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1. Introduction 11 IntroductionThe explosion of the Internet has created demand for new applications traditionally carried overcircuit-switched networks. Such applications include audio telephony, video conferencing and video-on-demand (VoD) services. New standards are emerging to support these applications in the contextof both connectionless and connection-oriented packet-switched networks.The rate variability of video sources has introduced the need for characterizing the tra�c so thatthe amount of resources to be allocated by the network (such as bandwidth, bu�er space, etc.) canbe estimated during the call admission control (CAC) process. The characterization of the tra�cstream is also necessary for e�cient policing of the tra�c.Signi�cant work has been done in the literature to characterize video sources, so that they canbe e�ectively transported over packet-switched networks. One way to characterize a tra�c sourceis through a time-invariant tra�c constraint function. This function bounds the maximum numberof bits that may be generated by the source over any possible time interval. The least upper boundof this function is also referred to as the minimum envelope process [2] or empirical envelope [11].Although the use of the minimum envelope process provides very accurate tra�c characterizationfor a source, its practical signi�cance is diminished by the fact that such a function can only bee�ectively policed by a large number of leaky buckets [5]. Since current packet-switched networksemploy simple leaky-bucket mechanisms for tra�c policing, the use of the minimum envelope processdoes not facilitate tra�c policing.Another method of characterizing a tra�c source is by means of its burstiness curve, as de�nedby Low and Varayia [12]. Each (�; �) point in the burstiness curve corresponds to the maximumqueue size � encountered (or the amount of bu�ering needed), when the tra�c source is fed into aserver with deterministic service rate �. Consequently, if the tra�c source is sent to a leaky bucketwith parameters (�; �), none of its packets will be tagged as non-conformant. The simplicity of theburstiness curve approach for tra�c source characterization makes it very attractive for policing incurrent packet-switched networks.The burstiness curve can be obtained through simulation based techniques. However, simulationcan be very time consuming, especially when �ne rate granularity is needed. In this paper, we presente�cient algorithms for exact computation of the burstiness curve for both elementary video streamsand MPEG-2 Transport Streams. The algorithms exploit the piecewise linearity of the burstinesscurves of both elementary and Transport Streams and identify the minimum number of points thatneed to be computed for an exact computation of the burstiness curve. Therefore, the proposedalgorithms are optimal in the number of points needed for an exact computation of the burstinesscurve. We also present approximate versions of the algorithms that reduce the computational e�ortby considering only a smaller number of candidate points. The algorithms exhibit low time- andspace-complexity compared to traditional simulation-based approaches. The high e�ciency of theproposed algorithms makes them attractive not only to video servers that need to compute theburstiness curve of their video traces and store it as metadata with the trace for QoS control, butalso to real-time video distribution systems that need to estimate the burstiness curve of their videoprograms in real-time.The rest of this paper is organized as follows: In Section 2 we present the motivation of this workalong with examples illustrating the use of the burstiness curve for the selection of tra�c parametersunder di�erent QoS constraints. In Section 3, we present the algorithm for exact computation ofthe burstiness curve of an elementary video stream. In Section 4, we extend the algorithm to



2. Motivation 2MPEG-2 Transport Streams. In Section 5, we show approximate algorithms for the computation ofthe burstiness curve with much lower running time. In Section 6, we compare the performance ofthese algorithms on three example video traces. Finally, in Section 7 we conclude the paper with asummary of this work.2 MotivationThe burstiness of a tra�c source is usually characterized by means of a token-bucket mechanism.The input of the token-bucket is the tra�c generated by the source whereas the output is thecorresponding token-bucket constrained tra�c. The output of the token bucket is sometimes referredto as a (�; �; r) conformant tra�c stream, where � is the number of tokens in the token bucket, � therate of the incoming tokens, and r the peak rate of the server. If A(t1; t2) is the amount of tra�cthat leaves the token bucket during an interval (t1; t2), then the following constraint holds:A(t1; t2) � minfr(t2 � t1); � + �(t2 � t1)g: (2.1)A tra�c source is said to be (�; �; r) conformant if its tra�c can go through a token-bucketshaper with bucket size � and rate �, at peak rate r with the queue size never exceeding �. In thecontext of ATM networks, (�; �; r) enforcement is done using the Generalized Cell-Rate Algorithm(GCRA) [4].Specifying an appropriate (�; �; r) tuple for the tra�c source is critical for estimating the amountof resources (bandwidth, bu�er space, etc.) necessary in the network to provide the desired levelof service to the tra�c stream. However, there is no single tuple that uniquely characterizes asource [8, 12]. For a given peak rate r, it is evident from Eq. (2.1) that, for any value of �, there isa corresponding value of � such that the source is conformant. Hence, the set of conformant (�; �)pairs describe a curve which is referred to as the burstiness curve [12]. To completely characterizea source, we need to plot a set of burstiness curves for di�erent values of the peak rate r.The burstiness curve of a video source is useful in determining the level of resources necessary toachieve a desired QoS level. Both the delay and packet-loss rate in the network are functions of �and �. Thus, knowledge of the burstiness curve of the source enables the admission control processto allocate the minimum amount of resources to achieve a desired QoS level. In the following, wediscuss how the delay calculation in the network depends on the burstiness curve of the source.2.1 E�ect of Burstiness on End-to-End DelayThe end-to-end delay of a tra�c source can be guaranteed when a packet-switched networkutilizes scheduling algorithms able to guarantee a strict upper bound on the delay of a session. Inorder for a scheduling discipline to guarantee a worst-case delay bound to a session, the burstinessof the source tra�c must be bounded. Token-bucket constrained tra�c model is used extensivelyin the literature for the worst-case analysis of delay. Di�erent frameworks have been developed toformalize the characterization of schedulers and obtain the worst-case delay bounds [7, 14]. For thepurpose of this section, we consider the LR model [14]. The framework provides a general modelfor computation of the worst-case delay bound of several schedulers. Schedulers that fall into thisclassi�cation are called Latency-Rate (LR) servers.
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Figure 2.1: Model used for the computation of the burstiness curve of a video stream.We assume that the bandwidth allocated by the network to the session is equal to the averagerate of the source �. According to the LR model, the worst-case delay bound dM of a tandemnetwork consisting of K schedulers belonging to the LR class is given bydM = �� + KXi=1 �i; (2.2)where �, � are the parameters of the source, and �i is a parameter of the scheduler, called latency.Solving for �, we obtain the following constraint that � and � need to satisfy to achieve a speci�edworst-case delay bound: � =  dM � KXi=1 �i! �: (2.3)Based on this result, the optimum (�, �) pair can be obtained as the intersection between theline de�ned by Eq. (2.3) and the burstiness curve.3 Algorithm for Exact Computation of the Burstiness Curve ofElementary Video StreamsThe most common case for transporting video over a packet-switched network is by using anelementary video stream. An elementary video stream consists of a sequence of frames generated ata �xed rate (frame period), that may have varying sizes due to scene changes.The model that we use for the computation of the burstiness curve in the case of an elementaryvideo stream is shown in Figure 2.1. The tra�c source goes through a peak-rate shaper whichproduces a new time sequence for the bit-stream of the input tra�c source. For di�erent values ofthe peak rate r, the queue of the peak-rate shaper may have a di�erent maximum length, denotedby s(r). The bit-stream at the output of the peak-rate shaper, denoted by a(r; t) in the �gure, isalso dependent on the peak rate r. Our interest is in computing the burstiness curve of the tra�csource at the output of the peak-rate shaper for a speci�c value of the peak rate r.By feeding the tra�c source a(r; t) at the output of the peak-rate shaper into a server withdeterministic rate � in the range [0; r], we can observe the dynamics of its queue size Q�(r; t), andrecord its maximum queue length denoted by �(r; �) which corresponds to the burstiness of the tra�csource for rate �. The strategy that we will pursue to obtain the burstiness curve is to analyticallyderive the maximum queue length �(r; �) = maxt(Q�(r; t)) for di�erent values of rate �. We willshow later that we do not need to obtain points for all the possible values of rate � for an exactcomputation of the curve, thus minimizing the time- and space-complexity of the algorithm. Theexact curve can be obtained by connecting only the necessary points with linear segments.



