
Optimal Wire Spacing Under CrossTalk ConstraintsPaul B. MortonWayne DaiUCSC-CRL-98-09August 3, 1998
Jack Baskin School of EngineeringUniversity of California, Santa CruzSanta Cruz, CA 95064 USAabstractAs VLSI technology continues to advance, the spacing between adjacent wirescontinues to decrease, causing a corresponding increase in capacitive coupling be-tween adjacent wires. This trend makes it increasingly likely that we will generateroutings which violate one or more of the noise margins on the net's sink pins. Atthe same time, these technologies are becoming more routing limited. These twotrends are increasingly forcing physical designers to use scarce routing resources todecrease the coupling between adjacent wires. From this we can see that what isneeded is a set of tools, applicable in an area routing environment, that will generateroutings that meet all the noise constraints while sacri�cing the minimum amount ofrouting resources. In this paper we will present a polynomial time algorithm, whichcan be used in an area routing environment, for determining the optimal spacingbetween a victim net and it's adjacent aggressor nets such that none of the noisemargins of the victim net's sink pins are violated, while consuming the minimumamount of routing resources.Keywords: cross talk, constrained routing, wire spacing, noise margin.

1. Introduction 11 IntroductionAs VLSI technology continues to advance, the spacing between adjacent wires continuesto decrease, causing a corresponding increase in capacitive coupling between adjacent wires.The increased coupling has, in turn, lead to an increase in the amount of cross talk noisebeing coupled into a given net. This trend makes it increasingly likely that we will generateroutings which violate one or more of the noise margins on the net's sink pins. At thesame time, these technologies are becoming more routing limited, as can be seen by theever increasing number of routing layers. These two trends are increasingly forcing physicaldesigners to use scarce routing resources, in the form of increased spacing, to to decreasethe coupling between adjacent wires. From this we can see that what is needed is a setof tools that will generate routings that meet all the noise constraints while sacri�cing theminimum amount of routing resources. Further, it is clear, for technologies having morethan two routing layers, that any tools developed to help solve this problem need to beapplicable in an \over the cell", or area routing environment.Over the past few years there have been several proposed strategies for minimizing crosstalk noise during routing. These include [1], and [2] for chip level routing, and [3], [4],and [5] for MCM level routing. However, since none of these strategies directly conserverouting resources, and all of them are based on channel or switch box routers, they cannotbe used to solve our problem. An additional notable work in this area is [6] which proposesa strategy for meeting cross talk constraints while using a minimum amount of routingresources, however, in this case the technique is only applicable to channel routers, andthey make the very conservative assumption that each net has a single cross talk noisemargin.In this paper we will present a polynomial time algorithm, which can be used in an arearouting environment, for determining the optimal spacing between a victim net and it'sadjacent aggressor nets such that none of the noise margins of the victim net's sink pins areviolated, while consuming the minimum amount of routing resources. Over the past fewyears there has been a great deal of work done on the related problem of determining theoptimal sizing and spacing to meet timing constraints, see for example [7], [8], [9], and [10],however, none of these have directly or adequately addressed the cross talk noise problem.This new spacing algorithm will be particularly powerful when used in combination witha
exible area router such as SURF [11], where the victim net's adjacency information canbe quickly and accurately estimated during the \rubber band" routing phase. The spacinginformation generated by the new spacing algorithm can then be used by SURF to constructthe �nal rectilinear routing with a set of spacings that will eliminate the cross talk noiseproblem.Fundamental to the work done in this paper is the work done by Devgan ,in [12], whichgives us a closed form expression that allows us to quickly and accurately calculate themaximum cross talk noise seen at each of the sink pins of a victim net. This noise metricis far more accurate than the simple \coupling length" based noise metrics currently beingused in layout synthesis, and is far less expensive than computing the cross talk noise usingparasitic extraction and circuit simulations. We will use this closed form expression in adynamic programming strategy, similar to that used in [10] and [7], to develop a polynomialtime algorithm to solve the discrete spacing version of the optimal wire spacing under crosstalk constraints problem outlined above. The major contributions of this paper include:� The formulation of the optimal wire spacing under cross talk constraints problem.

