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ABSTRACT

We consider the problem of predicting the labels of randomly chosen points, when
both the probability distribution generating the points and the target concept are
allowed to change slowly. More precisely, we assume that the total variation distance
between consecutive probability distributions is small, and that the probability
(under the current distribution) of disagreement between consecutive target concepts
is small. We describe a general-purpose algorithm that can cope with combined
distribution and concept drift, and has asymptotic prediction error within a log
factor of the best that can be achieved by any algorithm, even when either the
distribution or the concept is held constant. In addition, we give upper bounds on
the cumulative prediction error of a related algorithm when we assume that there is a
bound on the average drift over a sequence of trials. We also consider learning in an
agnostic setting, with a slowly changing joint probability distribution on the domain
and the output space {0, 1}, and give bounds on the excess mistake probability of a
tracking strategy in this setting.
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1 Introduction

In this paper we consider the problem of tracking a changing environment. The environ-
ment is modeled as a domain from which examples are drawn and a boolean valued target
function from some class labeling the examples. At each discrete point in time a random
example is drawn and the algorithm predicts the label, which is then revealed to the algo-
rithm. Our drifting model differs from standard learning models in that after each label is
revealed to the algorithm both the distribution on the domain and the target function can
change.

Of course, if the distribution or target function could change arbitrarily then it would
be extremely difficult to do any learning. For our main results we bound the amount that
the distribution and target function can change at each point in time, and communicate
this bound to the algorithm. We use the total variation distance to measure the change
in the distribution (although other measures such as the Kullback-Leibler divergence give
similar results) and we use the probability under the current distribution of the symmetric
difference of the functions to measure the change in target.

Our main result is a general algorithm whose mistake rate for moderate « is O(v/dc)
where « is the (known) combined drift rate of the target and distribution. For smaller
drift rates (o < 1/e?), the VC-dimension gets replaced with a logarithmic factor, becoming
O(y/alog1/a). This implies that combined drift rates in ©(e?/In¢) can be tolerated while
maintaining a mistake rate less than € < 1/e?. Similarly, if € > 1/e? then the algorithm has
a mistake rate less then e whenever the combined drift rate is less than a constant times
€2/d.

To complement these results, Helmbold and Long [10, 11] give examples showing that no
algorithm can have mistake rate e for drift rates as small as a constant times €2 /d, even when
the distribution remains fixed and only the target function drifts. We give an additional
lower bound showing that for some concept classes, no algorithm can have a mistake rate
less than € when the target function is held constant and only the distribution drifts at a
rate in ©(e¢2/d). It remains open if our algorithm’s performance is optimal for very small
drift rates.

Thus, for moderate drift rates, our algorithm tolerates a mixture of concept and dis-
tribution drift with the same performance (to within a constant factor) of algorithms that
must deal only with drifting distributions, or only with drifting targets.

We also examine two variations on this basic problem. It is not surprising that the
problem becomes more difficult when only a bound on the average amount of drift is given,
since an adversary could “save up” drift in order to make a drastic change in the distribution
and/or target. For this problem our algorithm has mistake rate O(+/da) or O(/aIn(1/a))
when the average drift is bounded by «.

The second variation is an agnostic setting, where there is a joint probability distribution
on X x {0, 1} which is slowly drifting. This joint distribution allows one to model noise and
errors. Since {0, 1}-valued functions cannot perfectly predict values drawn from an arbitrary
joint distribution, we measure the mistake rate of the algorithm minus the mistake rate
when, at each time, the best member in the class for that time is used to generate predictions.

We give an algorithm where this difference is bounded by 19d2/571/5\/ln(2d*2/57*1/5),
where v is the drift rate of the joint distribution.

Some results in this paper (in particular, in Sections 5.2 and 6) have been previously
presented in [2], which studied the problem of learning with a drifting distribution. There
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have been some recent results in this area. Barve and Long [3] study learning with a drifting
distribution, and give an improvement on our bounds for agnostic learning. Specifically,
they show that there is an algorithm whose mistake rate is within O((yd)'/?) of optimal
when the distribution drifts by no more than v between trials.

The problem of tracking a drifting concept with a fixed distribution has been studied
previously. Helmbold and Long [10, 11] exhibit a tracking algorithm, and show that it
has nearly optimal error for a given amount of concept drift. The algorithm we consider
in Section 3 is based on their tracking algorithm. Kuh, Petsche, and Rivest [13] consider
learning a drifting interval on the circumference of the unit circle under the uniform distri-
bution. They show that in this case a conservative tracker’s mistake rate is \/2a/7 £ O(«)
by analyzing a Markov chain. In addition to experimental validation of this bound, they
also consider “benign” adversaries which cause the target concept to drift randomly. In an
earlier paper [12], they discuss several tracking variations and define PAC-tracking. There
Kuh et al. also distinguish between incremental and memory based tracking algorithms.
In their terminology, our algorithms are memory based trackers because they use a sliding
window containing the most recently seen examples to make their predictions.

In the next section we formalize our learning model and introduce our notation. Sec-
tion 3 describes the ezception tracking strategy and bounds its performance in terms of
its parameters. Section 4 considers particular settings of the parameters to obtain more
meaningful bounds on the performance of the exception tracking strategy. Several lower
bounds nearly matching the upper bounds in Section 4 are given in Section 5. Section 6
considers a slightly different “agnostic” model where the learner attempts to perform as well
as the current best concept when the examples are generated by a drifting joint probability
distribution on X x {0,1}.

2 Definitions and Notation

The learning model described here is similar to the prediction model of learning described
by Haussler et al. [9]. We have a domain X and a target class F of functions mapping from
X to {0,1}. Alternatively, each member of the target class can be viewed as the subset
of the domain which it maps to 1. At each time k, an ezample x; is randomly chosen
from X according to an unknown probability distribution P, on the domain. The learning
algorithm tries to predict the value of fi(zy) (the label of x). The algorithm is then told
the label, and the process is repeated. In the prediction model described by Haussler et al.
[9], the distribution Py and function fj do not vary with k, remaining constant for all time.
In the model considered here, the distribution and function are allowed to vary slowly and
the learner is required to track them.

