
Multi-Modal Visualization of Local Environment Data for ProteinStructural AlignmentsMarc Hansen, Erik CharpComputer Science Department, UCSC(mhansen,echarp)@cse.ucsc.eduJune 22, 1998AbstractWe present and evaluate an integrated visualiza-tion/soni�cation environment for analyzing proteinstructural alignments (superpositions of two or moreprotein structures in three-dimensional space). Weexplore how the use of sound can enhance the per-ception and recognition of speci�c aspects of the lo-cal environment at given positions in the molecularstructure represented. Analysis of protein structuresis an area in which it is often necessary to examinemany variables simultaneously. This is one reasonthat we chose this �eld as our data domain.Soni�cation presents the opportunity to improveunderstanding of the data both in terms of enhanc-ing or disambiguating parameters which are alreadyrepresented visually, and perhaps more importantly,in extending the number of variables that may be rep-resented simultaneously, particularly by the inclusionof features that are di�cult to represent visually. Inorder to maximize the ability of our soni�cations torepresent data, we used voices and melodic compo-nents that were very distinct. We also used severalmusical e�ects such as panning a voice to the left orright speaker, or changing a voice's volume to max-imize the individuality of the soni�cation elements.In addition to enhancing the perception of data fea-tures presented visually, we also strove to make oursoni�cations pleasing and musically idiomatic.Key Words and Phrases: soni�cation, audi�-cation, proteins, structural alignment, local environ-

ment.1 INTRODUCTIONOur primary goals in this project were to sonify cer-tain aspects of a protein's local environments, (i.e.the environment at one particular position in theprotein), and to determine whether the soni�cationssucceeded in helping to make those features more ev-ident to the subjects. We used musical patterns forour soni�cations, and employed basic music theory asthe basis for our soni�cation parameters.There is an inherent trade-o� in the application ofmusic to data soni�cation: As with data visualiza-tion, when the number of parameters being soni�edincreases, so does the risk of creating a cluttered pre-sentation in which it is di�cult to detect individualfeatures. One bene�t of using sound for data pre-sentation is that it is possible to sonify tremendousamounts of data while making the overall e�ect musi-cally pleasing. For example, an orchestra may play apiece in which hundreds of instruments play di�erentnotes and melodies simultaneously with a beautifule�ect. Unfortunately, there are few people who couldlisten to such a piece and clearly identify with a largedegree of certainty what each instrument was playingat any given time. The bene�ts of using an orches-tra as a soni�cation medium are diminished due tothe subtlety necessary to produce a large layering ofsound which remains coherent and pleasing. In orderto maximize the ability of our soni�cations to rep-1



resent data, we used voices and melodic componentsthat were very distinct. We also used several musi-cal e�ects such as panning a voice to the left or rightspeaker, or changing a voices volume to maximize theindividuality of the soni�cation elements.A further goal of our project was to compare di�er-ent soni�cation features in order to determine whichare too subtle to be readily distinguished. In thisway, future research will be able to focus more onthose techniques which yield the most promise.2 AUDIO-VISUAL DESIGN2.1 Visual MappingVisually, the protein was displayed using the molecu-lar graphics tool, Rasmol. [3]. A cartoon representa-tion was chosen, in which the local secondary struc-ture of the protein was explicitly represented (seeFigure 1 ). In Rasmol's cartoon mode, the secondarystructure is displayed as follows: Strands are depictedas 
at ribbons with arrowheads on them. Helices arerepresented as ribbons wound into corkscrew shapes.Loops are shown as spaghetti-like thin tubes. Thecartoon display mode is useful because it allows theoverall features of the protein to be shown, while thedetails not being soni�ed are neglected. To indicatewhich section of the protein was being studied, wehighlighted that portion in red. The remainder ofthe protein was colored light gray.2.2 Auditory MappingThe auditory mapping for this project was based onthe idea of musical parts. We used synthesized soundsto emulate natural instruments such as the trumpetand drums.In essence, our goal was to generate a musicalcomposition out of the data associated with a givenprotein. Each residue within the protein structurewas mapped to a musical interval of time in mea-sures. The overall tempo of the music was constant.Further, we decided to exploit the musical qualitiesof melody, rhythm, timbre and dynamics, to createmappings of music to the values of local environment

