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Abstract

We introduce a new method of constructing kernels on sets whose elements
are discrete structures like strings, trees and graphs. The method can be
applied iteratively to build a kernel on a infinite set from kernels involving
generators of the set. The family of kernels generated generalizes the family
of radial basis kernels. It can also be used to define kernels in the form of joint
Gibbs probability distributions. Kernels can be built from hidden Markov
random fields, generalized regular expressions, pair-HMMs, or ANOVA de-
compositions. Uses of the method lead to open problems involving the theory
of infinitely divisible positive definite functions. Fundamentals of this theory
and the theory of reproducing kernel Hilbert spaces are reviewed and applied
in establishing the validity of the method.

1 Introduction

Many problems in statistics and pattern recognition demand that discrete
structures likes strings, trees, and graphs be classified or clustered based on
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similarity. To do this, it is desirable to have a method to extract real-valued
features ¢ (x), po(z), ... from any structure x in a class X of discrete struc-
tures. If finitely many features are extracted, the feature extraction process
can be represented by a mapping from X into d-dimensional Euclidean space
R?, and if infinitely many features are extracted, by a mapping into the
Hilbert space of all square-summable sequences, l5. In the latter case we get
an infinite series representation of x, much like the Fourier series represen-
tation of a function in L,. Here we present some methods for defining series
representations for discrete structures using a general type of kernel function
we call a convolution kernel.

Because we use a kernel formulation, the series representations we develop
are implicit. That is, rather than giving an explicit formula for {¢,(z)},>1,
we will give a formula for the inner product, or kernel, K(x,y) = >, ¢n()dn(y)
that can be computed for any structures z,y € X. Of course, this serves
to define a distance between structures x and y in the standard manner:
d(z,y) = \/K(x, x) — 2K (z,y) + K(y,y). We discuss other methods of defin-
ing a distance from a kernel as well. There is considerable recent work show-
ing that most standard classification, clustering and regression methods can
be “kernelized”, that is, they can be accomplished without ever explicitly rep-
resenting the feature vector {¢,(z)},>1, relying instead only on indirect com-
putations of the kernel K (z,y) or the distance d(x,y) [28, 31, 2, 13, 23, 30, 17|
(see also the bibliography at http://svin.first.gmd.de.) The kernels and cor-
responding distance functions we construct are suitable for all such methods.
In particular, there is a 1-1 correspondence between kernels and Gaussian
processes defined on the set X [3, 32, 21]. We do not pursue this avenue in
this paper, but the kernels we develop can be plugged directly into Gaussian
process methods.

Convolution kernels are obtained from other kernels by a certain sum over
products that can be viewed as a generalized convolution (Section 2). That
it is possible to construct kernels in this way follows from some simple closure
properties of the class of positive definite functions, which are the abstract
embodiments of kernels (Sections 2 and 7). Convolution kernels generalize
the classes of radial basis and simple exponential kernels (Section 2.3) and
the class of ANOVA kernels (Section 2.4). They can be used to represent
joint probability distributions on pairs of structures from a set X (Section 3).
Classical methods of using convolutions and generating functions to analyse




discrete distributions can be extended to convolution kernels (Section 3.2).
By normalizing a positive convolution kernel we obtain a probability distri-
bution on X x X that we call a Gibbs kernel (Section 3.5). These kernels
may have promising applications in areas where structures can be modeled
generatively by Hidden Markov Random Fields (HMRFs) [12, 18, 5].

Convolution kernels can be applied iteratively to build a kernel on a
infinite set from kernels involving generators of the set. We introduce a class
of generalized regular expressions to define kernels in this manner (Section 4).
We give an example by developing a kernel on finite strings that describes the
relationship between two strings that are derived from a common ancestor
under the operations of insertion, deletion and substitution of letters (Section
4.4). This and similar kernels are related to the pair-HMMs defined in [4].
This provides a new angle on the old field of syntactic pattern recognition,
developed by Kung-Sun Fu and his colleagues [9, 10, 11].

Attempts to control the “width” parameter in generalized radial basis
kernels derived from convolution kernels lead us to the important notion of
infinitely divisible kernels, which we review (Section 6). Some open problems
are mentioned in this regard. We also review the theory of reproducing kernel
Hilbert spaces [22, 32, 33] (Section 7), and use it to derive several results
mentioned in earlier sections.

2 Convolution kernels

2.1 Kernels

Let X be aset and K : X x X — R, where R denotes the real numbers!' and
x denotes set product. We say K is a kernel on X x X if K is symmetric,
i.e. forany x andy € X, K(z,y) = K(y,x), and K is positive definite, in the
sense that for any N > 1 and any zq,...,zy € X, the matrix K defined by
Kij = K (x;, ;) is positive definite, i.e. Y, ¢;c;K;; > 0 foraller,...,cx € R.
Equivalently, a symmetric matrix is positive definite if all its eigenvalues are
nonnegative, see, e.g. [29].

!Many authors consider the more general case of complex-valued kernels. The relation-
ship between the definitions used for that case and the ones used here for the real case is
discussed in [1], section 1.6, page 68. Virtually all of the results extend naturally to the
complex case.



It is readily verified that if each € X is represented by the sequence?
¢(x) = {¢n(x)}n>1 such that K : X x X — R is the [, inner product
K(z,y) =X, ou(z)dn(y) = (d(x),#(y)), then K is a kernel, because for any
T1,...,xy € X and ¢1,...,cy € R,

'Z_ICiCjK(xi;xj) = .Z_:lcicj (b(2:), o(x;)) (1)
= (St 3 epoto)

(see Equation (24) in Section 7.)

[t turns out that under reasonable assumptions on X and K, which nearly
always hold in practice, any kernel K can be represented as K(z,y) =
>on On(x)dn(y) for some choice of functions {¢,} [22]. We give a proof of
this in Section 7 (Theorem 5). In particular, this is true for all kernels on
X x X for a countable set X, and more generally, it is true whenever X is a
separable metric space and K is a continuous function on X x X (see Section
7.) Thus, in some sense, choosing a kernel on X x X is the same a choosing
a series ¢(x) in ly of “feature values” to represent each z € X.

The class of kernels on a set X x X has wonderful closure properties
that can be used to great advantage. In particular, it is readily verified that
this class is closed under addition, multiplication by a positive constant and
pointwise limits (see e.g. [1]). Hence they form a closed convex cone [1]. It
is also well-known that the class is closed under product, i.e. if K;(z,y) and
Ky(x,y) are kernels, then K(x,y) = Ki(x,y)Ka(z,y) is a kernel. This is
equivalent to the fact that positive definite matrices are closed under Schur
product, i.e. element-wise product [A-Bl; ; = A, ;B; ;. (see e.g. [1], Theorem
1.12, page 69).

Because kernels are closed under product, it is easy to see that they are
also closed under tensor product, i.e. if Ki(x,y) is a kernel on X x X and
Ky (u,v) is a kernel on U x U then K7 ® Ky((z,u), (y,v)) = Ki(z,y)Ka(u, v)
is a kernel on (X x U) x (X x U) ([1], Corollary 1.13, page 70). Similarly,

*Note that since ). ¢2(z) = K(z,z) < oo, ¢(z) € 12 for all z.



since they are closed under sum, they are also closed under direct sum, i.e.
Ki®Ksy((z,u), (y,v)) = Ki(x,y)+ Ka(u,v) is a kernel on (X x U) x (X xU).
Going in the other direction, if K((x,u), (y,v)) is a kernel on (X x X) x (X x
X), then the diagonal projection K*(z,y) = K((z,z), (y,y)) is a kernel on
X x X. It is clear that (K; ® Ky)® = K K, and (K, @ K,)? = K, + K.

Lastly, it is easy to see that if S C X and K is a kernel on S x S, then K
may be extended to a kernel on X x X by defining K (z,y) = 0 if either  or
y is not in S. This follows directly from the definition of a positive definite
function. We call this the zero extension of K.

