Optimal Wire Spacing Under Cross
Talk Constraints

Paul B. Morton
Wayne Dai

UCSC-CRIL-98-09
August 3, 1998

Jack Baskin School of Engineering
University of California, Santa Cruz

Santa Cruz, CA 95064 USA

ABSTRACT

As VLSI technology continues to advance, the spacing between adjacent wires
continues to decrease, causing a corresponding increase in capacitive coupling be-
tween adjacent wires. This trend makes it increasingly likely that we will generate
routings which violate one or more of the noise margins on the net’s sink pins. At
the same time, these technologies are becoming more routing limited. These two
trends are increasingly forcing physical designers to use scarce routing resources to
decrease the coupling between adjacent wires. From this we can see that what is
needed is a set of tools, applicable in an area routing environment, that will generate
routings that meet all the noise constraints while sacrificing the minimum amount of
routing resources. In this paper we will present a polynomial time algorithm, which
can be used in an area routing environment, for determining the optimal spacing
between a victim net and it’s adjacent aggressor nets such that none of the noise
margins of the victim net’s sink pins are violated, while consuming the minimum
amount of routing resources.

Keywords: cross talk, constrained routing, wire spacing, noise margin.

1. Introduction 1

1 Introduction

As VLSI technology continues to advance, the spacing between adjacent wires continues
to decrease, causing a corresponding increase in capacitive coupling between adjacent wires.
The increased coupling has, in turn, lead to an increase in the amount of cross talk noise
being coupled into a given net. This trend makes it increasingly likely that we will generate
routings which violate one or more of the noise margins on the net’s sink pins. At the
same time, these technologies are becoming more routing limited, as can be seen by the
ever increasing number of routing layers. These two trends are increasingly forcing physical
designers to use scarce routing resources, in the form of increased spacing, to to decrease
the coupling between adjacent wires. From this we can see that what is needed is a set
of tools that will generate routings that meet all the noise constraints while sacrificing the
minimum amount of routing resources. Further, it is clear, for technologies having more
than two routing layers, that any tools developed to help solve this problem need to be
applicable in an “over the cell”, or area routing environment.

Over the past few years there have been several proposed strategies for minimizing cross
talk noise during routing. These include [1], and [2] for chip level routing, and [3], [4],
and [5] for MCM level routing. However, since none of these strategies directly conserve
routing resources, and all of them are based on channel or switch box routers, they cannot
be used to solve our problem. An additional notable work in this area is [6] which proposes
a strategy for meeting cross talk constraints while using a minimum amount of routing
resources, however, in this case the technique is only applicable to channel routers, and
they make the very conservative assumption that each net has a single cross talk noise
margin.

In this paper we will present a polynomial time algorithm, which can be used in an area
routing environment, for determining the optimal spacing between a victim net and it’s
adjacent aggressor nets such that none of the noise margins of the victim net’s sink pins are
violated, while consuming the minimum amount of routing resources. Over the past few
years there has been a great deal of work done on the related problem of determining the
optimal sizing and spacing to meet timing constraints, see for example [7], [8], [9], and [10],
however, none of these have directly or adequately addressed the cross talk noise problem.

This new spacing algorithm will be particularly powerful when used in combination with
a flexible area router such as SURF [11], where the victim net’s adjacency information can
be quickly and accurately estimated during the “rubber band” routing phase. The spacing
information generated by the new spacing algorithm can then be used by SURF to construct
the final rectilinear routing with a set of spacings that will eliminate the cross talk noise
problem.

Fundamental to the work done in this paper is the work done by Devgan .in [12], which
gives us a closed form expression that allows us to quickly and accurately calculate the
maximum cross talk noise seen at each of the sink pins of a victim net. This noise metric
is far more accurate than the simple “coupling length” based noise metrics currently being
used in layout synthesis, and is far less expensive than computing the cross talk noise using
parasitic extraction and circuit simulations. We will use this closed form expression in a
dynamic programming strategy, similar to that used in [10] and [7], to develop a polynomial
time algorithm to solve the discrete spacing version of the optimal wire spacing under cross
talk constraints problem outlined above. The major contributions of this paper include:

e The formulation of the optimal wire spacing under cross talk constraints problem.