variables. The music was composed of individual lay-ers, or \parts": a melody, a drum part, a bass line,and a harmonic 'comping part (i.e. a rhythmic ac-companiment consisting of the chords of the pieceplayed on a keyboard instrument or guitar). Each ofthe four data parameters under investigation couldtake on three di�erent values which were indicatedby the use of distinct musical patterns. The map-pings of the instrument layers to protein data is asfollows:bass line ) secondary structurecomp part ) polaritydrum part ) exposuremelody ) goodness of �tWe added an aspect of intuition to the mappingsfrom music within each layer to the appropriate en-vironment variable value. For example, a polarityvalue of \more charged" produced a brighter, sharperand busier sounding drum part; an exposure value of\more buried" produced a duller, softer, and moresparse piano part. Thus, there was a set of musicalpatterns for each layer re
ecting the range of valueswhich the corresponding environment variable couldtake on. Again, there was an emphasis on making themusical nature of these patterns both strongly distin-guishable, and suggestive of the values they represent.2.3 Hardware and Software usedThe graphical user interface for the project, (see Fig-ure 1), was developed using the Forms Library forX [4]. The system ran on a Silicon Graphics Octanerunning the IRIX6.4 operating system. The worksta-tion contained a 195 MHz MIPS R1000 processor and128 MB of RAM. Attached to the workstation was a19 inch color monitor also from SGI. The headphoneswe used were Sony Digital headphones.We decided to use the Musical Instrument DigitalInterface (MIDI) standard for the format of our musi-cal �les. The SGI machines support this speci�cationand can read and play Standard MIDI Files througha MIDI �le player.For displaying the protein molecules, we used Ras-mol version 2.6 running in 8 bit mode.The software used to create midi �les was Mark ofthe Unicorn Performer version 5.0, a multi-tracking2



Figure 1: Graphical User Interface
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sequencer for the Macintosh. The drum tracks weretaken from the cd: XXX.3 APPLICATIONS ANDDATA3.1 Description of applicationThe computational biology department of UC SantaCruz is currently involved in a contest known as theCritical Assessment of Techniques for Protein Struc-ture Prediction (or CASP for short). In this contest,researchers are given the sequences of proteins forwhom no structure has yet been determined. Thesesequences, however, are released from laboratorieswhere the structure is almost ready for release. Inthis way the researchers can test their structure pre-diction methods and compare against the true struc-tures in a relatively short period of time.In order to generate these predictions, our teamwill use the protein sequence of unknown structure(i.e. the target), to search a database of sequenceswith known structures. When a match is found, thesequences must be aligned relative to each other sothat their sequence similarities are maximized. Inaddition, the target sequence must be \threaded"through the structure in order to determine whetherthe alignment makes sense physically, given the struc-ture's local 3d environment.The protein structure features we chose to in-vestigate are useful in assessing sequence-structurealignments as well as structure-structure alignments.Therefore, soni�cation techniques which yield ad-ditional information to those studying structure-structure alignments should also work well for theinvestigation of sequence-structure alignments.3.2 Description and sources of datasetsThe structural alignments were ob-tained from the FSSP (Families of Struc-turally Similar Proteins) database [2,http://www2.ebi.ac.uk/dali/fssp/fssp.html]. Thisdatabase is generally accepted as containing excellent

