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Abstract

We introduce a new method of functionally classifying geas#g gene expression data
from DNA microarray hybridization experiments. The methsdased on the theory of sup-
port vector machines (SVMs). We describe SVMs that userdiffiesimilarity metrics includ-
ing a simple dot product of gene expression vectors, polyalowersions of the dot product,
and a radial basis function. Compared to the other SVM siitylanetrics, the radial basis
function SVM appears to provide superior performance imiifging sets of genes with a
common function using expression data. In addition, SVMgrarance is compared to four
standard machine learning algorithms. SVMs have many fleaithat make them attractive for
gene expression analysis, including their flexibility irooking a similarity function, sparse-
ness of solution when dealing with large data sets, thetyldihandle large feature spaces,
and the ability to identify outliers.

Keywords: Gene Microarrays, Gene Expression, Support Vector Machines, PatterrfiCéssi,
Functional Gene Annotation
Running head: SVM Classification of Gene Expression Data

1 Introduction

The advent of DNA microarray technology provides biologists with the ability tasuee the ex-
pression levels of thousands of genes in a single experiment. Initial experiraesds gt al., 1998]
suggest that genes of similar function yield similar expression patternsnoanray hybridization
experiments. As data from such experiments accumulates, it will be edsentiave accurate
means for extracting its biological significance and for assigning functions to genes

Currently, most approaches to the computational analysis of gene expression et att
to learn functionally significant classifications of genes inuaisupervisedashion. A learning
method is considered unsupervised if it learns in the absence of a teachertsagpabvides prior
knowledge of the correct answer. Existing gene expression analysis methods bagindsfini-
tion of similarity (or a measure of distance) between expression pattarngjth no prior knowl-
edge of the true functional classes of the genes. Genes are then grouped using iaglaigter
rithm such as hierarchical clustering [Eisen et al., 1998, Spellman, 9818b] or self-organizing
maps [Tamayo et al., 1999].

Support vector machines (SVMs) [Vapnik, 1998, Burges, 1998, Scholkopf et al., 1999] and
other supervised learning techniques adopt the opposite approach. SVMs have beeffiudlyccess
applied to a wide range of pattern recognition problems, including handwriting retograbject
recognition, speaker identification, face detection and text categoriz&iogds, 1998]. SVMs
are attractive because they boast an extremely well developed theonpprs vector machine
finds an optimal separating hyperplane between members and non-members of aagsen cl
an abstract space. SVMs, as applied to gene expression data, begin witbctiarobf known
classifications of genes. These collections, such as genes coding for ribosoreslgpootgenes
coding for components of the proteasome, contain genes known to encode proteins that function
together and hence exhibit similar expression profiles. One could build a dassifiable of dis-
criminating between members and non-members of a given class, such tbategpression data
for a particular gene, one would be able to answer such questions as, “Does this gefw eode
ribosomal protein?” Such a classifier would be useful in recognizing new memb#re ofass
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among genes of unknown function. Furthermore, the classifier could be applied to timalosji

of training data to identify outliers that may have been previously unrecognizedre@dgansu-
pervised methods determine how a set of genes clusters into functional groups, Stékisiike

what expression characteristics of a given gene make it a part of a giverofusdaroup. Because

the question asked by supervised methods is much more focused than the corresponding ques
tion asked by unsupervised methods, supervised methods can use complex modelsahahexpl
specific characteristics of the given functional group.

We describe the first use of SVMs to classify genes based on gene expressiomalye a
expression data from 2467 genes from the budding y8aserevisiagneasured in 79 different
DNA microarray hybridization experiments [Eisen et al., 1998]. From thesa, aa learn five
functional classifications from the MIPS Yeast Genome Database (MYGDYJDI, 1999]. In
addition to SVM classification, we subject these data to analyses by four dagmeachine
learning techniques, including Fisher’s linear discriminant [Duda and Hart, 1%&ken win-
dows [Bishop, 1995], and two decision tree learners [Quinlan, 1997, Wu et al., 1988|SYM
method significantly outperforms all other methods investigated here. Fudhermvestigation
of genes where the SVM classification differs from the MIPS classifinatveals many interest-
ing borderline cases and some plausible mis-annotations in MIPS.

2 DNA microarray data

Each data point produced by a DNA microarray hybridization experiment representatio of
expression levels of a particular gene under two different experimental condifiorexperiment
starts with microarray construction, in which several thousand DNA sesrgie fixed to a glass
slide, each at a known position in the array. Each sequence corresponds toeagsimglwithin
the organism under investigation. Messenger RNA samples are then collented population

of cells subjected to various experimental conditions. These samples aerteonio cDNA via
reverse transcription and are labeled with one of two different fluoresbess in the process. A
single experiment consists of hybridizing the microarray with two differelatbeled cDNA sam-
ples collected at different times. Generally, one of the samples is fiemeterence or background
state of the cell, while the other sample represents a special condition gt experimenter,
for example, heat shock. The level of expression of a particular gene is roughly proploitiona
the amount of cDNA that hybridizes with the DNA affixed to the slide. By meagute ratio of
each of the two dyes present at the position of each DNA sequence on the slide seirggn-
ning technology, the relative levels of gene expression for any pair of conditiortsecareasured
[Lashkari et al., 1997, DeRisi et al., 1997]. The result, from an experimehtmidNA samples
on a single chip, is a series nfexpression-level ratios. Typically, the numerator of each ratio is the
expression level of the gene in the condition of interest to the experimenteg thhilenominator

is the expression level of the gene in the reference state of the cell.

The data from a series ofi such experiments may be represented as a gene expression ma-
trix, in which each of the: rows consists of am-element expression vector for a single gene.
In our experiments the number of experimeniss 79 and the number of geness 2467. Fol-
lowing Eisenet al,, we do not work directly with the ratio as discussed above but rather ith i
logarithm[Eisen et al., 1998]. We defidé to be the logarithm of the ratio of gerdé’'s expression
level in experiment to X's expression level in the reference state. This log ratio is positivei



gene is induced (turned up) with respect to the background and negative if it issegp@srned
down).

The goal of our SVM classifier is to determine accurately the functional cdeagiven gene
based only upon its expression veclr Visual inspection of the raw data indicates that such
classification should be possible. Figure 1 shows the expression vectors for K2 hgeas that
participate in the cytoplasmic ribosome. The similarities among the expnegsctors is clear.

It should be noted that although the mRNA expression vectors in Figure 1 are pkftiéat|
right as functions, this is only as a visual convenience. The total mMRNA expretaiafor a gene
is not a single times series, but rather a concatenation of different, indepenB&# expression
measurements, some of which happen to be clustered in time. Our focus helreis tmanalyze
large MRNA data sets such as this, which combine information from many tedetsicroarray
experiments. For this reason we do not explore Fourier transform or other times sgented
feature extraction methods here, e.g. as in [Spellman et al., 1998b], althoutgr fon¢processing
of the mRNA measurements to remove bad data and reduce the noise in the shatties
included in them may have been helpful, and will be considered in future work.

3 Support vector machines

Each vector in the gene expression matrix may be thought of as a pointirdamensional space.
A simple way to build a binary classifier is to construct a hyperplane sepgrelass members
from non-members in this space. This is the approach taken by perceptrons, alsodssingle-
layer neural networks.

Unfortunately, most real-world problems involve non-separable data for whare does not
exist a hyperplane that successfully separates the class members from s®ometabers in the
training set. One solution to the inseparability problem is to map the data higher-dimensional
space and define a separating hyperplane there. This higher-dimensional spded thef@ature
space as opposed to thieput spaceoccupied by the training examples. With an appropriately
chosen feature space of sufficient dimensionality, any consistent trairtiicgyslee made separable.