2 2. Problem formulation� A polynomial time solution to the discrete spacing version of the optimal wire spacingunder cross talk constraints problem.� Incremental dominance pruning, as well as several heuristic pruning strategies usedby the dynamic program.� A proof showing why the dominance property can be used as a pruning strategy inour dynamic program.2 Problem formulationGiven a routed victim net an a set of routed aggressor nets, we would like to determine acorresponding set of spacings, which, if used to separate the aggressor nets from the victimnet, would meet the cross talk noise margin constraints at each sink pin of the victimnet, and would minimize the amount of routing resource used to meet these constraints.To accomplish this, we need to compute, for a given set of spacings, the cross talk noiseinduced on each sink pin of the victim net. Further, we need to compute the total routingarea consumed by the spacing between the victim net and each of the aggressor nets.From [12] we can determine the maximum cross talk noise voltage on any node of avictim net as Vn = VPar(n) +Rn Xi2Des(n)j2Ag(i) Cij _Uj (1)where� Des(n) is the set of victim net nodes that are descendants of node n.� Par(n) is the parent node of node n.� Ag(i) is the set of aggressor nets that are coupled into node i of the victim net.� Vn is the maximum cross talk noise voltage, induced on node n, by all down streamaggressor nets.� Rn is the resistance connecting node n to node Par(n).� _Uj is the slope of the aggressor net signal on aggressor net j.� Cij is the coupling capacitance between aggressor net j and the segment connectingnode i to node Par(i).To illustrate, consider the routing depicted in Fig. 1, containing four nodes, N0 through N3,and six aggressor nets, Ag1 through Ag6. This can be reduced to the network shown in Fig.2, where R0 represents the net's source resistance. Using (1) we can see thatV0 = R0 (C11 _U1 +C25 _U5 + C26 _U6 + C32 _U2 + C33 _U3 + C34 _U4)V1 = R1 (C11 _U1 +C25 _U5 + C26 _U6 + C32 _U2 + C33 _U3 + C34 _U4) + V0V2 = R2 (C25 _U5 +C26 _U6) + V1V3 = R3 (C32 _U2 +C33 _U3 + C34 _U4) + V1Since the analysis in [12] assumes that all aggressor net signals are ramps, we have_Uj = 0:8 VDDtj (2)

2. Problem formulation 3
N

N

N

N

6

Ag

Ag

Ag

Ag

Ag Ag

0

1

2

3

1

2 3

4

5

Figure 1: Victim net with six adjacent aggressor nets.
0

N

N
3

2
N

N
1

1
R

C
11

U
1

.

34

0
R

3
R

2
R

C
26

U
.

5
C

25
U
.

C U
.

C
33

U
1

.
C

32
U
.

4

2 4Figure 2: Electrical network for a victim net with six adjacent aggressor nets.where VDD is the supply voltage and tj is the 10% to 90% rise time of aggressor net j.Further, we have that Cij = C0 LijSij (3)where� Lij is the length of the adjacency between aggressor net j and the segment connectingnode i to node Par(i).� Sij is the distance separating the adjacent segments.� C0 is a proportionality constant.Substituting (2) and (3) into (1) we have

4 3. Dynamic programming algorithmVn = VPar(n) + 0:8VDD C0Rn Xi2Des(n)j2Ag(i) LijSij tj (4)The routing area consumed by a set of spacings isA = Xi2Nj2Ag(i)Lij Sij (5)where N is the set of all victim net nodes.Using (4) and (5) we can formulated the optimal wire spacing under cross talk constraintsproblem as the following constrained minimization problemmin Xi2Nj2Ag(i)Lij Sij (6)subject to Vn �Mn 8 n 2 NSij � Smin 8 i 2 N; j 2 Ag(i) (7)from which we can determine an optimal set of spacings, fSij j 8 i 2 N; j 2 Ag(i)g, whereMn is the noise margin for node n of the victim net, and Smin is the minimum allowablespacing between two adjacent segments. Note that Mn = 1 for victim net nodes that donot contain a sink pin.Assuming we are routing on a uniform routing grid, Lij and Sij can be restricted tointeger values which represent the number of grids over which the adjacency occurs andthe number of grids separating the adjacent segments, respectively. Assuming that eachSij is selected from a �nite set of spacings, f1; 2; : : : ; Smaxg, then the general optimizationproblem de�ned by (6) and (7) can be reduced to the following combinatorial optimizationproblem min Xi2Nj2Ag(i)Lij Sij (8)subject to Vn �Mn 8 n 2 NSij 2 f1; 2; : : : ; Smaxg 8 i 2 N; j 2 Ag(i) (9)where we want to determine the set of spacings fSij j 8 i 2 N; j 2 Ag(i)g3 Dynamic programming algorithmIn this paper, we will use a dynamic programming approach, similar to [10], to approx-imate the values of Sij that satisfy (8) and (9). In order to simplify the development ofthe dynamic program, we will assume that we have a binary network, with at most oneadjacency per node. Each node, n, in the binary network contains the following information:

