Arbitrary Rectilinear Block Packing Based

On Sequence Pair Structure
Technical Report : UCSC-CRIL-98-07

Maggie Kang Wayne Dai
maggiek@cse.ucsc.edu dai@cse.ucsc.edu
Dept. of Computer Engineering

University of California, Santa Cruz

April 28, 1998

Abstract

Due to layout or specific physical requirements, macro blocks can be in an ar-
bitrary rectilinear shape. Block packing problem will no longer be limited to the
rectangle packing. So far no efficient algorithm has been proposed to solve the gen-
eral rectilinear block packing problem. This paper presents a novel representation
method for arbitrary shaped rectilinear blocks in a sequence pair structure. A se-
quence pair is feasible if an optimal packing of arbitrary rectilinear blocks can be
guaranteed for the given sequence pair regardless of the dimensions of the blocks.
In this paper, three conditions are derived on a sequence pair which are necessary
and sufficient for a sequence pair to be feasible.

Furthermore this paper shows that there always exists a feasible sequence pair
for a packing of convex rectilinear blocks. As such, the optimal solution for convex
rectilinear block packing can be found by exhausting the finite number of feasible se-
quence pairs. Three sequence pair operations are developed to incrementally change
a solution. Each operation takes linear time and generates a feasible sequence pair.
An important theoretical result demonstrates that the optimal solution can always
be reachable through a finite times of the sequence pair operations. Therefore a
stochastic search based on the three operations can search the feasible solution space
both continuously and exhaustively. In such a way, for the first time, the arbitrary
shaped rectilinear block packing is solved by using a sequence pair structure.

1 Introduction

Most of the traditional floorplanning or placement algorithms considered only rectangular
shaped macro blocks. The slicing structure was proposed to represent the block placement
by recursively dissecting the rectangular plane into two parts using either horizontal or
vertical line [1]. Corresponding to the slicing structure, Wong and Liu proposed a data
representation called normalized Polish expression, which enables the efficient local search
[2]. As the increase of routing layers, most of channel routing is being replaced by area
routing. A block placement becomes more like a block packing problem, and the wasted

area introduced by a slicing structure becomes more evident. As such, the non-slicing
block packing becomes more attractive.

Murata et al. [3] introduced a sequence pair (SP), and Nakatake et al. [4] proposed a
bounded slicing grid structure (BSG) to represent the general rectangle packing. Both SP
and BSG define the binary relationship for each pair of rectangular blocks, and provide a
way to independently compact the x and y direction.

Due to layout or specific physical requirements, macro blocks can be in an arbitrary
rectilinear shape. Few previous works have studied the rectilinear shaped blocks where
the most noticeable one is the bounded 2D contour searching algorithm proposed by [5].
The arbitrarily rectilinear shaped blocks are represented by a set of four linear profiles,
each one of them specifies the profile viewed from one side of the block. Given the
original placement of blocks, the algorithm iteratively compacts the blocks along a certain
direction, in which the 2D contour searching is carried out on the profiles of the compacted
design. As we can see, this compaction method cannot be applied on block packing
problem due to the complicated geometrical calculation.

A BSG-based method was proposed by [6] to pack rectangular, L-shaped, T-shaped,
and soft blocks. The complicated relationship among rectilinear blocks was indicated and
a SP-based algorithm was presented by [7]. Unfortunately the algorithm does not con-
verge to the feasible solutions, overlaps may exist in the packing solution. Most recently,
an algorithm based on both BSG and SP structures was proposed by [8], in which the
topology constrained block packing can be handled given that blocks belong to a specific
class of convex rectilinear shapes. An SP-based algorithm was proposed by [9] to pack
the mountain-shaped blocks. However it was not guaranteed that the algorithm could
always terminate. Based on BSG structures, an algorithm was proposed by [10] where
each block is sliced into a set of rectangular sub-blocks, one of them is selected to be a
master and the others slaves. Only the master sub-block is assigned into BSG domain.
After the compaction, the slaves are attached with the master. A post-process eliminates
overlaps by pushing the neighboring blocks away. Obviously the optimal solution is not
guaranteed to be included, and the post process takes much more time than the BSG
compaction itself.