However, translating the training set into a higher-dimensional space inctireomputational
and learning-theoretic costs. Representing the feature vectors correspantfiagraining set can
be extremely expensive in terms of memory and time. Furthermore, atlfiseparating the data
in this way exposes the learning system to the risk of finding trivial solutionstieafit the data.

Support vector machines elegantly sidestep both difficulties [Vapnik, 1998]. SWbid over-
fitting by choosing a specific hyperplane among the many that can separate thettlatéeature
space. SVMs find thenaximum margin hyperplanthe hyperplane that maximixes the minimum
distance from the hyperplane to the closest training point (see Figure 2). The maxnawgn hy-
perplane can be represented as a linear combination of training points. Consedherécision
function for classifying points with respect to the hyperplane only involves dot predhativeen
points. Furthermore, the algorithm that finds a separating hyperplane in the feadigeean be
stated entirely in terms of vectors in the input space and dot products in tesfspace. Thus, a
support vector machine can locate a separating hyperplane in the feature spalassifiylpoints
in that space without ever representing the space explicitly, simply by defafungction, called a
kernel functionthat plays the role of the dot product in the feature space. This technique avoids
the computational burden of explicitly representing the feature vectors.
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Figure 1: Expression profiles of the cytoplasmic ribosomal proteins.Figure (a) shows the
expression profiles from the data in [Eisen et al., 1998] of 121 cytoplasmic ribosoatains, as
classified by MYGD [MYGD, 1999]. The logarithm of the expression ratio is pkbts a function
of DNA microarray experiment. Ticks along the X-axis represent the beginnings ofiegdal
series. They are, from left to right, cell division cycle after synchraimorawith « factor arrest
(alpha), cell division cycle after synchronization by centrifugal elutriafedn), cell division cycle
measured using a temperature sensitislel5mutant (cdc), sporulation (spo), heat shock (he),
reducing shock (re), cold shock (co), and diauxic shift (di). Sporulation is the gigmepf a yeast
spore by meiosis. Diauxic shift is the shift from anaerobic (fermentationgtolac (respiration)
metabolism. The medium starts rich in glucose, and yeast cells fermedtjgng ethanol. When
the glucose is used up, they switch to ethanol as a source for carbon. Heat, colddacitdg
shock are various ways to stress the yeast cell. Figure (b) shows the avateyer minus one
standard deviation, of the data in Figure (a).
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Figure 2: Maximum margin hyperplane. The figure shows four positive and four negative ex-
amples in a two-dimensional input space. Three separating hyperplanes are stubwhing the
maximum margin hyperplane.

The selection of an appropriate kernel function is important, since the kemetién defines
the feature space in which the training set examples will be classifiedlorsas the kernel
function is legitimate, an SVM will operate correctly even if the desigimes not know exactly
what features of the training data are being used in the kernel-induced fepaure. The definition
of a legitimate kernel function is given by Mercer’s theorem [Vapnik, 1998]: timetion must be
continuous and positive definite. Human experts often find it easier to specédynal Kunction
than to specify explicitly the training set features that should be used byassgfeer. The kernel
expresses prior knowledge about the phenomenon being modeled, encoded as a similauitg mea
between two vectors.

In addition to counteracting overfitting, the SVM’s use of the maximum margin ipaee
leads to a straightforward learning algorithm that can be reduced to a copuexization prob-
lem. In order to train the system, the SVM must find the unique minimum of a cowvetion.
Unlike the backpropagation learning algorithm for artificial neural networks, ang&8vVM will
always deterministically converge to the same solution for a given dateegardless of the ini-
tial conditions. For training sets containing less than approximately 5000 pointéegralescent
provides an efficient solution to this optimization problem [Campbell andi@nisti, 1999].

Another appealing feature of SVM classification is the sparseness of iesseqation of the
decision boundary. The location of the separating hyperplane in the feature sppeeiiied via
real-valued weights on the training set examples. Those training exampidig tlaa away from
the hyperplane do not participate in its specification and therefore receigbtw®f zero. Only
the training examples that lie close to the decision boundary between the sge<l@ceive non-
zero weights. These training examples are calledsthmort vectorssince removing them would
change the location of the separating hyperplane. The support vectors in a two-dimkiesitma
space are illustrated in Figure 3.

The SVM learning algorithm is defined so that, in a typical case, the number of sweptwts
is small compared to the total number of training examples. This property satlogv SVM to
classify new examples efficiently, since the majority of the training giasran be safely ignored.
In essence, the SVM focuses upon the small subset of examples that arétoritiiferentiating
between class members and non-class members, throwing out the remainirges<anhis is a
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by mapping the data into a higher dimensional feature space and separating it thezars/of a
maximum margin hyperplane. The computational complexity of the classificationtmpedoes
not depend on the dimensionality of the feature space, which can even be infingdittdyg is
avoided by controlling the margin. The separating hyperplane is representedysparadinear
combination of points. The system automatically identifies a subset of inforratints and uses
them to represent the solution. Finally, the training algorithm solves a sicoplex optimization
problem. All these features make SVMs an attractive classificatystem. A more mathematical
description of SVMs can be found in Appendix A.

4 SVMs for gene expression data

The kernel function acts as a similarity metric between examples inahmeng set. A simple form
of similarity metric is the dot product between two vectors. Previous woiselcet al., 1998] has
employed a normalized dot product as a similarity metric. Ketoe the logarithm of the gene
expression ratio for gen& in experimental conditionas defined in Section 2. Let the normalized

feature vectorX be defined as ¥
Xy = ——— (1)

RERS;
wherem is the number of elements in each expression vector. The similarity betweegene
expression vector¥ andY,, for the normalized dot product is defined toXeY, the dot product
on the normalized feature vectors. Eisgtral. use this measure of similiarity to perform hierar-
chical clustering of genes. We use essentially this same similaritiyaaes the kernel function in
a support vector machine.

Intuitively, one drawback to support vector machine classification is thatltssifier is by
definition based upon a planar division of the feature space. One can easily iraagpaee in
which a more complex separating surface more successfully divides fareityo@rs from non-
family members. Through the use of an appropriate kernel function, an SVM can beucted
that produces a separating hyperplane in the feature space that corresponds to a pbéymtaméa
in the input space. This is accomplished by raising the dot product kernel to a positager
power. Squaring the kernel yields a convex surface in the input space. Raisirigeinel to
higher powers yields polynomial surfaces of higher degrees. The kernel of déggegefined

by (X Y + l)d. In the feature space of this kernel, for any genehere are features for al-

fold interactions between mRNA measurements, represented by termsfofithe;, X, ... X, ,
wherel < iq,...,i; < 79. We experiment here with these kernels for degrées 1,2 and3,
respectively, denoted below as Dot-product-1, Dot-product-2 and Dot-producip3;Ties degree
one kernel is essentially the normalized dot product kernel, and we alsdaefénis way.

In a space in which the positive members of a class form one or more clusteascarate
classifier might place a Gaussian around each cluster, thereby sepé#natirigsters from the re-
maining space of non-class members. This effect can be accomplished by jplaonad) Gaussian
over each support vector in the training set. If the width of the Gaussiahesen well, then the
sum of the support vector Gaussians will yield an accurate classifier. the itechnique used
by most radial basis function classifiers [Scholkopf et al., 1997]. The forfoukle Gaussian, or



radial basis function, SVM kernel is

(2)

K(X,Y) = exp (—”X — YHQ) :

202

whereo is the width of the Gaussian. In our experimentss set equal to the median of the Eu-
clidean distances from each positive training set member to the neagesitied Jaakkola et al., 1999].