3. Algorithm for Exact Computation of the Burstiness Curve of Elementary Video Streams 4We �rst present an algorithm to compute the on-o� periods of the bit-stream a(r; t) at the outputof the peak-rate shaper when the input source is an elementary video stream. These on-o� periodsare then used in the computation of the burstiness curve.We de�ne active period as a maximal period of time during which the peak-rate shaper iscontinuously transmitting tra�c. This corresponds to an on-period of the signal a(r; t). Let na(r)denote the number of active periods for a peak rate of r, sri the time instant at which the ith activeperiod commences, and tri the time when it ends. To capture the dynamics of the bit-stream a(r; t)generated at the output of the peak-rate shaper for a speci�c peak rate r, we need to compute itsactive periods (sri ; tri ), for 1 � i � na(r).We assume that the number of frames in the video trace is N , the length of the trace is T , theframe rate is f , and the size of the i-th frame is di bits. Let dmax = max1�i�N di be the maximumframe size in the trace. We also assume that a frame is immediately added to the shaper queueupon its generation. When the peak rate r satis�es r � dmax=f , it is trivial to compute the activeperiods of the signal a(r; t).s(r) = dmax; na(r) = N; sri = if ; and tri = sri + dir : (3.1)However, in the general case when r < dmax=f , neighboring frames overlap with each other inthe shaper queue, leading to larger maximum queue lengths and a smaller number of active periods.Let qi(r) be the size of the queue just after the instant when the i-th frame arrives. The maximumqueue length will always occur just after an arrival of a frame, and is given bys(r) = max1�i�N qi(r): (3.2)The active periods of the elementary stream can be determined by traversing the sequence offrames and computing the queue size at the instant just after each frame arrival. The pseudocodefor computing the active periods is given in Appendix A. For a given value of the peak rate r, thealgorithm processes the individual frames of the elementary stream in sequence and computes themaximum queue size s(r), the number of active periods na(r), and the starting and ending times ofeach active period (sri ; tri ); 1 � i � na(r).We can use the active periods of the signal a(r; t) to compute the burstiness of the original videostream by observing the queue behavior at the input of the second shaper in Figure 2.1. We nowdevelop an algorithm for calculating the maximum queue size at the input of the second shaper fora given peak rate r and service rate �. Since the peak rate r does not change in this algorithm, forsimplicity we omit the parameter r from all the notations in this section.3.1 Computation of the Burstiness CurveThe peak-rate shaping procedure produces a sequence of active periods for a given peak-rate r.If we denote by m(t) the output rate of the peak-rate shaper, thenm(t) = � r; t 2 [si; ti];0; otherwise: (3.3)Let I�(t) be an indicator function that is de�ned as follows:I�(t) = � 1; if Q�(t) > 0;0; otherwise; (3.4)
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Figure 3.1: Busy periods of an example elementary video stream for various values of therate �.where Q�(t) denotes the queue size at time t of the server at the output of the peak-rate shaper forrate �.We de�ne busy period as a maximal period of time during which the queue of the server at theoutput of the peak-rate shaper is non-empty, that is, an on-period of the indicator function I�(t).We use the notation �i; �i for the starting and the ending times of busy period i. Let Q�(�) denotethe maximum queue size reached at this queue over the entire duration of the video stream. Ouralgorithm for estimating Q�(�) is based on the observation that if the maximum queue size occursin some busy period i when the rate is �, then Q�(�) will vary linearly with the rate � until one ofthe following events occur:1. The maximum queue size moves to a di�erent instant within the same busy period.2. The maximum queue size moves to a di�erent busy period.3. The number of busy periods changes.These constitute all the possible cases in which the slope of the burstiness curve may change asthe rate � is increased towards its maximum value r. This can be illustrated with an example.Figure 3.1 shows the active periods generated when a sequence of frames is shaped by the peak-rate shaper with rate r, and the resulting busy periods at the input of the server operating at rate �.When the rate � of the server is zero, the queue of the server accumulates all the data arrived duringthe active periods in one large busy period. Therefore, the maximum queue size occurs at the endof the last active period, i.e., when all data has arrived. As the rate of the server increases to �1, thebusy period shrinks until it splits into two busy periods. Let us assume that the maximum queuesize occurs at time t2 for rate �1 which is the end of active period 2. Note that the maximum queue



