nite by closure underproduct. Since Kt = e�tN(x;y), the result follows.Finally, 2 clearly implies 1 by taking t = 1=2; 1=3; 1=4; : : :. Hence 1, 2and 3 are all equivalent.The equivalence of 3 and 4 follows from Lemma 2. The equivalence of 4and 5 is somewhat more involved, and is postponed until Section 7. 2It is obvious from this that Questions 2 and 3 from the previous sectionare equivalent to each other, and to the in�nite divisibility of K.Not every positive kernel is in�nitely divisible, but it is not immediateto produce an example that shows this. Fitzgerald and Horn give a niceexample in their paper, the main theorem of which is that if a real symmetricn � n matrix K is positive and positive de�nite, then the fractional Schurpower Kt = fKtijg is positive de�nite for all t � n � 2 [8]. (This resultwas rediscovered 19 years later [25].) Let 1 denote the all 1s vector and ndenote (1; 2; : : : ; n)T . The example Fitzgerald and Horn supply to show thisbound is tight is a matrix of the form M� = 11T + �nnT . They show thatfor n � 3 and su�ciently small �, M t� is not positive de�nite for any non-integer t < n� 2, and hence M� is not in�nitely divisible. (This can't workfor n = 2: it is easily veri�ed that for any positive 2 by 2 matrix M , M ispositive de�nite i� M is in�nitely divisible.)It is obvious that any independent positive kernel is in�nitely divisible.Hence the example of Fitzgerald and Horn shows that the class of in�nitelydivisible kernels is not closed under sum. Since we showed in Section 2.4that sum can be represented as a convolution, it follows that this class is not29



closed under convolution either. It is closed under product and fractionalpositive powers, however.We have made some progress in answering Questions 2 and 3 above,but we still lack a useful operational way to test for in�nite divisibility inpractice. Assuming the kernels K1; : : : ; KD are in�nitely divisible, when istheir convolution in�nitely divisible? Given a positive kernel that is notin�nitely divisible, how can we modify it in the least manner so that itbecomes in�nitely divisible? It can be shown that this can be accomplishedfor �nite X by multiplying the diagonal elements of the kernel by a largeenough constant. This is analogous to adding to the diagonal of a (notnecessarily positive) symmetric function on a �nite set to make it positivede�nite, a trick that is often used in practice. However, this does not appearto be appropriate for kernels on countably in�nite sets. It would also beparticularly pleasing if a rich subclass of convolution kernels could be provento be in�nitely divisible, or if simple methods could be found for modifyingthem so that they are in�nitely divisible.7 Kernels and reproducing kernel Hilbert spacesHere we summarize some aspects of Reproducing Kernel Hilbert Spaces(RKHSs) as they relate to the results above. This allows us to characterize akernel K as K(x; y) = Pn �n(x)�n(y), as promised in Section 2.1 and �nallyprovide the proof to Lemma 1, and the �nal step of the proof of Theorem 4.Our treatment follows [22, 1].Let X be a set with a metric d(x; y). We refer to X as a metric space inthis case, when we wish to leave the speci�c metric d unspeci�ed. We say X isseparable if there exists a countable set X0 � X that is dense in X, i.e. for allx 2 X and all � > 0 there exists y 2 X0 with d(x; y) � �. If X is countable,then we assume that X is endowed with the discrete metric d(x; y) = �(x; y),thus rendering it a separable metric space. A function f : Xn ! < for somen � 1 is continuous if for all � > 0 there exists a � > 0 such that wheneverd(xi; yi) � � for all 1 � i � n, then jf(x1; : : : ; xn) � f(y1; : : : ; yn)j � �.It is clear that if X is endowed with the discrete metric then any functionf : Xn ! < is continuous. Here, and throughout this paper, we assume thatX is a separable metric space, and K : X �X ! < is a continuous kernel.By H0 we denote the linear space of real-valued functions on X generated30