A sequence x = (z1,%9,...,7;) € X! of examples is called a sample. A labeled
sample is a sequence ((x1, f1(x1)),---, (x4, ft(x¢))) of labeled examples. For sample x =
(r1,79,...,74) € X' and function sequence f = (f1, fa,..., fi) € F!, define the labeled
sample of f generated by x as

samy(x, f) = ((z1, f1(x1)), ..., (24, fe(zr))) -

Throughout, we assume that we have a measurable space (X, S), and that every subset
of X that we consider is in §. Blumer et al. [4] give conditions on the class F' that ensure
this is true.
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For probability distributions P and @ on a measurable space (X,S), define the total
variation distance between P and @) as

dry (P, Q) = sup { Z \P(E) — Q(E)| : R C S partitions X} .
EeR

It is easy to see that

drv (P,Q) = 2sup |P(E) — Q(E)|.
BeS

For a sequence P = (Py,..., P;) of probability distributions on X, define the drift sequence
of P as~ = (7,...,7-1) where v; = dry(FP;, Pi;1) fori =1,...,t — 1. Define

[Ylloo = | Tnax i

and
=
vl = mzzzl%

We will consider those distribution sequences where the drift 4 is small, i.e. either |||/ or
llv|l1 is less than some small positive number.

Another natural definition of the distance between two distributions is the Kullback-
Leibler divergence. If P and @) are probability distributions on X, the Kullback-Leibler
divergence of P with respect to @ is

dP(w)

drr(P,Q) = /Xlog d0(w) dP(w),
where dP/dQ is the Radon-Nikodym derivative of P with respect to ). Kullback [14] has
shown that dg (P, Q) > (drv (P, Q))?/2+ (drv (P, Q))*/12, so it is easy to apply the upper
bounds described in Sections 4 and 6 when the drift sequence is measured in terms of dg,
rather than dpy .

For a sequence f = (f1,..., fi) of concepts from F, define the drift sequence of f as
0 = (d,...,0;1) with 6; = P;(f; # fiy1) fori =1,...,t — 1. Although the drift sequence
of f depends on the sequence of probability distributions, the appropriate P will always be
clear from the context. We will consider distribution sequences with drift & where either
10]lcc Or ||d]]1 is small.

Define the space of labeled examples, X x {0,1} and the space of finite length labeled
samples, (X x {0,1})* = Upen (X x {0,1})™.

A deterministic prediction strategy @ is a function from (X x {0,1})* x X to {0, 1}.
A randomized prediction strategy (Q., Z, D) consists of a function @Q,, a space Z, and a
distribution D on Z. The strategy chooses a point z € Z according to D, and passes z to
the function @,, which maps from (X x {0,1})* x X x Z to {0, 1}.

We define the mistake probability of a prediction strategy as follows. Fix a sample
x = (21,...,m) € X! (t > 1), function sequence f = (f1,..., f;) from F, and let x~ =
(1,...,24-1) and £ = (f1,..., fr—1). We can now define the mistake of a deterministic
prediction strategy () on x with respect to f as

Mé,f(X) _ { 1 if Q(samy 1 (x—,£7),2¢) # fi(xy)

0 otherwise.
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Similarly, we define the mistake probability of a randomized prediction strategy (Q,,Z,D)
on x with respect to f as

Mé“f(x) =D{z€Z:Q, (samy_1(x ,f),24,2) # felw)}.

Finally, we generalize both notations to function sequences of zero drift, writing Mé f(x)
for Méyf(x) where f is the sequence (f, f,..., f) of length ¢.

We are interested in both the instantaneous loss, F (Mé2 f), and in the cumulative

loss, E ( Ly Mé f). Here the expectations are over both the random draw of x from the
distribution sequence P and any randomization used by the algorithm.

3 The Exception Tracking Strategy

The exception tracking strategy is a modification of the one-inclusion graph algorithm
of Haussler et al. [9] in the spirit of Helmbold and Long [10]. In its original form, the
one-inclusion graph algorithm is given a labeled set of examples consistent with a function
in the class. A permutation argument exploiting the fact that each element in the sample is
generated from the same distribution is used to bound the performance of the one-inclusion
graph algorithm.

Unfortunately, in our setting the function sequence drifts. It is possible (and often likely)
that no single function in the class matches the labeled sample. Therefore we extend the
function class (as was done by Helmbold and Long [10]) to include all functions which are
“close” to a function in the class on the sample.

Since the distributions are also drifting, all permutations of the example sequence are
not equally likely. However, we are still able to use a (more sophisticated) permutation
argument to bound the performance of the algorithm. The main idea is to show that for
most examples in the sample the probability and function value do not change very much,
and so we can apply the permutation argument to those examples.

3.1 Volatile and Uncertain points

For the analysis it is useful to identify the subset of X for which the probability of points
varies greatly under the different distributions P;. The following lemma shows one way to
do this. The proof is in the appendix.

Lemma 1: If P and Q are probability distributions defined on the measurable space (X,S)
and « is a positive constant, then there is o set E € § such that for all S € S, we have

1. either Q(SNE) =0 or P(SNE)>aQ(SNE), and
2. P(SN(X — E)) <aQ(SN(X — E)).

The set E is unique up to measure zero differences (that is, for any other suitable E', we
have P(E® E') = Q(E ® E') = 0, where ® denotes symmetric difference).

Furthermore, for any S € S and non-negative measurable function f : X — R,

/ FdP < a / £dQ.
Jsn(x—k) Jsn(x—E)
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We will refer to a set E defined by the theorem as SET(P > «()). This definition captures
the intuitive notion of the set in which the distribution P is more than « times as dense as
distribution . We extend this notation in the obvious way, letting SET(P < aQ) = X —
SET(P > aQ), SET(P < aQ) = SET(Q > 1P), and SET(P > aQ) = X — SET(P < aQ).

IfP = (P,...,P) is a sequence of probability distributions defined on (X,S), define
the sets H; and L; for 1 <i <t as H; = SET(P; > 2P;) and L; = SET(P; < %Pt). Thus H;
is the “heavy” set of points whose density under P; is twice their density under P;, and L;
is the “light” points whose density under P; is half their density under P;. A point is called
volatile at time ¢ if it is in either H; or L;. The set of volatile points at, or after, time k is
denoted by V.. Formally, Vi = U'_}(H; U L;).

The following result shows that volatile points are not very likely if the distribution does
not change too quickly.

Lemma 2: If P = (Py,..., P,) is a sequence of t probability distributions on (X,S), with
distribution drift v = (y1,---,v_1), then for all 1 <k <i <t

t—1

Pi(Vi) <3/2) ;.
j=k

The proof is given in the Appendix.

Let f= (fy1,..., fi) be any sequence of ¢ target functions from F'. A point’s label changes
at time j if it is labeled differently by f; and fj11. A point is uncertain at time k if its
label changes at time k or later. Thus the set of uncertain points at time £ (for 1 < k < t),
denoted Uy, is defined by Uy = Uy<;<,(f; ® fj+1)-

Lemma 3: Let P = (Py,..., P;) be a sequence of t probability distributions on (X,S) with
drift vy = (v1,-..,7-1), and let £ = (f1,..., f1) be a sequence of t functions on X with drift
0 = (01,...,0;-1). For all k and i such that 1 < k < i <'t, if Uy is the set of uncertain

points defined above, then
t—1

Pi(Ur) <D (85 +75/2).
=k

The proof is given in the Appendix.

