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1. Introduction 11 IntroductionThe explosion of the Internet has spawned video-based services over packet networks, such asstreaming video and video-on-demand. Many of these applications require, or can bene�t from, thenetwork's ability to provide Quality-of-Service (QoS) guarantees. The QoS guarantees are usuallyin the form of bandwidth, end-to-end delay, and/or the loss rate experienced by the tra�c stream.The rate variability of video sources has introduced the need for characterizing the tra�c so thatthe amount of resources to be allocated by the network (such as bandwidth, bu�er space, etc.) canbe estimated during the call admission control (CAC) process. The characterization of the tra�cstream is also necessary for e�cient policing of the tra�c. The two primary resources allocated bythe network are the transmission rate � and the bu�er size B. In an application where no lossesare allowed, the video source can be characterized completely by determining the minimum bu�ersize necessary to avoid losses as a function of the rate �. This characterization is referred to as theburstiness curve [8]. E�cient algorithms for exact computation of the burstiness curve can be foundin [10].When the application can tolerate some amount of loss, the amount of bandwidth and/or bu�erspace needed in the network can often be reduced signi�cantly, since the burstiness curve of thesource typically exhibits a long tail. The problem of determining the necessary network resourcesthen becomes the problem of choosing a speci�c vector from the three-dimensional space (�;B; �). Tosimplify the problem, either the transmission rate � or the bu�er size B can be �xed to calculate thecorresponding curves. The � versus B curve for a speci�c transmission rate � enables the estimationof the loss rate resulting from a given bu�er size to send the video source at a certain transmissionrate. We refer to a plot of the loss rate as a function of the bu�er size for a given rate � as theloss curve [2] of the source corresponding to the rate �. Our interest in this paper is to investigatee�cient algorithms for the computation of such loss curves. In some other cases, it is necessary toobtain the variation of the bu�er size B to achieve a given loss rate as a function of the transmissionrate �. Such a plot can be constructed by computing a series of loss curves for di�erent values ofthe rate �, and reading o� the B values for the given loss rate �.In this paper, we present a deterministic algorithm for the exact computation of the loss curve ofan elementary video stream. The algorithm exploits the piecewise linearity of the curve and performscalculations only at points where the slope of the loss curve changes, thus using the minimum numberof points needed to exactly characterize the curve. The piecewise linear nature of the loss curve wasobserved by Wong and Varayia [11], but they did not analyze the behavior further. By characterizingonly the points at which the slope of the loss curve changes, our algorithm achieves optimality inthe number of points needed for the exact computation of the loss curve. The algorithm exhibitslow time- and space-complexity and therefore, is attractive for use not only in o�-line video systemsbut also in real-time video distribution systems that need to perform estimation of the loss curve inreal time. We also give an extension of the algorithm for computation of the loss curve of MPEG-2Transport Streams.The rest of the paper is organized as follows: In Section 2, we �rst describe the model forcharacterizing the queue behavior of the corresponding elementary video stream. This model is thenused for the exact computation of the loss curve, which is presented subsequently. In Section 3, weconsider an extension of the algorithm to MPEG-2 Transport Streams. In Section 4, we evaluate theperformance of the algorithm with many video traces. Finally, in Section 5 we conclude the paperwith a brief summary of this work.
