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1. Introduction 11 IntroductionIn this paper we consider the problem of tracking a changing environment. The environ-ment is modeled as a domain from which examples are drawn and a boolean valued targetfunction from some class labeling the examples. At each discrete point in time a randomexample is drawn and the algorithm predicts the label, which is then revealed to the algo-rithm. Our drifting model di�ers from standard learning models in that after each label isrevealed to the algorithm both the distribution on the domain and the target function canchange.Of course, if the distribution or target function could change arbitrarily then it wouldbe extremely di�cult to do any learning. For our main results we bound the amount thatthe distribution and target function can change at each point in time, and communicatethis bound to the algorithm. We use the total variation distance to measure the changein the distribution (although other measures such as the Kullback-Leibler divergence givesimilar results) and we use the probability under the current distribution of the symmetricdi�erence of the functions to measure the change in target.Our main result is a general algorithm whose mistake rate for moderate � is O(pd�)where � is the (known) combined drift rate of the target and distribution. For smallerdrift rates (� < 1=ed), the VC-dimension gets replaced with a logarithmic factor, becomingO(p� log 1=�). This implies that combined drift rates in �(�2= ln �) can be tolerated whilemaintaining a mistake rate less than � � 1=ed. Similarly, if � � 1=ed then the algorithm hasa mistake rate less then � whenever the combined drift rate is less than a constant times�2=d.To complement these results, Helmbold and Long [10, 11] give examples showing that noalgorithm can have mistake rate � for drift rates as small as a constant times �2=d, even whenthe distribution remains �xed and only the target function drifts. We give an additionallower bound showing that for some concept classes, no algorithm can have a mistake rateless than � when the target function is held constant and only the distribution drifts at arate in �(�2=d). It remains open if our algorithm's performance is optimal for very smalldrift rates.Thus, for moderate drift rates, our algorithm tolerates a mixture of concept and dis-tribution drift with the same performance (to within a constant factor) of algorithms thatmust deal only with drifting distributions, or only with drifting targets.We also examine two variations on this basic problem. It is not surprising that theproblem becomes more di�cult when only a bound on the average amount of drift is given,since an adversary could \save up" drift in order to make a drastic change in the distributionand/or target. For this problem our algorithm has mistake rate O( 3pd�) or O( 3p� ln(1=�))when the average drift is bounded by �.The second variation is an agnostic setting, where there is a joint probability distributionon X�f0; 1g which is slowly drifting. This joint distribution allows one to model noise anderrors. Since f0; 1g-valued functions cannot perfectly predict values drawn from an arbitraryjoint distribution, we measure the mistake rate of the algorithm minus the mistake ratewhen, at each time, the best member in the class for that time is used to generate predictions.We give an algorithm where this di�erence is bounded by 19d2=5
1=5qln(2d�2=5
�1=5),where 
 is the drift rate of the joint distribution.Some results in this paper (in particular, in Sections 5.2 and 6) have been previouslypresented in [2], which studied the problem of learning with a drifting distribution. There



2 2. De�nitions and Notationhave been some recent results in this area. Barve and Long [3] study learning with a driftingdistribution, and give an improvement on our bounds for agnostic learning. Speci�cally,they show that there is an algorithm whose mistake rate is within O((
d)1=3) of optimalwhen the distribution drifts by no more than 
 between trials.The problem of tracking a drifting concept with a �xed distribution has been studiedpreviously. Helmbold and Long [10, 11] exhibit a tracking algorithm, and show that ithas nearly optimal error for a given amount of concept drift. The algorithm we considerin Section 3 is based on their tracking algorithm. Kuh, Petsche, and Rivest [13] considerlearning a drifting interval on the circumference of the unit circle under the uniform distri-bution. They show that in this case a conservative tracker's mistake rate is p2�=� �O(�)by analyzing a Markov chain. In addition to experimental validation of this bound, theyalso consider \benign" adversaries which cause the target concept to drift randomly. In anearlier paper [12], they discuss several tracking variations and de�ne PAC-tracking. ThereKuh et al. also distinguish between incremental and memory based tracking algorithms.In their terminology, our algorithms are memory based trackers because they use a slidingwindow containing the most recently seen examples to make their predictions.In the next section we formalize our learning model and introduce our notation. Sec-tion 3 describes the exception tracking strategy and bounds its performance in terms ofits parameters. Section 4 considers particular settings of the parameters to obtain moremeaningful bounds on the performance of the exception tracking strategy. Several lowerbounds nearly matching the upper bounds in Section 4 are given in Section 5. Section 6considers a slightly di�erent \agnostic" model where the learner attempts to perform as wellas the current best concept when the examples are generated by a drifting joint probabilitydistribution on X � f0; 1g.2 De�nitions and NotationThe learning model described here is similar to the prediction model of learning describedby Haussler et al. [9]. We have a domain X and a target class F of functions mapping fromX to f0; 1g. Alternatively, each member of the target class can be viewed as the subsetof the domain which it maps to 1. At each time k, an example xk is randomly chosenfrom X according to an unknown probability distribution Pk on the domain. The learningalgorithm tries to predict the value of fk(xk) (the label of xk). The algorithm is then toldthe label, and the process is repeated. In the prediction model described by Haussler et al.[9], the distribution Pk and function fk do not vary with k, remaining constant for all time.In the model considered here, the distribution and function are allowed to vary slowly andthe learner is required to track them.A sequence x = (x1; x2; : : : ; xt) 2 Xt of examples is called a sample. A labeledsample is a sequence ((x1; f1(x1)); : : : ; (xt; ft(xt))) of labeled examples. For sample x =(x1; x2; : : : ; xt) 2 Xt and function sequence f = (f1; f2; : : : ; ft) 2 F t, de�ne the labeledsample of f generated by x assamt(x; f) = ((x1; f1(x1)); : : : ; (xt; ft(xt))) :Throughout, we assume that we have a measurable space (X;S), and that every subsetof X that we consider is in S. Blumer et al. [4] give conditions on the class F that ensurethis is true.