structural alignments and is accessible via the worldwide web. For each position in the protein servingas the base structure, the micro-environment can bedetermined using the suite of environment analysistools developed by Bowie et al. [1] A comparisonof the actual environment versus the environmentalpreference for the amino acid at each position can bemade. If the amino acids are in environments theyprefer, this will lend credence to the alignment.4 EXPERIMENTAL DESIGN4.1 Subjects, Collection Environ-ment, and TasksWe tested 18 subjects. Of these, 7 rated themselvesas having better than adequate musical abilities. Twosubjects rated themselves as having better than ade-quate experience with protein structures. Subjectswere given headphones and allowed to work on aworkstation reserved for the experiment. Subjectsviewed or listened to protein data features, either oneparameter at a time, or all four parameters simul-taneously, and made selections on a graphical userinterface, (see Figure 1), by clicking on radio but-tons to indicate which value they detected for eachparameter presented. The subjects' responses wererecorded, as was the length of time they took to an-swer.4.2 Experimental Flow DetailThe experiment took a total time of about 45 min-utes, and consisted of �ve phases:1. Introduction: Subjects were given a two pageoverview of the experiment concept and purpose. Ageneral explanation of the experiment followed, andthe subjects were given a chance to ask questions.After starting the software, subjects were given briefinstructions on the basic layout and functions of therelevant controls on the user interface. Subjects thenput on a pair of high �delity headphones.2. Presentation of audio and visual mappings:Subjects pushed a \play" button on the graphicalinterface to cause it to simultaneously present a data4



soni�cation and its equivalent visualization. Each ofthe four soni�cation parameters: bass, drums, ac-companiment, and melody, were presented to eachsubject in random order using a latin square design.For each of the four soni�cation parameters the cor-responding three levels were presented in order from�rst to last. The corresponding radio buttons were litto show the subjects which level was currently beingpresented. The entire process was repeated twice foreach of the four soni�cation parameters.3. Training: As with the presentation phase, alltraining was conducted with both the visual and au-ditory stimuli presented together. A latin square wasused to vary the order of the parameters used fortraining.The following sets of values for each parameterwere chosen to ensure each of the three possible val-ues was presented at least once:part level orderBass 2,3,1,3Comp 1,2,3,3Drums 3,2,1,1Melody 1,3,2,2The values in the set were presented to the subjectsin random order.After being presented with a soni�ca-tion/visualization pair, the subjects were allowedto guess what information they had just received.Subjects indicated their guesses by clicking on aradio button. If the subject answered correctly,a green \Y" light turned on. An incorrect guesscaused a red \N" light to turn on. In either case,the auditory and visual information correspondingto the subject's guess were then presented, therebyallowing the subject to see and hear the di�erence(if any) between the data presented and the guess.4. Testing: In the testing phase, a soni�cationand/or a visualization was presented and as in thetraining phase, the subject was expected to pick thepattern which was presented. Unlike the trainingphase, the presentation could consist of a single dataparameter or all four in combination. The testingsection was divided into three modes: audio-only,visual-only, and audio + visual. A latin square was

used to vary the order of the modes between subjects.Each mode was tested through to completion, beforeproceeding on to the next mode. The following ta-ble was used to determine the order of presentationmode testing:audio visual audio + visualaudio audio + visual visualvisual audio + visual audiovisual audio audio + visualaudio + visual audio visualaudio + visual visual audioFor each presentation mode, testing of individualparameters was followed by testing of all four param-eters in combination.4a. Testing of Individual Parameters:The table of parameter levels discussed in the train-ing section was also used here. A latin square wasused to determine an ordering of the parameters suchthat 16 trials were created (four trials for each param-eter) in random order. The values within each valueset were also randomized.4b. Testing of all Four Parameters Simultaneously:The following table of eight parameter/value com-binations was used to create the simultaneous param-eter presentations:bass 1 comp 2 drums 2 melody 3bass 3 comp 1 drums 1 melody 2bass 3 comp 1 drums 1 melody 1bass 2 comp 1 drums 3 melody 3bass 3 comp 2 drums 1 melody 1bass 1 comp 3 drums 1 melody 3bass 3 comp 2 drums 2 melody 1bass 1 comp 1 drums 3 melody 2The table of combinations was presented in randomorder. The subjects were therefore tested on eighttrials of the four simultaneous parameters. The tablewas chosen from random samplings of actual proteindata to represent a good parameter/value mixture ofcombinations.5. Exit Questionnaire: Subjects were asked tocomplete a brief exit questionnaire for the purpose ofobtaining feedback on qualitative aspects of the ex-periment. We were particularly interested in whether5