3. Dynamic programming algorithm 5� R { The resistance connecting node n to node Par(n).� L { The length of the adjacency associated with node n.� t { The rise time of the signal on the adjacent aggressor net.� M { The noise margin associated with node n.� PL { The pointer to node n's left child.� PR { The pointer to node n's right child.
Ag

1

N
1

N
4

N
3

N
2

(R
0
,M

0
,L

0
,t

0
) ,M ,L

1
,t

1
)(R

01 1
(R

d
,M

d
,L

2
,t

2
)

(R
d
,M

d
,L

d
,t

d
)

2

,M ,L
3
,t

3
)(R

12 2

,M ,L
4
,t

4
)(R

3

,M ,L
5
,t

5
)(R

14 4

13

N
0

Ag
5

Ag
4

Ag
3

Ag

Figure 3: General network to binary network conversion.To convert a general network with multiple adjacencies per node to a binary networkwith at most one adjacency per node we introduce intermediate nodes with zero resistanceand in�nite noise margin, as illustrated in Fig. 3, where� R0 is the nets source resistance.� Rd = 0� R01; R12; R13, and R14 are the resistances between nodes N0 and N1, N1 and N2, N1and N3, and N1 and N4, respectively.� Md =1� M1 through M4 are the noise margins at nodes N1 through N4, respectively.� Ld = 0� L1 through L5 are the adjacency lengths associated with Ag1 through Ag5, respec-tively.� td =1� t1 through t5 are the rise times associated with Ag1 through Ag5, respectively.

6 3. Dynamic programming algorithmIn order to implement a dynamic programming solution we need to augment each of thebinary network nodes with a set of \partial solutions". A partial solution set, for a node,n, is the set of feasible solutions to (8) and (9) when they are applied to the subnetworkrooted at node n. Note that for the root node, a partial solution will be called a solution,and a partial solution set will be called a solution set.Each element of a partial solution set for a node, n, consists of a six touple (A; I;Mr; S; PL ; PR),where� A is the total area consumed by this partial solution.� I is the total current drawn through node n's resistor.� Mr is the \minimum remaining" noise margin.� S is the spacing being used at node n of this partial solution.� PL and PR are pointers to a partial solution from the left and right children, respec-tively, on which this partial solution is based.Speci�cally, consider the general situation depicted in Fig. 4 where we have a binarynetwork node, n, with two children. Each child has a partial solution set, PSSL andPSSR, from which we can choose partial solutions PSL = (AL; IL;MrL; SL; PLL; PRL),and PSR = (AR; IR;MrR; SR; PLR; PRR) respectively. Node n is connected to its parentthrough resistance Rn, and has a noise margin Mn. Further, from (2) and (3), the currentinjected into node n is I(S;Ln; tn) = 0:8C0VDD LnS tnWe compute the partial solution, PS = (A; I;Mr; S; PL ; PR), for node n as follows

I(S,L
n
,t

n
) ,I

L
,Mr

L
,S

L
,P

LL
PS

L
= (A

n

L
,P

LR
) PSS

L

N
n

PS
R

= (A
R

,P
RR

) PSS
R

,I
R
,Mr

R
,S

R
,P

LR

R

Figure 4: General binary network node.A = AL +AR + S Ln (10)I = IL + IR + I(S;Ln; tn) (11)Mr = minfMrL;MrR;Mng � I Rn (12)