3. Algorithm for Exact Computation of the Burstiness Curve of Elementary Video Streams 6size always occurs at the end of an active period. On increasing the rate further, the busy periodsof I�1(t) shrink without breaking and the maximum stays at t2, until rate �2 is reached. At rate �2,the maximum moves to time instant t1 while the total number of busy periods stays unchanged.For a video stream of �nite duration, the values of the rate � that cause either a break in a busyperiod or the maximum queue size to be moved to a di�erent location form a �nite set. We willshow that we only need to compute the rates belonging to this set for the exact computation of theburstiness curve. The burstiness curve is piecewise linear between adjacent rate points belonging tothis �nite set.When the video stream is sent to a server with zero rate, the resulting maximum queue length�(0) is the total amount of data generated by the video stream. Similarly, when the service rate �becomes equal to the peak rate r, �(�) = 0. For any intermediate rate �; 0 < � < r, we need toidentify all the busy periods that are generated at the server with service rate �, and calculate thelocal maximum queue lengths for each busy period. The maximum among them corresponds to theglobal maximum queue length �(�).Fortunately, we do not need to resort to this procedure for all possible rates in the interval (0; r).Instead, we need to perform a fresh calculation of the maximum queue size only at rate points where(i) the instant at which the maximum queue size occurs moves, or (ii) one of the busy periods breaksinto two or more smaller busy periods. We will now show that the burstiness curve is linear betweensuch points.Lemma 1: The burstiness curve of an elementary video stream is piecewise linear. The slope of theburstiness curve changes only at rate points where one of the following events occurs:1. A change in the time instant at which the maximum queue size �(�), or2. a change in the number of busy periods.Proof: Consider two distinct rates �1 and �2, with �1 < �2, such that (i) the number of busyperiods remains the same at �1 and �2; and (ii) the global maximum queue size occurs at the sameinstant �k for �1 and �2.Assume that �k belongs to busy period k. Let �k be the starting time of this busy period. Then,for any rate � in the range �1 � � � �2, the queue size at time �k is given byQ�(�k) =W (�k; �k)� �(�k � �k);where W (�k; �k) is the amount of tra�c arriving into the queue during the interval (�k ; �k). Thus,for any rate �, �1 � � � �2, we can writeQ�(�k) = W (�k; �k)� �1(�k � �k)� (�� �1)(�k � �k)= Q�1(�k)� (�� �1)(�k � �k):That is, the plot of Q�(�k) with respect to � in the range �1 � � � �2 is a straight line withslope �(�k � �k). This concludes the proof of Lemma 1. 2Thus, we can characterize the entire burstiness curve of the elementary stream by starting fromzero rate and progressively �nding rate points at which either the maximum queue size moves toa di�erent time instant, or a break in a busy period occurs. A naive approach to determine theformer will need to examine all active periods within each busy period, since the maximum queue



3. Algorithm for Exact Computation of the Burstiness Curve of Elementary Video Streams 7size occurs at the end of any active period. However, we can improve upon this by noting that thelocal maximum queue size within any busy period can move only to an earlier time instant whenthe rate � is increased. The following lemma proves this result formally.Lemma 2: Let �k and � 0k be the time instants at which the local maximum queue sizes occur withinbusy period k for rates � and �0, respectively, with �0 > �. If the number of busy periods in theelementary video stream remains the same at rates � and �0, then � 0k � �k.Proof: Since two busy periods can never merge into a single busy period when the rate is increased,the starting times of the busy periods are identical at rates � and �0. We will prove the lemma bycontradiction. Assume, if possible, that � 0k > �k. Let W (�k; � 0k) denote the amount of tra�c thatarrived into the queue during the interval (�k ; � 0k). Since the interval (�k; � 0k) belongs to a single busyperiod, the queue size Q�(� 0k) at time � 0k is given byQ�(� 0k) = Q�(�k) +W (�k ; � 0k)� �(� 0k � �k): (3.5)Similarly, for the rate �0 we haveQ�0(� 0k) = Q�0(�k) +W (�k; � 0k)� �0(� 0k � �k): (3.6)Since Q�0(� 0k) is a local maximum for the k-th busy period, we also haveQ�0(� 0k) � Q�0(�k): (3.7)From Eq. (3.6) and (3.7), W (�k; � 0k) � �0(� 0k � �k)> �(� 0k � �k); since �0 > �: (3.8)From (3.5) and (3.8), we get Q�(� 0k) > Q�(�k);which is a contradiction to the hypothesis that the local maximum queue size at rate � occurred attime �k. This concludes the proof of Lemma 2. 2Note that the lemma applies even when there are multiple identical maxima within the same busyperiod. In such an event we can select the earliest maximum so as to minimize the computationale�ort.Lemmas 1 and 2 enable us to design an algorithm for exact computation of the burstiness ofthe elementary stream by identifying values of the rate � at which the slope of the burstiness curvechanges. The detailed, hierarchical pseudocode of the algorithm is given in Appendix A. Thealgorithm starts by setting the current rate � to zero. It then computes the busy periods for currentrate � and the corresponding maximum queue size Q�. The algorithm then proceeds to computethe next rate point at which the slope of the burstiness curve changes and updates the current rateto this value. This is repeated until the rate � reaches the peak rate r. The burstiness curve isobtained by connecting the global maximum queue size at all such points by linear segments.