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�QB;�(r; t)BFigure 2.1: Model used for the computation of the loss curve of a video stream.2 Algorithm for Exact Computation of the Loss Curve of ElementaryVideo Streams2.1 ModelThe most common case for transporting video over a packet-switched network is by using anelementary video stream. An elementary video stream consists of a sequence of frames generatedat a �xed rate (frame period), that may have varying sizes due to scene changes. In this section wepresent an algorithm for exact computation of the loss curve for such tra�c sources.The model that we use for the computation of the loss curve in the case of an elementary videostream is shown in Figure 2.1. The tra�c from the source goes through a peak-rate shaper whichproduces a new time sequence for the bit-stream. For di�erent values of the peak rate r, the queueof the peak-rate shaper may have a di�erent maximum length, denoted by s(r). The bit-stream atthe output of the peak-rate shaper, denoted by a(r; t) in the �gure, is also dependent on the peakrate r. Our interest is in computing the loss curve of the tra�c source at the output of the peak-rateshaper for a speci�c transmission rate � and bu�er size B.We can determine the loss rate of the source for a given transmission rate � and bu�er size Bby feeding the bit-stream at the output of the peak-rate shaper in Figure 2.1 into a second leaky-bucket shaper with rate � and bu�er size B. By recording the amount of data lost from this bu�erfor di�erent bu�er sizes, we can obtain the loss curve of the source for the given peak rate r andtransmission rate �. The B versus � curve for a given maximum acceptable loss rate � is obtainedby constructing a series of loss curves for di�erent choices of the rate � and reading o� the B valuescorresponding to the given loss rate.We �rst de�ne LB;�(t) as the amount of tra�c of the video stream lost over the time interval [0; t].Then, the fraction of lost tra�c, or the loss rate �(B; �), is given by�(B; �) = LB;�(T )M ;where M is the total number of bits in the elementary stream and T its duration. For plottingthe complete loss curve for a given rate �, it is only necessary to consider the range of bu�er sizes0 � B � �(�), where �(�) is the maximum burstiness of the source at rate �. For a completecharacterization of the source, a series of loss curves can be constructed for di�erent transmissionrates in the range 0 < � < r.To complete the de�nition of the loss curve, we must de�ne the loss rate for the boundary valuesof B and �: �(B; �) = 0; B > �(�); (2.1)



2. Algorithm for Exact Computation of the Loss Curve of Elementary Video Streams 3�(0; �) = r � �r ; 0 � � � r; (2.2)�(B; 0) = 1; 0 � B < M ; (2.3)�(B; 0) = 0; B �M ; (2.4)To analyze the behavior of the queue at the second shaper in Figure 2.1, we �rst need tocharacterize the on-o� signal at the output of the peak-rate shaper. Hence, we �rst present analgorithm to compute the on-o� periods of the bit-stream a(r; t) at the output of the peak-rateshaper when the input source is an elementary video stream. These on-o� periods are then used inthe computation of the loss curve.We de�ne active period as a maximal period of time during which the peak-rate shaper iscontinuously transmitting tra�c. This corresponds to an on-period of the signal a(r; t). Let na(r)denote the number of active periods of the signal for a peak rate of r, sri the time instant at whichthe ith active period commences, and tri the time when it ends. We need to compute the activeperiods (sri ; tri ), for 1 � i � na(r).We assume that the number of frames in the video trace is N , the length of the trace is T , theframe rate is f , and the size of the ith frame is di bits. Let dmax = max1�i�N di be the maximumframe size in the trace. We also assume that a frame is added instantaneously to the queue of thepeak-rate shaper at the end of the corresponding frame period. That is, the �rst frame arrives inthe queue at time 1=f , which marks the beginning of the �rst active period. When the peak rate rsatis�es r � dmax=f , it is trivial to compute the active periods of the signal a(r; t).s(r) = dmax; na(r) = N; sri = if ; and tri = sri + dir : (2.5)However, in the general case when r < dmax=f , neighboring frames overlap with each other in theshaper queue, leading to larger maximum queue lengths and a smaller number of active periods. Letqi(r) be the size of the queue at the input of the peak-rate shaper just after the instant when theith frame arrives. The maximum queue length will always occur just after an arrival of a frame, andis given by s(r) = max1�i�N qi(r): (2.6)The active periods of the elementary stream can be determined by traversing the sequence offrames and computing the queue size at the instant just after each frame arrival. The pseudocodefor computing the active periods is given in Figure 2.2. For a given value of the peak rate r, thealgorithm processes the individual frames of the elementary stream in sequence and computes themaximum queue size s(r), the number of active periods na(r), and the starting and ending times ofeach active period (sri ; tri ); 1 � i � na(r).We can use the active periods of the signal a(r; t) to compute the loss curve of the original videostream by observing the queue behavior at the input of the second shaper in Figure 2.1. We nowdevelop an algorithm for calculating the loss curve for a speci�c service rate �. Since the peak rate rremains a constant in the discussion, for simplicity in the rest of this section we omit the parameterr from all the notations.