2. De�nitions and Notation 3For probability distributions P and Q on a measurable space (X;S), de�ne the totalvariation distance between P and Q asdTV (P;Q) = sup(XE2R jP (E)�Q(E)j : R � S partitions X) :It is easy to see that dTV (P;Q) = 2 supE2S jP (E)�Q(E)j :For a sequence P = (P1; : : : ; Pt) of probability distributions on X, de�ne the drift sequenceof P as 
 = (
1; : : : ; 
t�1) where 
i = dTV (Pi; Pi+1) for i = 1; : : : ; t� 1. De�nek
k1 = max1�i�t�1 
i;and k
k1 = 1t� 1 t�1Xi=1 
i:We will consider those distribution sequences where the drift 
 is small, i.e. either k
k1 ork
k1 is less than some small positive number.Another natural de�nition of the distance between two distributions is the Kullback-Leibler divergence. If P and Q are probability distributions on X, the Kullback-Leiblerdivergence of P with respect to Q isdKL(P;Q) = ZX log dP (!)dQ(!) dP (!);where dP=dQ is the Radon-Nikodym derivative of P with respect to Q. Kullback [14] hasshown that dKL(P;Q) � (dTV (P;Q))2=2+(dTV (P;Q))4=12, so it is easy to apply the upperbounds described in Sections 4 and 6 when the drift sequence is measured in terms of dKLrather than dTV .For a sequence f = (f1; : : : ; ft) of concepts from F , de�ne the drift sequence of f as� = (�1; : : : ; �t�1) with �i = Pi(fi 6= fi+1) for i = 1; : : : ; t � 1. Although the drift sequenceof f depends on the sequence of probability distributions, the appropriate P will always beclear from the context. We will consider distribution sequences with drift � where eitherk�k1 or k�k1 is small.De�ne the space of labeled examples, X � f0; 1g and the space of �nite length labeledsamples, (X � f0; 1g)� = [m2N (X � f0; 1g)m .A deterministic prediction strategy Q is a function from (X � f0; 1g)� � X to f0; 1g.A randomized prediction strategy (Qr; Z;D) consists of a function Qr, a space Z, and adistribution D on Z. The strategy chooses a point z 2 Z according to D, and passes z tothe function Qr, which maps from (X � f0; 1g)� �X � Z to f0; 1g.We de�ne the mistake probability of a prediction strategy as follows. Fix a samplex = (x1; : : : ; xt) 2 Xt (t � 1), function sequence f = (f1; : : : ; ft) from F , and let x� =(x1; : : : ; xt�1) and f� = (f1; : : : ; ft�1). We can now de�ne the mistake of a deterministicprediction strategy Q on x with respect to f asM tQ;f(x) = ( 1 if Q(samt�1(x�; f�); xt) 6= ft(xt)0 otherwise.



4 3. The Exception Tracking StrategySimilarly, we de�ne the mistake probability of a randomized prediction strategy (Qr,Z,D)on x with respect to f asM tQr;f(x) = D �z 2 Z : Qr �samt�1(x�; f�); xt; z� 6= ft(xt)	 :Finally, we generalize both notations to function sequences of zero drift, writing M tQ;f (x)for M tQ;f(x) where f is the sequence (f; f; : : : ; f) of length t.We are interested in both the instantaneous loss, E �M tQ;f�, and in the cumulativeloss, E �Pti=1M iQ;f�. Here the expectations are over both the random draw of x from thedistribution sequence P and any randomization used by the algorithm.3 The Exception Tracking StrategyThe exception tracking strategy is a modi�cation of the one-inclusion graph algorithmof Haussler et al. [9] in the spirit of Helmbold and Long [10]. In its original form, theone-inclusion graph algorithm is given a labeled set of examples consistent with a functionin the class. A permutation argument exploiting the fact that each element in the sample isgenerated from the same distribution is used to bound the performance of the one-inclusiongraph algorithm.Unfortunately, in our setting the function sequence drifts. It is possible (and often likely)that no single function in the class matches the labeled sample. Therefore we extend thefunction class (as was done by Helmbold and Long [10]) to include all functions which are\close" to a function in the class on the sample.Since the distributions are also drifting, all permutations of the example sequence arenot equally likely. However, we are still able to use a (more sophisticated) permutationargument to bound the performance of the algorithm. The main idea is to show that formost examples in the sample the probability and function value do not change very much,and so we can apply the permutation argument to those examples.3.1 Volatile and Uncertain pointsFor the analysis it is useful to identify the subset of X for which the probability of pointsvaries greatly under the di�erent distributions Pi. The following lemma shows one way todo this. The proof is in the appendix.Lemma 1: If P and Q are probability distributions de�ned on the measurable space (X;S)and � is a positive constant, then there is a set E 2 S such that for all S 2 S, we have1. either Q(S \E) = 0 or P (S \E) > �Q(S \E), and2. P (S \ (X �E)) � �Q(S \ (X �E)).The set E is unique up to measure zero di�erences (that is, for any other suitable E0, wehave P (E �E0) = Q(E �E0) = 0, where � denotes symmetric di�erence).Furthermore, for any S 2 S and non-negative measurable function f : X !R,ZS\(X�E) f dP � � ZS\(X�E) f dQ:



3. The Exception Tracking Strategy 5We will refer to a set E de�ned by the theorem as Set(P > �Q). This de�nition capturesthe intuitive notion of the set in which the distribution P is more than � times as dense asdistribution Q. We extend this notation in the obvious way, letting Set(P � �Q) = X �Set(P > �Q), Set(P < �Q) = Set(Q > 1�P ), and Set(P � �Q) = X � Set(P < �Q).If P = (P1; : : : ; Pt) is a sequence of probability distributions de�ned on (X;S), de�nethe sets Hi and Li for 1 � i < t as Hi = Set(Pi > 2Pt) and Li = Set(Pi < 12Pt). Thus Hiis the \heavy" set of points whose density under Pi is twice their density under Pt, and Liis the \light" points whose density under Pi is half their density under Pt. A point is calledvolatile at time i if it is in either Hi or Li. The set of volatile points at, or after, time k isdenoted by Vk. Formally, Vk = St�1i=k(Hi [ Li).The following result shows that volatile points are not very likely if the distribution doesnot change too quickly.Lemma 2: If P = (P1; : : : ; Pt) is a sequence of t probability distributions on (X;S), withdistribution drift 
 = (
1; : : : ; 
t�1), then for all 1 � k � i � tPi(Vk) � 3=2 t�1Xj=k 
j:The proof is given in the Appendix.Let f = (f1; : : : ; ft) be any sequence of t target functions from F . A point's label changesat time j if it is labeled di�erently by fj and fj+1. A point is uncertain at time k if itslabel changes at time k or later. Thus the set of uncertain points at time k (for 1 � k < t),denoted Uk, is de�ned by Uk = Sk�j<t(fj � fj+1).Lemma 3: Let P = (P1; : : : ; Pt) be a sequence of t probability distributions on (X;S) withdrift 
 = (
1; : : : ; 
t�1), and let f = (f1; : : : ; ft) be a sequence of t functions on X with drift� = (�1; : : : ; �t�1). For all k and i such that 1 � k � i � t, if Uk is the set of uncertainpoints de�ned above, then Pi(Uk) � t�1Xj=k(�j + 
j=2):The proof is given in the Appendix.3.2 The one-inclusion tracking strategy, and an upper boundThe one-inclusion graph algorithm of [9] makes a mistake on relatively few permutationsof any sample. Let AF be the one-inclusion graph algorithm for any concept (function) classF , d be the VC-dimension of F , and for each 1 � i � t, let �i;t be the permutation on telements that swaps elements i and t while leaving the other elements unchanged. Haussleret al. show that for any positive integer t, sequence of examples x 2 Xt, and single functionf 2 F , ���ni :M tAF ;f (x�i;t) = 1o��� � 2d:De�ne the class F�u for u 2 N to be F closed under up to u exceptions. ThusF�u = ff � S : f 2 F; S � X; jSj � ug.