4. Algorithm for Exact Computation of the Burstiness Curve of MPEG-2 Transport Streams 8The function compute busy periods() in Appendix A is used to compute the busy periods of thestream for a given value of the rate �. It takes a sequence of active periods and the current rate � asits input. It traverses the active periods and identi�es each busy period j by calculating its startingand ending times, denoted by �j and �j , respectively. The function checks whether it should starta new busy period by checking the queue size Q at the beginning of the next active period, denotedby si+1. In case the queue size becomes less than zero, a new busy period is started. The functionalso records the local maximum queue size Q�j for each busy period j, and the global maximum Q�.The rate points in the burstiness curve are computed by the function compute next rate() inAppendix A. The function starts with the calculation of the lowest rate at which any busy periodcomputed in the previous step breaks. It also computes the lowest rate at which the global maximumqueue size moves to a di�erent time instant, either within the same busy period or in a di�erentone. In the case that the global maximum queue size stays within the same busy period, it can onlymove to an earlier time instant. This reduces computational e�ort. On the other hand, if the globalmaximum moves to a di�erent busy period, its new position must either coincide with the locationwhere the local maximum queue size occurred at the previous rate point, or at an earlier instant.The function compute next rate() selects the minimum rate among all these candidates as the ratepoint for the next iteration of the algorithm.The worst-case time- and space-complexities of the algorithm can be determined by consideringthe computations performed at each rate point. It takes O(na) steps to compute all the busy periodsfor a speci�c rate �, where na is the number of active periods. The number of candidate rates thatneed to be considered during each iteration to identify the next rate point is also O(na), since wealways check for candidate rates at the boundaries of the active periods. Therefore, the worst-casetime complexity of the algorithm is O(na2). The space needed to store the output of the algorithmis proportional to the number of rate points, which cannot exceed the number of active periodsna. Thus, the space complexity is O(na). Note that when simulation techniques are used, the timecomplexity becomes O( r�na), where � is the chosen rate granularity for the burstiness curve. Thecorresponding space complexity is O( r� ) which does not depend on the number of active periods na.Note that the burstiness curve obtained by simulation of the source behavior at each rate point isnot exact, but only an approximation that depends heavily on the rate granularity � chosen.As will be shown in Section 6, the worst-case space complexity of O(na) is rather conservativethat may occur in extreme cases such as when the frame sizes form an increasing function of time.In the case of MPEG elementary streams, however, the space complexity is mainly governed by theGroup-of-Pictures (GOP) structure which gives average complexity much smaller than the worst-case value. Therefore, in such cases, the space complexity becomes O(�Ngop), where � is constantthat depends on the number of scene changes in the video stream, and Ngop the number of framesin the GOP structure. The constant � will have values close to 1 when the scenes are fairly static,and higher for streams that exhibit higher rate variability due to scene changes.We now extend the algorithm to determine the burstiness curve of an MPEG-2 Transport Stream.4 Algorithm for Exact Computation of the Burstiness Curve ofMPEG-2 Transport StreamsThe algorithm in the last section can be modi�ed for computation of the burstiness curve ofMPEG-2 Transport Streams. In this section we �rst summarize the MPEG-2 Transport Streamformat and then outline the modi�cations to the algorithm.
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Figure 4.1: The behavior of Transport Rate in an MPEG-2 Transport Stream.4.1 The MPEG-2 Transport Stream formatThe MPEG standard de�nes a way of multiplexing more than one stream (video or audio) toproduce a program. A program is considered a single service entity, and consists of one or moreelementary streams. Elementary streams are the basic entities of a program. An elementary streammay be an MPEG-encoded audio or video stream, or a non-MPEG stream such as teletext or otherinformation that is o�ered by a speci�c service provider.Two schemes are used in the MPEG-2 standard for the multiplexing process.Program Stream: This is similar to MPEG-1 Systems layer. It is a grouping of elementary streamsthat have a common time-base for delivery. Each Program Stream consists of only one program.Transport Stream: The Transport Stream combines one or more programs into a single streamwith �xed-size packets. The programs may or may not have a common time-base.The MPEG-2 Transport Stream format is the preferred choice in environments where errors arelikely to occur, as in the case of transport over a packet-switched network. It is currently usedin Digital Video Broadcasting (DVB) systems for digital television and data broadcasting across abroad range of delivery media. The format makes use of explicit timestamps (called Program ClockReferences or PCRs in MPEG-2 terminology) embedded within the transport packets to facilitatethe clock recovery at the receiver.The transport rate of a Transport Stream may be either �xed or variable. However, it has animportant property: it is piecewise constant [10, 15] (see Figure 4.1). The rate of the TransportStream changes only at the instants when a new PCR value is received at the receiver. During aninterval between such rate changes, the transport rate can be computed bytransport rate(i) = (no. of bytes between PCRs)� system clock frequencyPCRnew � PCRold : (4.1)Therefore, during the time interval between the reception of two consecutive PCRs, the rateremains constant. We call this time interval as a rate segment. We take advantage of this property todesign an e�cient algorithm for computing its burstiness curve. The algorithm is based on observingthe queue behavior at the input of the second shaper in Figure 2.1, as in the case of elementaryvideo streams. Note that, in the case of MPEG-2 Transport Streams, the peak-rate shaping processdoes not introduce any additional delay if the peak rate is set greater than or equal to the maximumrate found in the stream. We now develop the algorithm for calculating the maximum queue size atthe input of the second shaper (maxt(Q�(r; t))) for a peak rate value r greater than or equal to themaximum rate found in the stream, and service rate �.
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Figure 4.2: Busy periods of an MPEG-2 Transport Stream for di�erent service rates �.4.2 Computation of the Burstiness CurveLet T be the total duration of the MPEG-2 Transport Stream and m(t) the instantaneous rateat time t, 0 � t � T . We assume that the peak rate r is greater than or equal to the maximum rateof the stream. Let nr denote the number of rate segments, si the time instant at which the ith ratesegment commences, and ti the time when it ends. Then, si+1 = ti. Let ri be the transport ratewithin the i-th segment, and let rmin and rmax be the minimum and maximum, respectively, amongri. That is, rmin = min1�i�nr ri and rmax = max1�i�nr ri:We also use the same indicator function I�(t) de�ned in Eq. (3.4).As before, we de�ne busy period as a maximal period of time during which the queue of theserver at the output of the peak-rate shaper is non-empty. Let Q�(�) denote the maximum queuesize reached over the entire duration of the MPEG-2 Transport Stream. Our algorithm for estimatingQ�(�) is based on the observation that, if the maximum queue size occurs in some busy period iwhen the rate is �, the variation of the maximum queue size with respect to � will be linear betweenrate points at which one of the following events occurs:1. The maximum queue size moves to a di�erent instant within the same busy period, or to adi�erent busy period.2. The number of busy periods changes.3. The starting time of a busy period moves.Note that the di�erence between the Transport Stream and the elementary stream is in (3) above.While an active period in an elementary stream always belongs to a busy period, a rate segment inthe Transport Stream may not belong to a busy period if the arrival rate during the segment is lessthan the service rate �. Hence, as the service rate � is increased, the starting times of some busyperiods may move to the right, as shown in the example of Figure 4.2.



4. Algorithm for Exact Computation of the Burstiness Curve of MPEG-2 Transport Streams 11Figure 4.2 shows the transport rate m(t) within each rate segment of the MPEG-2 TransportStream, and the resulting busy periods at the input of the server operating at rate �. When the rate� of the server is zero, the queue of the server accumulates all the data arrived during the length ofthe trace in one large busy period. Therefore, the maximum queue size occurs at the end of the lastrate segment. As the rate of the server increases to �1, the busy period shrinks until it splits intotwo busy periods. Let us assume that the maximum queue size occurs at time t2 for rate �1 which isthe end of rate segment 6. On increasing the rate further, the busy periods of I�1 (t) shrink withoutbreaking and the maximum stays at t2, until rate �2 is reached. Assuming that �2 > r8, the secondbusy period commences at the beginning of rate segment 9, since no accumulation can occur duringrate segment 8. At rate �2, the maximum moves to time instant t1 while the total number of busyperiods stays unchanged. Note that (i) the maximum queue size always occurs at the end of a ratesegment, (ii) the maximum queue size can never occur in a rate segment i which has ri < �, and(iii) a busy period always commences in a rate segment i which has ri > �.For an MPEG-2 Transport Stream of �nite duration, the values of the rate � that cause a breakin a busy period, the maximum queue size to be moved to a di�erent location, or the beginning ofa busy period to move, form a �nite set. We need to compute only the rates belonging to this setfor the exact computation of the burstiness curve. The burstiness curve is piecewise linear betweenadjacent rate points belonging to this �nite set.Lemma 3: The burstiness curve of an MPEG-2 Transport Stream is piecewise linear. The slope ofthe burstiness curve changes only at rate points where one of the following events occurs:1. A change in the time instant at which the maximum queue size �(�) occurs,2. a change in the number of busy periods, or3. a change in the starting time of a busy period.Proof: The proof is similar to that of Lemma 1 and is therefore omitted. 2We use the notation �i; �i for the starting and the ending times of busy period i. Note that weneed to identify the linear segments of the burstiness curve only between rates rmin and rmax, sincethe slope cannot change during the intervals [0; rmin) and (rmax; r]. Thus, we can characterize theentire burstiness curve of the MPEG-2 Transport Stream by starting from rate rmin and progressively�nding rate points at which either the maximum queue size moves to a di�erent time instant, a breakin a busy period occurs, or the starting time of a busy period moves to a di�erent point. As in thecase of elementary video streams, the local maximum queue size within any busy period can moveonly to an earlier time instant when the rate � is increased.Lemma 4: Let �k and � 0k be the time instants at which the local maximum queue sizes occur withinbusy period k for rates � and �0, respectively, with �0 > �. If the number of busy periods in theMPEG-2 Transport Stream remains the same at rates � and �0, then � 0k � �k.Proof: The proof is similar to that of Lemma 2 and is therefore omitted. 2Based on the above results, we can design an algorithm that determine the rate points at whichthe slope of the burstiness curve changes. The detailed pseudocode of the algorithm is given inAppendix B. The algorithm starts by setting the rate � to the minimum rate of the TransportStream segments, that is, rmin. It determines the busy periods corresponding to the current rate



