An Empirical Study of Software
Porting Obstacles

Dorrit Gordon and Linda Werner

UCSC-CRL-99-07
June 12, 1999

Jack Baskin School of Engineering
University of California, Santa Cruz
Santa Cruz, CA 95064 USA



1. Introduction

This paper presents a brief look at some of the challenges which may be encountered
with ported software. Using the experimentation framework, as defined by Basili, Selby
and Hutchens [2], to describe my work, the original motivation of my study was to develop
an abstract model for the porting process. The purpose of the study was to characterize
a porting project with respect to its development lifecycle. The object was the porting
process. This study encompassed two domains, the porting team, and the software they
were porting. The scope was a single project, and the perspective was that of a graduate
student researcher acting as an observer and an intern on the porting team. Using this study
definition, the initial plan was to simply participate in and observe the porting process in
order to learn enough about it to detail a plan for achieving the goal of the study.

To this end, I worked on an engineering team which was responsible for porting a
product written by another company to a new operating environment, and for maintaining
earlier versions of the port which were out in the field. My primary job was to attempt
to reproduce reported failures, document them, and when possible to find alternate ways
to achieve the same goals without producing the failures. When I was unable to find an
alternative, another engineer would use my notes to determine the defect and to repair it.
Due to constraints imposed by non-disclosure agreements, the companies involved and the
specific natures of the products cannot be revealed.

Instead of learning enough to develop a plan to abstract a porting lifecycle model, 1
learned that this project was an extreme case. As such, it made a poor candidate from
which to develop an abstraction intended to guide other projects. It did, however, provide
a fruitful ground for studying the kinds of problems a porting team might encounter. This
is important knowledge to have in furtherance of the goal of the original study, so I shifted
the focus of my study. The new study is motivated by a need to improve the efficiency of
porting projects even when the code being ported is seriously defective. The purpose here
is to characterize the kinds of problems that inhibit the software porting process and to
propose some solutions. Using Basili, Selby, and Hutchens’ experimentation framework [2],
the object is the porting process. The scope, domains, and perspective remain the same as
those of the original study definition.

This paper will present, in general terms, some of the programs worked on, some of the
difficulties encountered in the work, and a discussion of how these problems could have been
avoided. The goal of this paper is to present some ideas about how porting engineers can
minimize the impact of problematic software.



2 2. The Programs

2. The Programs

The software product that was studied consisted of a suite of programs managed through
a common interface program. The focus is on one of these programs and the interface.

The program, call it Alpha, is a specialized database program. The database is initially
formed by importing a file containing the entries in text form. Once the database is
constructed, it can be maintained through the general interface to the suite. In addition
to tasks such as adding, deleting, and modifying entries, it is possible to replace the entire
database by importing a new file. This database is intended to maintain information used
by the other programs of the suite.

The interface is a set of menus which allow the user to configure the interface itself, or
to access the interfaces for the individual programs. Interface configuration includes tasks
such as specifying the administrator’s password, or permitting other users various levels
of administrative access to the system. The interfaces to each of the specific programs
allow access to whatever features that program provides. For example, the Alpha interface
contains the mechanisms for modifying the database.



3. The Problems

This chapter will present three problems I encountered with Alpha: large files could not
be imported, changing the administrator’s password blocked access to the database, and
importing a new file to replace an old one was impossible. The first problem was a reported
failure; the other two I discovered in attempting to reproduce that failure.

The report of the import failure stated that importing files failed for large files. I found
that the import procedure failed for files with more than approximately nine-thousand
entries and an average of about seventeen lines per entry. If there were a maximum
supported file size, it should have been noted in the documentation. There was no such
notation. Furthermore, nine-thousand seventeen-line entries is not an unreasonable number
for a customer to expect Alpha to support. Thus, we can assume that the defect was
unknown at the time of release. It requires no unusual tactics to produce the failure; any
large file import will do so. Since the defect was overlooked, the stress testing must have
been insufficient.