6 3. The Exception Tracking StrategyIt has been shown by Auer and Long [1] that the VC-dimension of F�u is at most4:82(d + u) where d is the VC-dimension of F , and results of Cesa-Bianchi et al. [5] implythat it is bounded by 4:404(d + u). We �rst analyze the case where our algorithm picksu and then predicts using the one-inclusion graph algorithm for F�u on the examples(x1; x2; : : : ; xt). When t is large, the �rst examples can be very misleading and we describelater how to adapt the following theorem when only a su�x of the examples is used.Theorem 4: Let F be a function class de�ned on some domain X with VC-dimension d,and let Q be the prediction strategy that applies the one-inclusion graph algorithm for theconcept class F�u for some u 2 N . For any distribution sequence P of t distributions onX and function sequence f of t functions from F , if:� 
 is the drift sequence of P,� � is the drift sequence of f,� d0 is the VC-dimension of F�u (at most 4:404(d + u)), and� u � 2t t�1Xi=1(�i + 
i=2),then for every v 2 N such that v � 3t t�1Xi=1 
i;and u+ v � t, we haveEP �M tQ;f(x)� � t�1Xi=1(2
i + �i) + 8d0t� (u+ v) + e�v=6 + e�u=6:Proof Fix a function sequence f and distribution sequence P, both of length t. De�ne thevolatile set V1 and the uncertain set U1 as in Section 3.1. We partition the domain X intofour classes, Xuv = U1 \ V1, X�uv = V1 � U1, Xu�v = U1 � V1, and X�u�v = X � (U1 [ V1).Similarly, Xt is partitioned into 4t classes, one for each vector b 2 fuv; �uv;u�v; �u�vgt. Avector x 2 Xt is in the class associated with vector b 2 fuv; �uv;u�v; �u�vgt i� each xi 2 Xbi .Let Xtb denote the set of vectors in the class associated with b 2 fuv; �uv;u�v; �u�vgt. Clearlythe sets Xtb partition Xt.We now consider the following subsets of fuv; �uv;u�v; �u�vgt whose union is fuv; �uv;u�v; �u�vgt.In these de�nitions, the parameters v and u represent thresholds on the acceptable numbersof volatile and uncertain points respectively.� A is the set of all b 2 fuv; �uv;u�v; �u�vgt wherebt = �u�v,jfi 2 f1; : : : ; tg : bi = �uv or bi = uvgj � v, andjfi 2 f1; : : : ; tg : bi = u�v or bi = uvgj � u.� B is the set of all b 2 fuv; �uv;u�v; �u�vgt wherejfi 2 f1; : : : ; tg : bi = �uv or bi = uvgj > v.� C is the set of all b 2 fuv; �uv;u�v; �u�vgt wherejfi 2 f1; : : : ; tg : bi = u�v or bi = uvgj > u.� D is the set of all b 2 fuv; �uv;u�v; �u�vgt wherebt 6= �u�v.



3. The Exception Tracking Strategy 7We now have thatZXtM tQ;f(x)dP1 � � � dPt = Xb ZXtbM tQ;f(x)dP1 � � � dPt� Xb2A ZXtbM tQ;f(x)dP1 � � � dPt + Xb2B ZXtbM tQ;f(x)dP1 � � � dPt +Xb2C ZXtbM tQ;f(x)dP1 � � � dPt + Xb2D ZXtbM tQ;f(x)dP1 � � � dPt:We will bound each of the four terms separately, starting with the sum over b 2 D.Xb2D ZXtbM tQ;f(x)dP1 � � � dPt = ZXt�1 �ZV1[U1 M tQ;f(x)dPt� dP1 � � � dPt�1� ZXt�1 �ZV1[U1 dPt� dP1 � � � dPt�1� ZXt�1 t�1Xi=1 (2
i + �i) dP1 � � � dPt�1= t�1Xi=1 (2
i + �i) ;where the second inequality follows from Lemmas 2 and 3.Next we examine the sum over b 2 B.Xb2B ZXtbM tQ;f(x)dP1 � � � dPt � Xb2B ZXtb dP1 � � � dPt:This sum is the probability under the distribution Qti=1 Pi of a sequence in Xt that hasmore than v components in V1. Note that this is bounded by the probability that there willbe more than v successes in t Bernoulli trials when probability of success ismax1�i�t�1Pi(V1) � 3=2 t�1Xi=1 
i:Let m be the expected number of successes of these Bernoulli trials. Sincev � 3t t�1Xi=1 
i;v is at least twice m, so the probability of more than v successes is no more thane�(v=m�1)2m=3 = e�(v�m)2=(3m) � e�v=6 (see for example [8], Inequality (6)).We use a similar technique to bound the sum over b 2 C.Xb2C ZXtbM tQ;f(x)dP1 � � � dPt � Xb2C ZXtb dP1 � � � dPt:Again, this sum is the probability under the distribution Qti=1 Pi of a sequence in Xt thathas more than u components in U1. This is no more than the probability of more than usuccesses in t Bernoulli trials with probability of success no more thanmax1�i�t�1Pi(U1) � t�1Xi=1(�i + 
i=2):



8 3. The Exception Tracking StrategySince u is at least twice the expected number of successes, this probability is bounded bye�u=6.Finally, we consider the sum over b 2 A. For each b 2 A, let �b be the set ofpermutations of f1; : : : ; tg which swap t with some i in f1 : : : ; tg that satis�es bi = �u�v,and leave the other positions unchanged. Thus for t = 4 and b = (�u�v; �uv; �u�v; �u�v), the threepermutations in �b are (1; 2; 3; 4), (4; 2; 3; 1), and (1; 2; 4; 3).Fix b 2 A and i 2 f1; : : : ; t� 1g for which bi = �u�v. We haveZXtbM tQ;f(x)dP1 � � � dPt =ZXt�2b �ZX�u�v ZX�u�v M tQ;f(x)dPt(xt) dPi(xi)� dP1 � � � dPi�1dPi+1 � � � dPt�1;where Xt�2b has the obvious meaning. The inner integral satis�esZX�u�v ZX�u�v M tQ;f(x)dPt(xt) dPi(xi) � 2 ZX�u�v ZX�u�v M tQ;f(x)dPi(xt) dPi(xi)� 4 ZX�u�v ZX�u�v M tQ;f(x)dPi(xt) dPt(xi);from Theorem 1, soZXtbM tQ;f(x)dP1 � � � dPt � 4 ZXtbM tQ;f(x�)dP1 � � � dPtfor any � in �b. It follows thatXb2B ZXtbM tQ;f(x)dP1 � � � dPt� 4 Xb2B 1j�bj X�2�b ZXtbM tQ;f(x�)dP1 � � � dPt= 4 Xb2B ZXtb 0@ 1j�bj X�2�bM tQ;f(x�)1A dP1 � � � dPt� 4 Xb2B ZXtb 2d0t� (u+ v)dP1 � � � dPt� 8d0t� (u+ v) :Adding the bounds on these four sums completes the proof. utAs noted above, if t is large enough so that the total drift,Pt�1i=1(2
i+�i), is greater thanone, then the above theorem is trivial. However, the algorithm is able to ignore the initialexamples and consider only the last k labeled examples (as well as the unlabeled exampleon which it predicts). In this case we obtain the following corollary.Corollary 5: Let Q be the prediction strategy that applies the one-inclusion graph algorithmfor the concept class F�u to the last k+1 � t examples. For any distribution sequence P oft distributions on X and function sequence f of t functions from F , if u and v are positiveintegers satisfying