5. Approximate Algorithms 12�. The algorithm then examines the candidate rate points at which the global maximum queue sizemoves, a busy period breaks into multiple periods, or the starting time of a busy period changes.The minimum among these candidate rates is the next point in the burstiness curve. The entireburstiness curve is obtained by repeating this process iteratively until the maximum rate rmax isreached.The function compute busy periods() in Appendix B describes how the busy periods are computedfor a given value of the rate �. The algorithm takes a sequence of rate segments and the current rate� as its input. It traverses the rate segments and identi�es the starting and ending times of each busyperiod by maintaining the accumulated queue size over the duration of the stream. The functionidenti�es the start of a rate segment as the start of a new busy period when the accumulated queueis empty at the beginning of the rate segment and the rate of the segment is higher than the currentrate �. The busy period ends when the accumulated queue size becomes zero.Determination of the next rate point of the burstiness curve is performed by the functioncompute next rate() in Appendix B. For each busy period corresponding to the current rate, thefunction �rst calculates the lowest rate at which the busy period breaks into multiple periods. Itsubsequently computes the lowest rate at which the global maximum queue size moves to a di�erenttime instant, either within the same busy period or to a di�erent one. Finally, it also �nds theminimum among the rates of the stream at the beginning of each busy period, which marks the nextrate point at which the starting point of a busy period moves. The algorithm chooses the minimumamong all these candidates as the next rate point.As in the case of the previous algorithm, the worst-case time complexity of this algorithm isO(n2r). Each iteration needs O(nr) steps, and the number of iterations is also O(nr), where nr isthe number of rate segments present in the MPEG-2 Transport Stream. The latter arises from theobservation that the candidate rates for the next step are always computed at the boundaries ofthe rate segments. Also, the space needed to store the output is O(nr) since, in the worst case,one point may be stored for each rate segment. In practice, however, the space complexity of thealgorithm is likely to be much less than O(nr), due to the fact that the rate segments may exhibitsome periodicity similar to the GOP structure of the MPEG elementary video streams. In contrast,simulation techniques have a time complexity of O( rmax� nr) and space complexity of O( rmax� ), where� is the rate granularity.5 Approximate AlgorithmsThe algorithms proposed in the previous sections produce the exact burstiness curve with theminimum number of points. The exact computation, however, requires identifying all the candidaterate points where the maximum queue size may move to a di�erent location, a busy period maybreak, or the starting time of a busy period may change (for Transport Streams). In practice,however, we can approximate the burstiness curve by considering only a subset of these events thatare most likely to occur. From our experiments with real video traces, we found that the locationof the maximum queue size almost never moved when a break occurred in a di�erent busy period.Similarly, a change in the location of the maximum queue size from one busy period to anotheralmost always occurred as a result of a break in the former busy period. Thus, we can simplify thealgorithms in the previous sections by considering only candidate rate points at which one of thefollowing events occur:1. A break in the busy period where the current global maximum queue size is located,



6. Validation 13Trace Frame Rate Number of Video Length Alg. Running Time Space(Hz) Frames (mins) (h:mm:ss.m) (# points)NTSC trace 30 2335 1.3 0:00:02.7 12PAL trace 25 21763 14.5 0:03:40.7 13Garrett's trace 24 174136 120.9 6:19:06.1 63Table 6.1: Performance results of the exact algorithm on three elementary video streams.The running time is the user time as measured on a Sun Ultra-2 workstation.2. a change in the location of the maximum queue size within the same busy period, or3. a change in the starting time of a busy period (for Transport Streams only).The detailed pseudocodes of the approximate algorithms for both elementary streams andMPEG-2 Transport Streams are given in Appendix C. Our experiments with the algorithms on severalvideo traces indicate that the approximate algorithms can be faster by many orders of magnitude,yet produce burstiness curves that are virtually indistinguishable from those produced by the exactalgorithms.6 ValidationIn this section we validate our algorithms with actual traces and compare their performance withresults from simulation-based algorithms. For simplicity, we will focus on elementary video streams.Because of the similarity of the algorithms for the elementary and Transport Streams, we can expectthe results for the former to be similar.We consider three separate video traces: The �rst is an elementary video stream in NTSC formatconsisting of 2,335 frames, with a total duration of 78 seconds; the second is an elementary videostream in PAL format with 21,763 frames and 14.5 minutes; and the last is a long trace generatedby Mark Garrett [6] consisting of 174,136 frames with a frame rate or 24 Hz, corresponding to aduration of approximately 2 hours. The characteristics of the traces are summarized in Table 6.1.In all experiments, we set the peak rate of the shaping mechanism to 155 Mbits/second.The execution times of the exact algorithm for the three traces are shown in Table 6.1. Asexpected, the execution time is relatively small for the �rst two traces, but the fact that the executiontime can grow as the square of the number of active periods is evident in the case of the third trace.The number of points in the last column is the number of points in the burstiness curve, and is relatedto the number of frames in the GOP structure. The relatively large number of points in Garrett'strace is justi�ed by the nature of the trace, which is a mix of several video segments with diversecharacteristics, ranging from frame sequences with little motion to high-action sequences [6]. In alltraces, the space needed for storing the points of the burstiness curve, for example as metadata in avideo �le in a video server, is insigni�cant compared to the actual video trace. This makes the exactalgorithms very suitable for Video-on-Demand (VoD) servers, where computation of the burstinesscurve can be performed o�-line.An interesting observation is that most of the points computed by the algorithm are concentratedin a very small rate interval (see Figure 6.1). As a result, simulation-based techniques must useextremely �ne rate-granularities to construct the burstiness curve, which makes them very ine�cient.For example, if we use simulation to compute the burstiness curve of the PAL trace with the samenumber of output points, the rate granularity must be at least 155=13 = 11:92 Mbits/second. The
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Figure 6.1: Burstiness curve for theNTSC trace as computed by the exactalgorithm. Note the concentration ofpoints around 5.9 Mbps.