2. Algorithm for Exact Computation of the Loss Curve of Elementary Video Streams 4Pseudocode for Computation of Active Periods of Elementary Video Stream/* Index i denotes the i-th frame, qi denotes the queue size at the instantjust after the i-th frame arrival and index j denotes the j-th active period. */1 /* Perform initialization */1.1 sr1  1=f ; q1  d1; i j  1;22.1 If � qir < 1f � /* no backlog present at the start of next frame */2.1.1 qi+1  di+1;2.1.2 trj  if + qir ; /* compute end time of current active period */2.1.3 j  j + 1;2.1.4 srj  i+1f ; /* start time of new active period */2.2 else2.2.1 qi+1  qi + di+1 � rf ; /* there is backlog carried to current frame */2.3 endif33.1 i i+ 1;3.2 If (i < N)3.2.1 goto Step 2;3.3 endif44.1 s(r) max1�k�N qk; /* compute maximum queue length observed */4.2 trj  Nf + qNr ; /* compute end time of last active period */4.3 na(r) j; /* store the number of active periods */4.4 De�ne sna(r)+1 =1;Figure 2.2: Algorithm to compute the active periods of the bit-stream at the output of thepeak-rate shaper, when the input tra�c is an elementary video stream.2.2 Computation of the Loss CurveThe peak-rate shaping procedure produces a sequence of active periods for a given peak-rate r.If we denote by m(t) the output rate of the peak-rate shaper, thenm(t) = � r; t 2 [si; ti];0; otherwise: (2.7)We de�ne busy period as a maximal period of time during which the queue of the second shaperin Figure 2.1 remains non-empty. We use the notation �i; �i, respectively, for the starting andthe ending times of busy period i. For a given sequence of active periods, the corresponding busyperiods are a function of the transmission rate � and the bu�er size B at the input of the secondshaper. Figure 2.3(a) illustrates the active periods of an elementary video stream and Figure 2.3(b)the corresponding busy periods for the case of in�nite bu�er size.We denote by Q�B;i the local maximum queue size for busy period i, for a bu�er size of B; andby �B;i the time at which the local maximum occurs. For simplicity, we will omit the subscript Bwhen the bu�er size is obvious from the context. Our algorithm for characterizing the loss curve ofthe source is based on two key observations:1. For a given transmission rate �, the loss rate � is a piecewise-linear function of the bu�er sizeB. As the bu�er size is decreased, the slope of the loss curve can change only when (i) a
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(d)Figure 2.3: Busy periods of an example elementary video stream for various values of thebu�er size B.busy period starts to experience losses for the �rst time, or (ii) a busy period breaks into twoor more constituent busy periods. This enables the exact computation of the loss curve byidentifying the points at which such events occur.2. Within each busy period where a loss occurs, the last time instant at which a loss occurs isthe time instant �B;i at which the maximum queue size occurs.The loss curve of the source, for a given transmission rate �, can be constructed by consideringvarious values of the bu�er size B in the range 0 < B < �(�), and computing the loss rate for eachcase. This procedure, however, provides only an approximation to the actual loss rate between thepoints considered. Besides, the computation of loss rate requires a simulation of the queue for eachbu�er size. Our algorithm, on the other hand, exploits the piecewise-linearity of the loss curve andcalculates only the slope of the loss curve at each point where the slope changes. In addition, weavoid a total simulation of the queue at each such point by keeping track of only the changes in thebusy periods of the queue with a change in bu�er size. This results in an e�cient algorithm that



2. Algorithm for Exact Computation of the Loss Curve of Elementary Video Streams 6provides the exact loss curve of the source.A change in the number of busy periods experiencing losses constitutes the only possible case inwhich the slope of the loss curve may change as the bu�er size B is decreased towards its minimumvalue of zero. This can be illustrated with an example. Figure 2.3(a) shows the active periods ofthe input signal and Figure 2.3(b) the busy periods generated when the bu�er size is in�nite. Theglobal maximum queue size occurs in busy period 2, and is denoted by Q�1;2 in the �gure. As thebu�er size B is decreased, no losses occur until it reaches the global maximum queue size Q�1;2. Aswe decrease the bu�er further, to a value B1 < Q�1;2, losses occur in the second busy period. If thepeak at time t1 corresponding to the end of active period 5 is the only peak experiencing losses, thetotal amount of lost tra�c is equal to (Q�1;2 �B), which is a linear function of B. We also observethat no losses can occur to the right of t1 in the same busy period.On further decreasing