2 2. Problem formulation

e A polynomial time solution to the discrete spacing version of the optimal wire spacing
under cross talk constraints problem.

e Incremental dominance pruning, as well as several heuristic pruning strategies used
by the dynamic program.

e A proof showing why the dominance property can be used as a pruning strategy in
our dynamic program.

2 Problem formulation

Given a routed victim net an a set of routed aggressor nets, we would like to determine a
corresponding set of spacings, which, if used to separate the aggressor nets from the victim
net, would meet the cross talk noise margin constraints at each sink pin of the victim
net, and would minimize the amount of routing resource used to meet these constraints.
To accomplish this, we need to compute, for a given set of spacings, the cross talk noise
induced on each sink pin of the victim net. Further, we need to compute the total routing
area consumed by the spacing between the victim net and each of the aggressor nets.

From [12] we can determine the maximum cross talk noise voltage on any node of a
victim net as
Vo= VPar(n) + Ry, Z CijUj (1)

i€Des(n)
JEAY(1)

where
e Des(n) is the set of victim net nodes that are descendants of node n.
e Par(n) is the parent node of node n.
e Ag(i) is the set of aggressor nets that are coupled into node i of the victim net.

e V, is the maximum cross talk noise voltage, induced on node n, by all down stream
aggressor nets.

e R, is the resistance connecting node n to node Par(n).
. Uj is the slope of the aggressor net signal on aggressor net j.

e (;; is the coupling capacitance between aggressor net j and the segment connecting
node i to node Par(i).
To illustrate, consider the routing depicted in Fig. 1, containing four nodes, Ny through N3,
and six aggressor nets, Ag; through Agg. This can be reduced to the network shown in Fig.
2, where Ry represents the net’s source resistance. Using (1) we can see that

C1Uy + CosUs + CosUs + CoUs + Cs3Us + CsaUs)
CHUl + 02505 + CQGUG + 03202 + 03303 + 03404) + V)
Ca5Us + CasUs) + Vi

C32Us + C33U3 + CsaUs) + V1

Vo = R
i = R
Vo = Ry
Vi = Rj

o~ o~ o~ —

Since the analysis in [12] assumes that all aggressor net signals are ramps, we have

. 1%
Uj =08 % (2)

J

2. Problem formulation 3

oo 1 Mol

Figure 1: Victim net with six adjacent aggressor nets.

Figure 2: Electrical network for a victim net with six adjacent aggressor nets.

where Vpp is the supply voltage and ¢; is the 10% to 90% rise time of aggressor net j.
Further, we have that

_ L
Ci; = Co 3, (3)

where

e L;; is the length of the adjacency between aggressor net j and the segment connecting
node i to node Par(7).

e S;j is the distance separating the adjacent segments.

e () is a proportionality constant.
Substituting (2) and (3) into (1) we have

4 3. Dynamic programming algorithm

L..
Vo = VPar(n) +0.8Vpp Co Ry Z S. l]t (4)
i€ Des(n) s
JE€AG(3)
The routing area consumed by a set of spacings is
A= Z Lij Sij (5)
iEN
JEAg(3)

where N is the set of all victim net nodes.
Using (4) and (5) we can formulated the optimal wire spacing under cross talk constraints
problem as the following constrained minimization problem

1EN
JeAg(i)
subject to

Vi < M, VneN
Sij > Smin VieN, je€ Ag(i) (7)

from which we can determine an optimal set of spacings, {S;; | Vi € N, j € Ag(i)}, where
M, is the noise margin for node n of the victim net, and Sy,;, is the minimum allowable
spacing between two adjacent segments. Note that M, = oo for victim net nodes that do
not contain a sink pin.

Assuming we are routing on a uniform routing grid, L;; and S;; can be restricted to
integer values which represent the number of grids over which the adjacency occurs and
the number of grids separating the adjacent segments, respectively. Assuming that each
Si; is selected from a finite set of spacings, {1,2,...,Sy,4}, then the general optimization
problem defined by (6) and (7) can be reduced to the following combinatorial optimization
problem

1EN
JE€Ag()

subject to

V., < M, VneN
Sii €{1.2,....Smaz} VieN, je Ag(i) (9)

where we want to determine the set of spacings {S;; | Vi e N, j € Ag(i)}

3 Dynamic programming algorithm

In this paper, we will use a dynamic programming approach, similar to [10], to approx-
imate the values of S;; that satisfy (8) and (9). In order to simplify the development of
the dynamic program, we will assume that we have a binary network, with at most one
adjacency per node. Each node, n, in the binary network contains the following information:

3. Dynamic programming algorithm d

e R — The resistance connecting node n to node Par(n).
e . The length of the adjacency associated with node n.
e ¢ The rise time of the signal on the adjacent aggressor net.

e M The noise margin associated with node n.

