
An Empirical Study of SoftwarePorting ObstaclesDorrit Gordon and Linda WernerUCSC-CRL-99-07June 12, 1999
Jack Baskin School of EngineeringUniversity of California, Santa CruzSanta Cruz, CA 95064 USA



11. IntroductionThis paper presents a brief look at some of the challenges which may be encounteredwith ported software. Using the experimentation framework, as de�ned by Basili, Selbyand Hutchens [2], to describe my work, the original motivation of my study was to developan abstract model for the porting process. The purpose of the study was to characterizea porting project with respect to its development lifecycle. The object was the portingprocess. This study encompassed two domains, the porting team, and the software theywere porting. The scope was a single project, and the perspective was that of a graduatestudent researcher acting as an observer and an intern on the porting team. Using this studyde�nition, the initial plan was to simply participate in and observe the porting process inorder to learn enough about it to detail a plan for achieving the goal of the study.To this end, I worked on an engineering team which was responsible for porting aproduct written by another company to a new operating environment, and for maintainingearlier versions of the port which were out in the �eld. My primary job was to attemptto reproduce reported failures, document them, and when possible to �nd alternate waysto achieve the same goals without producing the failures. When I was unable to �nd analternative, another engineer would use my notes to determine the defect and to repair it.Due to constraints imposed by non-disclosure agreements, the companies involved and thespeci�c natures of the products cannot be revealed.Instead of learning enough to develop a plan to abstract a porting lifecycle model, Ilearned that this project was an extreme case. As such, it made a poor candidate fromwhich to develop an abstraction intended to guide other projects. It did, however, providea fruitful ground for studying the kinds of problems a porting team might encounter. Thisis important knowledge to have in furtherance of the goal of the original study, so I shiftedthe focus of my study. The new study is motivated by a need to improve the e�ciency ofporting projects even when the code being ported is seriously defective. The purpose hereis to characterize the kinds of problems that inhibit the software porting process and topropose some solutions. Using Basili, Selby, and Hutchens' experimentation framework [2],the object is the porting process. The scope, domains, and perspective remain the same asthose of the original study de�nition.This paper will present, in general terms, some of the programs worked on, some of thedi�culties encountered in the work, and a discussion of how these problems could have beenavoided. The goal of this paper is to present some ideas about how porting engineers canminimize the impact of problematic software.



2 2. The Programs2. The ProgramsThe software product that was studied consisted of a suite of programs managed througha common interface program. The focus is on one of these programs and the interface.The program, call it Alpha, is a specialized database program. The database is initiallyformed by importing a �le containing the entries in text form. Once the database isconstructed, it can be maintained through the general interface to the suite. In additionto tasks such as adding, deleting, and modifying entries, it is possible to replace the entiredatabase by importing a new �le. This database is intended to maintain information usedby the other programs of the suite.The interface is a set of menus which allow the user to con�gure the interface itself, orto access the interfaces for the individual programs. Interface con�guration includes taskssuch as specifying the administrator's password, or permitting other users various levelsof administrative access to the system. The interfaces to each of the speci�c programsallow access to whatever features that program provides. For example, the Alpha interfacecontains the mechanisms for modifying the database.