2.2 R-Convolution kernels

Suppose x € X is a composite structure and x;, ..., xp are its “parts”, where
x4 is in the set X, for each 1 < d < D, and D is a positive integer. Through-
out this paper we assume that X, X;,..., X are nonempty, separable metric
spaces. This includes the special case that X, X;,..., X, are countable sets
(see Section 7.) This countable case is the primary focus of the paper.

We can represent the relation "z, ..., x4 are the parts of ” by a relation
Ron theset Xy x---xXpxX, where R(z,...,2p,z)istrueiff x1,..., xp are
the parts of x. For brevity, let ¥ = x1,...,xp, and denote R(zy,...,xp,x)
by R(Z,z). Let R™'(x) = {7 : R(Z,z)}. We say R is finite if R~!(x) is finite
for all x € X. Here are some examples:

1. If xis a D-tuplein X = X; x --- x Xp, and each component of z € X
is a part of z, then R(Z, z) iff ¥ = .

2. If X; = Xy, = X, where X is the set of all finite strings over a finite
alphabet A, then we can define R(zy, xq, x) iff x1 029 = z, where z7 019
denotes the concatenation of strings x; and z».

3. Continuing the previous example, if the alphabet A has only one letter,
then a finite string can be represented by the nonnegative integer n
that is its length, so X; = Xy = X = {0,1,...} and R(ny,ny,n) iff
ny + no = n.

4. If Xy = ... = Xp = X, where X is the set of all D-degree ordered
and rooted trees, then we can define R(Z,x) iff z1,...,xp are the D
subtrees of the root of the tree x € X.



Note that examples 2 and 3 show it is possible that a given object © may be
decomposable into parts in multiple ways. Examples 2-4 demonstrate how
the relation between part and structure can be used iteratively to define more
complex structures in X when X; = --- = Xp = X for an infinite set X.
Suppose z,y € X and for some decompositions of x and y, ¥ = x1,...,2p
are the parts of x, and iy = yq,...,yp are the parts of y. Suppose further
that for each 1 < d < D, we have a kernel K; on X, that we can use to
measure the similarity K,(z4,y4) between the part z4 and the part y,. If
X, is uncountable, then we assume K, is continuous. Then we define the
similarity K (x,y) between z and y as the following generalized convolution

K(z,y) = > dl:[ Ka(wa, ya) (2)

TER1(z),je R~ 1(y)

This defines a symmetric function on Sx S, where S = {z : R~'(x) is not empty }.
We define R-convolution of Ky, ..., Kp, denoted Ky x--- % Kp(z,y), to be

the zero extension of K to X x X. We refer to K as a finite convolution if

R is finite.

Theorem 1 If Ky,...,Kp are kernels on X; x Xy,..., Xp x Xp, respec-
tively, and R is a finite relation on X1 X -+ x Xp x X, then Ky x... % Kp
1s a kernel on X x X.

To prove this theorem we need

Lemma 1 Let K be a kernel on a set U x U and for all finite, nonempty
A, B C U define K'(A, B) = X,cayen K(2,y). Then K' is a kernel on the
product of the set of all finite, nonempty subsets of U with itself.

The proof of this lemma is given in Section 7.

Proof of the theorem: Let U denote X; x --- x Xp. Since Ky,...,Kp
are kernels by assumption, it is clear from the closure of kernels under tensor
product that

D
K(Z,9) = [[ Ka(za, ya)
=1

is a kernel on U x U. )
Since R is finite, by Lemma 1, K'(R"!(z), R"'(y)) is a kernel on the
product of the set of all nonempty R~'(x) such that x € X with itself. Since
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Ky %---% Kp(x,1) is the zero extension of K (z,y) = K'(R '(z), R (y)), it
follows that it is a kernel on X x X. O

In the case that X is uncountable, in what follows we assume it is a
separable metric space with a metric defined such that K is a continuous
function.

2.3 Example: radial basis and simple exponential ker-
nels

In example 1 in Section 2, because there is only one way to decompose each
x, the R-convolution kernel reduces to

D
Ky Kp(z,y) = [ Kalwa, ya).
d=1

Foreach 1 <d < D, let f;: Xg =R, 04 >0, and

Kd(.r, y) — o al®)—fa())? /20

It is well-known that K, is a kernel (see, e.g., [1], Section 1.10 on page 69
and Theorem 2.2 on page 74). Then

Kix % Kp(z,y)=¢e" Zf:l(fd(a:d)*fd(yd)ﬁ/?ag. (3)

Kernels of this form are called radial basis kernels [28]. In radial basis kernels,
each function f; is used to extract a primitive real-valued feature from the
component x4 of x. These features are then used to define a kernel K that
in fact maps x implicitly into an infinite dimensional feature space. Such
kernels have proven quite useful in practice [27].

Continuing with Example 1 from Section 2, using the same primitive
features {fq(zq) : 1 < d < D}, we can define the simple exponential kernel

D
Ky xKp(z,y) = 625:1 fa(xa) fa(ya)/of — H Ka(4, ya),
d=1

where here
Kd(.r, y) = efd(li)fd(y)/as’

which is also a kernel for any real-valued function f,; (see, e.g., [1], Corollary
1.14, page 70). This is closely related to the radial basis kernel defined above.
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Indeed, if K is the radial basis kernel above and K is the simple exponential
kernel, then it is easily verified that

N K (z,y)
R(,y) =
P K@ oK)

We will introduce a more general version of the radial basis kernels in Section
5 below.

(4)

2.4 Example: ANOVA kernels

Here is a quite different type of R-convolution kernel that is used in practice
and called an analysis of variance (ANOVA) kernel [31, 30]. Let X = S™ for
some set S and K be a kernel on S x S foreach 1 <i<n. For1 < D < n,
the ANOVA kernel of order D is defined by?

K(x,y)= Y lD_[K(”)(fEid;yid)-

1<i1<<ip<nd=1

For each 1 < d < D, let Xy = S x {1,...,n}, and let K((s,4), (t,7)) =
K@ (s,t) if i = j and 0 else. It is readily verified that K is a kernel if the
K@ are. Let Ky = K for all 1 < d < D. Define R((s1,%1),...,(sp,ip),x) iff
sa =, for 1 <d < D andi; <---<ip. Since the cardinality of R™'(x) is

( g ), R is finite. Clearly K (x,y) is the R-convolution of Ky,..., Kp.

If D = n, then it is clear that K = K(V®---@ K. At the other extreme,
if D=1, then K = K)@-.-@ K™ Thus by playing with the definition
of the “parts of” relation R in ANOVA kernels, we get a spectrum of kernels
from direct sum to tensor product. We can play further with this definition
to get a spectrum from (normal) sums to products. Define everything the
same as above, except let X = S, and R((s1,41),...,(sp,ip),x) iff s4 = x
for1 <d< D andi <---<ip. We call the resulting kernel K a diagonal
projection ANOVA kernel. For such a kernel, it is easily verified that if D =n
then

K=(KVg...g KW)A=KgKWD...g®

3Typically all K9 are the same and the superscript is dropped.



and if D =1
K:(K(l)@...@K("))A:K(1)+...+K(")_

Hence R convolutions generalize both products and sums of kernels. Interest-
ing variations on the radial basis and simple exponential kernels discussed in
the previous sections are possible using diagonal projection ANOVA kernels
in place of the simple products used there. Although these kernels can have
an exponential number of terms, e.g. when D = n/2, there is a recursive
formula that allows them to be computed efficiently, which is critical for their
practical utility [31].

3 P-Kernels

We say a kernel K is positive if K(z,y) > 0 for all z,y. If K is a positive
kernel and -, , K(z,y) = 1, then K is a probability distribution on X x X,
and is called a P-kernel.

3.1 Closure properties

The class of positive kernels is closed under addition, multiplication, mul-
tiplication by a positive scalar, pointwise limits, and R-convolution with a
finite relation R. These closure properties are clear: since we already know
that each closure property holds for the class of all kernels, to verify that they
hold for the class of positive kernels, it suffices to notice that they preserve
positivity.

Let us say that the relation R is is a function if for every & there is one x
such that R(Z, z). In Examples 1-4 in Section 2, the relation R is a function.