the bu�er size to B2 < B1, the second busy period splits into two busyperiods at time t2. Both the resulting busy periods experience losses, and now the total amount oflost data is equal to (Q�B2;2 � B) + (Q�B2;3 � B) = (Q�B2;2 + Q�B2;3) � 2B, where Q�B2;2 and Q�B2;3are the corresponding local maximum queue sizes of the new busy periods 2 and 3, respectively, asindicated in the �gure. Therefore, the amount of lost data is again a linear function of B, and itsslope is determined by the number of busy periods experiencing losses.For a video stream of �nite duration, the values of the bu�er size B that cause either a loss ina busy period with no prior loss or a break in a busy period that already experiences loss, form a�nite set. We will show that we only need to compute the values of B belonging to this set for theexact computation of the loss curve. The curve is piecewise linear between adjacent bu�er pointsbelonging to this �nite set.Let us denote by A(t1; t2) the arrivals into the bu�er during the interval [t1; t2], and by LB;�(t1; t2)the number of bits lost in the interval [t1; t2] when the bu�er size is B and the transmission rate �.For simplicity, in the special case when t1 = 0 and t2 = t, we will use the notation LB;�(t) insteadof LB;�(t1; t2).We �rst show that, for a given busy period experiencing losses, the amount of loss increaseslinearly with a slope of -1 as the bu�er size B is decreased, as long as the busy period does not breakinto multiple busy periods. Using this result, we can prove that the loss curve is piecewise linear.Lemma 1: Let i be the last instant at which a loss occurs within busy period i. Then, the amountof data lost during the busy period is given byLB;�(�i; �i) = A(�i; i)� �(i � �i)�B; (2.8)where �i is the starting time of the busy period i.Proof: The losses from the queue during the interval (�i; i) must be equal to the arrivals intothe queue during the interval minus the total tra�c transmitted during the interval, minus the bitsremaining in the bu�er at the end of the interval. Since the queue does not underow during theinterval (�i; i), the total tra�c transmitted during the interval (�i; i) is �(i � �i). Furthermore,since losses occur at time i, the bu�er occupancy at time i is B. Subtracting these two termsfrom the arrivals gives us the result in Eq. (2.8). 2Thus, to calculate the losses during the busy period, it is su�cient to determine its starting timeand the last instant i at which losses occur during the busy period. Note that i must coincidewith the end of an active period of the source. Later, we will show that i coincides with the timeinstant at which the local maximum queue size would have occurred during the busy period if thebu�er size were in�nite.



2. Algorithm for Exact Computation of the Loss Curve of Elementary Video Streams 7We can now use Lemma 1 to show that the loss curve is piecewise linear.Lemma 2: For a given transmission rate �, the loss curve of an elementary video stream is piecewiselinear. The slope of the curve changes only at values of the bu�er size B where one of the followingevents occurs:1. A change in the number of busy periods in which losses occur.2. A change in i, the last instant at which a loss occurs in a busy period i, for any busy periodi.Proof: Consider two distinct values of B, B1 and B2, with B1 < B2, such that (i) the number ofbusy periods undergoing losses remains the same at B1 and B2; and (ii) the last time at which aloss occurs in each of these busy periods, i, also remains the same. Let Sl denote the set of busyperiods in which losses occur. Then, according to Lemma 1 the total amount of lost data over theentire duration T of the video stream is given byLB;�(T ) = Xi2Sl (A(�i; i)� �(i � �i))� nlB; B1 � B � B2; (2.9)where nl is the number of busy periods in the set Sl.Thus, the plot of LB;�(T ) and therefore that of �(B; �) with respect to B in the range B1 � B �B2 is a straight line with slope �nl. This concludes the proof of Lemma 2. 2We can obtain the entire loss curve of the elementary video stream for a given transmission rate� by starting from a bu�er size equal to the corresponding burstiness value �(�) (which is equalto the global maximum queue size when the bu�er size is in�nity) and progressively �nding bu�ersizes at which either a busy period with no prior loss starts to experience losses, or a busy periodexperiencing loss breaks into smaller busy periods. We now show that the time instant at whichthe last loss occurs within a given busy period is the time at which the queue size reaches its localmaximum within the busy period, when no losses occur from the bu�er. This makes it easy todetermine the parameter i in Eq. (2.9) that is required for computation of the loss rate.Lemma 3: Let i be any busy period of an elementary video stream corresponding to