I came across the password problem as I was setting up my test environment. When I
initially installed the system I used my own password. I decided to change the password to
match the one being used with the other programs under test in the lab. When I made the
change, I discovered that I was no longer allowed access to Alpha. Alpha apparently stores
the administrator’s password separately, although, it would seem reasonable for information
shared among various programs in a suite to reside in some shared location. I discovered
that if the password was changed first in Alpha, then in the interface, I was able to maintain
access. The method I found to change the password was undocumented and did not follow
the method originally used to set it. Evidently a significant piece of documentation was
omitted, or nobody checked whether the interface and Alpha communicated as expected.
Possibly the team which wrote the interface did not know that the password was being used
in Alpha or the team which wrote Alpha did not know how to link Alpha’s password use
with that of the interface.

Once Alpha was installed, configured and running, the testing itself simply involved
importing files of increasing size until an import failed. While performing this test I en-
countered another problem. The first time I imported a file after installing Alpha everything
worked fine. Unfortunately, all subsequent import attempts failed to work correctly. The
import completed, but the database was not actually accessible. This problem can be
avoided by manually performing a number of tasks which are automatically performed the
first time a file is imported. Like with the password problem, the documentation for per-
forming this procedure is entirely omitted. It is possible that Alpha was not intended to
support importing a file to replace an existing one. In that case, this fact should be clearly
stated and the access to the menu system for doing so should be disabled. Better yet,
importing the file should be moved to the installation process.



4 4. How They Got There

4. How They Got There

All of the above problems demonstrate weaknesses in the system testing of these prod-
ucts. It is evident from the kinds of problems described that the testing was either insuffi-
cient or the results were ignored. Obviously, in either case, the resulting software will have
defects that should have been caught and fixed (or at least documented) before release.

The first failure, that which precludes the import of large files, shows us that the range of
test cases was inadequate to measure the true capabilities of the software. It seems obvious
that it is important to test features over a range of input sizes up to the maximum size
which the feature is intended to support. If the goal is to support input of any size, then the
test cases should at least cover the range which seems likely in the target market. In this
case, the file size for which the import failed was well within the range which is required
by the target market. If they had tested even one file at a size reasonable to consider as a
limiting file size, they would have discovered that the program did not work adequately.

The second problem is an interoperability problem. In the case of the password problem
the testing of the interface program was probably done entirely separately from the testing
of Alpha. If the feature was tested, the test probably consisted of changing the password and
confirming that the interface was then accessible under the new password. Since changing
the password is an interface task and not an Alpha task, it was probably never tested with
Alpha installed, or, at least, no attempt was made to access Alpha after the password was
changed. Again, it seems clear that if programs are intended to work together, the features
should be tested in all of the supported configurations of installed programs. There are few
enough supported configurations that it is reasonable to perform automated functionality
testing for all of them.

The third problem, that of importing files more than once, demonstrates a lack of
sufficient test repetition. If importing a file had been tried even twice, it would have been
discovered that the feature did not work correctly.

It is possible with both the second and third problems that the software did work
correctly. In both cases I was able to find a way to achieve the desired result, although
neither method was documented. If these undocumented methods were intended to be used,
they should have been documented. In addition to the functional testing, the documentation
should be checked for accuracy. In both of these situations, if the type of testing I outlined
had been used, with the further provision that the tester follow the procedure described in
the documentation to accomplish these tasks, the defects would have been revealed.



5. The Test Suite

The software in question is accompanied by a test suite. According to the license, the
ported software may not be released until that test suite is passed. It was easy to see that
the test suite was inadequate.

The first clue was when a note at the end of one of the test descriptions said, approxi-
mately, ” This test might not work. If it doesn’t work for you just skip it.” If it is permissible
to skip tests that fail, then ’passing’ the test suite is not especially instructive. It only means
that some of the software might have worked in some cases.

In addition to allowing failed tests to be skipped, there was no requirement that the
product pass all of the tests simultaneously. This does not guarantee a product that passes
all the tests. It is not uncommon for a change in the software to break some feature which
had been working. If that feature had already been tested and passed it would not be
retested to check that it still worked. An acceptance test suite is only useful if the software
must pass all of the tests at the same time. Part of the reason this test suite cannot require
retesting the entire system after changes have been made is that the test suite is mostly
manual. Even for the smaller programs the tests are cumbersome and can takes weeks to
run. With tests this unwieldy it would be unreasonable to try to run them repeatedly.