Al—a & ..., —»—»
A |

Figure 1: Each rectilinear shaped macro block, A, is partitioned into a set of rectangular sub-
blocks : ai a2 --- a, , each of them is individually represented in a sequence pair as a unit
block. After the unit blocks are compacted in the z and y directions, a post process aligns the
z and y coordinates of the sub-blocks such as to recover the original macro shapes.

In this paper, a novel representation method is proposed for arbitrary shaped rectilin-
ear blocks in a sequence pair structure. A sequence pair is feasible if an optimal packing of
arbitrary rectilinear blocks for the given sequence pair can always be guaranteed regard-
less of the dimensions of the blocks. Three conditions on sequence pair are derived which
are necessary and sufficient for a sequence pair to be feasible. The theoretical proof points

out that there always exists a feasible sequence pair corresponding to a packing of the
convex rectilinear blocks. As such, an optimal solution for the convex block packing can
be found by enumerating the finite feasible sequence pairs. Stochastic search is applied,
and three sequence pair operations are defined such as to continuously search the feasible
solution space. An important theorem shows that starting from any feasible sequence
pair, the feasible sequence pair which yields the optimal packing can always be reachable
through a finite steps of the operations. Therefore the stochastic search based on the
three operations searches the feasible solution space both continuously and exhaustively.

In the following, the sequence pair structure is first introduced in Section 2. Then
Section 3 describes the representation method for arbitrary rectilinear blocks in a sequence
pair. The concept of feasible sequence pairs is defined, and three conditions on a sequence
pair are presented. Section 4 shows that the three conditions are necessary and sufficient
for a sequence pair to be feasible. In Section 5, it is proven that there always exists
a feasible sequence pair for a packing of convex rectilinear blocks. Based on this fact,
Section 6 applies a stochastic search on the convex block packing. The experimental
results are reported in Section 7 followed by the conclusion of this paper.

2 Sequence Pair (SP) Structure

To clarify the notation, we call the rectangular blocks represented in sequence pair unit
blocks. A sequence pair for a set of n unit blocks is a pair of sequences of n symbols which
represent the unit blocks : (I'y, I'y). Given a sequence pair (abdec f, cb fade),an
oblique grid can be constructed as shown in Fig. 2 (a) : 45° slope lines are named from
left to right by the symbols in the first sequence Iy, and —45° slope lines are similarly
named by the symbols in the second sequence I's. Each unit block is placed at the cross
of the two slope lines which are named by the same symbol corresponding to the unit
block. As shown in Fig. 2 (b), the plane can be divided by the two crossing slope lines
into four cones for any unit block b. Unit a is in the upper cone of b, then a is above b.
Similarly, unit d, e and f is in the right cone of b, then they are right to b. In general,
the sequence pair imposes the relationship between each pair of unit blocks as follows :

(«+a--b-+, -~ a--b-+) = aislefttob,
(-b--a--, --a--b--) = aisbelowb.

Given the sequence pair, a horizontal directed graph G, is derived as shown in Fig. 3 (a).
Each vertex corresponds to a unit block, there is an arc from unit a to d if and only if a is left to
d. In particular, there is a source s, connected to each leftmost unit and a sink ¢, connected from
each rightmost unit. Each vertex has a weight which equals to the width of the corresponding
unit block. The vertical graph G, can be similarly derived as shown in Fig. 3 (b).

Both G}, and G, are vertex weighted directed acyclic graphs, the packing of unit blocks can
be obtained by simply applying the well-known longest path algorithm on both graphs. The x
and y coordinates of each unit block are determined by the longest path from source to the
vertex of the unit in G, and G,, respectively. Similarly, the width and height of the overall
packing can be determined by the source-to-sink longest path of GG}, and G,.