a bu�er sizeof B and transmission rate �, such that losses occur within the busy period. Let �i be the instantat which the queue size would reach its local maximum during the busy period if no losses occurredfrom the bu�er. Then �i is the last instant at which a loss occurs within busy period i.Proof: Let �i and �i, respectively, denote the starting and ending times of the busy period i. �iis the time at which the queue size would reach its maximum during the busy period, starting withan empty queue at time �i and assuming no losses occur during the busy period. We need to showthat1. If a loss occurs at any time t < �i during the busy period i, a loss also occurs at �i.2. No losses can occur at any time t > �i within the busy period i.We will prove each of these assertions in turn. The proof is by contradiction.To prove the �rst assertion, assume, if possible, that a loss occurs in busy period i before time�i, but no losses occur at �i. Let t be last instant of time a loss occurs in the busy period before �i.Since no losses occur in the interval (t; �i),Qi(t) = A(�i; t)� �(t� �i) > B; (2.10)Qi(�i) = A(�i; �i)� �(�i � �i) (2.11)



2. Algorithm for Exact Computation of the Loss Curve of Elementary Video Streams 8Since Qi(�i) � Qi(t), from Eq. (2.10) and (2.11) we must have, Qi(�i) > B, which is acontradiction to the hypothesis that no loss occurred at �i.To prove the second assertion, assume, if possible that a loss occurred at time t, �i < t < �i.Since a loss occurred at time �i, the amount of tra�c that arrived into the bu�er during the interval(�i; t) must be more than the tra�c serviced during that interval. That is,A(�i; t)� �(t� �i) > 0: (2.12)Hence, the queue size at time t, assuming no losses during the busy period, is given byQi(t) = Qi(�i) +A(�i; t)� �(t� �i) (2.13)Qi(t) > Qi(�1); (2.14)which is a contradiction. This concludes the proof of Lemma 3. 2Thus, to compute the last point at which losses occur in a busy period, it is su�cient to computeits local maximum queue size, assuming no losses from the bu�er. Since the maximum queue sizewith no losses can occur only at the end of an active period, we need to consider only the endingtimes of active periods within the busy periods to determine the maximum queue size.To compute the loss curve of the source for the entire range of bu�er sizes, we need to identifythe bu�er-size values at which one of the two types of events occurs: (i) the onset of loss in a busyperiod, and (ii) the breaking of a busy period into multiple busy periods. The bu�er size at whichthe former event occurs can easily be identi�ed by computing the local maximum queue size withinthe busy period ignoring any losses. The bu�er size at which a break occurs in a busy period,however, is more di�cult to identify. We discuss this problem next.Since the queue size reaches a minimum at the start of an active period, the starting instants ofactive periods within the busy period are the points at which a break could potentially occur. Thus,we can determine the maximum bu�er size at which a break occurs in the busy period by computingthe bu�er size that causes the queue size to be zero at each of these points and taking the maximumamong all the points. This procedure is cumbersome, however, because the e�ect of losses must beaccumulated over multiple active periods to determine the bu�er size that causes the queue size toreach zero exactly at the start of a given active period. Instead, we use a more e�cient scheme toidentify the bu�er size that causes a break in the busy period.Our approach can be best illustrated by the example in Figure 2.4, where a single busy periodis shown, consisting of seven active periods. The peaks and valleys for the queue size correspond tothe ending and starting times, respectively, of the active periods. With no losses in the busy period,the maximum queue size within the busy period occurs at time t6, at the end of active period 6. Asthe bu�er size is decreased from this value, losses start to occur �rst during active period 6. Thiscauses a corresponding dip in the valleys following the peak at t6, and a break results in the busyperiod if the queue size drops below zero at any of the valleys.As the bu�er size is decreased, losses start to occur progressively from the highest peak, to thenext highest, and so on. In addition, from Lemma 3, if a loss occurs from one of the peaks withinthe busy period, no losses can occur from a following peak unless the latter is larger than the former,or the busy period breaks. For example, in Figure 2.4 no losses can occur between the peaks at t1and t4 without causing a break in the busy period �rst. This enables us to process only the activeperiods corresponding to monotonically increasing queue sizes within the busy period for identifyingthe bu�er size at which a break occurs.