4

e P; — The pointer to node n’s left child.
e Pr — The pointer to node n’s right child.
Ad,
NZ
I o

N~
L\ N, N

0

vV V V

IN

J

RyM L oty) Ry M Lt ReM L) (RLM,L)

O O O O
(R 13’M 3'L 4't 4)
(RyMyL gty
\g? 14’M4,L 5,t 5)

Figure 3: General network to binary network conversion.

To convert a general network with multiple adjacencies per node to a binary network
with at most one adjacency per node we introduce intermediate nodes with zero resistance
and infinite noise margin, as illustrated in Fig. 3, where

e Ry is the nets source resistance.

e Rg=0

e Ry, Ri2, Ri3, and R4 are the resistances between nodes Ny and Ny, Ny and Ny, N;

and N3, and N; and Ny, respectively.

[] Md = Q0

e M; through M, are the noise margins at nodes N; through N4, respectively.

L] Ld = 0

e [, through Lj are the adjacency lengths associated with Ag; through Ags, respec-

tively.

e fg =00

e {1 through t5 are the rise times associated with Ag; through Ags, respectively.

6 3. Dynamic programming algorithm

In order to implement a dynamic programming solution we need to augment each of the
binary network nodes with a set of “partial solutions”. A partial solution set, for a node,
n, is the set of feasible solutions to (8) and (9) when they are applied to the subnetwork
rooted at node n. Note that for the root node, a partial solution will be called a solution,
and a partial solution set will be called a solution set.

Each element of a partial solution set for a node, n, consists of a six touple (A, I, Mr, S, Pr,, Pr),
where

e A is the total area consumed by this partial solution.

e [is the total current drawn through node n’s resistor.
e Mr is the “minimum remaining” noise margin.
e S is the spacing being used at node n of this partial solution.

e P and Pr are pointers to a partial solution from the left and right children, respec-
tively, on which this partial solution is based.

Specifically, consider the general situation depicted in Fig.4 where we have a binary
network node, n, with two children. Each child has a partial solution set, PSSy and
PSSpg, from which we can choose partial solutions PS;, = (A, I, Mry,St, Pri, Pri),
and PSp = (Ag,Ir, Mrg,Sgr, PLr, Prr) respectively. Node n is connected to its parent
through resistance R,,, and has a noise margin M,,. Further, from (2) and (3), the current
injected into node n is

L
I(S,L,.t,) = 0.8CoVpp —
(3) 0 DDStn

We compute the partial solution, PS = (A, I, Mr, S, P, Pg), for node n as follows

PSR = (A? ’IR’MrR'SR’PLR’PRR) € PSSR
I:)SL = (A_ ’IL’MrL'SL’PLL’PLR) € IDSSL
Figure 4: General binary network node.
A = AL +Ar+SL, (10)
I = I, +1Ip+1I(S Ly, ty) (11)
Mr = min{Mrp,Mrr,M,} — IR, (12)

4. Solution set size 7

and Pr, and Pg point to PSy, and PSR, respectively. We generate the entire partial solution
set for node n by computing a partial solution for all combinations of PS; € PSSy,
PSr € PSSk, and S € {1,2,... Spaz}. Note that for a node that has no left child we
would use Ay, = 0, I, = 0, and Mr; = oo to compute (10), (11), and (12). The same
reasoning can be applied to a node with no right child.

4 Solution set size

To determine a set of optimal spacings we need to compute the partial solution set for
each node in the binary network, starting at the leaves and working back to the root. Once
the solution set has been generated for the root node we select the one with the smallest
area. To enumerate the set of spacings that compose this solution, we traverse the binary
tree formed by the solution’s left and right points, Py and Pg.

To determine a bound on the size of any partial solution set we need to consider the
maximum number of unique values that each of the A, I, and Mr components of a partial
solution can take on.

To begin, let us consider the area component of a partial solution. Since we are working
with nets that have been routed on a uniform routing grid, we know that the total net
length, L,.;, can be represented as

Lyer = lnetdgrid

where [,,¢; is an integer and d4,.44 is the grid spacing. Because of this, there can be at most
2l et Smaz unique areas associated with any partial solution set.