33. The ProblemsThis chapter will present three problems I encountered with Alpha: large �les could notbe imported, changing the administrator's password blocked access to the database, andimporting a new �le to replace an old one was impossible. The �rst problem was a reportedfailure; the other two I discovered in attempting to reproduce that failure.The report of the import failure stated that importing �les failed for large �les. I foundthat the import procedure failed for �les with more than approximately nine-thousandentries and an average of about seventeen lines per entry. If there were a maximumsupported �le size, it should have been noted in the documentation. There was no suchnotation. Furthermore, nine-thousand seventeen-line entries is not an unreasonable numberfor a customer to expect Alpha to support. Thus, we can assume that the defect wasunknown at the time of release. It requires no unusual tactics to produce the failure; anylarge �le import will do so. Since the defect was overlooked, the stress testing must havebeen insu�cient.I came across the password problem as I was setting up my test environment. When Iinitially installed the system I used my own password. I decided to change the password tomatch the one being used with the other programs under test in the lab. When I made thechange, I discovered that I was no longer allowed access to Alpha. Alpha apparently storesthe administrator's password separately, although, it would seem reasonable for informationshared among various programs in a suite to reside in some shared location. I discoveredthat if the password was changed �rst in Alpha, then in the interface, I was able to maintainaccess. The method I found to change the password was undocumented and did not followthe method originally used to set it. Evidently a signi�cant piece of documentation wasomitted, or nobody checked whether the interface and Alpha communicated as expected.Possibly the team which wrote the interface did not know that the password was being usedin Alpha or the team which wrote Alpha did not know how to link Alpha's password usewith that of the interface.Once Alpha was installed, con�gured and running, the testing itself simply involvedimporting �les of increasing size until an import failed. While performing this test I en-countered another problem. The �rst time I imported a �le after installing Alpha everythingworked �ne. Unfortunately, all subsequent import attempts failed to work correctly. Theimport completed, but the database was not actually accessible. This problem can beavoided by manually performing a number of tasks which are automatically performed the�rst time a �le is imported. Like with the password problem, the documentation for per-forming this procedure is entirely omitted. It is possible that Alpha was not intended tosupport importing a �le to replace an existing one. In that case, this fact should be clearlystated and the access to the menu system for doing so should be disabled. Better yet,importing the �le should be moved to the installation process.



4 4. How They Got There4. How They Got ThereAll of the above problems demonstrate weaknesses in the system testing of these prod-ucts. It is evident from the kinds of problems described that the testing was either insu�-cient or the results were ignored. Obviously, in either case, the resulting software will havedefects that should have been caught and �xed (or at least documented) before release.The �rst failure, that which precludes the import of large �les, shows us that the range oftest cases was inadequate to measure the true capabilities of the software. It seems obviousthat it is important to test features over a range of input sizes up to the maximum sizewhich the feature is intended to support. If the goal is to support input of any size, then thetest cases should at least cover the range which seems likely in the target market. In thiscase, the �le size for which the import failed was well within the range which is requiredby the target market. If they had tested even one �le at a size reasonable to consider as alimiting �le size, they would have discovered that the program did not work adequately.The second problem is an interoperability problem. In the case of the password problemthe testing of the interface program was probably done entirely separately from the testingof Alpha. If the feature was tested, the test probably consisted of changing the password andcon�rming that the interface was then accessible under the new password. Since changingthe password is an interface task and not an Alpha task, it was probably never tested withAlpha installed, or, at least, no attempt was made to access Alpha after the password waschanged. Again, it seems clear that if programs are intended to work together, the featuresshould be tested in all of the supported con�gurations of installed programs. There are fewenough supported con�gurations that it is reasonable to perform automated functionalitytesting for all of them.The third problem, that of importing �les more than once, demonstrates a lack ofsu�cient test repetition. If importing a �le had been tried even twice, it would have beendiscovered that the feature did not work correctly.It is possible with both the second and third problems that the software did workcorrectly. In both cases I was able to �nd a way to achieve the desired result, althoughneither method was documented. If these undocumented methods were intended to be used,they should have been documented. In addition to the functional testing, the documentationshould be checked for accuracy. In both of these situations, if the type of testing I outlinedhad been used, with the further provision that the tester follow the procedure described inthe documentation to accomplish these tasks, the defects would have been revealed.



55. The Test SuiteThe software in question is accompanied by a test suite. According to the license, theported software may not be released until that test suite is passed. It was easy to see thatthe test suite was inadequate.The �rst clue was when a note at the end of one of the test descriptions said, approxi-mately, "This test might not work. If it doesn't work for you just skip it." If it is permissibleto skip tests that fail, then 'passing' the test suite is not especially instructive. It only meansthat some of the software might have worked in some cases.In addition to allowing failed tests to be skipped, there was no requirement that theproduct pass all of the tests simultaneously. This does not guarantee a product that passesall the tests. It is not uncommon for a change in the software to break some feature whichhad been working. If that feature had already been tested and passed it would not beretested to check that it still worked. An acceptance test suite is only useful if the softwaremust pass all of the tests at the same time. Part of the reason this test suite cannot requireretesting the entire system after changes have been made is that the test suite is mostlymanual. Even for the smaller programs the tests are cumbersome and can takes weeks torun. With tests this unwieldy it would be unreasonable to try to run them repeatedly.Reading the test descriptions bore out my hypotheses in chapter 4. There are norequirements that the individual tests be run several times at one sitting. The programsdo not have to be tested in combination. Only one value need be used as input to test anyparticular feature. In general, the tests might be useful to check that a work in progress ison the right track. They are not tests which could reasonably be considered to demonstratecorrect and complete function.