Theorem 2 The class of P-kernels is closed under convex combination and
R-convolution for a finite function R.

Proof: The closure of P-kernels under convex combination is clear for finite
convex combinations, since kernels are closed under addition and multiplica-
tion by a positive constant, and convex combination preserves the property
that the kernel is positive and sums to 1. To verify this closure property
for infinite convex combinations of the form K(z,y) = >, pn Kn(z,y), where



each K, is a P-kernel, p, > 0, and ), p, = 1, we can additionally use the
closure of kernels under pointwise limits, since 0 < K,,(z,y) < 1for alln, z,y.

To see that the second closure property holds, assume the kernel K is
a probability distribution on Xy x X, for 1 < d < D and let Q) be the
product distribution on X; x - -+ x Xp x X; x -+ x Xp defined by Q(7, ) =
M1, Ka(z4,94). The R-convolution K is the zero extension of the image of
this distribution under the function R, and hence is a probability distribution
on X x X. O

3.2 Simple R-convolutions and generating functions

For each 1 < d < D, let g4 : X4y — R. We say that g : X — R is the simple
R-convolution of g1, ...,¢gp if

TeER 1 (x

g@) =3 1l galza) (5)
(z) d=1

whenever R™!(z) is not empty and g(z) = 0 otherwise. We denote this
convolution by g = gy % -+ - % gp.

As demonstrated above for P-kernels, it is easily verified that if each
gq is a probability distribution on X and R is a function, then ¢g; % --- %
gp is a probability distribution on X. Thus, since the class of probability
distributions on X is also clearly closed under convex combinations, it has
the same closure properties as those given for P-kernels in Theorem 2, but
using simple convolutions.

Simple convolutions of probability distributions are illustrated by classical
convolutions of discrete random variables. As in Example 3 of Section 2, let
D=2 X,=X,=X={0,1,...} and R(ny,ny,n) iff n; + ny =n. f Xisa
random variable taking values in X with distribution g(n) = P(X = n), and
Y is a random variable with distribution h(n) = P(Y = n), then

g*xh(n)=P(X+Y =n).

The generating function for X is defined by G(s) = 322, g(n)s™ where s is a
formal variable, and similarly, the generating function for Y may be defined
by H(s) = Y72, h(n)s". Then the generating function for X + Y is clearly
G(s)H(s). So convolution of distributions with this relation R corresponds
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to multiplication of generating functions. By differentiating the generating
function, one obtains the moments of the distribution (see, e.g., [6]).

Other kinds of convolutions can be used to represent combinatorial count-
ing problems, because if g4(x4) = 1 for all x4, then g; x -+ % gp(z) is the
cardinality of R™!(z). As an example, let D =2, X; = Xy, = X = {1,2,...},
R(ny,ng,n) iff n = nyingy, and g;(n) = g2(n) =1 for all n. Then g; x g2(n) =
n+1—¢(n), where ¢(n) is Euler’s totient function, which counts the number
of non negative integers less than n that are relatively prime to n.

3.3 Independent and diagonal kernels

We say the kernel K is independent if there is a function ¢ : X — R such

that K(z,y) = g(x)g(y). It is clear that if K is an independent P-kernel,

then K is a product of two independent and identical distributions on X.
Convolutions of independent kernels decompose into an independent ker-

nel consisting of the product of two simple convolutions:

if Kg(zq,ya) = ga(zq)ga(yq) for all 1 < d < D, then

K(z,y) =Kix---* Kp(z,y) = (g1 *---*gp(x)) (g1 x---*gp(y)).  (6)

Hence convolutions of independent P-kernels under a function R are again
independent P-kernels.

We say the kernel K is diagonal if there is a (necessarily positive) func-
tion g such that K(z,y) = g(x)d(z,y), where the ¢ function is defined by
d(z,y) = 0 if © # y and d(x,2) = 1. The identity kernel is the diagonal
kernel K(z,y) = d(z,y). For a function R, a convolution of diagonal kernels
is a diagonal kernel of simple convolutions:

if Kq(7q,Ya) = 9a(ra)6(za,ya), then
K(z,y) =K% -« Kp(x,y) = g1 %--- % gp(2)d(z,y). (7)

Hence convolutions of diagonal P-kernels under a function R are again diag-
onal P-kernels.

3.4 Positive simple convolutions, Gibbs distributions,
and hidden Markov random fields

We say g is positive if g(x) > 0 for all x. Like the class of positive kernels,
the class of positive functions is closed under addition, multiplication, multi-
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plication by a positive scalar, pointwise limits, and simple R-convolution for
any relation R.

Suppose that Z = > - g(x) is finite and nonzero. Then we may nor-
malize g to a probability distribution

Py = 40 (s)

If ¢ is a simple R convolution, then we call P(x) the Gibbs distribution for
this R convolution, an refer to it as an R-Gibbs distribution. We call Z the
partition function. The central example is a finite Markov random field, or
more generally, a finite Markov random field with latent variables, which we
will call a Hidden Markov Random Field (HMRF).

A finite HMRF is defined as joint distribution on a finite set of visible
random variables V7,...,V,, and a finite set of unobserved (hidden, latent)
random variables Uy, ..., U,,. We assume here that these variables have a
finite range. The HMRF is defined in terms of the cliques of a graph on
n + m vertices representing these variables, along with auxiliary functions
associated with these cliques. We give a brief definition here; details can be
found in [18, 5].

For each 1 < d < D, let C; be a distinct subset of {V7,...,V,} U
{Ui,...,Uy}. These will be the cligues. We assume all variables are con-
tained in at least one clique. Let X, denote the set of all possible (joint)
assignments to the variables in Cy. We call X, the variable assignment set
for Cyq. Let U = (Uy,...,Up) and V = (V4,...,V,), and u, v denote assign-
ments to the random vectors U and V respectively. Let u(® denote the joint
assignment u restricted to the variables in Cy N {Uy,...,U,}, and similarly
for v(4. Thus (u¥, v(¥) € X, denotes the assignment to the variables in the
clique C, induced by the global joint assignments u and v.

For each 1 < d < D, let hy : X; — R be a positive function. We call hy
the compatibility function for the clique Cy. Let

h(v) =3 I ha(u'®, o) (9)

U d=1

Then this defines a HMRF with Gibbs distribution on the visible variables
V' given by

12



P(v) = (10)
where

Z=> h(v).

Let X be the set of all assignments to V. Define R(Z,z) iff there exist
assignments u and v such that 2 = v and x4 = (u¥, v) for all 1 < d < D.
We call R the assignment checking relation for the HMRF'. Since the variables
have a finite range, R is a finite relation. Then it is clear that

h(U) = hl * e '*hD(U),
and hence P(v) is the Gibbs distribution defined from the convolution of
hy,...,hp under R.

3.5 Gibbs kernels

If K is a positive kernel and 7 = 3,  c x K(x,y) is finite and nonzero, then
we may normalize K to a P-kernel

P(z,y) = K(é’ v) (11)

If K is an R-convolution, then we call P an R-Gibbs kernel. For example,
radial basis, simple exponential and positive ANOVA kernels can be used
to generate Gibbs kernels in this way. More interesting is to use a hidden
Markov random field.

Assume we have an HMRF with D cliques as in Section 3.4. Let X be
the set of assignments to the observed variables, X;,..., Xp be the vari-
able assignment sets for the cliques, R be the assignment checking relation,
hi, ..., hp be the compatibility functions for the cliques, and h = hy*- - -xhp.
Then, as given in Equation (10), the probability distribution defined by the
HMRF is P(z) = h(z)/Z. Let us set K4(Ta,ya) = ha(xqa)ha(yq). Then from
Equation (6) it follows that

K(z,y) = Kix x*x Kp(z,y) = h(z)h(y),

13



thus K is an independent positive kernel. Clearly the Gibbs kernel
P(,y) = P(x)P(y).

So in this case the Gibbs kernel is just the product of two independent copies
of the Gibbs distribution.