4. Upper Bounds 9u � 2k t�1Xi=t�k(�i + 
i=2);v � 3k t�1Xi=t�k 
i;and u+ v � k, thenEP �M tQ;f(x)� � t�1Xi=t�k(2
i + �i) + 8d0k + 1� (u+ v) + e�v=6 + e�u=6:Here d0 is the VC-dimension of F�u, and is at most 4:404(d+u) where d is the VC-dimensionof F .4 Upper BoundsIn this section we use Theorem 4 and Corollary 5 from the previous section to bound theexpected performance of the one-inclusion graph tracking strategy. This involves assumingbounds on the drift sequences and then �nding an appropriate number of exceptions andamount of history to use.Theorem 6: Let F be a function class on domain X and d be the VC-dimension of F .For 
̂; �̂ > 0, let � = 2
̂ + �̂. If � < 1=d and d0 = d + d3=2 ln 1=(d�)e, then there is aprediction strategy Q such that: for any distribution sequence P = (P1; : : : ; Pt) on X withdrift sequence 
 satisfying k
k1 � 
̂ and any function sequence f = (f1; : : : ; ft) 2 F t withdrift sequence � satisfying k�k1 � �̂, we haveEP �M tQ;f� � ( 3pd0�+ 126d0=t if 8d0 < t � pd0=�75pd0� if t > pd0=�,and hence EP  tXi=1M iQ;f! � sd0� + 75pd0�t :Proof Consider the one-inclusion graph algorithm on F�u where u = 2d0. To show thatthis algorithm meets the bounds of the theorem, we apply Corollary 5 with v = 2d0 andk = maxft� 1; bpd0=�cg.Case 1 : 8d0 < t � pd0=�.For this case, k is set to t� 1. Note that u+ v = 4d0 < t=2, 2t2(
̂=2+ �̂) � u, and 3t2
̂ � v,so we can apply Corollary 5. This givesEP �M tQ;f� � t�1Xi=1(2
i + �i) + 21(d+ u)t� (u+ v) + e�u=6 + e�v=6� t�+ 63d0t=2 + 2e�d0=3� pd0�+ 126d0=t+ 2pd0�:



10 4. Upper BoundsCase 2 : t > pd0=�.Here k = jpd0=�k. Assume pd0� � 1=75, for otherwise the bound is trivial. This impliespd0=� � 75d0, so k � (u+ v) = �qd0=��� 4d0� (1� 5=75)qd0=�+ 5=75qd0=�� 5d0� 14=15qd0=�:Also, 2k2(
̂=2 + �̂) � u and 3k2
̂ � v, so Corollary 5 impliesEP �M tQ;f� � t�1Xi=t�k(2
i + �i) + 21(d+ u)k + 1� (u+ v) + e�u=6 + e�v=6� 3pd0�+ 63d014=15pd0=�� 75pd0�:The bound on cumulative loss follows immediately. utThe value d0 in Theorem 6 is a derived quantity rather than a natural parameter of theproblem. However when � � 1=ed then d0 < 5=2d and when � � 1=ed then d0 < 5=2 ln 1=�.This leads immediately to the following corollary.Corollary 7: Under the conditions of Theorem 6, if � � 1=ed thenEP �M tQ;f� � 120q� ln(1=�) whenever t > 1:6pln(1=�)=�;and if 1=ed � � < 1=d thenEP �M tQ;f� � 120pd� whenever t > 1:6pd=�.Similar results can easily be obtained for the other bounds in Theorem 6.We now show how bounds on the average drift (as opposed to the maximum drift) canbe used to obtain bounds on the one-inclusion graph algorithm's performance. A bound onthe average drift gives the algorithm less information since an adversary can \save up" inorder to make radical changes in the function and/or distribution.Theorem 8: Let F be a function class on domain X with VC-dimension d � 1. For
̂; �̂ > 0, de�ne � = 2
̂ + �̂.If d� < 1 and d0 = d + dln(1=d�)e, then there is a prediction strategy Q such that, forany distribution sequence P = (P1; : : : ; Pt) with drift sequence 
 satisfying k
k1 � 
̂ andany function sequence f = (f1; : : : ; ft) with drift sequence � satisfying k�k1 � �̂, we haveE  tXi=1M iQ;f! � �d02=��1=3 + 75t(d0�)1=3:



4. Upper Bounds 11Proof Consider the following algorithm. For the �rst (d02=�)1=3 time steps, the algorithmpredicts arbitrarily. After that, we use the one-inclusion graph algorithm of Corollary 5with k = (d02=�)1=3 and u = v = 2d0. Since the constraint on function and distribution driftis not uniform, it is possible that the conditions on u and v of Corollary 5 will be violatedat some times. Ignoring the �rst k time indices, let Nu (Nv) be the number of time indicesi for which the condition on u (v) is violated. That is,Nu = ������8<:i 2 fk + 1; : : : ; tg : 2k i�1Xj=i�k(
j=2 + �j) > u9=;������ ;Nv = ������8<:i 2 fk + 1; : : : ; tg : 3k i�1Xj=i�k 
j > v9=;������ :Then we have Nuu � 2k tXi=k+1 i�1Xj=i�k(
j=2 + �j)� 2k2 tXj=1(
j=2 + �j)� 2k2�t;and so Nu � (d0�)1=3t. Similarly,Nv � (d0�)1=3t. Also, we can assume that (d0�)1=3 < 1=75,for otherwise the result is trivial. But this impliesk � (u+ v) = d0=(d0�)1=3 � 4d0� 71=75d02=3=�1=3:Applying Corollary 5, we haveE  tXi=1M iQ;f! � k + 2t(d0�)1=3 +tXi=k0@ i�1Xj=i�k(2
j + �j) + 21(d + u)k � (u+ v) + e�u=6 + e�v=61A� k + t�2(d0�)1=3 + k�+ 63d071=75d02=3=�1=3 + 2(d0�)1=3�� k + 75t(d0�)1=3: utThe bounds of Theorem 8 when given the average drift are clearly weaker than thoseof Theorem 6 when the maximum drift is bounded. We believe that this gap represents areal di�erence in di�culty between the two problems. We conjecture that if the total driftis bounded and the actual drift at each time is known to the algorithm then a variant ofthe one-inclusion graph algorithm has expected cumulative loss O(tpd0�) rather than theorder t 3pd0� suggested by Theorem 8. Thus we conjecture that the di�erence in di�cultybetween the two problems is not due to the adversary making large changes, but is causedby the algorithm's not knowing when these large changes will occur.