For any two unit blocks, there is always an arc in either G, or G,, but not both. Due to
this fact, the z and y coordinates can be independently determined, and the resultant packing is
guaranteed not to contain any overlap. Since the width and the height are independently mini-
mum, the resultant packing is optimal for the given sequence pair. The longest path calculation
can be done in the time proportional to the number of arcs in the graphs.

Sig;
Cc

(@ (b) (©)

Figure 2: (a) Oblique grid of (abdec f, c¢b fade), (b)the four cones of block b, and (c)
the corresponding packing of the six blocks.

(b)

Figure 3: The two vertex weighted directed acyclic graphs derived from the sequence pair
(abdecf, cbfade),in which the transitive arcs are deleted for the simplification.

As a coding scheme, sequence pair becomes an ideal data representation of rectangular block
packing due to following facts [3] :

e Quick evaluation of packing area based on sequence pair : O(n?) time where n is the
number of unit blocks.

e Hasy incremental change of packing topology using sequence pair : switch two units in
the first or second sequence.

e There always exists a sequence pair corresponding to a rectangle packing, and vice versa.

Therefore the optimal packing can always be found by exhausting the finite number (n!)? of
sequence pairs.

3 Arbitrarily Rectilinear Blocks in Sequence Pair

3.1 H, V-Partition

Let A denote an arbitrary shaped rectilinear macro block. A can be partitioned into a set of
rectangular sub-blocks by slicing A from the left to right along every vertical boundary of A.
As shown in Fig. 4 (a), the partition is referred to as a horizontal partition or H-partition.
Similarly A can be wvertically partitioned or V-partitioned as shown in Fig. 4 (b). Given that
A is H-partitioned or V-partitioned into a1, ag, - - - ay, each sub-block a; € A is individually
represented in SP as a unit block. We call the pair of permutations on a; € A in the sequence
pair a permutation pair of A.

a as
& i a, | a N
I 7357777
H-Pair: &4 &2 33,385 ,8 3 A3 84 & V-Pair: asa,aza, @, , 4 & A3 a5

@ (b)

Figure 4: (a) H-partition slices block A on every vertical boundary from the left to right. (b)
V-partition slices block A on every horizontal boundary from the bottom to top.

For any two unit blocks a and b placed in a plane without overlaps, let u, and [, denote the
upper and lower boundary of block a, respectively. Block a is left of b if the right boundary of
a is left of the left boundary of b. If [l,, us] N [lp, up] # ¢ as shown in Fig. 5 (a), a is strictly left
of b. The permutation pair of a, bis (a b, ab). Otherwise [l,, uq] N [lp, up] = ¢ as shown in Fig.
5 (b), a is both left of and below b, and two permutation pairs of a, b are possible.

Given that macro block A is either H-partitioned or V-partitioned, the topology between
the sub-blocks of A is strictly defined. Accordingly there is exactly one permutation pair of A
corresponding to the partition. The following Lemma is true :

Lemma 1 Given an arbitrary rectilinear macro block A, there exists only one permutation pair
of A corresponding to the H-partition of A, which is referred to as an H-pair of A. Similarly

o]

@ (b)

Figure 5: For any two unit blocks a and b placed in a plane without overlaps, a is left of b if
the right boundary of a is left of the left boundary of b. In (a), [lg, ua] N [lp, up] # ¢, a is strictly
left of b. The permutation pair of a, bis (a b, a b). In (b), [l4,us] N [lp, up] = ¢, a is both left
of and below b, and two permutation pairs are possible.

there exists only one permutation pair of A corresponding to the V-partition of A, which is
referred to as a V-pair.

In the example shown in Fig. 4, the H-pair of A is (a1 ag a3 a4 a5, a2 a1 az a4 as) and V-pair
is (a5 aq a3 a1 as, ay a9 az a4 as).