3.2 The one-inclusion tracking strategy, and an upper bound

The one-inclusion graph algorithm of [9] makes a mistake on relatively few permutations
of any sample. Let Ay be the one-inclusion graph algorithm for any concept (function) class
F, d be the VC-dimension of F', and for each 1 <1 <, let 0;; be the permutation on ¢
elements that swaps elements ¢ and ¢ while leaving the other elements unchanged. Haussler
et al. show that for any positive integer ¢, sequence of examples x € X!, and single function
.f 6 F’

Hz L MYy, (x7i) = 1}‘ < 2d.

Define the class F®“ for u € N to be F closed under up to u exceptions. Thus
Fo={f®S:feFSCX,IS <u}
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It has been shown by Auer and Long [1] that the VC-dimension of F®* is at most
4.82(d 4+ u) where d is the VC-dimension of F', and results of Cesa-Bianchi et al. [5] imply
that it is bounded by 4.404(d + u). We first analyze the case where our algorithm picks
u and then predicts using the one-inclusion graph algorithm for F®% on the examples
(z1,29,...,2¢). When ¢ is large, the first examples can be very misleading and we describe
later how to adapt the following theorem when only a suffix of the examples is used.

Theorem 4: Let F be a function class defined on some domain X with VC-dimension d,
and let () be the prediction strategy that applies the one-inclusion graph algorithm for the
concept class FPU for some u € N. For any distribution sequence P of t distributions on
X and function sequence f of t functions from F, if:

e v is the drift sequence of P,
e & is the drift sequence of f,

o d' is the VC-dimension of F¥" (at most 4.404(d + u)), and
t—1
o u>2t> (6 +7i/2),

i=1
then for every v € N such that
t—1
w23ty v,
i=1

and u+v < t, we have

t—1
8d’
Ep (M! < E 27 + 6; 4 eV /S,
P( ny(x))—i_l(’y_}_ )+t7(u+v)+€ te

Proof Fix a function sequence f and distribution sequence P, both of length ¢. Define the
volatile set V7 and the uncertain set U; as in Section 3.1. We partition the domain X into
four classes, Xy = U1 NVy, Xgy = Vi = Uy, Xys = Uy = V4, and Xge = X — (U; U V).
Similarly, X! is partitioned into 4’ classes, one for each vector b € {uv,ﬁv,ux’/,ﬁ\?}t. A
vector x € X' is in the class associated with vector b € {uv, av,uv, ﬁ\7}t iff each z; € Xp,.
Let X| denote the set of vectors in the class associated with b € {uv, uv, uv, av}'. Clearly
the sets X{) partition X°.

We now consider the following subsets of {uv, iv, uv, iv}* whose union is {uv, av, uv, uv}".
In these definitions, the parameters v and u represent thresholds on the acceptable numbers
of volatile and uncertain points respectively.

e Aistheset ofall b e {uv,ﬁv,uv,ﬁ\’/}t where
by = v,
{ie{l,...,t} : b =uv or b; =uv}| <wv, and
{ie{l,...,t} : b = uv or b; = uv}| < u.

e B is the set of all b € {uv, uv, uv, ﬁx?}t where
{ie{l,...,t} : b =uv or b; = uv}| > v.

e ( is the set of all b € {uv, uv, uv, ﬁx?}t where
{ie{l,...,t} : by =uv or by = uv}| > u.

e D is the set of all b € {uv,uv, uv, ﬁ\’/}t where
by # v
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We now have that

/Xt x)dP; - - dPt:Z/Xt x)dP; - - dP,

Z x)dPy - dP+ > / M, ¢(x)d Py - - - dP; +
beA beB
> /X | Mg g(x)dPy - dP + ) / x)dP; - - dP;.
beC beD

We will bound each of the four terms separately, starting with the sum over b € D.

> x)dP; ---dP;, = / < / Mé’f(x)dPt> dP; ---dP;_4
Xt-1 ViuUy

beD b
/ </ dPt)dPldPtl
Xt—1 V1UU1

/Xt 12 (29i + 6;) dPy -+ - dP;
=1

IN

IN

t—1
= > (2vi+d),
=1

where the second inequality follows from Lemmas 2 and 3.
Next we examine the sum over b € B.

> x)dPy---dP, < > [ dPy---dP,.
bes ' Xp bes ' Xp

This sum is the probability under the distribution H§:1 P; of a sequence in X? that has
more than v components in V;. Note that this is bounded by the probability that there will
be more than v successes in ¢ Bernoulli trials when probability of success is

t—1
 dnax  Fi(Vi) <3/2;%

Let m be the expected number of successes of these Bernoulli trials. Since

t—1
v >3t Z’Yz',
=1

v is at least twice m, so the probability of more than v successes is no more than
e~ (v/m=1)*m/3 _ o (v- m)? | (3m) < e /6 (see for example [8], Inequality (6)).
We use a s1m11ar technique to bound the sum over b € C.

Z x)dP---dP < ) / dp; --

beC beC

Again, this sum is the probability under the distribution Hi:l P; of a sequence in X! that
has more than u components in U;. This is no more than the probability of more than u
successes in ¢ Bernoulli trials with probability of success no more than

t—1

: < . /9).
| max P(U) < ;(51 +7i/2)
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Since u is at least twice the expected number of successes, this probability is bounded by
e u/b,

Finally, we consider the sum over b € A. For each b € A, let I'yy be the set of
permutations of {1,...,¢} which swap ¢ with some 4 in {1... ¢} that satisfies b; = uv,
and leave the other positions unchanged. Thus for ¢ = 4 and b = (uv, uv, uv, uv), the three
permutations in 'y, are (1,2,3,4), (4,2,3,1), and (1,2,4,3).

Fix be Aand i€ {1,...,¢t — 1} for which b; = uv. We have

xt MY, ¢(x)dP; --- dP; =

/Xi ) (/ / dPt(’I‘t) dP (’I‘l)> dP1 e dPifldPH_l te dPtfl,
where X{;Q has the obvious meaning. The inner integral satisfies

/ / X)dP,(x;) dP,(z;) < 2/ / X)dP, () P, (:)

uv uv av av

< af . [ w M )P () dP ),

from Theorem 1, so
/Xt L e(x)dP, - dP; <4/ MY ((x)dP; - dP,
for any o in I',. It follows that
> x)dP; ---dP,

beB b
Z/ MY ¢(x7)dP, - - dP,

<4Z

beB | b| ocly,

=4 Z/ > Mpg(x7) | dPy---dP,
| b‘ O’GFb

beB
<4 dP - dP
beZB / i t— (u+v) ! !
< 8d'
“t—(utw)
Adding the bounds on these four sums completes the proof. O

As noted above, if ¢ is large enough so that the total drift, Zf;%(nyi +9;), is greater than
one, then the above theorem is trivial. However, the algorithm is able to ignore the initial
examples and consider only the last k labeled examples (as well as the unlabeled example
on which it predicts). In this case we obtain the following corollary.