4. Solution set size 7and PL and PR point to PSL and PSR, respectively. We generate the entire partial solutionset for node n by computing a partial solution for all combinations of PSL 2 PSSL,PSR 2 PSSR, and S 2 f1; 2; : : : Smaxg. Note that for a node that has no left child wewould use AL = 0, IL = 0, and MrL = 1 to compute (10), (11), and (12). The samereasoning can be applied to a node with no right child.4 Solution set sizeTo determine a set of optimal spacings we need to compute the partial solution set foreach node in the binary network, starting at the leaves and working back to the root. Oncethe solution set has been generated for the root node we select the one with the smallestarea. To enumerate the set of spacings that compose this solution, we traverse the binarytree formed by the solution's left and right points, PL and PR.To determine a bound on the size of any partial solution set we need to consider themaximum number of unique values that each of the A, I, and Mr components of a partialsolution can take on.To begin, let us consider the area component of a partial solution. Since we are workingwith nets that have been routed on a uniform routing grid, we know that the total netlength, Lnet, can be represented as Lnet = lnet�gridwhere lnet is an integer and �grid is the grid spacing. Because of this, there can be at most2lnetSmax unique areas associated with any partial solution set.Now let us consider the current component of a partial solution. Due to the rise time andthe form of the expression to compute the current associated with each adjacency, we �ndthat the set of current values associated with a partial solution set can only be boundedby SmaxNA , where NA is the number of aggressor nets adjacent to the victim net. Thisis clearly an unmanageable number of possibilities. To resolve this problem we map thecomputed value for each current source to a �xed size set of evenly spaced current values.The size of this set is Imax. Using this strategy, there can be at most ImaxNA unique currentvalues associated with any partial solution set. It should be noted that in order to obtainthis \reasonable" upper bound on the number of unique current values, our solution willonly approximate a a solution to (8) and (9).Finally, let us consider the remaining noise margin component. In a manner similarto the current component, this component is also bounded by an exponential number ofunique values, however, we need only consider one of these values for each unique paringof A and I. Speci�cally, for each unique pair of (A; I), for a partial solution set, we needonly keep track of the (A; I;Mr) paring with the largest remaining noise margin value. Allother pairings are clearly suboptimal.Given the bounds on each component we �nd that the partial solution set size can bepolynomialy bounded by O(lnetSmaxImaxNA) (13)

8 5. Pruning strategies5 Pruning strategiesWhile the size of the partial solution set can be polynomialy bounded, it is clear, forany reasonable values of Smax, lnet, Imax, and NA, that the size of the partial solution setscan still become unmanageably large. To combat the growth of the partial solution sets,we employ several pruning strategies. These pruning strategies are designed to identifyand eliminate \dead end" partial solutions as early as possible. At present we employ fourstrategies� Remaining-noise-margin prune� Dominance prune� Resistance-to-root prune� Maximum-area prune5.1 Remaining-noise-margin pruneThe simplest and most obvious strategy is the \remaining-noise-margin prune". For thisstrategy we eliminate any obviously infeasible partial solutions, that is, any partial solutionswhere Mr < 0. It is clear form (12) that if we have a partial solution with Mr < 0, thenany partial solutions based on this will also have an Mr < 0 and cannot generate a feasiblesolution at the root.5.2 Dominance pruneThe most powerful, and the most complex, strategy is the \dominance prune". Usingthis strategy we can easily generate pruned sets that are 110 to 110000 the size of their unprunedcounterparts. The dominance prune strategy is base on a dominance relation.De�nition 1: For two partial solutions, PS1 and PS2, in a partial solution set, PSS, wesay that PS1 dominates PS2 (PS1 � PS2) ifA2 � A1 (14)I2 � I1 (15)Mr2 � Mr1 (16)Using this property we can show, from Theorem1 and Theorem2, that any dominatedpartial solution of a partial solution set will lead to an infeasible or suboptimal solutionin the root's solution set. Because of this we can eliminate all dominated partial solutionsfrom a partial solution set.Theorem 1: Given a partial solution set ,PSSn, for node n, and two partial solutions,PS1n 2 PSSn and PS2n 2 PSSn, where PS1n � PS2n, then any partial solution inPSSPar(n) derived from PS2n will be dominated by at least one other partial solution inPSSPar(n).Proof: Assume, without loss of generality, that n is the right child of Par(n). Further,since the partial solutions of Par(n) are formed by combining the partial solutions ofPar(n)'s children, let us assume that PSL is a partial solution from Par(n)'s left child.Let PS1Par(n) and PS2Par(n) be the partial solutions of PSSPar(n) formed by combiningPS1n with PSL and PS2n with PSL, respectively. From (10), (11), and (12) we see