Now let us consider the current component of a partial solution. Due to the rise time and
the form of the expression to compute the current associated with each adjacency, we find
that the set of current values associated with a partial solution set can only be bounded
by Spaz’ A, where N4 is the number of aggressor nets adjacent to the victim net. This
is clearly an unmanageable number of possibilities. To resolve this problem we map the
computed value for each current source to a fixed size set of evenly spaced current values.
The size of this set is I,;,4,. Using this strategy, there can be at most I, N4 unique current
values associated with any partial solution set. It should be noted that in order to obtain
this “reasonable” upper bound on the number of unique current values, our solution will
only approximate a a solution to (8) and (9).

Finally, let us consider the remaining noise margin component. In a manner similar
to the current component, this component is also bounded by an exponential number of
unique values, however, we need only consider one of these values for each unique paring
of A and I. Specifically, for each unique pair of (A, I), for a partial solution set, we need
only keep track of the (A, I, Mr) paring with the largest remaining noise margin value. All
other pairings are clearly suboptimal.

Given the bounds on each component we find that the partial solution set size can be
polynomialy bounded by

O(lnetsmaxlmaxNA) (13)

8 5. Pruning strategies

5 Pruning strategies

While the size of the partial solution set can be polynomialy bounded, it is clear, for
any reasonable values of S,,44, lnets Imaz, and N 4, that the size of the partial solution sets
can still become unmanageably large. To combat the growth of the partial solution sets,
we employ several pruning strategies. These pruning strategies are designed to identify
and eliminate “dead end” partial solutions as early as possible. At present we employ four
strategies

e Remaining-noise-margin prune

e Dominance prune

e Resistance-to-root prune

e Maximum-area prune

5.1 Remaining-noise-margin prune

The simplest and most obvious strategy is the “remaining-noise-margin prune”. For this
strategy we eliminate any obviously infeasible partial solutions, that is, any partial solutions
where Mr < 0. It is clear form (12) that if we have a partial solution with Mr < 0, then
any partial solutions based on this will also have an Mr < 0 and cannot generate a feasible
solution at the root.

5.2 Dominance prune

The most powerful, and the most complex, strategy is the “dominance prune”. Using
this strategy we can easily generate pruned sets that are % to m the size of their unpruned
counterparts. The dominance prune strategy is base on a dominance relation.

Definition 1: For two partial solutions, PSy and PSs, in a partial solution set, PSS, we

say that PSy dominates PSy (PSy = PSy) if

Ay > A (14)
I, > I (15)
Mry < Mmr (16)

Using this property we can show, from Theorem 1 and Theorem 2, that any dominated
partial solution of a partial solution set will lead to an infeasible or suboptimal solution
in the root’s solution set. Because of this we can eliminate all dominated partial solutions
from a partial solution set.

Theorem 1: Given a partial solution set ,PSS,,, for node n, and two partial solutions,
PSy, € PSS, and PSy, € PSS,, where PSy, = PSsy,, then any partial solution in
PSSpar(n) derived from PSy, will be dominated by at least one other partial solution in
PSSpar(n)-

Proof: Assume, without loss of generality, that n is the right child of Par(n). Further,
since the partial solutions of Par(n) are formed by combining the partial solutions of
Par(n)’s children, let us assume that PSy is a partial solution from Par(n)’s left child.
Let PS\par(n) and PSoparn) be the partial solutions of PSSpg.n) formed by combining
PSy, with PSy, and PSs, with PSy, respectively. From (10), (11), and (12) we see

5. Pruning strategies 9

AlPar(n) = Arp+ A+ Suly
IlPar(n) = IL+Iln+I(Sn7Lnatn)
MrlPar(n) = min{MTLa My, Mn} - RnIlPar(n)
and
AQPar(n) = A+ Ay + Sply
IQPar(n) = I+ Iy +I(SnaLnatn)
MT2Par(n) = min{Mrﬁu My, Mn} - RnIlPar(n)

Since PSy, = PSy, then Ay, < Aqg, and thus

AlPar(n) < A2Par(n) (17)

Similarly, since I, < oy,
IlPar(n) < I2Par(n) (18)
Finally, since Mrin, > Mrop and I1per(n) < Lopar(n), then

min{Mry, Mri,, My} > min{Mry, Mro,, M,}
and Rl par(n) < Bnlopar(n), thus
Mr1parny = Mropar(n) (19)
From (17), (18), and (19) we see that
PSiparn) = PSapar(n)

and thus there is at least one partial solution in PSSpy.n) which dominates the partial
solution derived from PSy,.