3.2 X, Y-Alignment

Given a sequence pair representing topological relationships among unit blocks of rectilinear
macro blocks, the unit blocks are compacted left and downward using the longest path algorithm
in the z and y directions, respectively. If any unit block is further moved left or downward after
the compaction, overlaps will occur. In other words, X, Y-alignment can only move unit blocks
right and upward. Given a macro block A is H-partitioned as shown in Fig. 6 (a), and the
sequence pair is (c a1 ag € ag ag d a5 f, e az aj a3 f ¢ ag a5 d), the unit blocks are compacted
as shown in Fig. 6 (b). In the z direction, as is the right-most sub-block of A. X-Alignment(A)
freezes a5 and moves a4 to the right until it hits a5, then moves ag to the right until it hits
a4, and so on. After the right move of a; and a9, the sub-blocks of A are aligned together in
the = direction as shown in Fig. 6 (¢). In the y direction, the highest sub-block of A is a4. Y-
Alignment(A) freezes a4, and moves the other sub-blocks of A upward to align with a4 as shown
in Fig. 6 (d). When macro block A is V-partitioned, X, Y-alignment can be symmetrically
carried out. Obviously the following Theorem is true :

Theorem 1 Given a sequence pair representing topological relationships among unit blocks of
rectilinear macro blocks, X, Y -Alignment yields an optimal packing for the sequence pair.

Given a sequence pair, the shapes of macro blocks may not be recovered by X, Y-Alignment.

Definition 1 A sequence pair is feasible if after X, Y -Alignment, the shapes of rectilinear
blocks are gquaranteed to be recovered regardless of the dimensions of the blocks.

Definition 2 A sequence pair is infeasible if it is not feasible, e.g. the shapes of rectilinear
blocks may not be recovered after X, Y -Alignment.

%
MR NIED
[e]

f

. ¢ | d

BE

(d) (©

Figure 6: (a) Macro block A is H-partitioned into a; ay as a4 as. (b) Given a sequence pair
(cayageaszagdas f, eayay az f ¢ aq as d), the unit blocks are compacted left and downward
using the longest path algorithm in the z and y directions, respectively. (c¢) In the x direction,
as is the right-most sub-block of A. X-Alignment(A) freezes a; and moves a4 to the right until
it hits a5, then moves a3 to the right until it hits a4, and so on. After the right move of a;
and a9, the sub-blocks of A are aligned together in the z direction. (d) In the y direction, the
highest sub-block of A is a4. Y-Alignment(A) freezes a4, and moves the other sub-blocks of A
upward to align with ay.

Accordingly we define the necessary and sufficient conditions on sequence pair as follows:

Definition 3 A condition is necessary iff when the condition is not satisfied, the sequence pair
1s infeasible.

Definition 4 A set of conditions are sufficient iff when the set of conditions are satisfied, the
sequence pair is feasible.

FSP

NSSP = FSP

(@ (b)

FSP : feasible sequence pairs.

NSP : sequence pairs which satisfy the necessary conditions.

SSP : sequence pairs which satisfy the sufficient conditions.

NSSP : sequence pairs which satisfy the necessary and sufficient conditions.

Figure 7: (a) Let FSP denote a set of feasible sequence pairs, NSP the sequence pairs which
satisfy the necessary conditions, and SSP the sequence pairs which satisfy the sufficient condi-
tions, then SSP C FSP C NSP. (b) If we can derive a set of conditions which are necessary
and sufficient, the solution space for feasible sequence pairs can be completely characterized by
the necessary and sufficient conditions: a sequence pair is feasible if the conditions are satisfied,
otherwise infeasible.

Let FSP denote a set of feasible sequence pairs, NSP the sequence pairs which satisfy the
necessary conditions, and SSP the sequence pairs which satisfy the sufficient conditions, then
SSP C FSP C NSP as shown in Fig. 7 (a). If the necessary conditions are not met, the
sequence pair is infeasible. If the necessary conditions are met, the sequence pair may or may
not be feasible. On the other hand, if the sufficient conditions are met, the sequence pair is
feasible. If the sufficient conditions are not met, the sequence pair may or may not be feasible.
As such, necessary conditions can not completely characterize the solution space for feasible
sequence pairs, neither can sufficient conditions.