Reading the test descriptions bore out my hypotheses in chapter 4. There are no
requirements that the individual tests be run several times at one sitting. The programs
do not have to be tested in combination. Only one value need be used as input to test any
particular feature. In general, the tests might be useful to check that a work in progress is
on the right track. They are not tests which could reasonably be considered to demonstrate
correct and complete function.



6 6. Dealing With the Problems

6. Dealing With the Problems

In general, the ideal situation would be to avoid porting software which has serious
defects. One method of determining, in advance, whether a product is likely to be portable
would be to use the Software Engineering Institute’s Software Capability Evaluation [1] on
the developing company. This evaluation is written to help developers evaluate potential
subcontractors and their products. Although not identical, the situation where a company
is selecting software to port is similar enough to make this evaluation technique useful. If
it is determined that the development method is not sufficiently mature then the quality of
the software is suspect and it would be wise to choose software from another company.

Occasionally circumstances are such that a company has no choice but to port a partic-
ular product, regardless of its quality. In this case market demand was such that we almost
certainly would have needed to attempt to port this software even if we had known how
defective it was.

Given that porting engineers are sometimes forced by circumstance to work with seri-
ously defective software, what can they do to minimize the impact the defects have on their
work?

I suggest a system of "pre-testing’. Do not wait until the porting approaches completion
to begin testing. Instead test the software on its original development platform. These
tests should begin with the test suite provided with the software, if such exists. If desired
they can also be supplemented with additional tests that meet the testing standards of the
licensee organization.

A method of testing software before the work begins has a number of advantages. First
of all, it quickly allows the engineers to develop a thorough familiarity with the software.
This should make future work on the products more efficient by reducing time spent learning
about it. By starting with tests required by the licensing orangization, the engineers also
become familiar, early on, with the tests their product must pass. This should help them
plan the work. If the provided tests turn out not to meet the standards of the licensee
company, the engineers would have a chance to write and run tests of their own which
might reveal problems similar to those found in this study.

There are a number of advantages to finding defects before the port begins in earnest.
With luck, the original developer will fix the defects, and return the fixes in time to be
included in the initial port. If that happens, the porting engineers have limited their work
by avoiding the need to port the defective code, then the fix. If the original developers do
not provide fixes in time for the port, at least the porting engineers will not be forced to
waste time searching for the root of a defect they have no control over.

In cases where the code is clearly written and where sufficient documentation is available,
manual pre-testing is not likely to be worthwhile. Even in these cases, though, automated
testing can never hurt. To save time it would be reasonable to run automated tests
concurrently with work on the actual port. If the SEI Software Capability Evaluation shows
potential for a problematic program, pre-testing to find the exact nature of the defects could
save a great deal of time.



7. Conclusion

I observed, and assisted with, the maintenance of a ported software product. The
software was badly written, badly documented, and badly tested by the developing organi-
zation. As a result, enormous amounts of time were consumed with trying to understand
the software well enough to work with it. An organized learning procedure would have
reduced this time. Evaluating the licensing company according to the SEI Software Capa-
bility Evaluation and running tests of the software on its original platform would, together,
have formed a relatively efficient way of learning it. Even when the software does not have
the weaknesses exhibited by the software in this study, using these two techniques would
bring a level of organization to the learning process. This would be beneficial since it allows
the engineer to learn the product efficiently rather than in a haphazard and ad hoc fashion.



8 References

References

[1] Rick Barbour. Software capability evaluation version 3.0 implementation guide for
supplier selection. Technical Report CMU/SEI-95-TR-012 ESC-TR-95-012, The Software
Engineering Institute, April 1996.

[2] Victor R. Basili, Richard W. Selby, and David H. Hutchens. Experimentation in software
engineering. [EEE Transactions on Software Engineering, SE-12(7), July 1986.