Alternatively, we can define Ky(z4,y4) = ha(r4)d(24,yq), obtaining the
diagonal kernel

K(J’I,y) = Kl ko *KD(xay) = h(ZE)(S(LE, y)
using Equation (7). In this case
P(z,y) = P(z)d(x,y),

i.e. the HMRF appears on the diagonal of the Gibbs kernel P. Here the
assignments = and y to the observed variables are completely correlated.

Now let Ky,..., Kp be any positive kernels on the clique variable as-
signments Xy, ..., Xp of the HMRF. These kernels replace the compatibility
functions hq, ..., hp, and can be defined, e.g. by convex combination, so that

they interpolate between the two extremes above. Let

Kix %K
Plr.y) = * *ZD(M)'

The Gibbs kernel P models a dependency between two assignments = and y
to the visible variables of the HMREF. If the variables in V' represent parts
of an observed structure, then this Gibbs kernel provides a way of using
the generative probability model inherent in a HMRF to define a notion of
similarity between related structures. This idea will be further developed in
a separate paper. (See also [16, 15] for an alternate way to do this.)

4 Iterated convolution kernels and general-
ized regular expressions

When X is countably infinite and X, = X for 1 < d < D, as in the examples
of kernels for strings and natural numbers given in Section 2 above, it is very
useful to be able to build more complex kernels from simpler kernels using the
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closure properties of kernels. This is most conveniently done for P-kernels;
hence we restrict ourselves to that case in this section. Accordingly, we will
assume that the relation R is a finite function, so that we may exploit both
the closure under convex combination and the closure under R-convolution.
The essence of these constructions is to exploit the recursive nature of the
relation R by iterating the closure properties.

4.1 Iteration of a simple convolution

First let us define the finite iteration of a simple convolution. Let X; =
X, = X, and R be a finite function. Let x; o x5 be the (unique) = such that
R(z1,x9,x). We say that R is associative if z1 o (xg 0 23) = (21 0 x3) 0 x3
for all x1, x5, 23 € X. In this case (X, 0) is a semigroup. The relation R is
associative in Examples 2 and 3 in Section 2. We assume associativity of R
in what follows.

Let ¢ : X — R be a probability distribution on X. Then we define
¢ = ¢, and for every r > 2 we define ¢\") = g+ ¢g""", where ¢ x h is
the simple R-convolution defined in Equation (5). Technically, this is the
left iteration of g, but it is easily verified that since R is associative, then
this is the same as the right iteration ¢") = ¢~ x ¢, and so there is no
loss of specificity in using this notation. It is clear that ¢(") is a probability
distribution on X for all » > 1.

I[teration of a simple convolution is used extensively in the application of
generating functions. For example, if X;,..., X, are independent random
variables with a geometric distribution g(n) = ¢"p where p+ ¢ = 1, and G
is the generating function for this distribution, then

p

G(s) = e

Thus Y = Y7, X, has generating function

p r
1—gqs) '

and it follows that Y has the negative binomial distribution

, r+n-—1 nor
g”(ﬂ)Z( )qp-

n
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These and other classical examples, as found in, e.g., [6], use iterated convo-
lution under the semigroup ({0, 1,...},+) defined by the associative relation
in Example 3 of Section 2.

4.2 Infinite iteration of a simple convolution and prob-
ability distributions on regular languages

Let 0 < v < 1. We define the v-infinite iteration of g by

o

g=1—7)> 7"

r=1

We call this the (generalized) Kleene star operation for reasons discussed
below?. Clearly, g5 is a convex combination of the g'") using a geometric
distribution with parameter 7. Hence g7 is a probability distribution on X.

Let X be the set of all finite strings over a finite alphabet A and o be
the operation of string concatenation, as in Example 2 of Section 2. Let €
denote the empty string. A subset of X is called a language. The operation
of concatenation is extended to languages by defining

LioLy={xoy:x € Ly and y € Ly}.

The iteration of this operation is defined by L) = L, and L") = Lo L1,
r > 2. The Kleene star operation is defined by

L* ={e} U U L0,

r>1

Finally, the reqular languages are defined to be the smallest set of languages
that contain {e} and {a} for all letters a € A, and are closed under union,
concatenation and Kleene star [14].

The operations of convex combination, simple convolution, and vy-iterated
convolution may be used to define a class of probability distributions on
regular languages called reqular probability distributions For any string x, we
call the distribution g,(y) = 0(x, y) the indicator distribution for z. Let g and
h be two probability distributions on X. Corresponding to the operation of
union, for any 0 < 7 < 1, we can form the (binary) convex combination g+

4Tt is actually more like the regular operator Xt than X*.
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(1—7)h, which is clearly also a probability distribution on X. Corresponding
to the operation of concatenation, we have the convolution g x h. 1t is clear
that g, * gy = ¢u0y. Finally, corresponding to Kleene star, we have the ~-
iterated convolution g7. The class of regular probability distributions on X
is the smallest class of probability distributions that contains the indicator
functions for the empty string and all letters of the alphabet A, and is closed
under binary convex combination, convolution, and v-iterated convolution
for any 7.

Notice that {e} U A forms the (minimal) set of generators for the semi-
group (X, o), in the sense that any element of X can be constructed by
applying the operation o finitely many times to these generators. The above
definition of regular probability distributions is easily extended to any semi-
group by defining it to be the smallest class of probability distributions that
contains the indicator functions for the generators and is closed under binary
convex combination, convolution, and ~v-iterated convolution for any . We
denote this set of distributions by G.

4.3 Iterated convolution of P-kernels

Analogous operations can be defined for P-kernels. Let K : X x X — R be
a P-kernel, and R be a finite associative function representing an operation
o. Then K denotes the R-convolution of K with itself r times, and

- r—1 r
Kr=(1-7)3"K"
r=1

is the y-infinite iteration of K. These are P-kernels on the semigroup (X, o) x
(X,0)

Building on the set G of regular distributions on (X, o), we define the set
of reqular P-kernels on (X,0) x (X, o), denoted K, as the smallest class of
P-kernels that contains the the kernel K(z,y) = g(z)g(y) for every g € G
and is closed under binary convex combination, convolution, and v-infinite
convolution for any . If (X,o0) is the semigroup of strings over a finite
alphabet with the operation of concatenation, then we call IC the class of
reqular string kernels.

A fuller theory of regular P-kernels, along with their representations as
machines and grammars, and their extension to stochastic context-free gram-
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mar kernels is in preparation as a separate paper. Here we present a simple
application of this theory.

4.4 Application of regular string kernels

Here we derive a regular string kernel that can be used to measure the simi-
larity between strings, based on an underlying generative probability model
for pairs of strings. This application will be discussed in detail, and experi-
mental results presented, in a separate paper. In pattern recognition, a string
may represent a sequence of elementary objects derived from the decompo-
sition of a structured object. Each elementary object can be denoted by a
letter in the finite alphabet A. The set X of all objects is thus identified
with the semigroup of all finite strings over the alphabet A.

In many pattern recognition applications, we can not assume that all
object strings from similar objects have the same length. This occurs, for
example, when the strings consist of amino acids representing proteins, nu-
cleic acids representing genes, or phonemes representing spoken words [26,
4,9, 24]. In these contexts, some objects may be missing components that
other similar objects have. However, we can align any two object strings so
that their corresponding components are adjacent, using a special symbol
-’ to indicate that a component is missing at a certain place in one of the
strings. For example, using the alphabet A = {A, B, C}, and the strings = =
BCABBCBAACACAACCCAAB andy = BOCCABBCABBAABACAACCAAB,

BC-ABBC--BAACACAACCCAAB
BCCABBCABBAABACAACC-AAB

X

y

represents an alignment between z and y with four insertions or deletions of
components and one substitution (a component of type ‘C’ exchanged with
one of type ‘B’ in one place.)