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t7Figure 2.4: Example of how to construct the set S that contains the active periods withincreasing queue sizes, and the last active period of a given busy period.The algorithm for identifying the bu�er size that causes a break in the busy period works asfollows: We �rst construct a sequence of active periods S within the busy period with monotonicallyincreasing queue sizes. In addition, we also require the last active period to be part of the sequence.For example, in Figure 2.4 such a sequence consists of the active periods 1, 4, 6 and 7.We can now look for potential points for a break in the busy period, starting from the end of thesequence. For each active period in the sequence, starting from the end, we can identify the bu�ersize at which the queue size becomes zero within the interval between the current active period andthe previous active period of the sequence. For example, in Figure 2.4, the algorithm �rst calculatesthe bu�er size for the queue size to reach zero at the valley between t6 and t7 (this is the di�erencebetween the queue sizes at t6 and at the valley following it). If this bu�er size is larger than the nextpeak in the sequence (the peak at t4 in the example), a break will occur between t6 and t7 before anylosses occur at time t4, as the bu�er size is reduced. No further processing of the sequence is thenneeded. If the peak at time t4 is smaller than the bu�er size identi�ed so far, however, the algorithmcalculates the bu�er size that causes a break between t4 and t6. This continues until a peak thatis larger than the currently identi�ed bu�er size is reached, or the sequence of active periods in Sis exhausted. The algorithm then chooses the bu�er size identi�ed last as the point at which thebreak occurs.A high-level pseudocode of the entire algorithm for computation of the loss curve is shown inFigure 2.5. The algorithm starts by computing the busy periods when the bu�er size B is in�nite.This is done by function process active periods() which processes the active periods 1 to na todetermine the busy periods. After computing the busy periods, the algorithm inserts into the heapall the bu�er points at which each busy period starts experiencing loss, and the cause associatedwith each bu�er point (LOSS). These bu�er points correspond to the maximum queue size for eachbusy period. The algorithm also computes the maximum bu�er sizes at which each busy periodbreaks, and inserts them into the heap for further processing.In the main iteration (Step 2), the algorithm proceeds to process the maximum bu�er point



2. Algorithm for Exact Computation of the Loss Curve of Elementary Video Streams 10Loss Curve Algorithm Pseudocode for Elementary Video Streams1 /* INIT. B holds the available bu�er size, LB holds the sum of the unrestricted queue sizes of the busyperiods with loss at the time instants at which the maximum queue occurs, nl holds the numberof busy periods with loss, nb the number of busy periods, and na the total number of active periods.*/1.1 B  1; LB  0; nl  0; M  stream size;/* Compute busy periods for rate �, and bu�er size B. */1.2 process active periods(1, na, B);/* Insert into the heap the bu�er point at which a loss occursfor each busy period, compute the bu�er size for the �rst break foreach busy period and insert it into the heap as well. */1.3 For b = 1 to nb /* for each busy period b */1.3.1 heap insert(Q�b , LOSS, b);1.3.2 B0  compute next break(b);1.3.3 heap insert(B0, BREAK, b);1.4 endfor2 /* Extract the maximum bu�er from the heap, and processthe corresponding busy period until the heap becomes empty. */2.1 (b, B, cause)  heap extract max();/* Let (sp; tp); (sp+1; tp+1); : : : ; (sq; tq) be the active periods contained within the busy period b.Also, let (sp; tp); : : : ; (sj ; tj) be the active periods contained within the interval (�b; �b). */2.2 If (cause = LOSS)/* update nl and LB variables */2.2.1 LB  LB + �Pji=p r(ti � si)� �(tj � sp)�;2.2.2 nl  nl + 1;2.3 else /* cause = BREAK *//* update nl and LB variables */2.3.1 LB  LB � �Pji=p r(ti � si)� �(tj � sp)�;2.3.2 nl  nl � 1;/* Process the break in busy period b: Compute the new busy periods, and if a busy period alreadyexperiences loss, update nl and LB variables. Also, for the remaining new busy periods, insertinto the heap the bu�er points at which the �rst losses occur. Finally, for all the newbusy periods, compute the bu�er sizes for the �rst break and insert them into the heap. */2.3.3 process break(b, B);2.4 endif2.5 output point(B, LB�nlBM );2.6 If (heap not empty)2.6.1 goto Step 2;2.7 endif/* Output the last point of the loss curve */2.8 Output (0; r��r );2.9 STOP;Figure 2.5: Top-level of the algorithm that computes the exact loss curve of an elementaryvideo stream. A representative description of the function heap extract max() can be foundin [3].