Corollary 5: Let QQ be the prediction strategy that applies the one-inclusion graph algorithm
for the concept class FP¥ to the last k+1 < t examples. For any distribution sequence P of
t distributions on X and function sequence f of t functions from F, if u and v are positive
integers satisfying
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t—1
u>2k Y (6 +7/2),
i=t—k
t—1
v>3k Y v
i=t—k
and u+v < k, then
t—1

Fo [ M? < Qv L & 8d' —v/6 —u/6
P Q,f(x) > Z(’YH- z)+k+17(u+0)+e +e )

i=t—k

Here d' is the VC-dimension of F®", and is at most 4.404(d+u) where d is the VO-dimension
of F.

4 Upper Bounds

In this section we use Theorem 4 and Corollary 5 from the previous section to bound the
expected performance of the one-inclusion graph tracking strategy. This involves assuming
bounds on the drift sequences and then finding an appropriate number of exceptions and
amount of history to use.

Theorem 6: Let F' be a function class on domain X and d be the VC-dimension of F.
For 4,6 > 0, let « = 25 + 4. If @ < 1/d and d' = d + [3/2In1/(de)], then there is a
prediction strategy Q such that: for any distribution sequence P = (Py,..., P;) on X with
drift sequence vy satisfying ||v|lcc <4 and any function sequence £ = (f1,..., f;) € F' with
drift sequence & satisfying ||0||c < 5, we have

. (Mt )< 3Vda+126d' /t if 8d' <t < /d]a
PAMef) = 75vda ift > \/d]a,

t
) d'
Ep (Z Mgg,f> < ‘/E + 75V d at .
=1

Proof Consider the one-inclusion graph algorithm on F®“ where u = 2d’. To show that
this algorithm meets the bounds of the theorem, we apply Corollary 5 with v = 2d’ and
k = max{t — 1,|/d' /a]}.

Case 1: 8d' <t <. /d'/a.

For this case, k is set to ¢ — 1. Note that u4v = 4d’ < t/2, 2t*(3/2 +0) < u, and 3?4 < v,
so we can apply Corollary 5. This gives

and hence

t—1
21(d + u) _ _
t . . u/6 v/6
bp (MQ:f) < ;(271+6l)+t—(u+1)) te te
1=
63d’ .
< o+ 79 + 2e

< Vda+126d /t +2Vda.
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Case 2 : t > +/d'/«.

Here k = [\/d’/aJ. Assume vVd'a < 1/75, for otherwise the bound is trivial. This implies

Vd' [a > T5d, so

k— (u+v)

Wd'/aJ _ad
(1= 5/75)\/d' o + 5/75\/d' Jox — 5
14/15\/d /a.

v

v

Also, 2k2(5/2 + 6) < u and 3k%4 < v, so Corollary 5 implies

t—1
21(d + u)
Ep (M,s) < 2v; + 6;
P( Q:f) = z:;k( it 2)+k+1—(u+v)

63d’
< 3Wda+

14/15/d' /o
< T5Vdo.

+e /0 4 gv/6

The bound on cumulative loss follows immediately. O

The value d’' in Theorem 6 is a derived quantity rather than a natural parameter of the
problem. However when a > 1/e? then d’' < 5/2d and when o < 1/¢? then d' < 5/21In1/cv.
This leads immediately to the following corollary.

Corollary 7: Under the conditions of Theorem 6, if o < 1/e? then

Ep (Mé’f) <1204/ aln(l/a) whenever t > 1.6+/In(1/a)/a,
and if 1/e? < a < 1/d then

Ep (Mé’f) < 120Vda whenever t > 1.61/d/a.

Similar results can easily be obtained for the other bounds in Theorem 6.

We now show how bounds on the average drift (as opposed to the maximum drift) can
be used to obtain bounds on the one-inclusion graph algorithm’s performance. A bound on
the average drift gives the algorithm less information since an adversary can “save up” in
order to make radical changes in the function and/or distribution.

Theorem 8: Let F be a function class on domain X with VC-dimension d > 1. For
4,6 > 0, define a = 29 + 6.

If da < 1 and d' = d + [In(1/da)], then there is a prediction strategy @ such that, for
any distribution sequence P = (Py, ..., P;) with drift sequence ~ satisfying ||y|1 < 4 and
any function sequence £ = (f1,..., fi) with drift sequence § satisfying ||d]|1 < d, we have

t 4 1/3
E (Z Mé’f> < (d’Q/oz) Py 75t(d'a) /3,
i=1
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Proof Consider the following algorithm. For the first (d'?/a)/? time steps, the algorithm
predicts arbitrarily. After that, we use the one-inclusion graph algorithm of Corollary 5
with k& = (d?/a)/? and u = v = 2d’. Since the constraint on function and distribution drift
is not uniform, it is possible that the conditions on u and v of Corollary 5 will be violated
at some times. Ignoring the first k& time indices, let N, (N,) be the number of time indices
i for which the condition on u (v) is violated. That is,

3

N, = {iE{k-l—l,...,t}:ZkS(’)’j/2+5j)>u}

j=i—k

i—1
N, = {ie{k+1,...,t}:3k Z ’yj>v}.

j=i—k

Then we have

2k ) li (v;/2 + 0;)

Nyu <
i—ht1j—ik
t
< 267 (/246
=1
< 2k%at,

and so N,, < (d'«)'/3t. Similarly, N, < (d'a)'/3t. Also, we can assume that (d'a)'/3 < 1/75,
for otherwise the result is trivial. But this implies

k—(u4v) = d/(da)/?—ad
> 71/75d/3 |3,

Applying Corollary 5, we have
t .
E (Z Mé’f> < k+2t(da)'? +
i=1

t i—1
21(d
Z ( Z (2’}’]' + 5]') + M + e~ u/6 + eu/ﬁ)

=S k— (u+v)

63’
T1/75d2/3 [l /3

VAN

k+t (2(d’a)1/3 + ko + + 2(d’a)1/3>

< k+75t(d o)/

O

The bounds of Theorem 8 when given the average drift are clearly weaker than those
of Theorem 6 when the maximum drift is bounded. We believe that this gap represents a
real difference in difficulty between the two problems. We conjecture that if the total drift
is bounded and the actual drift at each time is known to the algorithm then a variant of
the one-inclusion graph algorithm has expected cumulative loss O(tv/d ) rather than the
order ¢tv/d'a suggested by Theorem 8. Thus we conjecture that the difference in difficulty
between the two problems is not due to the adversary making large changes, but is caused
by the algorithm’s not knowing when these large changes will occur.
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5 Lower Bounds

Here we describe two lower bounds related to the drifting problem. The first lower
bound is from Helmbold and Long [10] and uses a fixed distribution so only the target
function changes. In the second lower bound, the target is fixed and only the distribution
drifts. These lower bounds nearly match (i.e. are within a log factor) of our upper bounds
on the one-inclusion tracking strategy, which handles simultaneous drifting of functions and
distributions.