6 6. Dealing With the Problems6. Dealing With the ProblemsIn general, the ideal situation would be to avoid porting software which has seriousdefects. One method of determining, in advance, whether a product is likely to be portablewould be to use the Software Engineering Institute's Software Capability Evaluation [1] onthe developing company. This evaluation is written to help developers evaluate potentialsubcontractors and their products. Although not identical, the situation where a companyis selecting software to port is similar enough to make this evaluation technique useful. Ifit is determined that the development method is not su�ciently mature then the quality ofthe software is suspect and it would be wise to choose software from another company.Occasionally circumstances are such that a company has no choice but to port a partic-ular product, regardless of its quality. In this case market demand was such that we almostcertainly would have needed to attempt to port this software even if we had known howdefective it was.Given that porting engineers are sometimes forced by circumstance to work with seri-ously defective software, what can they do to minimize the impact the defects have on theirwork?I suggest a system of 'pre-testing'. Do not wait until the porting approaches completionto begin testing. Instead test the software on its original development platform. Thesetests should begin with the test suite provided with the software, if such exists. If desiredthey can also be supplemented with additional tests that meet the testing standards of thelicensee organization.A method of testing software before the work begins has a number of advantages. Firstof all, it quickly allows the engineers to develop a thorough familiarity with the software.This should make future work on the products more e�cient by reducing time spent learningabout it. By starting with tests required by the licensing orangization, the engineers alsobecome familiar, early on, with the tests their product must pass. This should help themplan the work. If the provided tests turn out not to meet the standards of the licenseecompany, the engineers would have a chance to write and run tests of their own whichmight reveal problems similar to those found in this study.There are a number of advantages to �nding defects before the port begins in earnest.With luck, the original developer will �x the defects, and return the �xes in time to beincluded in the initial port. If that happens, the porting engineers have limited their workby avoiding the need to port the defective code, then the �x. If the original developers donot provide �xes in time for the port, at least the porting engineers will not be forced towaste time searching for the root of a defect they have no control over.In cases where the code is clearly written and where su�cient documentation is available,manual pre-testing is not likely to be worthwhile. Even in these cases, though, automatedtesting can never hurt. To save time it would be reasonable to run automated testsconcurrently with work on the actual port. If the SEI Software Capability Evaluation showspotential for a problematic program, pre-testing to �nd the exact nature of the defects couldsave a great deal of time.



77. ConclusionI observed, and assisted with, the maintenance of a ported software product. Thesoftware was badly written, badly documented, and badly tested by the developing organi-zation. As a result, enormous amounts of time were consumed with trying to understandthe software well enough to work with it. An organized learning procedure would havereduced this time. Evaluating the licensing company according to the SEI Software Capa-bility Evaluation and running tests of the software on its original platform would, together,have formed a relatively e�cient way of learning it. Even when the software does not havethe weaknesses exhibited by the software in this study, using these two techniques wouldbring a level of organization to the learning process. This would be bene�cial since it allowsthe engineer to learn the product e�ciently rather than in a haphazard and ad hoc fashion.



8 ReferencesReferences[1] Rick Barbour. Software capability evaluation version 3.0 implementation guide forsupplier selection. TechnicalReport CMU/SEI-95-TR-012 ESC-TR-95-012, The SoftwareEngineering Institute, April 1996.[2] Victor R. Basili, Richard W. Selby, and David H. Hutchens. Experimentation in softwareengineering. IEEE Transactions on Software Engineering, SE-12(7), July 1986.