One way to define a generative probability model that captures the es-
sential properties of such string alignments is to model the strings x and y as
having been derived from a common “ancestor” string z. For example, one

choice would be to take z = BOCABBCBAACACAACCAAB and show the

derivation of x and y from z as

BCABBCBAACACAACC-AAB
BCABBCBAACACAACCCAAB

V4
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and

BC-ABBC--BAACACAACCAAB
BCCABBCABBAABACAACCAAB

< N
I

Here we have chosen z such that in going from z to either x or y, we
only make insertions and substitutions, no deletions. It is always possible to
choose such a z to represent a common ancestor of two aligned strings, so we
will assume that the derivation is always done in that way.

In order to model this derivation process, we start by defining a kernel
that models the substitution process on a single letter. We assume that given
an ancestor letter a € A, p(bla) denotes the probability that this ancestor
derives the letter b in the string x. We assume that this probability is the
same for the string y, and that the derivation of the two letters, one in x and
one in y, is independent, given the ancestor letter a in z. Finally, we assume
that the probability of the ancestor letter a is given by p(a).

For every a € A, the zero extension to all finite strings in X of the kernel
K, on A x A defined by K,(b,c) = p(bla)p(c|a) is a regular string kernel by
the basis case of the inductive definition. For any strings x,y € X, define

Kl(l‘ay) = ZAp(a’)Ka(ma y)

Since the class of regular string kernels is closed under finite convex com-
bination, K is a regular string kernel as well. K; models the substitution
process for single letters, and is zero for all strings that are not single letters.

Next we model the insertion process. Between any two consecutive let-
ters of the ancestor z, arbitrary stings can be inserted in the corresponding
places in z and y. We assume that the inserted string in z is independent
from the inserted string in y. Let g be any regular probability distribution
on strings. For example, it is easy to see that the distribution in which the
length of the string has a geometric distribution and the letters are indepen-
dently chosen according to any fixed distribution on the alphabet is a regular
probability distribution. We may take Ks(x,y) = ¢g(z)g(y) as a model of our
insertion process, which again is a regular string kernel by the basis case of
the inductive definition.

Finally, to generate a pair of strings x and y that are derived randomly
from a common ancestor, we have to iterate the processes of insertion and
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substitution. For some parameter 0 <~y < 1, let
K(z,y) = vKa % (K1 % Ky)% + (1 — ) Ks. (12)

Clearly K (z,y) is a regular string kernel, and it models the generative process
we have defined. To see this more clearly, it is useful to look at some special
cases.

o If v = 0 then K(z,y) = ka(z,y) = g(x)g(y), i.e. K is an indepen-
dent kernel, so the strings x and y are modeled as being independently
generated according to the same underlying insertion process, with the
empty common ancestor. The “similarity” K(z,y) depends only on
the magnitude of the individual probabilities g(x) and g(y).

o If Ky(z,y) = g.(2)g.(y), where € denotes the empty string, then Ky (z, y)
0 unless both z and y are empty. Thus no insertions whatsoever are
allowed. In this case it is easily verified that K; x Ky = K;, and
that if © = 2y...2, and y = yi,...,y, where z;,y; € A, then for
r>1, K”(z,y) = 0 unless r = s = t, in which case K\"(x,y) =
IT;_, Ki(x;,y;). From this, it follows easily that K(z,y) =0 if z and y
have different lengths, else if they have the same length r then

K(z,y) =1 —=7) H K (i, yi)- (13)
i=1

Here we take the product to be 1if » = 0. Thus in this case the kernel K
decomposes into a geometric mixture of disjoint product distributions
on pairs of strings of different lengths. Stings x and y are completely
dissimilar (“orthogonal”) if they have different lengths, else they are
similar to the extent that their corresponding letters are similar (=
“likely to have been derived from a common ancestor letter”.) A further
special case is obtained if A = {0,1}, K,(0,0) = K;(1,1) = « and
K1(0,1) = K1(1,0) = g where 0 < f < a < 1 and a+ = 1/2. Then
if x and y have the same length r,

o —dg(z,y)
K(a.y) = (1 7)(ra)’ (5) , (14)

where dy(z,y) is the Hamming distance between the binary strings x
and y, defined as the number of components in which they differ.
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In general, K interpolates between the two extremes given in these cases, so
strings that have similar overall structure, with a few likely insertions, dele-
tions, and substitutions, are more similar under K than strings of comparable
length that don’t share this property.

It can be shown that regular string kernels can all be modeled by pair-
HMMs, as defined in [4]. This means that there is an efficient dynamic
programming algorithm to evaluate these kernels, which is a very important
practical consideration. However, not all pair-HMMs define regular string
kernels. For example, it is possible to define a pair-HMM that represents a
distribution on pairs of strings that is not symmetric, and hence not a kernel.
The regular string kernel K defined above is closely related to the joint
probability distribution defined by the pairwise local alignment pair-HMM
on page 86 (Figure 4.3) of [4]. That distribution incorporates a few bells
and whistles that are easily accomplished by using a slightly more complex
regular string kernel, with the exception of one feature: in the definition
of that pair-HMM, between consecutive letters of a hypothetical ancestor
string, a string can be inserted in the corresponding position in either x or
y, but not in both. This kind of distribution also cannot be modeled by a
kernel, because it fails to be positive definite. However, if one replaces this
part of the model by an independent distribution on the insertions in z and
y like those used at the beginning and ends of this pair-HMM from [4], then
the distribution of the resulting pair-HMM is a regular string kernel.

Pair-HMMs have already proven useful in pattern recognition applica-
tions involving strings by virtue of the generative models they define. By
developing them further into regular string kernels, we can take advantage
of other kinds of pattern recognition and clustering methods that use an
implicit feature-space representation, obtained from the kernel.

5 Generalized radial basis kernels and radial
distances

In Section 3.4, we showed how to derive a Gibbs kernel from an arbitrary
positive kernel by normalizing it. A different kind of normalization of a
positive kernel K is to convert it into a generalized radial basis kernel, defined
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in analogy with Equation (4) of Section 2.3 by
R(gj,y) = K(r.y) — o ((1/2)(log K(z,x)+log K (y,y))—log K (z.y)) (15)

VE (@2 /K (v, y) |

Here we assume K (z,z) > 0 for all z. If K(z,x) = 0, it is easy to see that
we must have K (z,y) = 0 for all y, else K is not positive definite. Hence we
can remove all z such that K(z,z) = 0 if necessary.

It is clear that K is a kernel, since it is the product of K with the ker-
nel K'(z,y) = \/K*I(x,x)\/K*I(y,y). Furthermore, because K is positive
definite, for any =,y € X, the matrix

(*3 &6ah)

is symmetric and has nonnegative eigenvalues, and hence its determinant is
nonnegative. It follows that

K(z.y)| < VK(z.2)/K(y.y) (16)

for all z,y € X, which can be viewed as a generalized Cauchy-Schwarz in-
equality, since any semi-inner product is a kernel (see Equation (24) in Section
7). Thus for a positive kernel K

0< K(z,y) <1 (17)
and the “radial distance”

P(r,y) = SUogK(r,2) +logK(y,y) logK(ry)  (18)

is always nonnegative, is 0 when & = y, and is infinite when K (x,y) = 0. The
normalization of the kernel values to the range [0, 1] can be quite important
in practice.

As an example, consider the regular string kernel K defined in Equation
(12) from Section 4.4. The square of the corresponding generalized radial
basis kernel K represents a kind of odds ratio, comparing the probability
K?(z,y) that z and y would be generated together from a common ancestor
on two independent occasions to the probability K (z,z)K(y,y) that two
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copies of x would be generated from a common ancestor on one occasion,
and two copies of y would be generated from a common ancestor on an
independent occasion. An analogous interpretation for K can be given for
any P-kernel K. For P-kernels K such as that in Equation (12), where the
values of K rapidly get exponentially small as the size of x and y increase,
moving from K to K also has the advantage of normalizing the similarity
measurement to remove some undesirable aspects of this length dependency,
and helping to keep the values of K within a representable range. They still
get extremely small, however, and in practice, one would prefer to deal only
with the generalized radial distance — log K (z,y) = d?(z, y).