0

100000

200000

300000

400000

500000

600000

700000

0 20 60 80 100 120 140

Q
ue

ue
 S

iz
e 

(K
B

)

Burstiness Curve for PAL trace

Exact Algorithm

Simulation

Rate (Mbps)

0

100000

200000

300000

400000

500000

600000

700000

0 2 4 6 8 10 12

Exact Algorithm
Simulation

40

Figure 6.2: Comparison between theburstiness curve computed by theexact algorithm and the burstinesscurve computed by simulation with11.92 Mbps rate granularity for thePAL trace.resulting burstiness curve is shown in Figure 6.2, where the discrepancy introduced is evident. Inall cases, the exact algorithm computed only the necessary points for the burstiness curve.When the approximate algorithm was used for the computation of the burstiness curve, theresults are very close to those from the exact algorithm, as shown in Table 6.2. In the cases of theNTSC and the PAL traces, the approximate algorithm produced the same set of points as the exactalgorithm. In the case of Garrett's trace, the approximate algorithm computed one fewer point (62points instead of 63), and introduced slight discrepancies in the rate values of three other points.However, the discrepancies were minor as indicated in the zoomed version of the burstiness curveshown in Figure 6.3. The di�erence in the running times of the algorithms, however, is signi�cant(10.6 seconds compared to more than 6 hours for the long trace). This makes the approximatealgorithm very suitable for on-line computation of the burstiness curve of real-time video sourcessuch as in video broadcasting. In such cases, the video stream can be segmented to �xed timeintervals and the burstiness curve can be obtained for each segment, facilitating per-segment QoSprovisioning and call admission control.To further compare the exact and approximate algorithms, we applied both algorithms on severaltraces [1] and compared the resulting burstiness curves. The results, shown in Table 6.3, demonstratethat the exact and approximate burstiness curves almost always coincide, except for a limited numberof points (up to 5 in our experiments) where there are discrepancies. Column 5 of the table providesthe maximum absolute di�erence in the burstiness values of the two curves at any point. In mostcases, the di�erence is under 10 %. There are a small number of cases where the maximum di�erenceis above 10%. In these cases, however, the large discrepancies occurs at rate points beyond the normaloperating range of the video source. For example, in the case of the MrBean trace, the maximumdi�erence occurs at a rate close to the average rate of the trace, a region usually avoided in practice(Figures 6.4 and 6.5). In addition, availability of the two algorithms enables a two-step approach



7. Conclusions 15Trace Exact Algorithm Approximate AlgorithmTime (h:mm:ss.m) Space (# points) Time (h:mm:ss.m) Space (# points)NTSC trace 0:00:02.7 12 0:00:00.0 (reported) 12PAL trace 0:03:40.7 13 0:00:00.5 13Garrett's trace 6:19:06.1 63 0:00:10.6 62Table 6.2: Comparison between the exact and the approximate burstiness curve algorithmsfor three elementary video streams. The algorithm running time is the user time asmeasured on a Sun Ultra-2 workstation.
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Figure 6.5: Plot of the di�erence (%)between the burstiness curve computedby the exact and approximate algo-rithms for the MrBean trace. The av-erage and the peak rate of the trace is0.441 and 5.727 Mbps respectively.for the computation of the burstiness curve: the approximate algorithm can be used to establishthe operating range of the video source, and the exact algorithm can be applied over this intervalto characterize the video stream precisely.7 ConclusionsIn this paper, we developed e�cient deterministic algorithms for computation of the burstinesscurve of both elementary video streams and MPEG-2 Transport Streams. The algorithms enablethe exact computation of the burstiness curve of a video stream, as compared to simulation-basedalgorithms where the accuracy depends on the rate granularity chosen. We also presented versions



References 16Trace Exact Alg. Approx. Alg. Comparison# Points # Points # Points Di�. Max. Di�. (KB) Max. Di�. (%)NTSC trace 12 12 0 0.04 0.05PAL trace 13 13 0 2.21 1.70Garrett's 63 62 1 47.47 12.08MrBean 36 31 5 188.32 17.11asterix 51 50 1 10.41 6.93atp 24 24 0 0.14 0.36bond 43 43 0 7.24 5.48dino 48 48 0 3.65 8.68lambs 39 39 0 1.26 8.49mtv1 48 48 0 1.45 7.04mtv2 30 30 0 15.46 7.70news1 34 34 0 5.59 2.62news2 40 40 0 0.00 0.00race 32 32 0 5.18 15.02sbowl 38 38 0 0.74 5.30simpsons 28 28 0 2.67 7.48soccer1 33 33 0 384.65 13.62soccer2 43 43 0 1.53 7.25star 59 59 0 0.31 2.27talk1 26 26 0 278.32 14.77talk2 33 33 0 0.11 0.75terminator 29 28 1 5.07 8.31Table 6.3: Comparison between the exact and the approximate burstiness curve algorithmsfor several elementary video streams taken from [1]. The maximum di�erence denotes thedi�erence in the burstiness values between the exact and approximate algorithm for therate point at which the percentage of that di�erence is maximum.of the algorithms which trade o� computational e�ort for accuracy.Our experiments with several video traces suggest that the discrepancies introduced by the ap-proximate algorithm are too small to be noticeable. The key assumption made in the approximationis that the location of the maximum queue size moves rarely from its busy period as the rate is in-creased, except when the busy period breaks into multiple periods. This avoids the need to examineother busy periods during each iteration of the algorithm.The accuracy of the algorithms makes them attractive not only to video servers that needto compute the burstiness curve of their video traces for call-admission control (CAC) and QoSprovisioning, and store it as metadata with the trace, but also to real-time video distribution systemsthat need to estimate the burstiness curve of their video programs in real-time. In addition, thealgorithms can be used to characterize any bursty ON-OFF source, including voice and data.All the algorithms presented in this paper have been implemented and can be downloaded fromhttp://www.cse.ucsc.edu/research/hsnlab.References[1] Mpeg traces. ftp://ftp-info3.informatik.uni-wuerzburg.de/pub/MPEG.[2] C. S. Chang. Stability, queue length, and delay of deterministic and stochastic networks. IEEETransactions on Automatic Control, 39(5):913{931, May 1994.[3] S Chong and S-Q Li. Probabilistic burstiness-curve-based connection control for real-timemultimedia services in ATM networks. IEEE Journal on Selected Areas in Communications,15(6):1072{1086, August 1997.
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Appendix A. Pseudocode of exact burstiness curve algorithm for elementary video streams A-1A Pseudocode of exact burstiness curve algorithm for elementary videostreamsPseudocode for Computation of Active Periods of Elementary Video Stream/* Index i denotes the i-th frame, qi denotes the queue size at the instantof i-th frame arrival and index j denotes the j-th active period. */1 /* Perform initialization */1.1 sr1  1=f ; q1  d1; i j  1;22.1 If � qir < 1f � /* no backlog present at the start of next frame */2.1.2 qi+1  di+1;2.1.3 trj  if + qir ; /* compute end time of current active period */2.1.4 j  j + 1;2.1.5 srj  i+1f ; /* start time of new active period */2.2 else2.2.1 qi+1  qi + di+1 � rf ; /* there is backlog carried to current frame */2.3 endif33.1 i i+ 1;3.2 If (i < N)3.2.1 goto Step 2;3.3 endif44.1 s(r)  max1�k�N qk; /* compute maximum queue length observed */4.2 trj  Nf + qNr ; /* compute end time of last active period */4.3 na(r)  j; /* store the number of active periods */Figure A.1: Algorithm to compute the active periods of the bit-stream at the output ofthe peak-rate shaper, when the input tra�c is an elementary video stream.