the soni�cations intuitively matched the data repre-sented.5 RESULTS5.1 Overall ResultsOverall, accuracy scores were much lower for the vi-sual only mode than for either the audio only or audio+ visual modes (see Figure 2). There was not muchdi�erence between the audio only and the audio +visual modes. In general, adding visual informationto the audio did not increase accuracy. As expected,secondary structure had the strongest accuracy scoresfor the visual only mode, while goodness of �t had thelowest.
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Figure 2: Overall ResultsA protein alignment can be expected to show abetter goodness of �t in the core regions of the pro-teins. For a correct alignment, regions with higherstructure will tend to be more conserved. Therefore,goodness of �t should in general be higher in regionswith secondary structure, and lower in the outer loopregions. This information should not be very di�cultto detect visually, but one should not expect subjectswithout experience working with protein alignmentsto detect such features, and an explicit visual rep-resentation should probably have been used, or anexplanation should have been made to the subjectsto look for these types of cues. An unexpected �nd-ing was that the visual information for exposure ofthe local environment (how near a location is to thesurface of the protein) was very di�cult to detectvisually.

5.2 Accuracy of DiscriminationOne of our goals in this project was to see if we coulddevelop a data to sound mapping in which the val-ues of di�erent variables could be distinguished whilethose individual soni�cations were being played si-multaneously. We expected to �nd a drop in accuracywhen subjects had to pick out the data values from asimultaneous soni�cation versus a soni�cation of theindividual voices. We found such a drop in all thesoni�cation parameters except melody. Our inter-pretation of this �nding is that melody is the easiestparameter to discriminate when multiple parametersare soni�ed simultaneously. The drops in accuracythat we did �nd for the other parameters were notnearly as steep as we expected, however (see Figure3).
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Figure 3: Accuracy of Discrimination5.3 E�ect of Experience with ProteinStructuresTwo of our subjects had prior experience in visualiz-ing protein structures in the cartoon mode we used.As expected, these subjects had a very easy time de-termining the secondary structure of the highlightedlocation. Their accuracy levels for this task were near100% in the visual and audio + visual modes. Sur-prisingly, their results showed no improvement over6



the other subjects in any of the other trials (see Fig-ure 4).
Effect of Protein Experience
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Figure 4: E�ect of Experience with Protein Struc-tures5.4 E�ect of Musical AbilityWe expected that when it came to extracting infor-mation from the soni�cations, subjects with a highself-rating in musical ability would do better thansubjects who rated themselves lower. It was antici-pated that these subjects would perform signi�cantlybetter in the audio only mode. In fact, the onlymarked improvements we found were in the audio+ visual mode (see Figure 5). The most striking im-provement was found in the bass/secondary structureparameter. It would appear that this parameter wasthe most di�cult to discriminate for non-musicians.This observation is supported by comments to thate�ect from several of our subjects. The �nding thatthe musicians in the group showed the greatest im-provement in the audio + visual mode is more dif-�cult to explain. Perhaps the subjects with greatermusical ability had an easier time discriminating themusical information and were therefore able to con-centrate more on the visual information to extract ad-ditional information during the autio + visual phase.An analysis of response times in the audio only phasemight help in determining the answer to this ques-

tion.
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Figure 5: E�ect of Musical Ability5.5 E�ectiveness of Individual Instru-mentsWe were interested in determining whether certain in-strument voices were easier to discriminate than oth-ers (see Figure 6). Some of our subjects commentedthat the easiest instrument to discriminate was thedrum. Our results agree with this observation. Thedrum parameter had the overall highest score foraccuracy, and the three drum voices, (brush, cym-bal, and full kit), performed consistently well. Thescores for the twangy bass performed the worst. Theother two bass voices, (accousic and slap), performedsimilarly well. In the accompaniment/polarity pa-rameter, the electric piano voice scored better thanthe marimba and electric guitars which scored aboutequally well. In the melody/goodness of �t param-eter, the synthesizer voice scored the highest, con-sistent with remarks from subjects that the trum-pet and saxophone voices were di�cult to distinguishfrom each other. The trumpet and saxophone voicesperformed about equally.7