In fact, there is a large literature on closely related types of distances
between strings, going back to early work of Ulam and colleagues, and fur-
ther developed by many others [26]. The earlier work did not derive these
distances from probability models for insertions deletions and substitutions;
this idea was introduced fairly recently [4]. Most theoretical discussions of
such string distances have only been concerned with the question of whether
or not a certain distance function d(z,y) is a metric, i.e. if it is symmet-
ric, satisfies the triangle inequality d(z,y) < d(z,z) + d(z,y), and has the
property that d(z,x) = 0. However, for many pattern recognition applica-
tions, this is not sufficient for d to be a useful distance [20]. For a distance
d to be useful, we need to actually embed the metric space (X,d) in a fi-
nite dimensional Euclidean space R", or in the space of all infinite square
summable sequences [y, via some feature extraction mapping ¢(z) = {¢,(z)}
such that d?(z,y) = Y, (¢(x) — ¢(y))?. This is called an isometric embed-
ding. String distances cannot in general be isometrically embedded into a
finite dimensional Euclidean space, hence Linial et al. develop general meth-
ods by which these distances, and in fact any general metric distance, can be
approzimately embedded in a finite dimensional Euclidean space, in the sense
that the Euclidean distance between ¢(z) and ¢(y) is close to the original
distance d(z,y) for all z and y [20]. They apply these results to the problem
of classifying protein sequences [19]. However, if (X, d) can be embedded
in [y, as mentioned in the introduction, we can still take advantage of most
of the classical pattern recognition, clustering, regression and classification
methods via the kernel formulation. Thus an interesting open question is the
following.

Question 1 If K is a reqular string kernel as defined in (12), and d*(x,y) =
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s(log K (z,z) + log K (y,y)) — log K(z,y), when can (X,d) be isometrically
embedded in lo? More generally, if K is an arbitrary positive kernel on X x X,
and d*(z,y) = 3(log K (z,z) +1og K(y,y)) —log K (x,y), when can (X,d) be
isometrically embedded in 1y ?

If we allow K(z,y) = 0 for some x and y, then d*(z,y) = oc for these
x and y, thus (X, d) cannot be isometrically embedded in l,. However, d?
might still be a useful distance if it decomposed X into sets X, X5, ... such
that d*(z,y) < oo for m,y € X,,, d*(z,y) = oc for x € X,, and y € X,,,
n # m, and if (X,,d) is isometrically embedded in Iy for each X,. In this
case we say that (X, d) can be isometrically embedded in a disjoint union of
ly spaces. More generally, we have the following question.

Question 2 If K is an arbitrary positive kernel on X x X, and d*(x,y) =
s(log K (z,z) + log K (y,y)) — log K (z,y), when can (X,d) be isometrically
embedded in a disjoint union of ly spaces?

It is interesting to consider this question in the extreme special cases for
the regular string kernel discussed in Section 4.4. In particular, if K(z,y) =
g(x)g(y) for some g, which we will assume is strictly positive, then K (z,1) =
1 for all x,y, and hence d?(x,y) = 0 for all x,y. Thus (X, d) can be isomet-
rically embedded into a zero dimensional space. On the other hand, if, as in
(14), K(z,y) = 0 for z and y of different lengths, and for x and y of length
T?

a

K(r.y) = (1 7)) (B)dH(x’y) ,

then i
d*(z,y) = —log K (z,y) = log(c/B)dpy (z,y)

if z and y have the same length, else d*(z,y) = oc. The Hamming distance
dg(z,y) is clearly the squared Euclidean distance Y ;(z; — v;)? in the case
of binary sequences = and y. Thus in this case (z,d) can be isometrically
embedded into the disjoint union of RY for N > 0.

Even if (X, d) cannot be isometrically embedded into a useful space, then,
using kernel methods of pattern recognition, we can still work directly with
the generalized radial basis function K (x,y), which has the form

K(z,y) = e 9. (19)
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It is very important in practice to be able to scale the radial distance d*(z,y)
in such a radial basis kernel by a positive “width” parameter o2, to obtain

K(z,y) = e @/ — gV (1 4). (20)

If the width is too large, then K(z,y) is nearly 1 for all z,y, and if the
width is too small, K(z,y) ~ d(z,y). The kernel is not useful in either
case. The width parameter is often set by cross-validation to optimize a
given performance measure. If K is a P-kernel, then we might get away
by keeping ¢ = 1, and adjusting parameters internal to the P-kernel to
make it either more or less peaked on the diagonal, which would have an
effect similar to that of adjusting the width parameter. For example, we can
adjust the parameter 7, and the definition of the kernels K; and K, modeling
substitution and insertion, to control how much the regular string kernel K
from (12) is peaked on the diagonal. However, it would be more convenient to
simply adjust the width parameter o, and truer to the underlying generative
probability model.

Unfortunately, if 1/0% is positive but not a positive integer, then we
have no reason to believe that the kernel e=%(#%)/9* defined above is positive
definite. Thus we are lead to another general question:

Question 3 If K(x,y) is a positive kernel, and d*(z,y) = 3(log K (z,z) +
log K (y,y)) —log K (x,y), when is K (x,y) = e © @9/ = KV (2. y) also a
kernel for allo > 07

It turns out that the answer to Questions 2 and 3 are the same, and that
these properties hold if and only if K is infinitely divisible. We briefly review
the relevant theory in the following section.

6 Infinitely Divisible Kernels

6.1 Definition of infinitely divisible kernels

Let K(x,y) be a positive kernel on a set X x X. The kernel K is called
infinitely divisible if for each positive integer n there is a kernel K, such that
K = K]'. Such kernels are related to the family of infinitely divisible prob-
ability distributions, which are the limits of sums of independent variables
(see [7]). To describe the properties of infinitely divisible kernels, we need
some additional definitions.
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6.2 Negative definite kernels

A function N (z,y) is negative definite if it is symmetric and for all zq, ..., x,
in X and real ¢y,...,¢, such that 3. , ¢; =0,

Z(‘l(‘] (w3, 25) <O0.

Note the extra condition that >>!" , ¢; = 0. This means that if K is positive
definite, then —K is negative definite, but the converse does not generally
hold. Clearly the class of negative definite functions also forms a closed
convex cone, as does the class of kernels.

Negative definite kernels have one useful closure property that positive
definite kernels do not.

Lemma 2 Let N be a function on X x X and f: X — R. Then N(z,y) is
negative definite iff N(z,y) + f(z) + f(y) is negative definite.

Proof: Clearly N is symmetric iff N(z,y)+ f(z)+ f(y) is. For any z1,..., 2,
in X and real ¢y,...,¢, such that 3. , ¢; =0,

Z cic; (N (i, x5) + f (i) + f(x5))
= Z(’z(’a (i, 25) + Q2 ) Qe (20) + (3o ) D ¢if (7))
= ZCZC] (z4, x4)

Hence the former is negative for any cy,..., ¢, such that >2' ; ¢; = 0 iff the
latter is. O

We say that two negative definite functions are equivalent if they differ
by f(z) + f(y) for some function f. We say that a function N on X x X
has a zero diagonal if N(z,x) = 0 for all x € X. Note that if N is negative
definite, then N'(x,y) = N(z,y) — (1/2)(N(z,z) + N(y,y)) is equivalent to
N and has a zero diagonal, so up to equivalence, we may assume that all
negative definite functions have a zero diagonal.

There is a close relationship between positive and negative definite func-
tions.

Lemma 3 Let N(z,y) be a symmetric function on X x X with zero diagonal,
and z be any element of X. Let K(x,y) = N(x,2)+ N(y,z)— N(x,y). Then
K s positive definite iff N is negative definite.
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Proof: Like the previous lemma, this follows easily from the definitions. See,
e.g., [1], Lemma 2.1, page 74 for a proof. O

As we will see below, there is also a close relationship between negative
definite functions and squared distances. Here is some intuition about this.
Assume N (z,y) is a symmetric function with a zero diagonal. We say that
N(z,y) satisfies the 2n-gonal inequalities if for every positive integer n and
eVery Ty, ..., Tn, Y1y, Yp N X,

Z N(z;,z;) + Z N(yi, y;) < ZN(%‘, Yj)-
1<j 1<) v
The 2-gonal inequality says that N is positive, and the 4-gonal inequality
says (basically) that the sum of squared lengths of the two diagonals of a
quadrilateral is always less than or equal to the sum of the squares of the
side lengths, which is true of any Euclidean distance.
Here is a simple result that is well-known.