Appendix A. Pseudocode of exact burstiness curve algorithm for elementary video streams A-2

Burstiness Curve Algorithm Pseudocode for Elementary Video Streams1 /* Initialization */1.1 � 0; �old  �1; �old  �1;2 /* Compute busy periods for current rate �, the busy period jin which the global maximum queue size occurs, and thecorresponding max queue size Q� */2.1 compute busy periods(�);3 /* Compute rate for the next step */3.1 �0 = compute next rate(�);4 /* Output corresponding point of the burstiness curve if necessary */4.1 If (�j 6= �old) or (�j 6= �old)4.1.1 Output (�;Q�);4.2 If (�0 = r)4.2.1 Output (r; 0);4.2.2 STOP;4.3 else4.3.1 � �0; �old  �j ; �old  �j ;4.3.2 goto Step 2;4.4 endifFigure A.2: Pseudocode of the algorithm that computes the exact burstiness curve of anelementary video stream.



Appendix A. Pseudocode of exact burstiness curve algorithm for elementary video streams A-3
compute busy periods(�)/* For a given sequence of active periods (s1; t1); (s2; t2); : : : ; (sna ; tna), and rate �,determines the busy periods (�j ; �j), the local maximum queue size withineach busy period Q�j and the time at which the maximum occurs �j . *//* Perform initialization */1. De�ne sna+1 =1;2. i 1; /* index of active period */3. j  1; /* index of busy period */4. Q0  0; /* Q0 is used to compute the current queue size */5. �j  si; Q�j  0;6. If (� = 0) /* Corner case when rate is zero */6.1 Busy period (�j ; �j) contains all active periods;6.2 Q�j  stream size;6.3 �j  s1; �j  tna ; �j  tna ;7. endif/* Compute queue size at the end of current active period */8. Q Q0 + (ti � si)r � �(ti � si);9. If (Q�j < Q) /* update local maximum */9.1 Q�j  Q; �j  ti;10. endif/* Check if current busy period ends before next active period begins */11. Q0  Q� �(si+1 � ti);12. If (Q0 < 0)/* current busy period ended before next active period */12.1 �j  ti + Q� ; /* end of busy period */12.2 j  j + 1; /* to next busy period */12.3 �j  si+1; Q 0; Q�j  0; /* init variables for next busy period */13. endif14. i i+ 1; /* to next active period */15. If (i � na) goto step 8;16. endif17. Q�  max1�k�na Q�k; /* compute global maximum queue size */Figure A.3: Pseudocode of function compute busy period() of the burstiness algorithmthat computes the busy periods of an elementary video stream.



Appendix A. Pseudocode of exact burstiness curve algorithm for elementary video streams A-4

compute next rate(�)/* Given current rate �, determines the next higher rate �0at which the slope of the burstiness curve may change */1. �0  r;2. For j = 1 to nb /* for each busy period */2.1 Determine the lowest rate �j;1 at which the busy period j breaks (Figure A.5);2.2 If (�j;1 < �0)2.2.1 �0  �j;1;2.3 endif3. endfor/* Now determine the rates at which the global maximum moves */4. For j = 1 to nb4.1 Determine the lowest rate �j;2 at which the position of the global maximumqueue size changes (Figure A.6);4.2 If (�j;2 < �0)4.2.1 �0  �j;2;4.3 endif5. endfor6. return(�0);Figure A.4: Pseudocode of function compute next rate() of the burstiness algorithm thatcomputes the rate for the next iteration of the algorithm.



Appendix A. Pseudocode of exact burstiness curve algorithm for elementary video streams A-5

/* Given the busy period (�j ; �j) corresponding to rate �, determinethe lowest rate at which the busy period breaks into multiple periods *//* Let (sk; tk); (sk+1; tk+1); : : : ; (sm; tm) be the active periods containedwithin the busy period (�j ; �j) */1. If (m = k) /* only one active period within busy period */1.1 return(1);2. endif3. i k; /* start with �rst active period */4. W  0; /* W denotes the accumulated arrivals within busy period */5. �min  r; /* initialize minimum *//* Determine the rate at which a break can occur between ti and si+1 */6. W  W + (ti � si)r; /* total arrivals up to ti */7. � W(si+1�si) ;8. If (� < �min)8.1 �min  �; /* update minimum */9. endif10. i i+ 1;11. If (i < m) goto step 6;12. return(�min);Figure A.5: Pseudocode for the computation of �j;1.



Appendix A. Pseudocode of exact burstiness curve algorithm for elementary video streams A-6
/* Given the busy period (�j ; �j) corresponding to rate �, determine thelowest rate at which the global maximum queue size moves to adi�erent time instant within the current busy period. Let (�l; �l)be the busy period in which the current global maximum occurs,and �l the corresponding time. Let �j be the earliest instant at whichthe local maximum queue size occurs within the current busy period.Let (sk; tk); (sk+1; tk+1); : : : ; (sm; tm) be the active periods containedwithin the interval (�j ; �j). Let (sp; tp); (sp+1; tp+1); : : : ; (sq ; tq) bethe active periods contained within the interval (�l; �l). *//* compute total arrivals in busy period l up to time �l */1. Wl  Pqi=p r(ti � si);2. i k; /* start with �rst active period */3. W  0; /* W denotes the arrivals during current busy period */4. �min  r;/* check if global maximum is in the �rst active period of current busy period */5. If (j = l) and (q = p) /* maximum cannot move */6.1 return(r);7. endif/* Compute total arrivals at the end of current active period */8. W  W + (ti � si)r;/* Compute the rate at which queue size at ti becomes equal to that at time �l */9. � Wl�W(�l�sp)�(ti�sk) ;10. If (� < �min)10.1 �min  �;11. endif12. i i+ 1;13. If (i � m) goto step 5;14. return(�min);Figure A.6: Pseudocode for the computation of �j;2.



Appendix B. Pseudocode of exact burstiness curve algorithm of MPEG-2 Transport Streams B-1B Pseudocode of exact burstiness curve algorithm of MPEG-2Transport StreamsBurstiness Curve Algorithm Pseudocode for MPEG-2 Transport Streams1 /* Initialization */1.1 � rmin; �old  �1; �old  �1;2 /* Compute busy periods for current rate �, the busy period jin which the global maximum queue size occurs, and thecorresponding max queue size Q� */2.1 compute busy periods(�);3 /* Compute rate for the next step */3.1 �0 = compute next rate(�);4 /* Output corresponding point of the burstiness curve if necessary */4.1 If (�j 6= �old) or (�j 6= �old)4.1.1 Output (�;Q�);4.2 If (�0 = rmax)4.2.1 Output (rmax; 0);4.2.2 STOP;4.3 else4.3.1 � �0; �old  �j ; �old  �j ;4.3.2 goto Step 2;4.4 endifFigure B.1: Pseudocode of the algorithm that computes the exact burstiness curve of anMPEG-2 Transport Stream.