Note that it is possible that Par(n) has no left child, in which case we can let A, = 0,
I, =0, and Mry = oo, and Theorem 1 still holds.

Theorem 2: Given two solutions Si, and S5, in the root’s solution set, where S = So,
then either So is an infeasible solutions or So is a suboptimal solution.

Proof: From (16) we see that if Sy is infeasible, then Sy is also infeasible. If Sy is feasible,
then Sy is either feasible or infeasible. If Sy is feasible, then from (14) it is suboptimal, that
18, there is at least one other solution with a smaller area.

Incremental dominance prune

The dominance prune strategy is a variation on determining the maxima of a set of
points. This problem can be solved in ©(nlogn) time with an elegant divide and conquer
algorithm described in [13]. This algorithm requires that the entire unpruned set of partial
solutions be generated and stored in memory. Unfortunately, given the size of some of
the unpruned sets, this would require an enormous amount of memory. To combat this
problem we developed an incremental pruning algorithm using the maxima algorithm and
taking advantage of the observation that the pruned sets are always much smaller than the
unpruned sets.

10 5. Pruning strategies

Our strategy is to generate K elements of the unpruned set and use the maxima
algorithm to prune this set. Once the maxima algorithm produces a pruned set, containing
K, elements, where K; < K, we generate another K elements from the unpruned set
and append them to the set of K; elements. This new set of K + K7 elements is then
pruned using the maxima algorithm. This process of generating elements and pruning sets
is repeated 7] times, where m is the number of elements in the unpruned set. Fig5 lists
the pseudo code for this algorithm.

S0
140
While more elements to generate
begin
S < S U generated element
14 1+1
If i = K then
begin
S < mazima(S)
140

end
end
S < mazima(S)

Figure 5: Incremental maxima algorithm pseudo code

The time complexity of this algorithm is seen to be

O ([T (K + K))log(K + K)
e 0 (1" K 4 K log(K + Ky)

(m—-1+K)(K+ K;)
K

€ 0O (log(K + K1))

but since K7 < K, we have
O((m — 1+ K)log(2K))

and since K < m, we have
O(mlog K)

Fast sorting

The maxima algorithm outlined in [13] requires that the unpruned set be initially sorted
on one of the components, A, I, or Mr, before the divide and conquer step can be applied. In
general this sort takes ©(m log m) time, however, if we choose to sort on the area component,
we can reduce the time complexity of the sort. Recalling that the areas must be integer
multiples of the grid spacing, and that there are at most 2. Smaer possible area values,
where l,,o; and 5,4, are both integers, we can sort on the area component using a bucket
sort with 2/,,¢¢S,42 buckets. This gives us a sort with time complexity O(m + 21,6t Smaz)-

While this sorting technique does not reduce the overall time complexity of the maxima
algorithm, since the divide and conquer step still requires O(m logm) time, it significantly
reduces the execution time on large sets.

6. Computational complexity 11

5.3 Resistance-to-root prune

The “resistance-to-root prune” is based on the fact that we can easily calculate the
resistance, R, ,,, between any node in the binary network and the root node. In particular,
given a partial solution, whose current is / and remaining noise margin is Mr, if

Mr —1Ryo0t <0

then we know that this partial solution will only generate infeasible solutions at the root
and therefor we can prune this partial solution.
5.4 Maximum-area prune

The “maximum-area prune” works by asking the question “what is the smallest spacing,
S, for which there is a feasible solution to (8) and (9) when we set all S;; = S?” If S =1
then we have found the solution to (8) and (9). If S > S;,4, then we know that there is no
solution to (8) and (9). If 1 < S < Sper then we can compute an upper bound, 2L,..S,
on the area of any partial solution, and prune accordingly. Note that the value of S can be

computed in O(Syazlnet) time since (8) and (9) can be solved in O(l,¢) time when all Sj;
are set to a constant.