5.1 Drifting functions

As might be expected, the lower bounds for drifting functions depend greatly on the
particular function class. When the function class ¥ has VC dimension d and is suitably
rich, MQ,pﬁ(t) > \/ﬁ/eQ. However, for the simplest function classes of dimension d,
Mg () < &d for large t.

Say a function class class F' of is d-suitable if there are d disjoint subsets of the domain,
X1,...,X4 such that

e for each X there is an isomorphisms /; between X; and the natural numbers, and

e for each v € N there is a function f € F such that for each j, function f assigns 1

to the inverse under I; of {i € N : i < v;}, and assigns 0 to the inverse under I; of
{ieN:i>uv;}
Thus a d-suitable function class contains d independent “copies” of the natural numbers
and an initial segment of each “copy” can be set to one independently.

For example, consider the class of closed sub-intervals of [0, 1]. We focus our attention
on two infinite sequences of points: (1/3,1/6,1/9,...); and (2/3,5/6,8/9,...). For any 1
and j we can find a closed interval (namely [1/(37),1 — 1/(37)]) which contains (only) the
first 7 points from the first sequence and (only) the first j points of the second sequence.
Therefore this class is 2-suitable.

The following result, due to Helmbold and Long [10], shows that for general function
classes the one-inclusion tracking strategy is nearly optimal.

Theorem 9 (Helmbold and Long): For d € N, if F is a d-suitable function class on a
set X, 0 < 1/d, and t > |\/d[d], then for any algorithm Q there is a distribution P on X
and a function sequence £ € F' with drift § such that |6 = 6 and

Vod
EMQ’f > —62 .

However, simpler function classes with VC-dimension d can be much easier to track.
Consider the class of all {0, 1}-valued functions defined on X = {1,...,d}. Given a function
sequence with drift § having ||6]|s = d, the function sequence can change value only on those
points which have probability at most §. Therefore the asymptotic error of the algorithm
which always predicts with the last seen value for each point is at most (d — 1)4.

Given only that function class F' has VC-dimension d, the best lower bound we can
prove is EMC%’f > 0(d—1)(1 —d(d —2)/2)/2 € ©(dd). This bound can be shown by the
simple adversary that takes a shattered set of size d and puts probability § on the first d — 1
points and probability 1 — (d — 1) on the last point. The adversary uses the last d — 1
trials to randomly reset the values of the first d — 1 points. No algorithm can do better
than random guessing on these d — 1 points (unless the algorithm was fortunate enough to
have seen one of them since its value was reset).
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The following theorem shows that the one-inclusion tracking strategy is also nearly
optimal with respect to cumulative loss. The proof is closely related to the proof of
Theorem 9.

Theorem 10: If F is a d-suitable function class on domain X, 0 < § < 1/16 with 1/6 an
integer, and t > 4 [ d/(ﬂ, then for any algorithm @, there is a fized distribution on X and
a function sequence £ € F' with drift sequence § satisfying ||6]|c < 6, and

3 -4
E (2 MQ,f> > 6—4\/%15.

Proof We will only consider distributions that have support on the set U?:1 X;. Without
loss of generality, we can assume that X = {1,...,d} x N and F contains all functions
fv:X —{0,1} for v € N¢, where

1 ifb<w,

fvla,b) = { 0 otherwise.

Define the distribution P on X as P(a,b) = d/d fora € {1,...,d} andbe {1,...,1/0}. As
in [10], we will consider a sequence of functions in {fy} for which v varies slowly. It is best
to view the sequence {fy} as a series of N = |t/2k]| phases of length 2k where k = [d/J]
(the “left over” functions from time 2[d/0|N + 1 through time ¢ are not important to
our argument). Each phase is associated with a z € {0, l}d, and consists of the function
sequence

f, = (fOZafZaf?Za .o '1ka7f(k71)Z7 e 'afZ) .

The particular {fyv} we analyze is created by choosing a z; uniformly at random from
{0, 1}d for each phases = 1,..., N, and then concatenating the resulting phases, f;, through
f,,. Thus

f=(fz,,...,f2,),

sy rZN
and has length ¢/ = 2Nk. Since t > 4k, t' > t/2. Clearly, for all choices of the z;, the
sequence f has drift § satisfying ||d|| < 0.

Consider a sequence (21, ..., 2y ) chosen from X according to P. We relabel the sequence
to emphasize the phases:

(1,050 B12k—15T2,05 -+ s T22k— 15+ s TN,2k—1) 5

and relabel Mé?’f as Mé”f in the corresponding way.

Consider for a moment an example z;; = (a,b) where b < j < k. This example is
labeled 1 by f if and only if bit a of z; is 1. Furthermore, the algorithm can do no better
than random guessing on the label of z; ; unless there was an earlier example in this phase
which has revealed bit a of z;, namely some z; y = (a,b') with b' < j' < j The remainder
of the proof formalizes this intuition.

For each phase i € {1,..., N} and each j € {|k/2],...,k}, we have

1 (M) > b (M

Ei,j) PI"(EZ',]'),
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where the expectations and probability are over random choices of the z; and x sequences,
and FE; ; is the event that some bit of z; is revealed by example z; ;. More formally

E,; = {xeXWX%:Mr:MJLwﬁhbgjmﬁ
zij & {(a,c) 1 c < j'} for i €{0,...,5 —1}}.
Clearly,
iy 1 36 76 2 e
B (M) > 5 Pr(Ei) = 5 [T (1 = 16/d) > T exp(—=5°6/d) > —V/db.

=1
So

t —4 ! —4
; e t e
E M > Vdé— > ——/dét.
(Z; @J-s 47 64

5.2 Drifting distributions

The two results in this section show that both the instantaneous and cumulative loss
of the one-inclusion tracking strategy are also nearly optimal with respect to distribution
drift.

Theorem 11: Suppose F is a function class with VC-dimension d such that 3 < d < oo.
For any t € N and v > 0, and any prediction strategy Q, there is a function f in F and a
distribution sequence P with drift sequence v satisfying ||v||co < 7y such that

d—1
for all t
2 (1t )> 2et
( Qf) = v(d —2) fort > d—2
1 or -

Proof The first part of the bound is a consequence of the lower bound on the mistake
probability for identically distributed examples given in Theorem 3.1 of [9].