The functional classes of genes examined here contain very few membekeredhe total
number of genes in the data set. This imbalance in the number of positive and negative) t
examples will cause difficulties for any classification method. For S\ikls,benefit gained by
including a few class members on the correct side of the hyperplane may be exceeiihed by
cost associated with that hyperplane due to incorrectly labeled or inadguradasured negative
examples that also appear on the positive side of the hyperplane. In such a sitwhgonthe
magnitude of the noise in the negative examples outweighs the total number of positiygessam
the optimal hyperplane located by the SVM will be uninformative, classifyinghalinbers of the
training set as negative examples.

We combat this problem by modifying the matrix of kernel values computed during SVM
optimization, as mentioned previously in Section 3. EKebe the matrix defined by the kernel
function K on the training set; i.eK;; = K(X;,Y;). By adding to the diagonal of the kernel
matrix a constant whose magnitude depends upon the class of the training example, @mgrcan c
the fraction of misclassified points in the two classes. This technique enthat the positive
points are not regarded as noisy labels. For positive examples, the diagonal ekegresn by

nt

Klz,z| = K(z,x) + \—
7, ) = K (2 + M

(3)
wheren™ is the number of positive training examplésé,is the total number of training examples,
and )\ is a scale factor. A similar formula is used for the negative exampldh,wi replaced by
n~. In the experiments reported here, the scale fastigrset to 1. When the number of positive
examples is small, this technique has the effect of forcing the positive exaitofde relatively far
from the hyperplane, whereas the negative examples can be closer. In thifev&yM avoids
the uninformative solution of classifying all positive examples as errorss iShdiscussed in more
detail in Appendix A.

5 Methods

5.1 Expression data

All of the analyses described here are carried out using a set of 79-elemenkgesgsen vectors
for 2467 genes in the budding yed&3t cerevisiadEisen et al., 1998]. The data were collected
at various time points during the diauxic shift [DeRisi et al., 1997], the mitalikcdivision cycle
[Spellman et al., 1998a], sporulation[Chu et al., 1998], and temperature and redhotig. This
data was used by Eis@t al. and is available on the Stanford web site [Eisen, 1999].



Tricarboxylic-acid pathway
Respiration chain complexes
Cytoplasmic ribosomal proteins
Proteasome

Histones

Helix-turn-helix

OO, WNPR

Table 1:Functional classes learned by the classifierlass definitions are taken from MYGD
[MYGD, 1999]. Thetricarboxylic-acid pathways also known as the Krebs cycle. Genes in this
pathway encode enzymes that break down pyruvate (produced from glucose) by oxidation. This
is a key catabolic pathway to produce energy for the cell initial in the form oDNAand is also
important for producing intermediates in the biosynthesis of amino acids and other compounds
The respiration chain complexegerform oxidation-reduction reactions that capture the energy
present in NADH through electron transport and the chemiosmotic synthesis of Aése include

the NADH deydrogenase complex, cytochrome b-c complex, and cytochrome oxidase complex,
all embedded in the mitochondrial membrane. Ty&oplasmic ribosomal proteingre a class

of proteins required to make the ribosome, an RNA-protein complex in the cytomasoded

by mRNA. This category does not include genes for the mitochondrial ribosomeproteasome
consists of proteins comprising a complex responsible for general degradation afipanidiother
specific protein processing events. The proteasome wlsgsiitin, a small peptide that marks a
protein to be degradedHistonesinteract with the DNA backbone to form nucleosomes which,
with other proteins, form the chromatin of the cell. Finally, thelix-turn-helixclass consists

of genes that code for proteins that contain the helix-turn-helix structural motifs does not
constitute a functional class, and is included only as a control.
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5.2 Biological functional classes

Classification accuracy is tested using six functional classes defindtelMIPS Yeast Genome
Database [MYGD, 1999] (see Table 1). MYGD class definitions come from biocla¢mnd
genetic studies of gene funtion, while the microarry expression data measure& feRNs of
genes. Therefore, many classes in MYGD, such as broad structura<lagsh as the protein
kinases, will not be predictable only by examining expression data. The firstéissad in Table 1
are selected because they represent categories of genes that are expeui@dgaal grounds,
to exhibit similar expression profiles. Furthermore, Eis¢al. showed that these classes cluster
well using hierarchical clustering based upon the normalized dot product [HisénE998]. The
sixth class, the helix-turn-helix proteins, is included as a control group. Singe ihao reason
to believe that the members of this class are similarly regulated, we dexpett any classifier to
learn to recognize members of this class based upon mRNA expression measistem

5.3 Experimental setup

Performance is measured using a three-way cross-validated experirhergene expression vec-
tors are randomly divided into three groups. Classifiers are then trained wgingroups and
tested on the third.

The performance of each classifier is measured by examining how well gsfdaidentifies
the positive and negative examples in the test set. Most of the classificaéthods return a rank
ordering of the test set. Given this ordering and a classification threstaatl, gene in the test
set can be labeled in one of four ways: false positives are genes that théerlaésces within
the given class, but MYGD classifies as non-members; false negatergees that the classifier
places outside the class, but MYGD classifies as members; true positeszetass members ac-
cording to both the classifier and MYGD, and true negatives are non-membersliagcto both.
For each method, we find the classification threshold that minimizes theucwsitch, fp + 2 - fn,
where fp is the number of false positives, arfa is the number of false negatives. The false
negatives are weighted more heavily than the false positives because,derddia, the number
of positive examples is small compared to the number of negatives. Resulepareed in terms
of the false positive and false negative error rates as well as the dibs atinimal classification
threshold.

Note that the two decision tree methods do not produce a rank ordering of test set points,
making it impossible to vary the classification threshold. Therefore, fodéugsion tree methods
we use the default threshold, rather than the one found by minimizing the cost function.

5.4 Support vector machines

Because SVM learning is guaranteed to converge to a single global solutiongtnigheh itself
is fairly simple. Our implementation follows the formulation of [Jaakketal., 1998]. This ap-
proach differs slightly from that of [Vapnik, 1998], although the geometric integiat remains
the same. LeX = X, ... X, be a set of training examples, and= y, ...y, be the correspond-
ing set of classifications, wherg = 1 if X; is a member of the class to be learned, gne- —1
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otherwise. Define the discriminant function
LX) = 3 yiei K (X, Xy), (4)
=1

whereq; is the weight of training exampl¥;. The goal is to learn a set of weights that maximize
the following objective function:

n

J(a) = Z ;(2 — y; L(Xj;)) (5)

1=1
= ZZ%’ — > aayyy K (X5, X) (6)

]

This maximum can be obtained by iteratively updating the weights using the faljawpdate rule:

(7)

K(X;, X)

where f(z) = z forx > 0 and f(z) = 0 for z <= 0. Note that equation 7 differs from the
corresponding equation in [Jaakkola et al., 1998], in that the wetgh&se not constrained to be
less than 1. This difference arises because we implement the soft margodifyimg the diagonal
of the kernel matrix, rather than by truncating the weights.

The output of the SVM learning algorithm is the optimized set of weights . a,,. The class
of a new input vectoX is then given by the sign of the discriminah¢X) computed using the
optimized weights.

5.5 Decision trees

We compare the performance of the SVM classifiers described above witbf tioatr other clas-
sifiers. The first two are decision tree classifiers. Decisiorstege a standard tool in data mining,
and many are available in packages such as CART [Breiman et al., 19844amXinlan, 1997].
Decision trees are generally preferred over other nonparametric teckrigoause of the readabil-
ity of their learned hypotheses and the efficiency of training and evaluation.