12 5. Lower Bounds5 Lower BoundsHere we describe two lower bounds related to the drifting problem. The �rst lowerbound is from Helmbold and Long [10] and uses a �xed distribution so only the targetfunction changes. In the second lower bound, the target is �xed and only the distributiondrifts. These lower bounds nearly match (i.e. are within a log factor) of our upper boundson the one-inclusion tracking strategy, which handles simultaneous drifting of functions anddistributions.5.1 Drifting functionsAs might be expected, the lower bounds for drifting functions depend greatly on theparticular function class. When the function class F has VC dimension d and is suitablyrich, M̂Q;F;
(t) � p�d=e2. However, for the simplest function classes of dimension d,M̂Q;F;
(t) < �d for large t.Say a function class class F of is d-suitable if there are d disjoint subsets of the domain,X1; : : : ;Xd such that� for each Xj there is an isomorphisms Ij between Xj and the natural numbers, and� for each v 2 N d0 there is a function f 2 F such that for each j, function f assigns 1to the inverse under Ij of fi 2 N : i � vjg, and assigns 0 to the inverse under Ij offi 2 N : i > vjg.Thus a d-suitable function class contains d independent \copies" of the natural numbersand an initial segment of each \copy" can be set to one independently.For example, consider the class of closed sub-intervals of [0; 1]. We focus our attentionon two in�nite sequences of points: h1=3; 1=6; 1=9; : : :i; and h2=3; 5=6; 8=9; : : :i. For any iand j we can �nd a closed interval (namely [1=(3i); 1 � 1=(3j)]) which contains (only) the�rst i points from the �rst sequence and (only) the �rst j points of the second sequence.Therefore this class is 2-suitable.The following result, due to Helmbold and Long [10], shows that for general functionclasses the one-inclusion tracking strategy is nearly optimal.Theorem 9 (Helmbold and Long): For d 2 N , if F is a d-suitable function class on aset X, � < 1=d, and t � bpd=�c, then for any algorithm Q there is a distribution P on Xand a function sequence f 2 F t with drift � such that k�k1 = � andEMQ;f > p�de2 :However, simpler function classes with VC-dimension d can be much easier to track.Consider the class of all f0; 1g-valued functions de�ned on X = f1; : : : ; dg. Given a functionsequence with drift � having k�k1 = �, the function sequence can change value only on thosepoints which have probability at most �. Therefore the asymptotic error of the algorithmwhich always predicts with the last seen value for each point is at most (d� 1)�.Given only that function class F has VC-dimension d, the best lower bound we canprove is EM tQ;f � �(d � 1)(1 � �(d � 2)=2)=2 2 �(�d). This bound can be shown by thesimple adversary that takes a shattered set of size d and puts probability � on the �rst d�1points and probability 1 � (d � 1)� on the last point. The adversary uses the last d � 1trials to randomly reset the values of the �rst d � 1 points. No algorithm can do betterthan random guessing on these d� 1 points (unless the algorithm was fortunate enough tohave seen one of them since its value was reset).



5. Lower Bounds 13The following theorem shows that the one-inclusion tracking strategy is also nearlyoptimal with respect to cumulative loss. The proof is closely related to the proof ofTheorem 9.Theorem 10: If F is a d-suitable function class on domain X, 0 < � < 1=16 with 1=� aninteger, and t � 4 lpd=�m, then for any algorithm Q, there is a �xed distribution on X anda function sequence f 2 F t with drift sequence � satisfying k�k1 � �, andE  tXi=1M iQ;f! � e�464 pd�t:Proof We will only consider distributions that have support on the set Sdj=1Xj. Withoutloss of generality, we can assume that X = f1; : : : ; dg � N and F contains all functionsfv : X ! f0; 1g for v 2 N d0 , wherefv(a; b) = ( 1 if b � va0 otherwise.De�ne the distribution P on X as P (a; b) = �=d for a 2 f1; : : : ; dg and b 2 f1; : : : ; 1=�g. Asin [10], we will consider a sequence of functions in ffvg for which v varies slowly. It is bestto view the sequence ffvg as a series of N = bt=2kc phases of length 2k where k = dd=�e(the \left over" functions from time 2dd=�eN + 1 through time t are not important toour argument). Each phase is associated with a z 2 f0; 1gd, and consists of the functionsequence fz = �f0z; fz; f2z; : : : ; fkz; f(k�1)z; : : : ; fz� :The particular ffvg we analyze is created by choosing a zi uniformly at random fromf0; 1gd for each phase i = 1; : : : ; N , and then concatenating the resulting phases, fz1 throughfzN . Thus f = (fz1 ; : : : ; fzN ) ;and has length t0 = 2Nk. Since t � 4k, t0 � t=2. Clearly, for all choices of the zi, thesequence f has drift � satisfying k�k1 � �.Consider a sequence (x1; : : : ; xt0) chosen fromX according to P . We relabel the sequenceto emphasize the phases:(x1;0; : : : ; x1;2k�1; x2;0; : : : ; x2;2k�1; : : : ; xN;2k�1) ;and relabel M lQ;f as M i;jQ;f in the corresponding way.Consider for a moment an example xi;j = (a; b) where b � j � k. This example islabeled 1 by f if and only if bit a of zi is 1. Furthermore, the algorithm can do no betterthan random guessing on the label of xi;j unless there was an earlier example in this phasewhich has revealed bit a of zi, namely some xi;j0 = (a; b0) with b0 � j0 < j The remainderof the proof formalizes this intuition.For each phase i 2 f1; : : : ; Ng and each j 2 fbk=2c; : : : ; kg, we haveE �M i;jQ;f� � E �M i;jQ;fjEi;j�Pr(Ei;j);



14 5. Lower Boundswhere the expectations and probability are over random choices of the zi and x sequences,and Ei;j is the event that some bit of zi is revealed by example xi;j. More formallyEi;j = nx 2 XN�2k : xij = (a; b), with b � j andxij0 62 f(a; c) : c � j0g for j0 2 f0; : : : ; j � 1g	 :Clearly,E �M i;jQ;f� � 12 Pr(Ei;j) = j�2 j�1Yl=1(1� l�=d) � j�2 exp(�j2�=d) � e�48 pd�:So E0@ tXj=1M jQ;f1A � e�48 pd� t04 � e�464 pd�t: ut5.2 Drifting distributionsThe two results in this section show that both the instantaneous and cumulative lossof the one-inclusion tracking strategy are also nearly optimal with respect to distributiondrift.Theorem 11: Suppose F is a function class with VC-dimension d such that 3 � d < 1.For any t 2 N and 
 > 0, and any prediction strategy Q, there is a function f in F and adistribution sequence P with drift sequence 
 satisfying k
k1 � 
 such thatE �M tQ;f� � 8>>><>>>: d� 12et for all tp
(d� 2)4e for t > sd� 2
 :Proof The �rst part of the bound is a consequence of the lower bound on the mistakeprobability for identically distributed examples given in Theorem 3.1 of [9].The second part of the bound uses a related proof. Consider the shattered set X0 =fz; y0; y1; : : : ykg with d = k + 2 elements. We use a distribution sequence P = (P1; : : : ; Pt)which has a support that drifts from the set fy0; zg to fy0; y1; : : : ; ykg. The probability of y0remains constant throughout; the remainder of the probability shifts from z to fy1; : : : ; ykg,starting at time t�m, where m = lpk=
 m. The distribution sequence is given byPj(z) = 8>><>>: km j = 1; : : : ; t�m(t� j)km2 j = t�m+ 1; : : : ; tPj(y0) = 1� kmPj(yi) = 8><>: 0 j = 1; : : : ; t�mj � (t�m)m2 j = t�m+ 1; : : : ; t