The second part of the bound uses a related proof. Consider the shattered set Xy =
{z,90,91,-.-yr} with d = k + 2 elements. We use a distribution sequence P = (Py,..., F;)
which has a support that drifts from the set {yg, 2z} to {yo,y1,...,yx}. The probability of y
remains constant throughout; the remainder of the probability shifts from z to {y1,...,yx},

starting at time ¢ — m, where m = %/k/’y-‘. The distribution sequence is given by

k
— 7_]-a atim
m
Pi(z) = (t— )k
5 j=t—m-+1,...,1
m
k
Pilyo) = 1-—
0 j=1...,t—m
Pily) = 3 it m)
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It is easy to verify that the drift -y of the sequence P satisfies ||v| o < max; |Pj11(X1) — Pj(X1)| <
k/m? < v, where X1 = {y1,...,yr}.

Let B be the set of samples of length ¢ in which the last example z; has not already
appeared in (z1,...,2; 1). The probability that a sample is in B is

P(B) = P((xla"'amt):mt#mjaj:]-a"'vtil)
> P(ry#y and zy #25,5=1,...,t 1)
t—1
= (1= "Piyo)) [ 1 = Pj(z)) .
7j=1
N0W7 if Tt 7é Yo,
0 j=1,...,t—m
P —(t—
i (1) J (27’7) j=t-m+1
m
So
- .i(tm)>
P(B) > 1-
() > H ( "

k
e )
m
k
> —2
em
Using a standard argument (see [7, 9]), it is easy to show that there is an f in F' for which

Ep (M} ¢) > P(B)/2. 0

Theorem 12: Suppose d € N, F is a d-suitable function class, 0 < v < 1/4, and
t > 2y/d/y. Then for any algorithm Q, there is a function f in F and a distribution
sequence P with drift v satisfying |||/ <7, and

t -1 4
; (I—e ") /
P (3] > v
=1

Proof We will consider a sequence of distributions that each have support contained in a
finite set. Without loss of generality, we may assume that X = {1,...,d} x [0,1]. (This is
because we consider only a finite subset of [0, 1]; the cardinality of this subset depends on

t) Let F = {fv v e, 1]d}, where

1 ifb>w,
fvlab) = { 0 otherwise.
Let the target function be fy, where v is chosen randomly according to the uniform
distribution on [0, 1]%. The distribution sequence we will consider begins with P; (i,0) = 1/d
for i € {1,...,d}. The sequence is split into a number of trials, and in trial r the support
gradually shifts to points (4,b]) (i € {1,...,d}). These points are chosen so that the b]’s
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approximate the threshold v progressively more accurately, so it is difficult to predict the
label of an unseen point (i,b}). For r € N and i € {1,...,d}, let

_ | Y- —r—1
bg_erQTJJT :

From this definition, fy(i,b}) is the value of the r-th bit of the binary representation of v;.
Since v is chosen uniformly, if this label has not previously been seen, any algorithm has
probability 1/2 of predicting it correctly.

Now, let k£ = {\/d/—'yJ and ¢ = Nk, where N = |t/k]. Since t > 2\/d[y, t' > t/2.
The sequence of distributions is split into N trials, each of length k. During trial r, the
probability of each point (i,b]) is increased by «y/d, for i = 1,...,d. This distribution
sequence clearly has drift v satisfying ||v|cc < 7. Consider a balance point (7,b]). The
probability that it remains unseen during trial r is no more than

k k
[[(1—iv/d) <[] exp(—vi/d) < exp(—1/4).
i=1 i=1
So the expected number of balance points (1,b7),...,(d,b}) that are seen in trial r is at

least (1 — 671/4)61. The first time each balance point occurs, the algorithm has probability
1/2 of making a mistake. It follows that

t _ o —1/4
Z . 1
i=1

(1—e /4

> i,

where the expectation is over random examples and random choice of the function fy. It
follows that there exists a suitable f in F. O

6 Agnostic Learning

In the prediction model of learning (and the pac model), we assume that the relationship
between examples and their labels is a deterministic function in a known function class. This
is an optimistic assumption, since it forbids noise and errors, and it assumes a great deal
of knowledge about the function. To dispense with these assumptions, Vapnik [15] and
Blumer et al. [4] consider learning models in which the relationship is described by a joint
probability distribution on X x {0,1}. In this section, we examine a learning model of this
kind in which the joint distribution is allowed to change slowly but continually as learning
proceeds.

We begin with some notation, analogous to that introduced in Section 2. Suppose that
t>1, &= ((x1,91)s- - (T4, 90)) € (X x{0,1})" is a labeled sample, and () is a deterministic
prediction strategy. Define the mistake of Q) on £ as

1 Q(((mlayl)a"'7(~Tt71ayt71))7'7"t) #yt

0 otherwise,

ugie) - |
and define Mé(ﬁ) for a randomized prediction strategy @ = (Q,, Z, D) as

MH(&) =D{z€ Z:Q(((x1,41),-- -, (Bt-1,91-1)), %1, 2) # Y} -
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Suppose (S, F, P;) is a probability space for i = 1,2,...,¢, t > 0. Define the drift v of
the sequence P = (Py,..., P;) as in Section 2.

For a function f : X — {0,1} and a distribution P on X x {0,1}, define the error of f
with respect to P as

erp(f) = P{(z,y): f(z) #y}.

For a class F' of {0,1}-valued functions defined on X, we are interested in the additional
instantaneous loss of a prediction strategy @,

E (Mfz) — inf erp,(f).

We first introduce a technical lemma showing that the expectation over any slowly
changing distribution sequence is close to the expectation over related sequences of an
unchanging distribution.

Lemma 13: Foranyk > 1 and 0 <y < 1, if the sequence P = (Py,..., Py) of distributions
on X has drift v satisfying ||v¥llco < and f is a measurable function from X to [0,1], then

[ fari< [ 1apii+ar2

for 1 <i <k —1. Furthermore, if f is a measurable function from X* to [0,1], then

/fdPg/fdP{“r@v, (6.1)

and

/f P < /f Pl + w% (6.2)

Proof For the first inequality, define the signed measure y = F; — P;;1. For this signed
measure, choose a partition {A, B} of X for which p is positive in A and negative in B, and
define two measures on the measurable space (X, F) (the upper and lower variations of ),
pt(E)=u(ENA)and p (E) = —u(ENB) for E€ F. Clearly, u", = >0, p=pt —p—,
and pt(X) = p (X) = dry(P;, Piy1)/2. By definition,

= [ 1w
oo

< max{u"(X),p (X)} < /2,

[rar.~ [ far

which is the first inequality.

Now, we are interested in the expectation

/ £dP = /in /X /X F APy (21) dPy(w3) . .. dPy(y).