Decision trees are rooted, usually binary trees, with simple classgiaced at each internal
node and a classification at each leaf. In order to evaluate a partioegdal with respect to an
inputz, each classifier in the tree is assigned the argumeihe outputs of the simple classifiers
at the nodes determine a unique path from the root to a leaf of the decision treeh abteanal
node, the left edge to a child is taken if the output of the function associatethattmternal node
is +1, and vice versa ifitis -1. This path is known as ¢valuation path The value of the function
T(x) is the classification associated with the leaf reached by the evayasih.

Decision trees are generally learned by means of a top down growth procedcé, starts
from the root node and greedily chooses a split of the data that maximizes some castfuursti-
ally a measure of the “impurity” of the subsamples implicitly defined by the.spiter choosing a
split, the subsamples are then mapped to the two children nodes. This procetarerecursively

'The scaled dot product kernel gives better performance using a threshold tptimized on the training set, so
we report results for this threshold, rather than a threshold of 0.

12



applied to the children, and the tree is grown until some stopping criteriontisThe tree is then
used as a starting point for a bottom up search, performing a pruning of the tree.lififimages
nodes that are redundant or are unable to “pay for themselves” in terms of the cditrfunc

Typically, the simple classifier at an internal node compares one of the inghuggs against
a threshold. This test partitions the input space with axis parallel splitsstéinelard algorithm of
this kind is C4.5 [Quinlan, 1997]. Another strategy uses hyperplanes in general positisns T
the technique adopted by systems like OC1. We use an improved version of O€d,MaIC1,
which implements a bias toward large margin splits in the purity meashe®retically moti-
vated by Vapnik-Chervonenkis theory. MOC1 has been shown to outperform the st@@ard
[Wu et al., 1999].

We use the systems C4.5 and MOC1 in their basic version with all the deédtiltgs. Note
that it would be possible to devise modifications of the same systems to accountaifople,
for the unequal numbers of positive and negative training examples, which might ienfhrew
performance.

5.6 Parzen windows

Parzen windows classification is a technique for nonparametric densityati®tn, which can also
be used for classification. Using a given kernel function, the technique approgimajeen
training set distribution via a linear combination of kernels centered on treradbpoints. In this
work, we separately approximate densities for each of the two classes,eaaskign a test point
to the class with maximal posterior probability.

The resulting algorithm is extremely simple and closely related to suppgotbr machines.
The decision function is

f(X) = sign(d_ K (X;, X)), (8)

where the kernel functiork’ is the radial basis function of Equation 2, without normalization
applied to the inputs. As for the radial basis SVM, a constant is added to thd kemcgon
whenever the two inputs are identical (Equation 3).

The Parzen windows classification algorithm does not require any training;gtasever, the
lack of sparseness makes the test phase quite slow. Furthermore, althouglictisahhconver-
gence guarantees on the perfomance of Parzen windows classifiers exist [Dudiarari®73],
no such guarantees exist for finite sample sizes.

Parzen windows can be regarded as a generalizatiémefrest neighbor techniques. Rather
than choosing thé nearest neighbors of a test point and labelling the test point with the weighted
majority of its neighbors’ votes, one can consider all points in the voting schemasaigh their
weight by means of the kernel function. With Gaussian kernels, the weight desremponentially
with the square of the distance, so far away points are practicallyveete The widtho of the
Guassian determines the relative weighting of near and far points. Tuning this@i@r controls
the predictive power of the system. We have empirically optimized the wdlae

5.7 Fisher’s linear discriminant

Fisher's linear discriminant is a classification method that projects digtensional data onto
a line and performs classification in this one-dimensional space. The poojenaximizes the
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distance between the means of the two classes while minimizing the \aratign each class.
This defines the Fisher criterion, which is maximized over all linear gtmas,w:

_ [my — m2\2

s+ s3

J(w) (9)
wherem represents a mean? represents a variance, and the subscripts denote the two classes.
In signal theory, this criterion is also known as the signal-to-interferegatio. Maximizing this
criterion yields a closed form solution that involves the inverse of aawee-like matrix. This
method has strong parallels to linear perceptrons. We learn the threshold byzopgi a cost
function on the training set.

6 Results and discussion

Our experiments show the benefits of classifying genes using support vector macimes on
DNA microarray expression data. We begin with a comparison of SVMs vesusnbn-SVM
methods and show that SVMs provide superior performance. We then examine molg ttlese
performance of several different SVMs and demonstrate the superiority cddied basis function
SVM. Finally, we examine in detail some of the apparent errors made by thé bbadia function
SVM and show that many of the apparent errors are in fact biologically reasodaiskifications.
Most of the results reported here can be accessed via the web at http:/senwesc.edu/research/compbio.

For the data analyzed here, support vector machines provide better classifpatiormance
than the competing classifiers. Tables 2 and 3 summarize the results e¢ddha cross-validation
experiment using all eight of the classifiers described in Section 5, includimgSVM variants,
Parzen windows, Fisher’s linear discriminant and two decision tremdes The five columns
labeled “Learned threshold” summarize classification performancéidrcase, the method must
produce a binary classification label for each member of the test set. lQpafarmance of each
method is judged using the cost functiofny + (2 - fn). For every class (except the last, un-
learnable class), the best-performing method using the learned threshwdasltal basis support
vector machine. Other cost functions, with different relative weights ofdlse positive and false
negative rates, yield similar rankings of performance. These results astatistically sufficient
to demonstrate unequivocally that one method is better than the other; howeyelo thiee some
evidence. For example, in five separate tests, the radial basis SVM pesrib@tter than Fisher's
linear discriminant. Under the null hypothesis that the methods are equally good, the ptpbabil
that the radial basis SVM would be the best all five time/i&2 = 0.03125.

In addition to producing binary classification labels, six of the eight methods predzcegked
list of the test set examples. This ranked list provides more informatiantth& simple binary
classification labels. For example, scanning the ranked lists allowsxperimenter to easily
focus on the genes that lie on the border of the given class. Ranked lists producedégidhe
basis SVM for each of the five classes are available at http://www.sseadti/research/compbio/-
genex. A perfect classifier will place all positive test set examplesrbaghe negative examples
in the ranked list and will correctly specify the decision boundary to li&vbet the positives and
the negatives. An imperfect classifier, on the other hand, will either producearrect ordering
of the test set examples or use an inaccurate classification threshold. Adpertormance can
be improved by fixing either the ranking or the threshold. However, given an imprapking,
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Learned threshold Optimized threshold
Class Method FP FN TP TN Cost FP FN TP TN Cost
Tricarboxylic acid Radial SVM 8 8 9 2442 24 4 7 10 2446 18
Dot-product-1 SVM| 11 9 8 2439 29 3 6 11 2447 15
Dot-product-2 SVM| 5 10 7 2445 25 4 6 11 2446 16
Dot-product-3 SVM| 4 12 5 2446 28 4 6 11 2446 16
Parzen 4 12 5 2446 28 0 12 5 2450 24
FLD 9 10 7 2441 29 7 8 9 2443 23
C4.5 7 17 0 2443 4 - - - - -
MOC1 3 16 1 2446 35 - - - - -
Respiration Radial SVM 9 6 24 2428 21 8 4 26 2429 16
Dot-product-1 SVM| 21 10 20 2416 41 6 9 21 2431 24
Dot-product-2 SVM| 7 14 16 2430 35 7 6 24 2430 19
Dot-product-3 SVM| 3 15 15 2434 33 7 6 24 2430 19
Parzen 22 10 20 2415 42 7 12 18 2430 31
FLD 10 10 20 2427 30 14 4 26 2423 22
C4.5 18 17 13 2419 52 - - - - -
MOC1 12 26 4 2425 64 - - - - -
Ribosome Radial SVM 9 4 117 2337 17 6 1 120 2340 8
Dot-product-1 SVM| 13 6 115 2333 25 11 1 120 2335 13
Dot-product-2 SVM| 7 10 111 2339 27 9 1 120 2337 11
Dot-product-3 SVM| 3 18 103 2343 39 7 1 120 2339 9
Parzen 6 8 113 2340 22 5 8 113 2341 21
FLD 15 5 116 2331 25 8 3 118 2338 14
C4.5 31 21 100 2315 73 - - - - -
MOC1 26 26 95 2320 778 - - - - -