5. Pruning strategies 9A1Par(n) = AL +A1n + SnLnI1Par(n) = IL + I1n + I(Sn; Ln; tn)Mr1Par(n) = minfMrL;Mr1n;Mng �RnI1Par(n)and A2Par(n) = AL +A2n + SnLnI2Par(n) = IL + I2n + I(Sn; Ln; tn)Mr2Par(n) = minfMrL;Mr2n;Mng �RnI1Par(n)Since PS1n � PS2n then A1n � A2n and thusA1Par(n) � A2Par(n) (17)Similarly, since I1n � I2n, I1Par(n) � I2Par(n) (18)Finally, since Mr1n �Mr2n and I1Par(n) � I2Par(n), thenminfMrL;Mr1n;Mng �minfMrL;Mr2n;Mngand RnI1Par(n) � RnI2Par(n), thusMr1Par(n) �Mr2Par(n) (19)From (17), (18), and (19) we see thatPS1Par(n) � PS2Par(n)and thus there is at least one partial solution in PSSPar(n) which dominates the partialsolution derived from PS2n.Note that it is possible that Par(n) has no left child, in which case we can let AL = 0,IL = 0, and MrL =1, and Theorem1 still holds.Theorem 2: Given two solutions S1, and S2, in the root's solution set, where S1 � S2,then either S2 is an infeasible solutions or S2 is a suboptimal solution.Proof: From (16) we see that if S1 is infeasible, then S2 is also infeasible. If S1 is feasible,then S2 is either feasible or infeasible. If S2 is feasible, then from (14) it is suboptimal, thatis, there is at least one other solution with a smaller area.Incremental dominance pruneThe dominance prune strategy is a variation on determining the maxima of a set ofpoints. This problem can be solved in �(n log n) time with an elegant divide and conqueralgorithm described in [13]. This algorithm requires that the entire unpruned set of partialsolutions be generated and stored in memory. Unfortunately, given the size of some ofthe unpruned sets, this would require an enormous amount of memory. To combat thisproblem we developed an incremental pruning algorithm using the maxima algorithm andtaking advantage of the observation that the pruned sets are always much smaller than theunpruned sets.

10 5. Pruning strategiesOur strategy is to generate K elements of the unpruned set and use the maximaalgorithm to prune this set. Once the maxima algorithm produces a pruned set, containingK1 elements, where K1 < K, we generate another K elements from the unpruned setand append them to the set of K1 elements. This new set of K + K1 elements is thenpruned using the maxima algorithm. This process of generating elements and pruning setsis repeated dmK e times, where m is the number of elements in the unpruned set. Fig 5 liststhe pseudo code for this algorithm.S ;i 0While more elements to generatebeginS S [generated elementi i+ 1If i = K thenbeginS maxima(S)i 0endendS maxima(S)Figure 5: Incremental maxima algorithm pseudo codeThe time complexity of this algorithm is seen to beO (dmK e(K +K1) log(K +K1))2 O (bm� 1 +KK c(K +K1) log(K +K1))2 O ((m� 1 +K)(K +K1)K log(K +K1))but since K1 � K, we have O((m� 1 +K) log(2K))and since K � m, we have O(m logK)Fast sortingThe maxima algorithm outlined in [13] requires that the unpruned set be initially sortedon one of the components, A, I, orMr, before the divide and conquer step can be applied. Ingeneral this sort takes �(m logm) time, however, if we choose to sort on the area component,we can reduce the time complexity of the sort. Recalling that the areas must be integermultiples of the grid spacing, and that there are at most 2lnetSmax possible area values,where lnet and Smax are both integers, we can sort on the area component using a bucketsort with 2lnetSmax buckets. This gives us a sort with time complexity O(m+ 2lnetSmax).While this sorting technique does not reduce the overall time complexity of the maximaalgorithm, since the divide and conquer step still requires O(m logm) time, it signi�cantlyreduces the execution time on large sets.