Fix x3, x4, ..., 2, and consider the integral

/x /dePl(fIh)dPQ(mQ) = Euyep, (/X f dPl(~”¢1)> -
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Call the random variable inside the parentheses I(z2). Notice that 0 < I < 1, so the first
inequality gives

Enyep, (1(x2))

IN

Eyyep (I(22)) + /2
= /X2 fde(:vl,:vg) + /2.

Therefore
By (f) < / fAP2(z1,72) ... dPy(ax) + /2.
1= JXk-2 JXx2
Similarly,
By () < [ F AP (01,00, 3) ... dPy(ag) +7 + /2
i= Xk—B X3
and

k—1
Epye (f) < /kadpf(ivlaivza---axk)+’Y/22i
i=1

k(k —
= B+,

which is Inequality (6.1). The same argument with the labels for P ... Py reversed gives
Inequality (6.2). 0
The following theorem is the main result of this section.

Theorem 14: For any function class F with VC-dimension d (1 < d < o0), and any
distribution sequence P = (Py,..., P,) with drift v satisfying ||[Y|leo < v < 1/d?, there is a
prediction strategy (Q with

. d B B 1/2
Ep (Mé) < }glf?erpt(f) + (15\/25_—1 +5d2/571/5) (ln(2d 2/57 1/5))

if 2d < t < 2dM5~2/5 and
' . 2/5,.1/5 —a/5 15\ /2
Ep (Mh) < inf erp, (/) + 194/ (n (24-2/7971/7))

if t > 2d'/5y=2/5,
The proof uses the following lemma, which uses a uniform convergence result of Vap-
nik [15].

Lemma 15: Let F' be a class of functions that map from X to {0,1}, with VC-dimension
d > 1. There is a prediction strategy () such that, for any probability distribution P on
X x {0,1} and any t > 2d,

_ d 2t —1)\"?
Ept(Mé)—;ggerp(f)<10<t_11n (d )> .
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Proof If £ = (z1,y1,- -+, Ty, ym) € S™ is a labeled sample and f is a function in F, define
the empirical error of f on £ as the fraction of examples in ¢ that f misclassifies,

S(f) = [t € (1.2, m} : flz) # i)

Let @ be the prediction strategy that, on input (&, ), labels 2 according to a function fg
in F' that minimizes the empirical error on . That is, Q(&,x) = fg(:v), where fg satisfies
erg (fg) = mingcp ere(f).

A result of Vapnik gives bounds on the sample size that ensures the error of a function

and its empirical error are close for all functions in the class F. Indeed, if VCdim(F') = d
and m > d, Theorem 6.7 in [15] implies that

3d
P {¢ e 8™ Jerp(f) — ere(f)] > e} < 9e /4 (%@)

for all f in F. If (e, m) = 9¢ < ™/4 (2m/d)>?, it follows that

pm {5 € S™ : et (fg) <erp (ff) - 5/2} < p(e/2,m),

and
P {e: 31 € Feerp() = inf erp(f), &e(f) > explf) +¢/2} < ple/2.m).

If neither of these events occur, we must have erp (ff) <infrcperp(f)+ ¢, so that

p™ {{ €S erp (fg) — inf erp(f) > e} < 29(e/2,m),

fer

hence
P {g e sm: <erp (fg) — inf erp(f)> > 62} < 18e~™/16 (9 /d)3? .
€
Since erp(f) <1 for all f in F,

2
Egepn (erp(ff) ~ ot erp(f>) < ¢+ 18 "1 (2m/d)*,

for all € > 0. Setting

16 t 2(t—1)
2= — (In-= 1 )
€ ; 1<nd—i—3dn y

and m =1t — 1 gives

5 . 2 16 t 2(t —1 18d
Beepim (erP(ff) - ;ggerp(f)) < (1’“3 1 3d1n 2 y )) +—
18 d 2(t — 1)
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provided ¢t > 2d. Applying Jensen’s inequality gives

) d oy 1/2
Becps (exn(fe) = nf ern()) <10 (1 m 2 1)) ,

That is,

d o 172
Beep (MY(©)) — jof exe(r) <10 (5 m XY

O
Proof (of Theorem 14) The algorithm we analyze is the prediction strategy @ that

minimizes the empirical error over the last k = [2d1/57’2/5] time steps if possible. In other
words, if £ > k then

Qr (1, y1s - =1, Y1—1), %) = Q ((T4— k15 Ytk 15+ - - s Ti—1:Yi—1), Tt)

where () is the prediction strategy of Lemma 15. When ¢ < k, strategy @) is identical to
Q.

We start with the second bound. Lemma 13 implies that, for all y-admissible distribution
sequences (P;)!_, on S,

k(k —1)
k k
E<Pi>§:t—k+1 (MQk) < EPtk (MQ’“> + 2 v
when ¢t > k.
Then
. k(k —1)
k
Lia(t) < Lo ra(t) < By (ME) — inf erp (/) + = —
d 2k —1)\?
< 10<k11n ( y )> + (k —1)%y
d 4d1/5 —2/5 1/2 B
< 10 <d1/572/5 In J ) + (2d! /5y 2%)2y
1/2
< 10d2/571/5 (21n(2d2/5fy’1/5)) / +4d2/571/5
1/2
< 19d2/571/5 (ln(2d2/5771/5)) / 7

giving the second bound.
For the first bound, 2d < ¢ < k. In this case Lemma 13 and the same reasoning gives

d
t—1

20t — 1)\ "/
Lp~(t) <10 < In ( y )> + (t —1)%.
Substituting in the upper bound ¢ < 2d'/5~y~2/5 yields

1/2
LF,’Y(t) < 10 (til 1n(4d4/572/5)> + 4d2/5’yl/5

d 1/2
(15\/ﬁ +5d2/571/5) (in(2d /5y ~1/%)) ”

which is the first bound in the theorem. O

VAN
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7 Conclusions

We have analyzed how well an algorithm can learn when the target function and
distribution are slowly changing at known rates. In particular we give an algorithm based
on the 1-inclusion graph algorithm of Haussler et al. for this changing setting. For a target
class of VC-dimension d and a combined drift rate « of the distribution and target function
at least 1/e?(4) this algorithm’s mistake rate is O(v/da). Thus if the drift rate is at most
€2 /d then the algorithm’s mistake rate is at most e. For very small drift rates, our bound
on the algorithm’s mistake rate is slightly weaker — O(y/dalog(1/a)).

We have (almost) matching lower bounds. We show that when the distribution is held
constant but the target function drifts at rate § then any algorithm learning a suitably rich
target class has a mistake rate in Q(yv/dd). Furthermore, even when the target function
remains fixed and only the distribution drifts (at rate ), any algorithm learning a class of
VC-dimension d can be forced to make mistakes at a rate in Q(y/dvy). Thus our algorithm’s
performance when both the function and distribution are drifting is almost the same as the
best possible algorithm when only one of the two is drifting.