Table 2:Comparison of error rates for various classification methods Classes are as described
in Table 1. The methods are the radial basis function SVM, the SVMs using thesl statl product
kernel raised to the first, second and third power, Parzen windows fBihear discriminant, and
the two decision tree learners, C4.5 and MOCL1. The next five columns are th@dsisive, false
negative, true positive and true negative rates summed over three alaksion splits, followed
by the cost, which is the number of false positives plus twice the number of falsevesgd hese
five columns are repeated twice, first using the threshold learned fromainénty set, and then
using the threshold that minimizes the cost on the test set. The threshold epiomis not
possible for the decision tree methods, since they do not produce ranked results.
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Learned threshold Optimized threshold
Class Method FP FN TP TN Cost FP FN TP TN Cost
Proteasome Radial SVM 3 7 28 2429 171 4 5 30 2428 14
Dot-product-1 SVM| 14 11 24 2418 36 2 7 28 2430 16
Dot-product-2 SVM| 4 13 22 2428 30 4 6 29 2428 16
Dot-product-3 SVM| 3 18 17 2429 39 2 7 28 2430 16
Parzen 21 5 30 2411 31 3 9 26 2429 21
FLD 7 12 23 2425 31 12 7 28 2420 26
C4.5 17 10 25 2415 31 - - - - -
MOC1 10 17 18 2422 44 - - - - -
Histone Radial SVM 0 2 9 2456 4 0 2 9 2456 4
Dot-product-1 SVM| 0 4 7 2456 8 O 2 9 2456 4
Dot-product-2 SVM| 0 5 6 2456 100 O 2 9 2456 4
Dot-product-3 SVM| 0 8 3 2456 16 O 2 9 2456 4
Parzen 2 3 8 2454 8 1 3 8 2455 7
FLD 0 3 8 2456 6| 2 1 10 2454 4
C4.5 2 2 9 2454 6| - - - - -
MOC1 2 5 6 2454 12 - - - - -
Helix-turn-helix Radial SVM 1 16 0 2450 33 0 16 0 2451 32
Dot-product-1 SVM| 20 16 0 2431 52 0 16 0 2451 32
Dot-product-2 SVM| 4 16 0 2447 36 0 16 0 2451 32
Dot-product-3SVM| 1 16 0 2450 33 0 16 0 2451 32
Parzen 14 16 0 2437 44 0 16 0 2451 32
FLD 14 16 0 2437 4 0 16 0 2451 32
C4.5 2 16 0 2449 34 - - - - -
MOC1 6 16 0 2445 38 - - - - -

Table 3:Comparison of error rates for various classification methods (continued)See caption
for Table 2.
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Figure 4: Receiver operating characteristic curves for a learnable and non-learable class.
Each curve plots the rate of true positives as a function of the rate of falsevpsdor varying
classification thresholds. Both curves were generated by training a badigl SVM on two-thirds
of the data and testing on the remaining one-third.

no classification threshold can yield perfect performance. Therefor&gaus on finding a correct
ranking of the test set. The columns labeled “Optimized threshold” in Tabled 3 ahow the best
performance that could be achieved if the classifier were capable of ledineidgcision threshold
perfectly. These results further demonstrate the superior performance aidia¢ basis SVM:

it performs best in four out of five of the learnable classes. Furthermore, tfempance of the

scaled dot product SVMs improves so that in nearly every class, the bestl&ssifiers are the
four SVM methods.

As expected, the results also show the inability of these classifierato te recognize the
class of genes that produce helix-turn-helix (HTH) proteins. Since helix-turr-psdieins are
not expected to share similar expression profiles, we do not expect any elasstbie capable of
learning to recognize this class from gene expression data. Most methods unitasgify all
test set sequences as non-HTHs. The unlearnability of this class is alseradpam a receiver
operating characteristic (ROC) analysis of the classification resiitgure 4 shows two ROC
curves, which plot the rate of true positives as a function of the rate of falsévessas the
classification threshold is varied. For a learnable class, such as the parieipating in the
tricarboxylic-acid pathway, the false positive sequences cluster closthevgeth respect to the
classification threshold. For the HTHSs, by contrast, the classificati@shiotd must be varied
widely in order to classify all class members as positives. Since thévaoslass members are
essentially random with respect to the classification threshold, the R@@ shows clearly that
this gene class is unlearnable and hence unlikely to be co-regulated.

In addition to demonstrating the superior performance of SVMs relative to ndvi48¥thods,
the results in Tables 2 and 3 indicate that the radial basis SVM perfornmes biedin SVMs that
use a scaled dot product kernel. In order to verify this difference in perfocmave repeated the
three-fold cross-validation experiment four more times, using four differ@miom splits of the
data. Table 4 summarizes the cost for each SVM on each of the five random Bpéttotal cost
in all five experiments is reported in the final column of the table. The radgast&/M performs
better than the scaled dot product SVMs for all classes except the histoneshibbr ail four
methods perform identically. Again, this is not conclusive evidence that the faaseéd SVM is
superior to the other methods, but it is suggestive.
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Class Kernel Cost for each split ~ Total
Tricarboxylic acid Radial 18 21 15 22 21 97
Dot-product-1| 15 22 18 23 22 100
Dot-product-2| 16 22 17 22 22 99
Dot-product-3| 16 22 17 23 22 100
Respiration Radial 16 18 23 20 16 93
Dot-product-1| 24 24 29 27 23 127
Dot-product-2| 19 19 26 24 23 111
Dot-product-3| 19 19 26 22 21 107
Ribosome Radial 8 12 15 11 13 59
Dot-product-1| 13 18 14 16 16 77
Dot-product-2| 11 16 14 16 15 72
Dot-product-3] 9 15 11 15 15 65
Proteasome Radial 14 10 9 11 11 55
Dot-product-1| 16 12 12 17 19 76
Dot-product-2| 16 13 15 17 17 78
Dot-product-3| 16 13 16 16 17 79

Histone Radial 4 4 4 4 4, 20
Dot-product-1f 4 4 4 4 4, 20
Dot-product-2f 4 4 4 4 4, 20
Dot-product-3f 4 4 4 4 4, 20

Table 4: Comparison of SVM performance using various kernels. For each of the MYGD
classifications, SVMs were trained using four different kernel functionswendifferent random
three-fold splits of the data, training on two-thirds and testing on the rengathird. The first
column contains the class, as described in Table 1. The second column contagra#héiction,
as described in Table 2. The next five columns contain the threshold-optimized.eqgsth¢
number of false positives plus twice the number of false negatives) for each tfeh@ndom
three-fold splits. The final column is the total cost across all five splits.
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Number of splits
Class 1 2 3 4 5
Tricarboxylic-acid pathway | 7 2 2 1 8
Respiration chaincomplexe®® 1 2 4 6
Cytoplasmic ribosomes 5 2 3 2 4
Proteasome 6 01 0 5
Histones 0O 00 0 2

Table 5:Consistency of errors across five different random splits of the dataFor each of the
MYGD classifications listed in the first column, radial basis SVMs weaeed on five different
random three-fold splits of the data, training on two-thirds and testing on thaimerg third.

An entry in colummn of the table represents the total number of genes misclassified with respect
to the MYGD classification im of the five random splits. Thus, for example, eight genes were
consistently mislabeled by the SVMs trained on genes from the tricarboxgiticpathway.