6. Computational complexity 115.3 Resistance-to-root pruneThe \resistance-to-root prune" is based on the fact that we can easily calculate theresistance, Rroot, between any node in the binary network and the root node. In particular,given a partial solution, whose current is I and remaining noise margin is Mr, ifMr � I Rroot < 0then we know that this partial solution will only generate infeasible solutions at the rootand therefor we can prune this partial solution.5.4 Maximum-area pruneThe \maximum-area prune" works by asking the question \what is the smallest spacing,S, for which there is a feasible solution to (8) and (9) when we set all Sij = S?" If S = 1then we have found the solution to (8) and (9). If S > Smax then we know that there is nosolution to (8) and (9). If 1 < S � Smax then we can compute an upper bound, 2LnetS,on the area of any partial solution, and prune accordingly. Note that the value of S can becomputed in O(Smaxlnet) time since (8) and (9) can be solved in O(lnet) time when all Sijare set to a constant.6 Computational complexityAn upper bound on the computational complexity to approximate a solution to (8) and(9) can be found as follows:We know, from (13), the the maximum number of elements in any partial solution set isO(SmaxlnetImaxNA)The time to build an unpruned partial solution set isO(Smax3lnet2Imax2NA2)The time to build a pruned partial solution set isO(Smax3lnet2Imax2NA2 log(Smax3lnet2Imax2NA2))Since there can be at most lnet such sets, the total computation time isO(Smax3lnet3Imax2NA2 log(Smax3lnet2Imax2NA2))Since Smax and Imax are both constants, we haveO(lnet3NA2 log(lnet2NA2)) (20)

12 7. Results

2

4

6

8

10

12

14

16

18

20

500 1000 1500 2000 2500

A
ve

ra
ge

 n
um

be
r

of
 s

in
k

pi
ns

Net length (grids)Figure 6: Average number of sink pins.

20

40

60

80

100

120

140

160

500 1000 1500 2000 2500

A
ve

ra
ge

 n
um

be
r

of
 a

dj
ac

en
t a

gg
re

ss
or

 n
et

s

Net length (grids)Figure 7: Average number of adjacent aggressor nets.7 ResultsWe implemented our algorithm in C++ on an IBM RS/6000 model 590 with 500 MBof memory, running under AIX. The parameters used in our experiments are based on the:18�m technology speci�ed in the SIA road map [14]. Speci�cally, the grid spacing was0:55�m. The resistance of the wiring was 0:16
=grid. The capacitive coupling betweenadjacent wires separated by one grid spacing was 0:41 fF=grid. The supply voltage was1:5V . The noise margins for the sink pins was 0:5V . The aggressor net rise times wererandomly selected between 1 pS and 100 pS. The driver resistance was 100
. For theseexperiments we chose Smax = 5, and Imax = 100.

7. Results 13

0

2000

4000

6000

8000

10000

12000

14000

500 1000 1500 2000 2500

R
un

 ti
m

e
(s

ec
)

Net length (grids)Figure 8: Run time to compute spacing sets.We tested the algorithm on 220, nontrivial, randomly generated nets. By \nontrivial"we mean that each net required at least on spacing, in the set of spacings forming thesolution, to be greater than 1, and that noise constrains in (9) could be satis�ed when allSij = Smax. The length of these nets ranged from 400 grid spacings to 2500 grid spacings,or from about 0:22mm to about 1:37mm. These nets can be further characterized by thegraphs in Fig. 6 and Fig. 7 which show the average number of sink pins for a victim net ofgiven length, and the average number of adjacent aggressor nets for a victim net of givenlength, respectively.