Appendix B. Pseudocode of exact burstiness curve algorithm of MPEG-2 Transport Streams B-2
compute busy periods(�)/* For a given sequence of rate segments (s1; t1); (s2; t2); : : : ; (snr ; tnr), and rate �,determines the busy periods (�j ; �j), the local maximum queue size withineach busy period Q�j , the time at which the maximum occurs �j ,and the global maximum queue size Q�. *//* Perform initialization */1. De�ne snr+1 =1;2. i 1; /* index of rate segment */3. j  1; /* index of busy period */4. Q 0; /* Q denotes the current queue size */5. �j  si; Q�j  0;/* Compute queue size at the end of current rate segment */6. Q Q+ (ti � si)ri � �(ti � si);7. If (Q�j < Q) /* update local maximum */7.1 Q�j  Q; �j  ti;8. endif/* Check if current busy period ends beforenext rate segment begins */9. If (Q < 0)/* current busy period ended before next rate segment */9.1 �j  ti + Q��ri ; /* end of busy period */9.2 j  j + 1; /* to next busy period *//* Skip all rate segments i which have ri < �; */9.3 while (ri < �), i i+ 1;9.4 �j  si+1; Q 0; Q�j  0; /* init variables for next busy period */10. endif11. i i+ 1; /* to next rate segment */12. If (i � nr) goto step 6;13. endif14. Q�  max1�k�nr Q�k; /* compute global maximum queue size */Figure B.2: Pseudocode of function compute busy period() of the burstiness algorithm thatcomputes the busy periods.



Appendix B. Pseudocode of exact burstiness curve algorithm of MPEG-2 Transport Streams B-3

compute next rate(�)/* Given current rate �, determines the next higher rate �0at which the slope of the burstiness curve may change */1. �0  rmax;2. For j = 1 to nb /* for each busy period */2.1 Determine the lowest rate �j;1 at which the busy period j breaks (Figure B.4);2.2 If (�j;1 < �0)2.2.1 �0  �j;1;2.3 endif3. endfor/* Now determine the rates at which the global maximum moves */4. For j = 1 to nb4.1 Determine the lowest rate �j;2 at which either the position of the globalmaximum queue size changes, or the starting time of busy period j movesto a later time instant (Figure B.5);4.2 If (�j;2 < �0)4.2.1 �0  �j;2;4.3 endif5. endfor6. return(�0);Figure B.3: Pseudocode of function compute next rate() of the burstiness algorithm thatcomputes the rate for the next iteration of the algorithm.



Appendix B. Pseudocode of exact burstiness curve algorithm of MPEG-2 Transport Streams B-4

/* Given the busy period (�j ; �j) corresponding to rate �, determinethe lowest rate at which the busy period breaks into multiple periods *//* Let (sk; tk); (sk+1; tk+1); : : : ; (sm; tm) be the rate segments containedwithin the busy period (�j ; �j) */1. If (m = k) /* only one rate segment within busy period */1.1 return(1);2. endif3. i k; /* start with �rst rate segment */4. W  0; /* W denotes the accumulated arrivals within busy period */5. �min  rmax; /* initialize minimum *//* Determine the rate at which a break can occur between ti and si+1 */6. W  W + (ti � si)ri; /* total arrivals up to ti */7. � W(si+1�si) ;8. If (� < �min)8.1 �min  �; /* update minimum */9. endif10. i i+ 1;11. If (i < m) goto step 6;12. return(�min);Figure B.4: Pseudocode for the computation of �j;1.



Appendix B. Pseudocode of exact burstiness curve algorithm of MPEG-2 Transport Streams B-5
/* Given the busy period (�j ; �j) corresponding to rate �, determine thelowest rate at which the global maximum queue size moves to adi�erent time instant within the current busy period. Let (�l; �l)be the busy period in which the current global maximum occurs,and �l the corresponding time. Let �j be the earliest instant at whichthe local maximum queue size occurs within the current busy period.Let (sk; tk); (sk+1; tk+1); : : : ; (sm; tm) be the rate segments containedwithin the interval (�j ; �j). Let (sp; tp); (sp+1; tp+1); : : : ; (sq ; tq) bethe rate segments contained within the interval (�l; �l). *//* compute total arrivals in busy period l up to time �l */1. Wl  Pqi=p ri(ti � si);2. i k; /* start with �rst rate segment */3. W  0; /* W denotes the arrivals during current busy period */4. �min  rk ;/* check if global maximum is in the �rst rate segment of current busy period */5. If (j = l) and (q = p) /* maximum cannot move */6.1 return(rmax);7. endif/* Compute total arrivals at the end of current rate segment */8. W  W + (ti � si)ri;/* Compute the rate at which queue size at ti becomes equal to that at time �l */9. � Wl�W(�l�sp)�(ti�sk) ;10. If (� < �min)10.1 �min  �;11. endif12. i i+ 1;13. If (i � m) goto step 5;14. return(�min);Figure B.5: Pseudocode for the computation of �j;2.



Appendix C. Pseudocode for the approximate algorithms C-1C Pseudocode for the approximate algorithmsPseudocode of Step 3 of the Approximate BurstinessCurve Algorithm for Elementary Video Streamscompute next rate(�)/* Given current rate � and maximum busy period l, determines the nexthigher rate �0 at which the slope of the burstiness curve may change */1. �0  r;2. Determine the lowest rate �l;1 at which the busy period l breaks (Figure A.5);3. If (�l;1 < �0)3.1 �0  �l;1;4. endif/* Now determine the rates at which the global maximum moves */5. Determine the lowest rate �l;2 at which the position of the global maximumqueue size changes (Figure A.6);6. If (�l;2 < �0)6.1 �0  �l;2;7. endif8. return(�0);Figure C.1: Pseudocode of step 3 of the approximate algorithm that computes the bursti-ness curve of an elementary video stream.



Appendix C. Pseudocode for the approximate algorithms C-2

Pseudocode of Step 3 of the Approximate BurstinessCurve Algorithm for MPEG-2 Transport Streamscompute next rate(�)/* Given current rate � and maximum busy period l, determines the nexthigher rate �0 at which the slope of the burstiness curve may change */1. �0  rmax;2. Determine the lowest rate �l;1 at which the busy period l breaks (Figure B.4);3. If (�l;1 < �0)3.1 �0  �l;1;4. endif/* Now determine the rates at which the global maximum moves */5. Determine the lowest rate �l;2 at which either the position of the globalmaximum queue size changes, or the starting time of busy period l movesto a later time instant (Figure B.5);6. If (�l;2 < �0)6.1 �0  �l;2;7. endif8. return(�0);Figure C.2: Pseudocode of step 3 of the approximate algorithm that computes the bursti-ness curve of an MPEG-2 Transport Stream.