    Accuracy for Individual Parameter Levels    
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Figure 6: E�ectiveness of Individual Instruments6 CONCLUSIONS AND FU-TURE WORKSoni�cation appears to have a useful role in disam-biguating data which may be unclear if presentedonly as visual information. Soni�cations need notsu�er serious degenerative e�ects from simultaneouspresentation if care is taken to ensure that distinc-tive voices, rhythms, and melodic patterns are usedfor the di�erent parameters and their levels. For soni-�cations based on musical patterns, melody has thebene�t of standing out well when multiple sounds arepresented.6.1 Future Work1. Currently we are sonifying four variables simul-taneously. Through initial experimentation, wedetermined that panning the soni�cation param-eters to the left or right speaker facilitated dis-crimination during simultaneous soni�cation. Anatural extension of this �nding would be to ex-tend the sound output to quadrophonic insteadof stereo. We believe that if each parameter is as-signed to its own speaker, discrimination shouldbe even further facilitated.

2. Most users would probably like to be able to cus-tomize the program: set their own instrumentvoices, volumes, left-right pan settings, and per-haps even musical patterns, etc. A library ofmusical patterns could also be provided.3. It would be interesting to see if the 20 aminoacids could be soni�ed uniquely. For exam-ple, almost everyone knows 20 di�erent melodies.The melodies could be mapped to amino acidsmnemonically. As a case in point, the amino acidHistidine's one-letter code is `H'. Histidine couldtherefore be mapped to a melody beginning withthe letter `H', such as \Happy Birthday".4. Soni�cations could perhaps be extended by hav-ing two or more musical patterns per instrumentvoice.5. The program could be extended for musicians byhaving additional levels mapped to similar in-struments (e.g., brass instruments such as trum-pet and trombone). Since the average listenerwould probably have di�culties with these map-pings, the program could perhaps have an \ex-pert" setting.6. It would be useful to extend this project to sonifymultiple alignments in addition to pairwise ones.Deriving the complex chord structures necessaryto convey the quality of an alignment columnwould be a challenge.6.2 Improvements in experimentaldesign1. Although in the simultaneous soni�cation testswe presented four times as much information asin the single soni�cations, we only played thesounds for twice as long. It would be interestingto see if playing the sounds for four times as longas the single soni�cations signi�cantly increasesaccuracy.2. A brief introduction to protein structure wouldprobably have been helpful, along with informa-tion on the meanings of the data being mapped.8



3. A more fair comparison between visualizationand soni�cation would require additional visu-alization parameters, e.g., instead of just high-lighting the location in red, color could be usedto indicate goodness of �t.4. It would probably be bene�cial to train on thesoni�cations separately for the audio only, visualonly, and audio + visual presentation modes.The same is true for training in simultaneouspresentation mode.5. It would be interesting to look at learning rateswhile using this program. Learning e�ects couldbe made a part of the experimental design by notturning o� the red/green feedback lights duringtesting.6.3 GUI improvements1. Subjects were sometimes unable to tell the cur-rent mode of the program. The mode indicationcould be removed from the status line and mademore prominent elsewhere on the interface, e.g.,there could be check boxes to indicate whethervisual and/or audio modes are on.2. Subjects were also sometimes confused aboutwhich of the parameter groups required a re-sponse. Instead of simply enabling the radiobutton groups (i.e. changing their colors fromgray to black), perhaps their borders could becolored bright yellow.ACKNOWLEDGEMENTSWe would like to thank Suresh Lodha for his help-ful advice on experimental design, and for teachingthe data soni�cation course which led to the workdescribed here.DIVISION OF LABORBoth authors contributed to the experimental designand to the mappings of data to sound. Marc Hansenwas responsible for the visual data mappings, the
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