5. Lower Bounds 15It is easy to verify that the drift 
 of the sequenceP satis�es k
k1 � maxj jPj+1(X1)� Pj(X1)j �k=m2 < 
, where X1 = fy1; : : : ; ykg.Let B be the set of samples of length t in which the last example xt has not alreadyappeared in (x1; : : : ; xt�1). The probability that a sample is in B isP(B) = P ((x1; : : : ; xt) : xt 6= xj ; j = 1; : : : ; t� 1)� P (xt 6= y0 and xt 6= xj ; j = 1; : : : ; t� 1)= (1� Pt(y0)) t�1Yj=1 (1� Pj(xt)) :Now, if xt 6= y0, Pj(xt) = 8<: 0 j = 1; : : : ; t�mj � (t�m)m2 j = t�m+ 1; : : : ; tSo P(B) � km t�1Yj=t�m+1�1� j � (t�m)m2 �= km m�1Yl=1 �1� lm2�> km �1� 1m�m�1> kem � pk
2e :Using a standard argument (see [7, 9]), it is easy to show that there is an f in F for whichEP �M tQ;f� � P(B)=2. utTheorem 12: Suppose d 2 N , F is a d-suitable function class, 0 < 
 < 1=4, andt � 2pd=
. Then for any algorithm Q, there is a function f in F and a distributionsequence P with drift 
 satisfying k
k1 � 
, andE  tXi=1M iQ;f! � (1� e�1=4)4 pd
 t;Proof We will consider a sequence of distributions that each have support contained in a�nite set. Without loss of generality, we may assume that X = f1; : : : ; dg � [0; 1]. (This isbecause we consider only a �nite subset of [0; 1]; the cardinality of this subset depends ont.) Let F = nfv : v 2 [0; 1]do, wherefv(a; b) = ( 1 if b � va0 otherwise.Let the target function be fv, where v is chosen randomly according to the uniformdistribution on [0; 1]d. The distribution sequence we will consider begins with P1(i; 0) = 1=dfor i 2 f1; : : : ; dg. The sequence is split into a number of trials, and in trial r the supportgradually shifts to points (i; bri ) (i 2 f1; : : : ; dg). These points are chosen so that the bri 's



16 6. Agnostic Learningapproximate the threshold v progressively more accurately, so it is di�cult to predict thelabel of an unseen point (i; bri ). For r 2 N and i 2 f1; : : : ; dg, letbri = � vi2�r � 2�r + 2�r�1:From this de�nition, fv(i; bri ) is the value of the r-th bit of the binary representation of vi.Since v is chosen uniformly, if this label has not previously been seen, any algorithm hasprobability 1=2 of predicting it correctly.Now, let k = jpd=
k and t0 = Nk, where N = bt=kc. Since t � 2pd=
, t0 � t=2.The sequence of distributions is split into N trials, each of length k. During trial r, theprobability of each point (i; bri ) is increased by 
=d, for i = 1; : : : ; d. This distributionsequence clearly has drift 
 satisfying k
k1 � 
. Consider a balance point (i; bri ). Theprobability that it remains unseen during trial r is no more thankYi=1(1� i
=d) � kYi=1 exp(�
i=d) � exp(�1=4):So the expected number of balance points (1; br1); : : : ; (d; brd) that are seen in trial r is atleast (1� e�1=4)d. The �rst time each balance point occurs, the algorithm has probability1=2 of making a mistake. It follows thatE  tXi=1M iQ;f! � (1� e�1=4)d2k t0� (1� e�1=4)4 pd
t;where the expectation is over random examples and random choice of the function fv. Itfollows that there exists a suitable f in F . ut6 Agnostic LearningIn the prediction model of learning (and the pac model), we assume that the relationshipbetween examples and their labels is a deterministic function in a known function class. Thisis an optimistic assumption, since it forbids noise and errors, and it assumes a great dealof knowledge about the function. To dispense with these assumptions, Vapnik [15] andBlumer et al. [4] consider learning models in which the relationship is described by a jointprobability distribution on X �f0; 1g. In this section, we examine a learning model of thiskind in which the joint distribution is allowed to change slowly but continually as learningproceeds.We begin with some notation, analogous to that introduced in Section 2. Suppose thatt � 1, � = ((x1; y1); : : : ; (xt; yt)) 2 (X�f0; 1g)t is a labeled sample, and Q is a deterministicprediction strategy. De�ne the mistake of Q on � asM tQ(�) = ( 1 Q (((x1; y1); : : : ; (xt�1; yt�1)); xt) 6= yt0 otherwise,and de�ne M tQ(�) for a randomized prediction strategy Q = (Qr; Z;D) asM tQ(�) = D fz 2 Z : Q (((x1; y1); : : : ; (xt�1; yt�1)); xt; z) 6= ytg :



6. Agnostic Learning 17Suppose (S;F ; Pi) is a probability space for i = 1; 2; : : : ; t, t > 0. De�ne the drift 
 ofthe sequence P = (P1; : : : ; Pt) as in Section 2.For a function f : X ! f0; 1g and a distribution P on X � f0; 1g, de�ne the error of fwith respect to P as erP (f) = P f(x; y) : f(x) 6= yg :For a class F of f0; 1g-valued functions de�ned on X, we are interested in the additionalinstantaneous loss of a prediction strategy Q,E �M tQ�� inff2F erPt(f):We �rst introduce a technical lemma showing that the expectation over any slowlychanging distribution sequence is close to the expectation over related sequences of anunchanging distribution.Lemma 13: For any k � 1 and 0 � 
 � 1, if the sequence P = (P1; : : : ; Pk) of distributionson X has drift 
 satisfying k
k1 � 
 and f is a measurable function from X to [0; 1], thenZ f dPi � Z f dPi+1 + 
=2;for 1 � i � k � 1. Furthermore, if f is a measurable function from Xk to [0; 1], thenZ f dP � Z f dP k1 + k(k � 1)4 
; (6.1)and Z f dP � Z f dP kk + k(k � 1)4 
; (6.2)Proof For the �rst inequality, de�ne the signed measure � = Pi � Pi+1. For this signedmeasure, choose a partition fA;Bg of X for which � is positive in A and negative in B, andde�ne two measures on the measurable space (X;F) (the upper and lower variations of �),�+(E) = �(E \A) and ��(E) = ��(E \B) for E 2 F . Clearly, �+; �� � 0, � = �+� ��,and �+(X) = ��(X) = dTV (Pi; Pi+1)=2. By de�nition,����Z f dPi � Z f dPi+1���� = ����Z f d�����= ����Z f d�+ � ZX f d������� maxf�+(X); ��(X)g � 
=2;which is the �rst inequality.Now, we are interested in the expectationZ f dP = ZXk�2 ZX ZX f dP1(x1) dP2(x2) : : : dPk(xk):Fix x3; x4; : : : ; xk and consider the integralZX ZX f dP1(x1) dP2(x2) = Ex22P2 �ZX f dP1(x1)� :