6 Computational complexity

An upper bound on the computational complexity to approximate a solution to (8) and
(9) can be found as follows:

We know, from (13), the the maximum number of elements in any partial solution set is
O(SmazlnetImaz N a)
The time to build an unpruned partial solution set is
O(Smaz*tnet” Imaz" N a?)
The time to build a pruned partial solution set is
O(Smaa"Inet” Imas” Na* 10(Smaz *lnet” Imaa*Na®))
Since there can be at most [,¢; such sets, the total computation time is
O(Smaz*lnet* Imaz” Na® 10g(Smaz*net” Imas* N a®))
Since Sy,q¢ and I,4, are both constants, we have

O(lnet3]\/vA2 log(lnetQNAQ)) (20)

12 7. Results

20 5
&
18 | B
<
16 o 3 o
o o
<&
2 14 F ¢ g
[=%
X <
(=
@ o &
k] 12 i
@
Q2 &
€
2 10 F o i
()
g °
[o
< 8y 1
<o
6 - -
o <
&
4 i
&
2 Il Il Il Il Il
500 1000 1500 2000 2500

Net length (grids)

Figure 6: Average number of sink pins.

160

o
<o
140 ° E
<o

2
2 >
5 120 o ° g
%]
3
=) o ©
[=)]
[
E 100 o o]
Q
8
] <
5 IS
5 80 E
o
£ <o
2 o o
[}
g 60 | o B
g
z o

40 e ° -

o
o
20 Il Il Il Il Il
500 1000 2000 2500

1500
Net length (grids)

Figure 7: Average number of adjacent aggressor nets.

7 Results

We implemented our algorithm in C++ on an IBM RS/6000 model 590 with 500 MB
of memory, running under AIX. The parameters used in our experiments are based on the
.18 um technology specified in the SIA road map [14]. Specifically, the grid spacing was
0.55 um. The resistance of the wiring was 0.16 Q/grid. The capacitive coupling between
adjacent wires separated by one grid spacing was 0.41 fF'/grid. The supply voltage was
1.5V. The noise margins for the sink pins was 0.5V. The aggressor net rise times were
randomly selected between 1pS and 100pS. The driver resistance was 100€2. For these
experiments we chose Sy,q: = 5, and 1,4, = 100.

7. Results

14000

12000

10000

8000

6000

Run time (sec)

4000

2000

&

PY

8

]

g

3
8

3
'

<

8

2 O

O 00O

POOO

o O ®O

foaced

P O OO

(30 © O O

500

1000

1500

Net length (grids)

(=3
[=]

Figure 8: Run time to compute spacing sets.

N
al
(=
o

13

We tested the algorithm on 220, nontrivial, randomly generated nets. By “nontrivial”
we mean that each net required at least on spacing, in the set of spacings forming the

solution, to be greater than 1, and that noise constrains in (9) could be satisfied when all

Sij = Smaz- The length of these nets ranged from 400 grid spacings to 2500 grid spacings,
or from about 0.22mm to about 1.37mm. These nets can be further characterized by the
graphs in Fig. 6 and Fig. 7 which show the average number of sink pins for a victim net of
given length, and the average number of adjacent aggressor nets for a victim net of given

length, respectively.

5e+06
4.5e+06
4e+06
3.5e+06
3e+06
2.5e+06

2e+06

Total number of partial solutions

1.5e+06

1e+06

500000

0

Figure 9: Total number of partial solutions needed to compute spacing sets.

&

s

P> O O

P @ O

<

O WO

@
8

<

o

2

4
o
o

-4
o

<

:

[GO o O

OO O

R B O

o ®

(O 060 © © &

[000 ©

O O OO <

[0 O

0P ® O

500

1

o

0f

0

1500
Net length (grids)

o
o

Fig. 8 shows the run time results from the experiments. From this we see that an optimal
set of spacing could be computed in under 2500 sec for all but four of the test nets. Given

14 8. Conclusion

o
o 00 S0
W00 Re09Pg0 w0
o o
01k 0 0%0 08 o i
0% ¢
o ° o
€ 000°% ° o
g o T e, 0 o
5 o 3 o
£ o &0 3o o
> o o o
g 0.01 F © CF®y o0 4
] ° o & %o
= ° 080
@ o &
e o® o o o
s © ogo 0%
= o
3] O ¥ L0 o0
© o2 @0 °©
fin © ® <
60 06 $° % 4
0.001 | N o F g ®o E
8§ Lo
o 4 L=
EEE AN
R
RN
Sy %o
& ° ©
00001 Il Il Il Il Il Il e Il °
100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09 le+10

Unpruned set size

Figure 10: Fraction of unpruned set remaining after pruning.

the heuristic nature of the pruning strategies, it is no surprise that a few of the nets were
not effectively pruned. From this figure it is also interesting to note that the run times peak
for a net length of about 2000 grids. This can be attributed to the fact that the maximum-
area pruning strategy is effective on shorter nets and the resistance-to-root pruning strategy
becomes effective for longer nets.