We have also examined the situation where the drift is uneven - although the total
amount of drift is bounded, it may be distributed unevenly over time. In this case the
algorithm’s mistake rate climbs to O(v/da) where « is the average amount of drift. Although
we conjecture that knowing how much drift occurred each time would allow a O(vda)
mistake rate, this remains an open problem.

Finally, we consider the generalization of drifting to the agnostic model. Here instead of
having a distribution over the domain X and examples labeled by a target function, there
is a joint distribution over X x {0, 1}. In this setting the algorithm’s goal is to select at each
time a hypothesis from the class whose expected error is as small as possible. We give an
algorithm whose expected loss (difference in error between the selected hypothesis and the

best possible function in the class at that time) is bounded by O(d?/5+'/5\/2d~2/5y-1/5),

Appendix

Proof of Lemma 1

Proof By the Lebesgue decomposition theorem (see for example [6]), there is a set T' € S
such that the finite measure Py (defined by P/;(S) = P(T'NS) for all S € S) is absolutely
continuous with respect to @ (that is, for all S € S, Q(S) = 0 implies Pp(S) = 0) and
Q(X —T) = 0. So there is a function g—g : T — R (the Radon-Nikodym derivative) such

that, for all S € S,
dP

Pes) = [ So@ Q)

Let W = {:v eT: %(Zﬂ) > a} and F = (X —T)UW. We will show that E satisfies the
conditions of the theorem. For any S € § we have P(SNE) = P(SN(X —~T))+ P(SNW).
But P(SN(X —T)) >Q(SN(X —T)) =0, and
dP
P(SNW :/ —(x)d .
saw) = [ 2@ )

Now, if Q(SNW) = Q(SNE) # 0, then P(SNW) > aQ(SNW),s0 P(SNE) > aQ(SNE).
That is, either Q(SNE)=0or P(SNE) > aQ(SNE).
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Now, X —E=T —-W, so
P(SN(X—E) = P(SN(T—W))
= [ @)

N(T-W) dQ
< aQ(SN (X - B)).

That is, F satisfies conditions 1 and 2. Furthermore, the set T' is unique up to measure
zero symmetric differences, which implies that E is also essentially unique. If we extend the
function % to the whole of X by assigning it a value of 0 on X — T, then that function is
essentially (with respect to P and ) unique.

Now, if f : X — R is a non-negative measurable function, we can write

/SW(XE)fdP - -/SD(TW)f(x)EdQ('T)

Proof of Lemma 2

Recall that Lemma 2 says:
If P = (P,...,P,) is a sequence of ¢ probability distributions on (X,S), with
distribution drift v = (y1,...,v-1), then forall 1 <k <i <t

t—1

P(Vi) <3/2) ;.
j=k

We first give some preliminary definitions and a lemma.

For | <k <tandt—-k <i<t-1 let T, = H —Ucjy B and Wi = L; —
Uicj<t E; — V,:'. Thus the T; and W;  for t —k <4 <t — 1 partition V}. Furthermore, for
allt —k <i<t—1, P(T;) > 2P,(T;) and P;(W; ;) < 2P,(W; ).

Lemma 16: For all 1 < k <,

t—1

> P(Ty) < i V5/2;

i=t—k j=t—k

and
t—1

Y Pi(Wiy) < i Vi/2.

i=t—k j=t—k

Proof For the first inequality we have

2 g P(T;) < § Pi(Ty)
i=t—k i=t—k
& PV < 5 [Pi(T3) — P (T3)]



7. Conclusions 23

IN

3

~
N

=1 t—1
=t—k i=t—k
-1 t—1
i=t—k i=t—k
t—1 t—1
= > Y [Pi(Wig) — Pj(Wi)]
i=t— kj—i

J

= Z Y [Pra(Wig) — Pi(Wiy)]

j=t—ki=t—k

Ky (o)
ti Vi 2-

j=t—k

IN

We now return to the proof of Lemma 2.
Proof For each i in {t — k,...,t}, P;(Vy) = ;;Lk[Pi(Tj) + P;(W;)]. From Lemma 16
we get the following inequality.

P < X IR+ P - Y PUT) = Y Pi(Wip) +
j=t—k Jj=t—k Jj=t—k
i Y
j=t—k
t—1
= > [P(Ty) + P(Wjg) — P(T5) — Pj(Wjp)] + Z Vi
j=t—k Jj=t—k
- [PZ(T]) - Pt(T])} + Z [PZ(WJJC) P](W]’k)] +
j=t—k Jj=t—k
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IN

IN

7. Conclusions

t—1 t—1 i—1 i—1
Z Z Pl+1( )] + Z Z[PlJrl(Wy,k) - Pl(W],k)}
j=t—k I=i j=t—kl=j
t—1 j—1 t—1
+ Z P(Wjx) = Pa(Wip)l + >
j=i+1l=i j=t—k
t—1 ¢—1 i—1 !
Z Z P Pl+1(T )] + Z Z [PH-I(W] k) Pl(Wj,kﬂ
=i j=t—k I=t—k j=t—k
t—2 t—1 t—1
+> [P (Wjik) = P (W) + Vj
=1 j=l+1 j=t—k
t—1

'[Pl(V,j') — P (VO +

Py U Wik | — B U Wik
1—k<j<l k<<l

(L m)n (g5

IH1<j<t j=t—k

PV — Pt(Vk ) +

{PI (V,j u U Wj,k) — Py (V,j u U Wj,kﬂ

141<j<t—1 14+1<j<t—1

1—1 —1
+ N2+ D v

Proof of Lemma 3

Proof

Pi(U; )

I=t—k j=t—k
o 1/2+Z%/2++ Z /2 + Z o0
I=t—k j=t—k
3/2 Z Yi-
I=t—k
O
t—1
- Z Pi(DJ)
j=t—k
t—1 t—1 t—1
< Pi(Dj) — Z Pj(Dj) + Z 9,
j=t—k j=t—k j=t—k
i—1 t—1 -1
= Z [P(Dj) — Pj(D;)] + Z [P(D;) — Pj(D;)] + Z Wy
Jj=t—k Jj=i+1 j=t—k
i—1 1—1
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-1 g -1
S Y [Pa(Dy) - P(Dy)I+ D6
j=it1l=it1 j=t—k

i—1 l

= > > [P(Dy) - P(Dy)] +

I=t—k j—t—k

t—1 t—1 -1
Y [P1(Dy) — P(D)]+ > 6

I1=it1 j=I =tk

IN

Z M/2 + i 5]'-

I=t—k j=t—k
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