18 6. Agnostic LearningCall the random variable inside the parentheses I(x2). Notice that 0 � I � 1, so the �rstinequality gives Ex22P2 (I(x2)) � Ex22P1 (I(x2)) + 
=2= ZX2 f dP 21 (x1; x2) + 
=2:Therefore EhPiiki=1(f) � ZXk�2 ZX2 f dP 21 (x1; x2) : : : dPk(xk) + 
=2:Similarly, EhPiiki=1(f) � ZXk�3 ZX3 f dP 31 (x1; x2; x3) : : : dPk(xk) + 
 + 
=2and EhPiiki=1(f) � ZXk f dP k1 (x1; x2; : : : ; xk) + 
=2 k�1Xi=1 i= EP k1 (f) + k(k � 1)4 
;which is Inequality (6.1). The same argument with the labels for P1 : : : Pk reversed givesInequality (6.2). utThe following theorem is the main result of this section.Theorem 14: For any function class F with VC-dimension d (1 � d < 1), and anydistribution sequence P = (P1; : : : ; Pt) with drift 
 satisfying k
k1 � 
 � 1=d2, there is aprediction strategy Q withEP �M tQ� � inff2F erPt(f) +0@15s dt� 1 + 5d2=5
1=51A�ln(2d�2=5
�1=5)�1=2if 2d � t � 2d1=5
�2=5, andEP �M tQ� � inff2F erPt(f) + 19d2=5
1=5 �ln�2d�2=5
�1=5��1=2if t > 2d1=5
�2=5.The proof uses the following lemma, which uses a uniform convergence result of Vap-nik [15].Lemma 15: Let F be a class of functions that map from X to f0; 1g, with VC-dimensiond � 1. There is a prediction strategy Q such that, for any probability distribution P onX � f0; 1g and any t � 2d,EP t �M tQ�� inff2F erP (f) < 10� dt� 1 ln 2(t� 1)d �1=2 :



6. Agnostic Learning 19Proof If � = (x1; y1; : : : ; xm; ym) 2 Sm is a labeled sample and f is a function in F , de�nethe empirical error of f on � as the fraction of examples in � that f misclassi�es,cer�(f) = 1m jfi 2 f1; 2; : : : ;mg : f(xi) 6= yigj :Let Q be the prediction strategy that, on input (�; x), labels x according to a function f̂�in F that minimizes the empirical error on �. That is, Q(�; x) = f̂�(x), where f̂� satis�escer� �f̂�� = minf2F cer�(f).A result of Vapnik gives bounds on the sample size that ensures the error of a functionand its empirical error are close for all functions in the class F . Indeed, if VCdim(F ) = dand m � d, Theorem 6.7 in [15] implies thatPm f� 2 Sm : jerP (f)�cer�(f)j > �g < 9e��2m=4 �2md �3dfor all f in F . If  (�;m) = 9e��2m=4 (2m=d)3d, it follows thatPm n� 2 Sm : cer� �f̂�� < erP �f̂��� �=2o <  (�=2;m);and Pm �� : 9f 2 F; erP (f) = inff2F erP (f), cer�(f) > erP (f) + �=2� <  (�=2;m):If neither of these events occur, we must have erP �f̂�� � inff2F erP (f) + �, so thatPm �� 2 Sm : erP �f̂��� inff2F erP (f) > �� < 2 (�=2;m);hence Pm(� 2 Sm : �erP �f̂��� inff2F erP (f)�2 > �2) < 18e��2m=16 (2m=d)3d :Since erP (f) � 1 for all f in F ,E�2Pm �erP (f̂�)� inff2F erP (f)�2 � �2 + 18e��2m=16 (2m=d)3d ;for all � > 0. Setting �2 = 16t� 1 �ln td + 3d ln 2(t� 1)d �and m = t� 1 givesE�2P t�1 �erP (f̂�)� inff2F erP (f)�2 � 16t� 1 �ln td + 3d ln 2(t� 1)d �+ 18dt< �16 + 48 + 18ln 2� dt� 1 ln 2(t� 1)d



20 6. Agnostic Learningprovided t � 2d. Applying Jensen's inequality givesE�2P t�1 �erP (f̂�)� inff2F erP (f)� < 10� dt� 1 ln 2(t� 1)d �1=2 ;That is, E�2P t �M tQ(�)�� inff2F erP (f) < 10� dt� 1 ln 2(t� 1)d �1=2 : utProof (of Theorem 14) The algorithm we analyze is the prediction strategy Qk thatminimizes the empirical error over the last k = d2d1=5
�2=5e time steps if possible. In otherwords, if t � k thenQk ((x1; y1; : : : ; xt�1; yt�1); xt) = Q ((xt�k+1; yt�k+1; : : : ; xt�1; yt�1); xt)where Q is the prediction strategy of Lemma 15. When t � k, strategy Qk is identical toQ. We start with the second bound. Lemma 13 implies that, for all 
-admissible distributionsequences hPiiti=1 on S,EhPiiti=t�k+1 �MkQk� � EP kt �MkQk�+ k(k � 1)2 
when t � k.ThenLF;
(t) � LQk;F;
(t) � EP kt �MkQ�� inff2F erPt(f) + k(k � 1)4 
� 10� dk � 1 ln 2(k � 1)d �1=2 + (k � 1)2
� 10 dd1=5
�2=5 ln 4d1=5
�2=5d !1=2 + (2d1=5
�2=5)2
� 10d2=5
1=5 �2 ln(2d2=5
�1=5)�1=2 + 4d2=5
1=5� 19d2=5
1=5 �ln(2d2=5
�1=5)�1=2 ;giving the second bound.For the �rst bound, 2d � t < k. In this case Lemma 13 and the same reasoning givesLF;
(t) � 10� dt� 1 ln 2(t� 1)d �1=2 + (t� 1)2
:Substituting in the upper bound t < 2d1=5
�2=5 yieldsLF;
(t) � 10� dt� 1 ln(4d�4=5
�2=5)�1=2 + 4d2=5
1=5� 0@15s dt� 1 + 5d2=5
1=51A�ln(2d�2=5
�1=5)�1=2 ;which is the �rst bound in the theorem. ut



7. Conclusions 217 ConclusionsWe have analyzed how well an algorithm can learn when the target function anddistribution are slowly changing at known rates. In particular we give an algorithm basedon the 1-inclusion graph algorithm of Haussler et al. for this changing setting. For a targetclass of VC-dimension d and a combined drift rate � of the distribution and target functionat least 1=e
(d), this algorithm's mistake rate is O(pd�). Thus if the drift rate is at most�2=d then the algorithm's mistake rate is at most �. For very small drift rates, our boundon the algorithm's mistake rate is slightly weaker { O(pd� log(1=�)).We have (almost) matching lower bounds. We show that when the distribution is heldconstant but the target function drifts at rate � then any algorithm learning a suitably richtarget class has a mistake rate in 
(pd�). Furthermore, even when the target functionremains �xed and only the distribution drifts (at rate 
), any algorithm learning a class ofVC-dimension d can be forced to make mistakes at a rate in 
(pd
). Thus our algorithm'sperformance when both the function and distribution are drifting is almost the same as thebest possible algorithm when only one of the two is drifting.We have also examined the situation where the drift is uneven { although the totalamount of drift is bounded, it may be distributed unevenly over time. In this case thealgorithm's mistake rate climbs to O( 3pd�) where � is the average amount of drift. Althoughwe conjecture that knowing how much drift occurred each time would allow a O(pd�)mistake rate, this remains an open problem.Finally, we consider the generalization of drifting to the agnostic model. Here instead ofhaving a distribution over the domain X and examples labeled by a target function, thereis a joint distribution over X�f0; 1g. In this setting the algorithm's goal is to select at eachtime a hypothesis from the class whose expected error is as small as possible. We give analgorithm whose expected loss (di�erence in error between the selected hypothesis and thebest possible function in the class at that time) is bounded by O(d2=5
1=5q2d�2=5
�1=5).AppendixProof of Lemma 1Proof By the Lebesgue decomposition theorem (see for example [6]), there is a set T 2 Ssuch that the �nite measure PjT (de�ned by PjT (S) = P (T \ S) for all S 2 S) is absolutelycontinuous with respect to Q (that is, for all S 2 S, Q(S) = 0 implies PjT (S) = 0) andQ(X � T ) = 0. So there is a function dPdQ : T ! R (the Radon-Nikodym derivative) suchthat, for all S 2 S, PjT (S) = ZS\T dPdQ(x) dQ(x):Let W = nx 2 T : dPdQ(x) > �o and E = (X � T ) [W . We will show that E satis�es theconditions of the theorem. For any S 2 S we have P (S \E) = P (S \ (X�T ))+P (S \W ).But P (S \ (X � T )) � Q(S \ (X � T )) = 0, andP (S \W ) = ZS\W dPdQ(x) dQ(x):Now, if Q(S\W ) = Q(S\E) 6= 0, then P (S\W ) > �Q(S\W ), so P (S\E) > �Q(S\E).That is, either Q(S \E) = 0 or P (S \E) > �Q(S \E).