Theorem 3 Let N(x,y) be a symmetric function with a zero diagonal. Then
N(z,y) is negative definite iff it satisfies the 2n-gonal inequalities for every
positive integer n.

Proof: First note that in the condition 3°;; c;c; N (2;, ;) < 0in the definition
of a negative definite function, we can restrict to integer cy,...,c,. This
follows easily from the fact that negative definite kernels are closed under
pointwise limits and multiplication by a positive constant. Furthermore,
by duplicating elements in x;,...,x, as needed, we can even stipulate that
¢; € {£1}. Now the condition Y, ¢; = 0 implies that half the ¢; are +1 and
the other half are —1. Rename the z; associated with the negative ¢; as y;,
and assume we end up with z{,...,x, and y;,...,y,. If you now write out
the condition }2;; ¢;c;N(x;, z;) < 0 you get the 2n-gonal inequality. O

6.3 Main result on infinitely divisible kernels

For convenience, it is useful to allow negative definite functions to have the
value N(z,y) = oo for some x # y. This way, for any positive kernel K,
—log K (x,y) is defined, and equals oo when K(x,y) is zero. Assume N is a

symmetric function with some off-diagonal values of infinity, z,..., 2, € X,
I ={(i,7) : N(zj,z;) = oo}, and J = {(¢,5) : N(z;,z;) < oo}. Then for any
real ci,..., ¢, we define 37, ; cic;N(z;, 7;) to be
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o o0 if 37, e/ cic; >0,
o —oxif 3, crcic; <0, and
g Zi,jeJ Cich(xia xj) if Zi,jel CiCj = 0.

We say that N is negative definite if 37, ; cic; N (z;, 2;) < 0 for all ¢y,..., ¢,
such that 2" , ¢; = 0.

We define the relation x =y y iff N(z,y) < oc. It is easily verified that
N is negative definite iff =y is an equivalence relation and N is negative
definite in the usual sense (as defined at the beginning of this section) on each
equivalence class of this equivalence relation. Furthermore, these extended
negative definite kernels remain closed under pointwise limits.

A characterization of infinitely divisible kernels is the following, primarily
obtained by Schonberg around 1940.

Theorem 4 Let K be a positive kernel, N = —log K, and d*(x,y) = 5(log K (z, )+
log K(y,y)) — log K(x,y). Then the following are equivalent

1. K s infinitely divisible

2. K'(z,y) is a kernel for every t > 0
3. N s negative definite

4. d? is negative definite

5. =4 is an equivalence relation on X and (S,d) can be isometrically
embedded® in ly for every equivalence class S in this equivalence rela-
tion.

Proof: Our treatment follows [1], Proposition 2.7, page 77. To see that
1 implies 3, first note that if K is infinitely divisible then K'/™ = ¢ N/»
is positive definite for all positive integers n. Hence 1 — e ¥/ is negative
definite for all positive integers n. It is clear that N = lim,, ;o n (1 — e N/,
Thus, since the negative definite kernels are closed under pointwise limits, /N

is negative definite.

SRecall that we are assuming that K is a continuous function and X is a separable
metric space X. Without this assumption, this result holds with [, replaced by an arbitrary
Hilbert space.
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To see that 3 implies 2, note that if N is negative definite, then so is tN
for any ¢ > 0. Define N'(z,y) = tN(z,y) — (1/2)t(N(z,z) + N(y,y)), which
is also negative definite by Lemma (2), and has zero diagonal. Assume z € X
and define

K'(x,y) = N'(z,2)+N'(y,2)—N'(z,y) = t(N(x, 2)+N(y, z)—N(z,y)—N(z, 2)).
K" is positive definite by Lemma 3. Note that
eftN(a:,y) _ (eK’(m,y)) (eftN(a:,z)eftN(y,z)> (etN(z,z)> )

The last two terms are clearly positive definite functions of x and y, and
the first is positive definite since by Taylor expansion it is a limit of sums of
powers of K’ with positive coefficients, which are all positive definite by the
closure under product. Thus e *N@¥) is positive definite by closure under
product. Since K* = e *V@¥)  the result follows.

Finally, 2 clearly implies 1 by taking t = 1/2,1/3,1/4,.... Hence 1, 2
and 3 are all equivalent.

The equivalence of 3 and 4 follows from Lemma 2. The equivalence of 4
and 5 is somewhat more involved, and is postponed until Section 7. O

It is obvious from this that Questions 2 and 3 from the previous section
are equivalent to each other, and to the infinite divisibility of K.

Not every positive kernel is infinitely divisible, but it is not immediate
to produce an example that shows this. Fitzgerald and Horn give a nice
example in their paper, the main theorem of which is that if a real symmetric
n x n matrix K is positive and positive definite, then the fractional Schur
power K' = {Kj;} is positive definite for all + > n — 2 [8]. (This result
was rediscovered 19 years later [25].) Let 1 denote the all 1s vector and n
denote (1,2,...,n)". The example Fitzgerald and Horn supply to show this
bound is tight is a matrix of the form M; = 117 + énn’. They show that
for n > 3 and sufficiently small §, M} is not positive definite for any non-
integer ¢ < n — 2, and hence Mj; is not infinitely divisible. (This can’t work
for n = 2: it is easily verified that for any positive 2 by 2 matrix M, M is
positive definite iff M is infinitely divisible.)

It is obvious that any independent positive kernel is infinitely divisible.
Hence the example of Fitzgerald and Horn shows that the class of infinitely
divisible kernels is not closed under sum. Since we showed in Section 2.4
that sum can be represented as a convolution, it follows that this class is not
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closed under convolution either. It is closed under product and fractional
positive powers, however.

We have made some progress in answering Questions 2 and 3 above,
but we still lack a useful operational way to test for infinite divisibility in
practice. Assuming the kernels K;,..., Kp are infinitely divisible, when is
their convolution infinitely divisible? Given a positive kernel that is not
infinitely divisible, how can we modify it in the least manner so that it
becomes infinitely divisible? It can be shown that this can be accomplished
for finite X by multiplying the diagonal elements of the kernel by a large
enough constant. This is analogous to adding to the diagonal of a (not
necessarily positive) symmetric function on a finite set to make it positive
definite, a trick that is often used in practice. However, this does not appear
to be appropriate for kernels on countably infinite sets. It would also be
particularly pleasing if a rich subclass of convolution kernels could be proven
to be infinitely divisible, or if simple methods could be found for modifying
them so that they are infinitely divisible.

7 Kernels and reproducing kernel Hilbert spaces

Here we summarize some aspects of Reproducing Kernel Hilbert Spaces
(RKHSs) as they relate to the results above. This allows us to characterize a
kernel K as K(x,y) =, ¢n(2)¢n(y), as promised in Section 2.1 and finally
provide the proof to Lemma 1, and the final step of the proof of Theorem 4.
Our treatment follows [22, 1].

Let X be a set with a metric d(z,y). We refer to X as a metric space in
this case, when we wish to leave the specific metric d unspecified. We say X is
separable if there exists a countable set Xy C X that is densein X, i.e. for all
x € X and all € > 0 there exists y € Xy with d(z,y) < e. If X is countable,
then we assume that X is endowed with the discrete metric d(z,y) = d(x,y),
thus rendering it a separable metric space. A function f : X" — R for some
n > 11s continuous if for all € > 0 there exists a 6 > 0 such that whenever
d(ziyy;) < 6 forall 1 < i@ < n, then [f(xy,...,20) — (WY1, un)| < €
It is clear that if X is endowed with the discrete metric then any function
f: X™ — R is continuous. Here, and throughout this paper, we assume that
X is a separable metric space, and K : X x X — R is a continuous kernel.