Besides providing improved support for the claim that the radial basis SVM ouatpesfthe
scaled dot product SVMs, repeating the three-fold cross-validation expdrats provides in-
sight into the consistency with which the SVM makes mistakes. A claasin error may occur
because the MYGD classification actually contains an error; on the other ltané ctassification
errors may arise simply because the gene is a borderline case, and may or ragpeet as an
error, depending on how the data is randomly split into thirds. Table 5 summahnesitmber
of errors that occur consistently throughout the five different experiments. The seotumdn
lists the number of genes that a radial basis SVM misclassifies only once ingrexfieriments.
The right-most column lists the number of genes that are consistently miseldssiall five ex-
periments. These latter genes are of much more interest, since thelagsiication cannot be
attributed to an unlucky split of the data.

Table 6 lists the 25 genes referred to in the final column of Table 5. Theserages fyg which
the radial basis support vector machine consistently disagrees with the M¥G$ification. Many
of these disagreements reflect the different perspective provided by thes®prdata concerning
the relationships between genes. The microarray expression data reprbsaggsdtic response
of the cell to various environmental perturbations, whereas the SVM clasgdiees based on how
similar their expression pattern is to genes of known function. The MYGD definstof func-
tional classes have been arrived at through biochemical experiments sgfyctgene products by
what they do, not how they are regulated. These different perspectives somktadeo different
functional classifications. For example, in MYGD the members of a complededieed as what
copurifies with the complex, whereas in the expression data a complex is defindtbhbgenes
need to be transcribed for proper functioning of the complex. The above exampleadilidelis-
agreements between the SVM and MYGD in the form of false positives. Zsawnts between
the SVM and MYGD in the form of false negatives occur for a number of reasond, géses
that are classified in MYGD primarily by structure (e.g., protein kinageay not be similarly
classified by the SVM. Second, genes that are regulated at the translatieiad protein level,
rather than at the trancriptional level measured by the microarray expetsycannot be correctly
classified by expression data alone. Third, genes for which the microarraysdataupt cannot
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Family Gene Locus Error Description
TCA YPROO1W CIT3 FN mitochondrial citrate synthase
YOR142W LSC1 FN  « subunit of succinyl-CoA ligase
YNROO1C CIT1 FN mitochondrial citrate synthase
YLR174W IDP2 FN isocitrate dehydrogenase
YIL125W KGD1 FN  «-ketoglutarate dehydrogenase
YDR148C KGD2 FN component ef-ketoglutarate dehydrogenase
complex in mitochondria
YDLO66W IDP1 FN mitochondrial form of isocitrate dehydrogenase
YBLO15W ACH1 FP acetyl CoA hydrolase
Resp YPR191W QCR2 FN ubiquinol cytochrome-c reductase core protein 2
YPL271W ATP15 FN ATP synthase epsilon subunit
YPL262W FUM1 FP fumarase
YML120C NDI1 FP mitochondrial NADH ubiquinone 6 oxidoreductase
YKLO85W MDH1 FP mitochondrial malate dehydrogenase
YDLO67C COX9 FN subunit Vlla of cytochrome c oxidase
Ribo YPLO37C EGD1 FP  ( subunit of the nascent-polypeptide-associated
complex (NAC)
YLR406C RPL31B FN ribosomal protein L31B (L34B) (YL28)
YLRO75W RPL10 FP ribosomal protein L10
YALOO3W EFB1 FP translation elongation factor EB-1
Prot YHRO027C RPN1 FN subunit of 26S proteasome (PA700 subunit)
YGR270W YTAY FN member of CDC48/PAS1/SEC18 family of ATPases
YGR048W UFD1 FP ubiquitin fusion degradation protein
YDR069C DOA4 FN ubiquitin isopeptidase
YDL020C RPN4 FN involved in ubiquitin degradation pathway
Hist YOL012C HTA3 FN histone-related protein
YKL049C CSE4 FN required for proper kinetochore function

Table 6: Consistently misclassified genesThe table lists all 25 genes that are consistently mis-
classified by SVMs trained using the MYGD classifications listed inldd. Two types of errors
are included: a false positive (FP) occurs when the SVM includes the gene in drealass but
the MYGD classification does not; a false negative (FN) occurs when the SVMrddenclude
the gene in the given class but the MYGD classification does.
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Figure 5:Similarity between the average expression profiles of the tricarboxyliacid pathway

and respiration chain complexes.Each series represents the average log expression ratio for all
genes in the given family plotted as a function of DNA microarray experiméitks along the
X-axis represent the beginnings of experimental series, as described in Figure 1.

be correctly classified. Disagreements represent the cases wherefénendiperspectives of the
SVM and MYGD lead to different functional classifications and illusttaeenew information that
expression data brings to biology.

6.1 False positives

Many of the false positives in Table 6 are known from biochemical studies impertant for
the same functional class assigned by the SVM, even though MYGD has not includedd¢nes
in their functional class. For example YALOO3W, a false positive assignedctregly to the cy-
toplasmic ribosome class, is not strictly a ribosomal protein. Howevelges encode a trans-
lation elongation factor, EFB1, known to be required for the proper functioning of tlosoime
[Kinzy and J. L. Woolford, 1995]. The cell ensures that expression of this facegskpace with
the expression of ribosomal proteins. Thus, the SVM classifies YALOO3W with ribalgmoteins.
The respiration complexes class provides another example, YML120C, NADH:ubiquirBne
doreductase. In yeast, YML120C replaces respiration complex 1 [Marrés #091], and while it
does not pump protons across the mitochondrial inner membrane, this gene is crucial tptre pr
functioning of the respiration complexes. Without YML120C, the respiration ctsatmable to
transfer high energy electrons from NADH to ubiquinone, and respiration stopsdMaral., 1991,
Kitajima-lhara and Yagi, 1998]. In the proteasome class YGR048W, ufd1, sfotasby the SVM
as part of the proteasome class. While YGR048W is not strictly part of the pombeast is nec-
essary for proper functioning of the ubiquitin degradation pathway [Johnson et al., 1998h whi
delivers proteins to the proteasome for proteolysis.
Other examples include the classification of members of the tricarboxyllta€A) pathway,
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Figure 6:Expression profiles of two false negative genes for the proteasome clagsch figure
shows the expression profile for a single gene, along with standard deviation b#re footea-
some class. Ticks along the X-axis represent the beginnings of experimenta) asraescribed
in Figure 1.

YPL262W and YKL0O85W, as members of the respiration chain complexes. While M¥&p-
rates the tricarboxylic-acid (TCA) pathway and the respiration chain cexegl| these two classes
are known to be tightly coupled in the production of ATP. This relationship is repted in the
expression data by the similarity between the expression profiles of the &ssesl, as shown in
Figure 5 and leads the SVM to classify YPL262W and YKLO85W as respiration caegléhus,
while MYGD considers these two classes separate, both the expressiomdather experimen-
tal work suggest that YPL262W and YKLO85W have important roles to play in the functitiheof
respiration complexes.

6.2 False negatives

Some of the false negatives produced by the support vector machine occur when a pattein t
was assigned to a functional class in MYGD based on structural singilzag a special function
that demands a different regulation strategy. For example, YKL0O49C is ctaksiéi a histone
protein by MYGD based on its 65% amino acid similarity with histone prote3n MKL049C is
thought to act as part of the centromere [Stoler et al., 1995], and while it tedeti@ histones, the
expression data shows that it is not coregulated with other histone genes. Tadlredd@@VM does
not assign YLK049C to the histone class. A similar situation arises in thegsome class. Both
YDL020C and YDRO69C are physically associated with the proteasome [Fujimatg £998,
Papa et al., 1999]. However, these proteins are not intrinsic subunits of thegmoigabut are
loosly associated auxiliary factors [Glickman et al., 1998, Papa et al., 199@.SVM does not
classify them as belonging to the proteasome because they are regulatehthjffsEom the rest
of the proteasome during sporulation, as shown in Figure 6.