22 7. ConclusionsNow, X �E = T �W , soP (S \ (X �E)) = P (S \ (T �W ))= ZS\(T�W ) dPdQ(x) dQ(x)� �Q(S \ (X �E)):That is, E satis�es conditions 1 and 2. Furthermore, the set T is unique up to measurezero symmetric di�erences, which implies that E is also essentially unique. If we extend thefunction dPdQ to the whole of X by assigning it a value of 0 on X � T , then that function isessentially (with respect to P and Q) unique.Now, if f : X !R is a non-negative measurable function, we can writeZS\(X�E) f dP = ZS\(T�W ) f(x)dPdQ dQ(x)� � ZS\(T�W ) f(x) dQ(x): utProof of Lemma 2Recall that Lemma 2 says:If P = (P1; : : : ; Pt) is a sequence of t probability distributions on (X;S), withdistribution drift 
 = (
1; : : : ; 
t�1), then for all 1 � k � i � tPi(Vk) � 3=2 t�1Xj=k 
j:We �rst give some preliminary de�nitions and a lemma.For 1 � k � t and t � k � i � t � 1, let Ti = Hi � Si<j<tE+j and Wi;k = Li �Si<j<tE�j � V +k . Thus the Ti and Wi;k for t� k � i � t� 1 partition Vk. Furthermore, forall t� k � i � t� 1, Pi(Ti) � 2Pt(Ti) and Pi(Wi;k) � 12Pt(Wi;k).Lemma 16: For all 1 � k � t, t�1Xi=t�kPt(Ti) � t�1Xj=t�k 
j=2;and t�1Xi=t�kPi(Wi;k) � t�1Xj=t�k 
j=2:Proof For the �rst inequality we have2 t�1Xi=t�kPt(Ti) � t�1Xi=t�kPi(Ti), Pt(V +k ) � t�1Xi=t�k[Pi(Ti)� Pt(Ti)]



7. Conclusions 23= t�1Xi=t�k t�1Xj=i[Pj(Ti)� Pj+1(Ti)]= t�1Xj=t�k jXi=t�k[Pj(Ti)� Pj+1(Ti)]= t�1Xj=t�k 24Pj 0@ [k�i�j Ti1A� Pj+10@ [k�i�j Ti1A35� t�1Xj=t�k 
j=2:For the second inequality we have2 t�1Xi=t�kPi(Wi;k) � t�1Xi=t�kPt(Wi;k), t�1Xi=t�kPi(Wi;k) � t�1Xi=t�k[Pt(Wi;k)� Pi(Wi;k)]= t�1Xi=t�k t�1Xj=i[Pj+1(Wi;k)� Pj(Wi;k)]= t�1Xj=t�k jXi=t�k[Pj+1(Wi;k)� Pj(Wi;k)]= t�1Xj=t�k24Pj+10@ [k�i�jWi;k1A� Pj 0@ [k�i�jWi;k1A35� t�1Xj=t�k 
j=2: utWe now return to the proof of Lemma 2.Proof For each i in ft � k; : : : ; tg, Pi(Vk) = Pt�1j=t�k[Pi(Tj) + Pi(Wj;k)]. From Lemma 16we get the following inequality.Pi(Vk) � t�1Xj=t�k[Pi(Tj) + Pi(Wj;k)]� t�1Xj=t�kPt(Tj)� t�1Xj=t�kPj(Wj;k) +t�1Xj=t�k 
j= t�1Xj=t�k[Pi(Tj) + Pi(Wj;k)� Pt(Tj)� Pj(Wj;k)] + t�1Xj=t�k 
j= t�1Xj=t�k[Pi(Tj)� Pt(Tj)] + i�1Xj=t�k[Pi(Wj;k)� Pj(Wj;k)] +t�1Xj=i+1[Pi(Wj;k)� Pj(Wj;k)] + t�1Xj=t�k 
j



24 7. Conclusions= t�1Xj=t�k t�1Xl=i [Pl(Tj)� Pl+1(Tj)] + i�1Xj=t�k i�1Xl=j [Pl+1(Wj;k)� Pl(Wj;k)]+ t�1Xj=i+1 j�1Xl=i [Pl(Wj;k)� Pl+1(Wj;k)] + t�1Xj=t�k 
j= t�1Xl=i t�1Xj=t�k[Pl(Tj)� Pl+1(Tj)] + i�1Xl=t�k lXj=t�k[Pl+1(Wj;k)� Pl(Wj;k)]+ t�2Xl=i t�1Xj=l+1[Pl(Wj;k)� Pl+1(Wj;k)] + t�1Xj=t�k 
j= t�1Xl=i [Pl(V +k )� Pl+1(V +k )] +i�1Xl=t�k 24Pl+10@ [t�k�j�lWj;k1A� Pl0@ [t�k�j�lWj;k1A35+ t�2Xl=i 24Pl0@ [l+1�j�tWj;k1A� Pl+10@ [l+1�j�tWj;k1A35+ t�1Xj=t�k 
j� Pt�1(V +k )� Pt(V +k ) +t�2Xl=i 24Pl0@V +k [ [l+1�j�t�1Wj;k1A� Pl+10@V +k [ [l+1�j�t�1Wj;k1A35+ i�1Xl=t�k 
l=2 + t�1Xj=t�k 
j� 
t�1=2 + t�2Xl=i 
l=2 + + i�1Xl=t�k 
l=2 + t�1Xj=t�k 
j= 3=2 t�1Xl=t�k 
l: utProof of Lemma 3Proof Pi(Ut�k) = t�1Xj=t�kPi(Dj)� t�1Xj=t�kPi(Dj)� t�1Xj=t�kPj(Dj) + t�1Xj=t�k �j= i�1Xj=t�k[Pi(Dj)� Pj(Dj)] + t�1Xj=i+1[Pi(Dj)� Pj(Dj)] + t�1Xj=t�k �j= i�1Xj=t�k i�1Xl=j [Pl+1(Dj)� Pl(Dj)] +
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