By H, we denote the linear space of real-valued functions on X generated
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by the functions {K, : © € X'}, where

Ki(y) = K(z,y).
Let f =3 6Ky, and g = 377", d; Ky, be elements of Hy, where ¢;,d; €
R and z;,y; € X for 1 <i <mnand 1< j <m. Define

n

g) = dif(y;) = > cidi K (w3, y5) = 3 _cif (wi). (21)
Note that the function (-,-) does not depend on the chosen representations
of f and g. It is clearly bilinear, i.e. {(cf + g,h) = c(f, h) + (g, h) for any
c € Rand f,g,h € Hy, and symmetric, i.e. (f,g) = (g, f) for any f, g € Hy,
and because K is positive definite, for any f as above,

Z(’Z(’] (%, ;) > 0.

Hence it is a semi-inner product on Hy (see, e.g., [3], page 123).
It follows from Equation (21) that this semi-inner product has the repro-
ducing property

(f, Kz) = f(z) (22)
for all f € Hy and x € X. This implies that
Any semi-inner product (-,-) is a kernel, because for any a;,...,ay € R
and fi,..., fy in the space that the semi-inner product is defined on,
N N N
> aia (fi, f;) = a; ) ai(fi, fj) (24)
ij=1 j=1 =1
N N
= Z a; <Z a;fi, f]>
j=1 i=1



Hence (-, -) is a kernel on Hy x Hy. Thus by Inequality (16) and Equation
(22),
fx) <{f, f) K(z, @), (25)

which implies that (f, f) = 0 only if for all z € X, f(x) = 0. Hence (-,-) is
not just a semi-inner product, but an inner product on Hy. The norm for
the inner product space (Hy, (-, -)), as for any inner product space, is defined

by |[f|| = +/{f, f), and the distance between f and g by ||f — g||.

A Hilbert space is an inner product space that is complete, in the sense that
every Cauchy sequence {f,},>1, i.e. every sequence such that sup,,~, ||f, —
fm|l = 0 as n — oo, converges to a g that is in the space. If {f,},>1 is
a Cauchy sequence in Hy, then (f,(z) — fin(2))? < ||fu — fum!?K(x,z) by
Inequality (25), and hence f,(x) — f(x) for some real-valued function f on
X. It is possible to complete Hy by adding the limits of Cauchy sequences to
it, extending it and its inner product to larger class H of real-valued functions
H that includes the functions in Hy, and is a Hilbert space. Moreover, the
space Hy is dense in H. The space H is called the Reproducing Kernel Hilbert
Space associated with the kernel K [22].

It is easy to see that H also has the reproducing property (22). Assume
f € Hand z € X. Let {f,},>1 be a Cauchy sequence in Hj such that
||fn — fI| = 0. As discussed above, this implies that f,(z) — f(z). By (22),
fu(z) = (fn, K;) for all n. Thus

oK) = Tim (fo, ) = lim fulo) = f(2)

We now show that since X is a separable metric space and K is contin-
uous, H is separable. Let X, be a countable dense subset of X. Let H
be the set of all functions of the form f = 371", ¢;K,; for rational numbers
d,...,c and o, ... 2! € Xy. Clearly Hj is countable. Let g = >0 | ¢; K,
be a member of Hy. Then by (21)

n

=gl = 3> (i (a}, o) + cici K (w5, 25) — che; K (2, 2;) — ¢, K (7,5))

ij—1
For a given c¢,..., ¢, and x4, ..., x,, this can be made as small as one likes by
appropriate choice of ¢}, ..., ¢, and 7/, ...,z , since K is continuous. Hence

Hj is dense in Hy, and thus Hy is separable. Since Hy is dense in H, it follows
that H is separable.
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Every separable Hilbert space H has a countable orthonormal basis, that
is, a set B = {¢n}n>1 C H such that (¢,, ¢,,) = d(n,m) and for all f € H
there exist unique real {c,},>1 such that f = Y, ¢,¢,. Moreover, ¢, =
(f, dn). If B is infinite, we say H has infinite dimension. In that case, H is
isometric to the space (2 of all infinite real sequences {cn}n>1 with )2, (3721 < 00.
Otherwise, the dimension of H is the size of B, and H is isometric with a
Euclidean space of this dimension.

We can now state the main result.

Theorem 5 For any continuous kernel K on X x X, where X is a separable
metric space, the associated RKHS H 1is separable and is thus isometric with
either RN for some finite N or with [*. In either case, H has an orthonormal
basis {¢n}n>1 such that for every z,y € X,

K(x,y) = éul(x)dnly).

Proof: The fact that H is separable and isometric with either RY of 2,
and that it has an orthonormal basis B = {¢, },>1 follows from the above
discussion. By definition K(z,y) = K,(y), where K, € Hy. Since B is an
orthonormal basis for H, which contains Hy,

Ka(y) =3 (Ka, én) éu(y). (26)

n

It follows from the reproducing property of H that

(Kz, §n) = ¢n(2). (27)

This establishes the result. O

We are now in a position to prove that parts 4 and 5 of Theorem 4 in
Section 6 are equivalent. First, suppose d*(z,y) is finite, negative definite,
and zero on the diagonal. Let K'(z,y) = (1/2)(d*(x, 2) + d*(y, z) — d*(x,vy))
for some z. K'is a kernel by Lemma 3. Let H be the RKHS associated with
K'and K (y) = K'(z,y). Then

IK, — KJ||* = K'(z,2) + K'(y,y) = 2K'(z,y) = d*(, y).

Hence ¢(z) = K is an isometric embedding of (X, d) into H. Since there is
an isometric embedding of H into [ by the above result, it follows that (X, d)
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can be isometrically embedded in l,. If d*(x,y) is negative definite and is
infinite for some x # y, then as discussed in Section 6, X can be decomposed
into equivalence classes such that d?(x,y) is finite on each equivalence class
and infinite between equivalence classes. It follows that 4 implies 5.

To see that 5 implies 4, first note that, as remarked in Section 6, whenever
X can be decomposed into equivalence classes such that d?(x,y) is finite on
each equivalence class and infinite between equivalence classes, and such that
d*(z,y) is negative definite on each equivalence class, then d*(x, y) is negative
definite on all of X. It is trivial to verify that if (S, d) can be isometrically
embedded in Iy, then d? is a negative definite function on S x S. The result
follows. O

Finally, the reproducing kernel Hilbert space H associated with the kernel
K also gives us a simple Proof of Lemma 1: Let K be a kernel on a set U xU
and for all finite, nonempty A, B C U define K'(A, B) = ¥ ,c4pe K(u,v).
We must show that K’ is a kernel on the product of the set of all finite,
nonempty subsets of U with itself. For any nonempty finite subset A C U, let
fa=>uca Ku € Hy, where Hy is the pre-Hilbert space associated with K'. If
for nonempty finite A, B C U, we define K'(A, B) = Y,c 4 4ep K (u,v), then
by Equation (21), K'(A, B) = (fa, fg). Since an inner product is a kernel,
it follows that K' is a kernel on the product of the set of all nonempty finite
subsets of U with itself. O

This construction suggests a broad generalization of the notion of an R-
convolution as well. Let U = X; x --- x Xp. For kernels K, on X, x X, let
K=K ® - -®@Kpbeakernel on UxU. Let W:U x X = R. We say W
represents the relation R if W(u,x) =1 when R(u,x) and W (u,x) = 0 else.
If Xy,..., X are countable, then we can define the W-convolution by

K(z,y) = Z W(u,:r)W(v,y)f((u,v) = (fa, fy)

u,velU

where f,(v) = Yuev W(u, 2)K,(v) and K,(v) = K(u,v). This is a well-
defined kernel if f, is in the RKHS associated with the kernel K for all
x € X. It is clear that if W represents the finite relation R, then f, is in the
RKHS associated with the kernel K, and the W-convolution is the same as
the R-convolution. If Xy,..., X, and X are uncountable, we can in some
cases use an integral representation of the element f, of the RKHS in place of
the sum, and modify the definition of the W-convolution accordingly. This
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should lead to other interesting connections between this theory and some of
the more classical uses of kernels.
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