by the functions fKx : x 2 Xg, whereKx(y) = K(x; y):Let f = Pni=1 ciKxi and g = Pmj=1 djKyj be elements of H0, where ci; dj 2< and xi; yj 2 X for 1 � i � n and 1 � j � m. De�nehf; gi = mXj=1 djf(yj) =Xi;j cidjK(xi; yj) = nXi=1 cif(xi): (21)Note that the function h�; �i does not depend on the chosen representationsof f and g. It is clearly bilinear, i.e. hcf + g; hi = c hf; hi + hg; hi for anyc 2 < and f; g; h 2 H0, and symmetric, i.e. hf; gi = hg; fi for any f; g 2 H0,and because K is positive de�nite, for any f as above,hf; fi =Xi;j cicjK(xi; xj) � 0:Hence it is a semi-inner product on H0 (see, e.g., [3], page 123).It follows from Equation (21) that this semi-inner product has the repro-ducing property hf;Kxi = f(x) (22)for all f 2 H0 and x 2 X. This implies thathKx; Kyi = K(x; y): (23)Any semi-inner product h�; �i is a kernel, because for any a1; : : : ; aN 2 <and f1; : : : ; fN in the space that the semi-inner product is de�ned on,NXi;j=1 aiaj hfi; fji = NXj=1 aj NXi=1 ai hfi; fji (24)= NXj=1 aj * NXi=1 aifi; fj+= * NXi=1 aifi; NXj=1 ajfj+= * NXi=1 aifi; NXi=1 aifi+ � 0:31



Hence h�; �i is a kernel on H0 � H0. Thus by Inequality (16) and Equation(22), f 2(x) � hf; fiK(x; x); (25)which implies that hf; fi = 0 only if for all x 2 X, f(x) = 0. Hence h�; �i isnot just a semi-inner product, but an inner product on H0. The norm forthe inner product space (H0; h�; �i), as for any inner product space, is de�nedby jjf jj = qhf; fi, and the distance between f and g by jjf � gjj.A Hilbert space is an inner product space that is complete, in the sense thatevery Cauchy sequence ffngn�1, i.e. every sequence such that supm�n jjfn �fmjj ! 0 as n ! 1, converges to a g that is in the space. If ffngn�1 isa Cauchy sequence in H0, then (fn(x) � fm(x))2 � jjfn � fmjj2K(x; x) byInequality (25), and hence fn(x)! f(x) for some real-valued function f onX. It is possible to complete H0 by adding the limits of Cauchy sequences toit, extending it and its inner product to larger classH of real-valued functionsH that includes the functions in H0, and is a Hilbert space. Moreover, thespace H0 is dense in H. The space H is called the Reproducing Kernel HilbertSpace associated with the kernel K [22].It is easy to see that H also has the reproducing property (22). Assumef 2 H and x 2 X. Let ffngn�1 be a Cauchy sequence in H0 such thatjjfn� f jj ! 0. As discussed above, this implies that fn(x)! f(x). By (22),fn(x) = hfn; Kxi for all n. Thushf;Kxi = limn!1 hfn; Kxi = limn!1 fn(x) = f(x):We now show that since X is a separable metric space and K is contin-uous, H is separable. Let X0 be a countable dense subset of X. Let H 00be the set of all functions of the form f = Pni=1 c0iKx0i for rational numbersc01; : : : ; c0n and x01; : : : ; x0n 2 X0. Clearly H 00 is countable. Let g = Pni=1 ciKxibe a member of H0. Then by (21)jjf�gjj = nXi;j=1 �c0ic0jK(x0i; x0j) + cicjK(xi; xj)� c0icjK(x0i; xj)� cic0jK(xi; x0j)� :For a given c1; : : : ; cn and x1; : : : ; xn, this can be made as small as one likes byappropriate choice of c01; : : : ; c0n and x01; : : : ; x0n, since K is continuous. HenceH 00 is dense inH0, and thus H0 is separable. Since H0 is dense in H, it followsthat H is separable. 32