3. Application of the Algorithm to MPEG-2 Transport Streams 11extracted from the heap. Each bu�er point is associated with a busy period b and a cause. Thecause takes two values: LOSS, if the bu�er point causes a loss in the busy period b, and BREAK,if it results into a break. In case that the cause is a loss in the busy period, the algorithm updatesthe loss variables (LB and nl variables) that are used in the computation of the total loss for thecurrent value of the bu�er size. The total amount of loss is given by (LB � nlB). In the case of abreak cause, the algorithm updates the loss variables again and then processes the break by callingthe function process break(). First, the function computes the new busy periods generated after thebreak of busy period b, and checks them for possible losses. For each busy period computed thatexperiences loss, the function updates the loss variables. For the remaining new busy periods, itinserts into the heap the maximum bu�er sizes at which loss starts occurring in the busy periods.Finally, it computes the bu�er sizes for the �rst break of all the generated busy periods, and insertsthem into the heap. To avoid multiple output points with the same bu�er size value, the algorithmoutputs a (B, �) pair only when a new bu�er size is processed by calling the function output point().The procedure described above repeats for the new maximum bu�er point extracted from theheap and the associated busy period. The procedure ends when no bu�er point is left. The losscurve is obtained by connecting the loss ratio (�) values at all such bu�er points by linear segments.The worst-case time and space complexities of the algorithm can be determined by consideringthe computations performed at each bu�er point. The number of bu�er points is O(na) since abu�er point corresponds to either a break or a loss occurring in a busy period. It takes O(na) stepsto process a busy period for a speci�c bu�er size B, where na is the number of active periods. Thisincludes the time to compute any new busy periods and the bu�er size values at which either a lossor a break occurs in each of these busy periods. Therefore, the total worst-case time complexity forthe execution of the algorithm is O(n2a). The space needed to store the output of the algorithm isproportional to the number of bu�er points processed by the algorithm. Thus, the space complexityis O(na).The loss curve can be used for the computation of the B versus � curve, i.e., the plot of theminimum bu�er size B versus the service rate � for a speci�c loss rate �. To compute the B versus� curve for a speci�c value of �, we need to compute the loss curve for every �, and then read o� thevalues of B for the speci�ed value of �. This procedure can be done using some granularity of therate �, or using the rate points of the burstiness curve.3 Application of the Algorithm to MPEG-2 Transport StreamsThe algorithm presented in the last section can be modi�ed for computation of the loss curveof MPEG-2 Transport Streams. In this section, we present how the algorithm can be applied toMPEG-2 Transport Streams.The MPEG-2 Transport Stream format is a grouping of one or more programs into a singlestream, with a program de�ned as a grouping of elementary streams (audio, video, teletext, etc.)that have a common time-base for delivery. The MPEG-2 Transport Stream is the preferred choicefor error-prone environments as in the case of packet-switched networks. A basic characteristic ofthis format is that the rate throughout the stream is piecewise constant [7]. Therefore, an MPEG-2 Transport Stream consists of a sequence of constant-rate segments (see Figure 3.1). Detaileddescriptions of the MPEG-2 Systems Layer can be found in [7, 9].
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Figure 3.1: The behavior of Transport Rate in an MPEG-2 Transport Stream.