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

4.5e+06

5e+06

500 1000 1500 2000 2500

T
ot

al
 n

um
be

r
of

 p
ar

tia
l s

ol
ut

io
ns

Net length (grids)Figure 9: Total number of partial solutions needed to compute spacing sets.Fig. 8 shows the run time results from the experiments. From this we see that an optimalset of spacing could be computed in under 2500 sec for all but four of the test nets. Given

14 8. Conclusion

0.0001

0.001

0.01

0.1

1

100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10

F
ra

ct
io

n
re

m
ai

ni
ng

 a
fte

r
pr

un
in

g

Unpruned set sizeFigure 10: Fraction of unpruned set remaining after pruning.the heuristic nature of the pruning strategies, it is no surprise that a few of the nets werenot e�ectively pruned. From this �gure it is also interesting to note that the run times peakfor a net length of about 2000 grids. This can be attributed to the fact that the maximum-area pruning strategy is e�ective on shorter nets and the resistance-to-root pruning strategybecomes e�ective for longer nets.Fig. 9 shows that the total number of partial solutions (after pruning) that need to bestored for a given net length. From this we see that the vast majority of nets needed tostore less than 2.5 million partial solution, while a few nets required up to 5 million partialsolutions be stored.Finally, from Fig. 10 we can see the justi�cation for the underlying assumption for ourincremental pruning strategy. In particular, we see that for large sets, sets with 1 million ormore elements, we can easily get pruned sets that are 110 to 110000 the size of their unprunedcounterparts.8 ConclusionIn this paper we have formulated the optimal wire spacing under cross talk noiseconstraints problem and presented a polynomial time dynamic programming solution tothe discrete spacing version of this problem. We have demonstrated the feasibility of thisalgorithm by implementing it and running it on what we believe to be both realistic andchallenging experimental data.References[1] T. Gao and C. Liu, \Minimum Crosstalk Channel Routing," IEEE Trans. Computer-AidedDesign, vol. 15, no. 5, pp. 465{474, 1996.[2] T. Gao and C. Liu, \Minimum Crosstalk Switchbox Routing," in Proc. IEEE/ACM Int. Conf.on Computer Aided Design, pp. 610{615, 1994.

References 15[3] H. Chen and C. Wong, \Wiring and Crosstalk Avoidance in Multi-Chip Module Design," inProceedings of the IEEE 1992 Custom Integrated Circuits Conference, pp. 28.6.1{28.6.4, 1992.[4] G. Devaraj and D. Bhatia, \Crosstalk Driven MCMRouter," Journal of Microelectronic SystemsIntegration, vol. 2, no. 2, pp. 65{80, 1994.[5] T.Miyoshi, S.Wakabayashi, T. Koide, andN. Yoshida, \AnmcmRoutingAlgorithmConsideringCrosstalk," in IEEE Symposium on Circuits and Systems, pp. 211{214, 1995.[6] K. Jhang, S. HA, and C. Jhon, \A Segment Rearrangement Approach to Channel Routing Underthe Crosstalk Constraints," in IEEE Asia-Paci�c Conf. onf Circuits and Systems, pp. 536{541,1994.[7] J. Cong, L. He, C. Koh, and Z. Pan, \Global Iinterconnect Sizing and Spacing with Considerationof Coupling Capacitance," in Proc. IEEE/ACM Int. Conf. on Computer Aided Design, pp. 628{633, 1997.[8] K. Chaudhary, A. Onozawa, and E. Kuh, \A Spacing Algorithm for Performance Enhancementand Cross-talk Reducton," in Proc. IEEE/ACM Int. Conf. on Computer Aided Design, pp. 697{702, 1993.[9] T. Okamoto and J. Cong, \Bu�ered Steiner Tree Construction with Wire Sizing for InterconnectLayout Optimization," in Proc. IEEE/ACM Int. Conf. on Computer Aided Design, pp. 44{49,1996.[10] J. Lillis, C. Chen, and T. Lin, \Optimal Wire Sizing and Bu�er Insertion for Low Power and aGeneralized Delay Model," in Proc. IEEE/ACM Int. Conf. on Computer Aided Design, pp. 138{143, 1995.[11] D. J. Staepelaere, J. Jue, T. Dayan, and W. W.-M. Dai, \Surf: a rubber-band routing systemfor multichip modules," in Proc. IEEE Design and Test of Computers, 1993.[12] A. Devgan, \E�cient coupled noise estimation for on-chip interconnects," in Proc. IEEE/ACMInt. Conf. on Computer Aided Design, pp. 147{151, 1997.[13] F. Preparata and M. Shamos, Computational Geometry. New York, NY: Springer-Verlag, 1985.[14] Semiconductor Industry Association, National Technology Roadmap for Semiconductors. 1994.