Every separable Hilbert space H has a countable orthonormal basis, thatis, a set B = f�ngn�1 � H such that h�n; �mi = �(n;m) and for all f 2 Hthere exist unique real fcngn�1 such that f = Pn cn�n. Moreover, cn =hf; �ni. If B is in�nite, we say H has in�nite dimension. In that case, H isisometric to the space l2 of all in�nite real sequences fcngn�1 withPn c2n <1.Otherwise, the dimension of H is the size of B, and H is isometric with aEuclidean space of this dimension.We can now state the main result.Theorem 5 For any continuous kernel K on X�X, where X is a separablemetric space, the associated RKHS H is separable and is thus isometric witheither <N for some �nite N or with l2. In either case, H has an orthonormalbasis f�ngn�1 such that for every x; y 2 X,K(x; y) =Xn �n(x)�n(y):Proof: The fact that H is separable and isometric with either <N of l2,and that it has an orthonormal basis B = f�ngn�1 follows from the abovediscussion. By de�nition K(x; y) = Kx(y), where Kx 2 H0. Since B is anorthonormal basis for H, which contains H0,Kx(y) =Xn hKx; �ni�n(y): (26)It follows from the reproducing property of H thathKx; �ni = �n(x): (27)This establishes the result. 2We are now in a position to prove that parts 4 and 5 of Theorem 4 inSection 6 are equivalent. First, suppose d2(x; y) is �nite, negative de�nite,and zero on the diagonal. Let K 0(x; y) = (1=2)(d2(x; z) + d2(y; z)� d2(x; y))for some z. K 0 is a kernel by Lemma 3. Let H be the RKHS associated withK 0 and K 0x(y) = K 0(x; y). ThenjjK 0x �K 0yjj2 = K 0(x; x) +K 0(y; y)� 2K 0(x; y) = d2(x; y):Hence �(x) = K 0x is an isometric embedding of (X; d) into H. Since there isan isometric embedding of H into l2 by the above result, it follows that (X; d)33



can be isometrically embedded in l2. If d2(x; y) is negative de�nite and isin�nite for some x 6= y, then as discussed in Section 6, X can be decomposedinto equivalence classes such that d2(x; y) is �nite on each equivalence classand in�nite between equivalence classes. It follows that 4 implies 5.To see that 5 implies 4, �rst note that, as remarked in Section 6, wheneverX can be decomposed into equivalence classes such that d2(x; y) is �nite oneach equivalence class and in�nite between equivalence classes, and such thatd2(x; y) is negative de�nite on each equivalence class, then d2(x; y) is negativede�nite on all of X. It is trivial to verify that if (S; d) can be isometricallyembedded in l2, then d2 is a negative de�nite function on S � S. The resultfollows. 2Finally, the reproducing kernel Hilbert space H associated with the kernelK also gives us a simpleProof of Lemma 1: LetK be a kernel on a set U�Uand for all �nite, nonempty A;B � U de�ne K 0(A;B) = Pu2A;v2B K(u; v):We must show that K 0 is a kernel on the product of the set of all �nite,nonempty subsets of U with itself. For any nonempty �nite subset A � U , letfA = Pu2AKu 2 H0, where H0 is the pre-Hilbert space associated withK 0. Iffor nonempty �nite A;B � U , we de�ne K 0(A;B) = Pu2A;v2BK(u; v), thenby Equation (21), K 0(A;B) = hfA; fBi. Since an inner product is a kernel,it follows that K 0 is a kernel on the product of the set of all nonempty �nitesubsets of U with itself. 2This construction suggests a broad generalization of the notion of an R-convolution as well. Let U = X1� � � ��XD. For kernels Kd on Xd�Xd, let~K = K1 
 � � � 
KD be a kernel on U � U . Let W : U �X ! <. We say Wrepresents the relation R if W (u; x) = 1 when R(u; x) and W (u; x) = 0 else.If X1; : : : ; XD are countable, then we can de�ne the W -convolution byK(x; y) = Xu;v2UW (u; x)W (v; y) ~K(u; v) = hfx; fyi ;where fx(v) = Pu2U W (u; x) ~Ku(v) and ~Ku(v) = ~K(u; v). This is a well-de�ned kernel if fx is in the RKHS associated with the kernel ~K for allx 2 X. It is clear that if W represents the �nite relation R, then fx is in theRKHS associated with the kernel ~K, and the W -convolution is the same asthe R-convolution. If X1; : : : ; XD and X are uncountable, we can in somecases use an integral representation of the element fx of the RKHS in place ofthe sum, and modify the de�nition of the W -convolution accordingly. This34
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