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Figure 3.2: Busy period of an example MPEG-2 Transport Stream.Using the same de�nition for the busy period, a busy period in the MPEG-2 Transport Streamcase always starts at the beginning of a rate segment i at which ri > �, with ri being the rate of thesegment. An example busy period is shown in Figure 3.2 which consists of rate segments 2{12.As in the case of elementary video streams, the amount of data that is lost in a busy period is againgiven by Eq. (2.8), where m(t) corresponds to the transport rate of the MPEG-2 Transport Stream.Similarly, the total losses throughout the whole stream is again given by Eq. (2.9). Therefore, tocompute the exact loss curve in this case, we need to consider only the bu�er points at which either(i) a change in the index of the last rate segment experiencing loss in a busy period occurs, or (ii)a change in the number of busy periods experiencing loss occurs. A di�erence between the casesof the elementary video stream and the MPEG-2 Transport Stream is in the computation of the



4. Validation and Results 13Trace Frame Rate Number of Video Length Running Time Space(Hz) Frames (mins) (secs) (# points)MrBean 25 40000 26.7 2.3 18812asterix 25 40000 26.7 2.8 24345atp 25 40000 26.7 2.5 22641bond 25 40000 26.7 2.9 27169dino 25 40000 26.7 1.9 14293lambs 25 40000 26.7 1.6 9632movie2 25 40000 26.7 2.1 17634mtv1 25 40000 26.7 3.3 28262mtv2 25 40000 26.7 5.2 22525news1 25 31515 21.0 2.1 20036news2 25 40000 26.7 2.1 16888race 25 40000 26.7 4.2 33317sbowl 25 40000 26.7 2.5 24044simpsons 25 40000 26.7 2.3 20527soccer1 25 40000 26.7 3.2 30265soccer2 25 40000 26.7 3.1 27129star 25 40000 26.7 1.8 12189talk1 25 40000 26.7 1.9 14110talk2 25 40000 26.7 2.0 15683terminator 25 40000 26.7 1.7 11396Garrett's trace [6] 24 174136 120.9 11.2 89489Table 4.1: Performance results of the exact algorithm on several elementary video streamstaken from [1]. The peak rate is set to 10 Mbps whereas the service rate � of the secondserver is set to 1 Mbps. The running time is the user time as measured on a Sun Ultra-2workstation.next bu�er size at which a break occurs for a certain busy period. The set of rate segments withincreasing peaks of the queue size (occurring at the ending time instants of the rate segments) isagain computed �rst. The time instants within the busy period that need to be checked for a possiblebreak are only the ones corresponding to the valleys inside the busy period and not all the timeinstants corresponding to the end of a decreasing line segment of the busy period. As an example,the rate segments 3, 5 and 8 of Figure 3.2, are inserted into the set of increasing queue peaks, and itis su�cient to examine the valley points at the end of rate segments 4, 7 and 10 for determinationof the bu�er size that will result in the �rst break of the busy period.4 Validation and ResultsTo evaluate the time- and space-complexities of the algorithm, in this section we show resultsfrom applying the algorithm to several actual video traces available over the Internet. For simplicity,we focus on elementary video streams. The performance on MPEG-2 Transport Streams can beexpected to be similar.We applied the algorithm to a number of elementary video stream traces taken from [1, 6].All the traces except Garrett's are approximately 30 minutes in duration, while Garrett's trace isapproximately 2 hours long. The execution times of the algorithm for the various traces are shownin Table 4.1. The execution time is relatively small for all the traces, typically within a few secondson a Sun Ultra-2 workstation. The number of points on the loss curve varied from 9,632 for \lambs"to 89,489 for Garrett's trace, comparable to the total number of frames in the respective traces. Anexample loss curve and typical B versus � curves for the \lambs" trace are shown in Figures 4.1and 4.2, respectively.
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Figure 4.1: Example loss curve for lambs trace as computed by the algorithm.
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Figure 4.2: Example B versus � curves for lambs trace calculated using the algorithm forthe computation of the loss curve.The algorithm for the computation of the loss curve along with the algorithms for the computationof the burstiness curve presented in [10] have been implemented in a JAVA tool that can be used forthe derivation of the characteristic curves of video traces. The tool provides the ability to analyzevideo traces and view the resulting curves graphically (Figure 4.3). It can be downloaded fromhttp://www.cse.ucsc.edu/~tryfonas/research.htm.5 ConclusionsIn this paper, we developed e�cient deterministic algorithms for exact computation of the losscurve of both elementary video streams and MPEG-2 Transport Streams. The algorithms enablethe exact computation of the loss curve of a video stream or any bursty ON-OFF source such asvoice or data. In addition, they facilitate the computation of the B versus � curve for a �xed lossrate � of a video stream.Our experiments with several video traces suggest that the proposed algorithms can be used notonly in o�-line environments in which the video stream is stored (e.g. video servers), but also inon-line systems such as in real-time TV broadcasting. In the latter case, the video stream can be
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