One limitation inherent in the use of gene expression data to identify genes thaofuto:
gether is that some genes are regulated primarily at the translational aethpgesels. For ex-
ample, six of the seven cases in which the SVM was unable to assign meohitieesT CA class
are genes encoding citrate synthase, isocitrate dehydrogenasketdglutarate dehydrogenase.
The enzymatic activities of these proteins are known to be regulated altaditeby ADP/ATP,
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Figure 7: Expression profiles of four genes consistently mis-classified with spect to the
MYGD class of cytoplasmic ribosomal proteins. Each figure shows the expression profile for
a single gene, along with standard deviation bars for the class of cytoplasmigmibbpgroteins.
Ticks along the X-axis represent the beginnings of experimental series, adddsariFigure 1.
The genes in Figures (a)-(c) are false positives; i.e., the SVM placesithid@ class but MYGD
does not. The gene in Figure (d) is a false negative.

succinyl-CoA, and NAD+/NADPH [Garrett and Grisham, 1995, pp. 619-622]. These eszym®
regulated primarily by means that do not involve changes in mRNA level. Tha§W¥M will not
be able to correctly classify them by expression data alone.

Other discrepancies appear to be caused by corrupt data. For example, the S¢gNesla
YLRO75W as a cytoplasmic ribosomal protein, but MYGD does not. YLRO75W is in fact a
ribosomal protein [Wool et al., 1995, Dick et al., 1997]. The similarity betwden¥LRO75W
expression profile and the profile of the cytoplasmic ribosomal proteins is evidergunerr (b).
This discrepency is an oversight in MYGD, which has since been correbtadrfhaupt, 1999].
Other errors occur in the expression data itself. Occasionally, the miaysacontain bad probes
or are damaged, and some locations in the gene expression matrix are marnkethasrg corrupt
data. Three of the genes listed in Table 6 (YDL0O67C, YOR142W and YHR027C) aredhask
such [Eisen, 1999]. In addition, although the SVM correctly assigns YDLO75W tohbeamal
protein class, YLR406C, essentially a duplicate copy of YDLO75W is not assignedt class.
The microarrays are not sensitive enough to differentiate between two sunitér genes; there-

23



Gene Weight Errors
YLRO75W  2.093 5
YOR276W  1.016 4
YNL209W 0.977 4
YALOO3W  0.930 5
YPLO37C 0.833 5
YKRO59W  0.815 2
1
2
1
3

YML106W  0.791
YDR385W  0.771
YPR187W 0.767
YJL138C 0.757

Table 7: The magnitude of the training set weights predicts outliers. The average weight
of each gene was computed across five three-fold cross-validation tebis @fdial basis SVM
trained on the cytoplasmic ribosomes, and the genes were ranked accordinglyablehshiows
the ten negative examples with the largest weights, their average wegltthe total number of
times (out of five) that each gene was misclassified.

fore, it is likely that the YLR406C data is also questionable. The profile forgaige is shown in
Figure 7(d).

No immediate explanation is available for the discrepancies involving thaireng six genes.
These genes include one false positive TCA (YBLO15W), two false negativeagspichain com-
plexes (YPR191W and YPL271W), a false positive cytoplasmic ribosomal prot&hq37C—
see Figure 7(c)), a false negative proteasome (YGR270W), and a false adisttme (YOL012C).
Further experiments would be required to determine whether these misckssifs are artifacts
or are clues to the genuine biological role of these proteins.

The misclassified genes described in Table 6 were found by classifying theslag trained
SVMs and identifying errors. However, many of these outlier genes could hareidentified
during the training phase. Genes that are misclassified in the trainingesitedy to be outliers
with respect to their labeled class. Consequently, these genes willeviblatsoft margin of the
SVM and will hence receive large weights; (in the formulation of Section 5.4). Table 7 shows
the ten largest average weights for negative training set examples fromttpdasmic ribosome
class. As expected, these examples are the ones most often misclassifiedttaned SVMs.
The information in Table 7 could have been used to perform data cleaning, awtalfgagmoving
inaccurate classifications from the training set [Guyon et al., 1996]. Such adanewould have
removed from the training data the mislabeled gene YLRO75W.

7 Conclusions and future work
We have demonstrated that support vector machines can accurately ajgseafyinto functional

categories based upon expression data from DNA microarray hybridization expésinAmong
the techniques that we examined, the SVM that uses a radial basis kernel functimepthe best
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performance—better than Parzen windows, Fisher’s linear discriminantglécision tree classi-
fiers, and three other SVMs that use a scaled dot product kernel. These re=eltgamerated in a
supervised fashion, as opposed to the unsupervised clustering algorithms that mgwesbieeisly
considered [Eisen et al., 1998, Tamayo et al., 1999]. The supervised learnireyioakrallows a
researcher to start with a set of interesting genes and ask two questiireg: other genes are
related to my setandDoes my set contain genes that do not betrigurthermore, the support
vectors identified by the SVM effectively define the boundary of the training sgeonés. This
ability to focus on the few informative genes out of the vast landscape of uninfeargenes is
fundamental to making scientific insight.

The experiments reported here were performed using only expression data for lgenais t
ready have functional annotation. The expression data for the remeniogrevisiagenes are
not currently available for all experimental conditions. If the data werdaivia, the SVMs pro-
duced here would undoubtedly identify among the unannotated genes additional members of the
five MYGD classes.

One significant benefit offered by SVMs is scalability. The number of support \sesttected
by the SVM learning algorithm is usually small, even for very large traisets, and the resulting
SVM is consequently an efficient classifier. In this work, training a raoigsis SVM using two-
thirds of the data set (1645 examples) takes an average of 89.5 CPU seconds on apbaC Al
4100 workstation running at 466 MHz. The resulting machine contains only 216 support vectors
on average. Thus, classifying a new gene requires comparisons with only apprdxih3atéo of
the training set.

Scalability is essential because the amount of available gene expressianilldstan increase
dramatically. We will have larger training sets that include more genesramd detailed expres-
sion profiles. When hundreds, and soon thousands, of mMRNA expressions measurements under
different conditions become available for each gene, each measuremertillvitlysitself, give
only partial and inconclusive information about any given functional classticaif the gene.
However, all these different mMRNA measurements taken together mary pfovide enough in-
formation to classify the gene with very high confidence. This is much likgptbeess whereby
many observations of the same underlying signal plus independent noise can, via thdiogntral
theorem, be reduced to one highly reliable observation of the underlying signal.

In addition to large quantities of mMRNA expression data, SVMs are capable rj dsita
about genes from other sources. Our current work uses only DNA microarray expressan
but similar SVMs could be constructed using other gene features, such as teegared tran-
scription factor binding sites in the promoter region or sequence features oatistated protein,
e.g. as in [Jaakkolaetal., 1999]. We have begun working with SVMs that classifg train-
ing vectors concatenated from multiple sources using the methods from [Jaak&b)d 899,
Jaakkola and Haussler, 1998].

We have described some of the issues involved in selecting an appropniag kenction.
Although the simple radial basis kernel function provides excellent performanbetter SVM
could be constructed that incorporates prior knowledge about the classification d@Dmeirav-
enue for such research involves kernels that explicitly account for depend@meng elements
in the expression profiles. Such dependencies would arise, for example, in @dedastiructed
from a series of microarray experiments with sufficiently small titegps between samples. In this
context, we have experimented with a modified version of the dot product kernettibigtaoses an
inverted covariance matrix betwen the two expression vectors. Enmekyields performance that
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is intermediate between the dot product kernel and the radial basis kerneljdrpe@mputing and
inverting the covariance matrix is computationally expensive.