Fig. 9 shows that the total number of partial solutions (after pruning) that need to be
stored for a given net length. From this we see that the vast majority of nets needed to
store less than 2.5 million partial solution, while a few nets required up to 5 million partial
solutions be stored.

Finally, from Fig. 10 we can see the justification for the underlying assumption for our
incremental pruning strategy. In particular, we see that for large sets, sets with 1 million or
more elements, we can easily get pruned sets that are % to ﬁ the size of their unpruned
counterparts.

8 Conclusion

In this paper we have formulated the optimal wire spacing under cross talk noise
constraints problem and presented a polynomial time dynamic programming solution to
the discrete spacing version of this problem. We have demonstrated the feasibility of this
algorithm by implementing it and running it on what we believe to be both realistic and
challenging experimental data.

References

[1] T. Gao and C. Liu, “Minimum Crosstalk Channel Routing,” IEEE Trans. Computer-Aided
Design, vol. 15, no. 5, pp. 465 474, 1996.

[2] T. Gao and C. Liu, “Minimum Crosstalk Switchbox Routing,” in Proc. IEEE/ACM Int. Conf.
on Computer Aided Design, pp. 610 615, 1994.

References 15

[3]

[13]
[14]

H. Chen and C. Wong, “Wiring and Crosstalk Avoidance in Multi-Chip Module Design,” in
Proceedings of the IEEE 1992 Custom Integrated Circuits Conference, pp. 28.6.1-28.6.4, 1992.
G. Devaraj and D. Bhatia, “Crosstalk Driven MCM Router,” Journal of Microelectronic Systems
Integration, vol. 2, no. 2, pp. 65 80, 1994.

T. Miyoshi, S. Wakabayashi, T. Koide, and N. Yoshida, “An mem Routing Algorithm Considering
Crosstalk,” in IEEE Symposium on Circuits and Systems, pp. 211-214, 1995.

K. Jhang, S. HA, and C. Jhon, “A Segment Rearrangement Approach to Channel Routing Under
the Crosstalk Constraints,” in IEEE Asia-Pacific Conf. onf Circuits and Systems, pp. 536 541,
1994.

J. Cong, L. He, C. Koh, and Z. Pan, “Global linterconnect Sizing and Spacing with Consideration
of Coupling Capacitance,” in Proc. IEEE/ACM Int. Conf. on Computer Aided Design, pp. 628—
633, 1997.

K. Chaudhary, A. Onozawa, and E. Kuh, “A Spacing Algorithm for Performance Enhancement
and Cross-talk Reducton,” in Proc. IEEE/ACM Int. Conf. on Computer Aided Design, pp. 697
702, 1993.

T. Okamoto and J. Cong, “Buffered Steiner Tree Construction with Wire Sizing for Interconnect
Layout Optimization,” in Proc. IEEE/ACM Int. Conf. on Computer Aided Design, pp. 44 49,
1996.

J. Lillis, C. Chen, and T. Lin, “Optimal Wire Sizing and Buffer Insertion for Low Power and a
Generalized Delay Model,” in Proc. IEEE/ACM Int. Conf. on Computer Aided Design, pp. 138—
143, 1995.

D. J. Staepelaere, J. Jue, T. Dayan, and W. W.-M. Dai, “Surf: a rubber-band routing system
for multichip modules,” in Proc. IEEE Design and Test of Computers, 1993.

A. Devgan, “Efficient coupled noise estimation for on-chip interconnects,” in Proc. IEEE/ACM
Int. Conf. on Computer Aided Design, pp. 147-151, 1997.

F. Preparata and M. Shamos, Computational Geometry. New York, NY: Springer-Verlag, 1985.
Semiconductor Industry Association, National Technology Roadmap for Semiconductors. 1994.