Any supervised learning algorithm requires a gold standard classificatibwilhéunction as
the teacher signal. Here, we have used MYGD classifications as our goldrstaritie MYGD
classifications are undoubtedly incomplete and may be biased, but they are tHadmtations
available, given the currently limited knowledge about functional classeb@ndhose classes are
reflected in microarray expression data. We have shown that SVMs aantterecognize func-
tional classes even from a noisy teacher signal provided by the MYGD cotas&ifis. Further-
more, the magnitudes of the optimized weights, as well as the discriminans\atiee training
set, provide accurate indicators of outliers in the training set that agty lik have been misclas-
sified by the teacher signal. The ability to identify outliers suggests a bapysirg approach, in
which an initially noisy gold standard classification is refined by the S\@wyjon et al., 1996].
This bootstrapping method could be applied to classifications learned via unsugenateods,
such as those of [Eisen et al., 1998] and [Tamayo et al., 1999].

Similarity and distance metrics play a fundamental role in both supervisediasupervised
methods for the analysis of MRNA expression data and for other pattern recognitioemsolbior
example, Eisept al. cluster mMRNA expression vectors using hierarchical agglomerative dhugte
with a Pearson correlation coefficient similarity metric. Tamayal. cluster gene expression data
using self-organizing maps [Tamayo et al., 1999], which rely on a distanc&metr

Any similarity metric defined by kernel functioR (X, Y), or equivalently, any positive def-
inite function, can be converted into a distance functi¢X,Y) via the equation?(X,Y) =
K(X,X)-2K(X,Y)+ K(Y,Y). The resulting distance function will always correspond to a
true distance function, either in Euclidedirdimensional feature space for somve or in infinite
dimensional space [Berg et al., 1984]. Thus any kernel can be used in an unsuppatisen
recognition method as well as in a supervised pattern recognition methodMi4s,S0 long as
that method relies only on distance (or similarity) calculations, and not onagixgdinstruction
of the feature space (see, e.g., [Scholkopf et al., 1999]). This may be a fruittuf@réurther
research.

Finally, we note that a number of researchers have analyzed DNA microamayegpression
data with the goal of reconstructing complete regulatory pathways within theded work we
have presented makes no attempt to infer pathways, nor is it obvious how SVM methdds
be applied to this much more complex task. However, the functional classificaf genes is
a prerequisite to reconstructing complete pathways, and so this work does gtantoward this
goal. Using only the limited features that were available to us, we haedtsaratched the surface
of this problem, but the potential is significant.
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A Support vector machines

Support vector machines map a given set of binary labelédirigadata to a high-dimensional feature
space and separate the two classes of data with a maximunmrhggerplane. In general, this hyperplane
corresponds to a nonlinear decision boundary in the inpatep
Let X € Ry C R" be the input vectorgy € {—1,+1} be the labels, and : Ry — F be the mapping
from input space to feature space. Then the SVM learningisthgo finds a hyperplanéw, b) such that the
guantity
v = ming;{ (w, §(X;)) — b} (10)

is maximized, where the vectar has the same dimensionality A$b is a real number, ang is called the
margin The corresponding decision function is then

f(X) = sign ((w, $(X)) —b) (11)
It is easy to prove [Vapnik, 1998] that this minimum occursawh
w=Y" oyip(X;) (12)

whereq; are positive real numbers that maximize

> Y oGy (X)), (X)) (13)

subject to
ZO/Z’UZ =0,04 > 0. (14)

The decision function can equivalently be expresséd as
f(X) = sign (Z aiyi(9(Xi), ¢ (X)) — b) - (15)

From this equation it is possible to see thatdh@ssociated with the training poilt; expresses the strength
with which that point is embedded in the final decision fumeti A remarkable property of this alternative
representation is that only a subset of the points will b@@aged with a non-zere;. These points are
calledsupport vectorand are the points that lie closest to the separating hygueepIThe sparseness of the
« vector has several computational and learning theoretiseguences.

It is important to note that neither the learning algorithor the decision function (Equation 15) needs
to represent explicitly the image of points in the featuracgpy(X;), since both use only the dot products
between such image§s(X;), #(X;)). Hence, if one were given a functid(X, Y) = (¢(X), ¢(Y)), one
could learn and use the maximum margin hyperplane in thefeapace without ever explicitly performing
the mapping. For each continuous positive definite funchaiX, Y) there exists a mapping such that
K(X,Y) = (¢(X),¢(Y)) forall X, Y € Ry (Mercer's Theorem). The functiok (X,Y) is called the
kernel function

The use of a kernel function allows the support vector mactoroperate efficiently in a nonlinear high-
dimensional feature spaces without being adversely &ffieloy the dimensionality of that space. Indeed, it
is possible to work with feature spaces of infinite dimesistoreover, Mercer's theorem makes it possible

2An alternate formulation of support vector machines does not use arciexydisb but makes the bias implicit
by adding 1 to the kernel function. In this case, the hyperplane goasghtbe origin, and the optimization does not
require the constraint’ a;y; = 0. We use this implicit bias method in our experiments.
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to learn in the feature space without even knowgngnd /. The matrixK;; = (¢(X;), ¢(X;)) is called
thekernel matrixand will be particularly important in the extensions of thgogithm that will be discussed
later.

Finally, note that the learning algorithm is a quadratidrojtation problem that has only a global opti-
mum. The absence of local minima is a significant differemoenfstandard pattern recognition techniques
such as neural networks. For moderate sample sizes, thaingtion problem can be solved with simple
gradient descent techniques like the ones used in this fjspetalso [Campbell and Cristianini, 1999] and
[Jaakkola and Haussler, 1998]). For larger problems, miwareced techniques should be used [Platt, 1999].

In the presence of noise, the standard maximum margin #igoriescribed above can be subject to
overfitting, and more sophisticated techniques should bd.uhis problem arises because the maximum
margin algorithm always finds a perfectly consistent hypsit and does not tolerate training error. Some-
times, however, it is necessary to trade some training acguor better predictive power. The need for tol-
erating training error has led to the development the saftgin and the margin-distribution classifiers. One
of these techniques [Shawe-Taylor and Cristianini, 196pJaces the kernel matrix in the training phase as
follows:

K+ K+ )\, (16)

while still using the standard kernel function in the demisphase (Equation 15). By tunirng one can
control the training error, and it is possible to prove tha tisk of misclassifying unseen points can be
decreased with a suitable choice)ofShawe-Taylor and Cristianini, 1999].

If instead of controlling the overall training error one vigmo control the trade-off between false posi-
tives and false negatives, it is possible to modifyas follows:

K « K +AD, (17)

whereD is a diagonal matrix whose entries are eitliéror d—, in locations corresponding to positive and
negative examples. It is possible to prove that this tealig equivalent to controlling the size of thein

a way that depends on the size of the class, introducing ddni¢ergerq; in the class with smalled. This

in turn corresponds to an asymmetric margin; i.e., the alatis smallerd will be kept further away from
the decision boundary [Veropulos et al., 1999].

In this work, the extreme imbalance of the two classes, alitiythe presence of noise, creates a situa-
tion in which points from the minority class can be easilytadien for mislabelled points. Enforcing a strong
bias against training errors in the minority class provigestection agaist such errors and forces the SVM
to make the positive examples support vectors. Thus, chgdsi = n1—+ andd™ = n% provides a heuristic
way to automatically adjust the relative importance of the tlasses, based on their respective cardinalities.
This technique effectively controls the trade-off betwsensitivity and specificity [Veropulos et al., 1999].
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