If we can derive a set of conditions which are necessary and sufficient, as shown in Fig. 7 (b),
the solution space for feasible sequence pairs can be completely characterized by the necessary
and sufficient conditions: a sequence pair is feasible if the conditions are satisfied, otherwise
infeasible. In the following, we first present three conditions on sequence pair, and later we will
prove that the three conditions are both necessary and sufficient.

3.3 Three Conditions on Sequence Pairs

Before presenting the detailed conditions, we first define four relations for the unit blocks in a
sequence pair.

— Given three unit blocks a;, a; € A and ¢ ¢ A, if ¢ is between a; and a; in both sequences, for
example (a; ¢ a;, a; c aj). we call ¢ interrupts a; and a;.

— Given two pairs of unit blocks a;, aj € A and b;, b; € B, A # B. In the first sequence :
a; --aj --b; --bj, wecall (a;, a;) and (b;, b;) as separates of each other.
a; --b; --aj --bj, wecall (a;, a;) and (b;, b;) as interleaves of each other.
a; -+ by -~ bj - a;, wecall (a;, a;) as covering (b;, b;).
— Similarly, the separate, interleave and cover relations can be defined in the second sequence.

The first condition is referred to as condition-1 :

For any H-partitioned macro A, the permutation pair of A equals the H-Pair of A,
similarly for any V-partitioned A, the permutation pair of A equals the V-pair of
A.

The second condition is referred to as condition-2 :
Any two units a;, a; € A are not interrupted by a unit ¢ ¢ A.
Finally the third condition is referred to as condition-3 :

Any two pairs of unit blocks a;, a; € Aand by, by € B, A # B. (ai, aj) separates
(bir, bjr) in the first or second sequence.

Overall the three conditions are called 3-conditions.

4 3-Conditions Are Necessary and Sufficient

4.1 3-Conditions Are Necessary

Given the sequence pair which does not satisfy condition-1, without loss of generality, we assume
the permutation pair of an H-partitioned macro block A does not equal the H-pair of A. There
must exist two sub-blocks a;, a; € A, whose permutations in SP are different from those in
the H-pair of A. For example, sub-block a; is left of ay in the H-partitioned A, the H-pair of
Ais (a1 ag , a1 az). On the other hand, the permutations of a1, as in the sequence pair is
(a1 ag , as a1). X, Y-Alignment preserve the topological relationships defined in the sequence
pair, block a; will be above as after the alignment and the shape of macro block A cannot be
recovered. Therefore condition-1 is a necessary condition.

g —

@ (b)

Figure 8: (a) Unit block ¢ is right of a; while left of a;, a; and a; may not be aligned in the
direction. (b) Block c is below a; while above a;, a; and a; may not be aligned in the y direction.

Given the sequence pair does not satisfy condition-2, there must exist two unit blocks a;, a; €
A interrupted by a unit block ¢ ¢ A. The sequence pair will be either (a; -- ¢ --a; ., a; -- ¢ -- a;)
or (@, --¢ --aj, aj --c --a;). Inthe first case, ¢ is right of a; while left of a;, a; and q;
may not be aligned in the x direction as shown in Fig. 8 (a). While in the second case, ¢ is
below a; while above a;, a; and a; may not be aligned in the y direction as shown in Fig. 8 (b).
Therefore condition-2 is also a necessary condition.

Sh .\’> RN th T// N
o e aje ab;

(b)

Figure 9: (a) In the horizontal graph G, if unit block a; € A is left of unit by € B, A # B,
and unit block a; € A is right of unit by € B, a;, aj and by, by are H-crossed to each other. (b)
In the vertical graph G,, if a; is below by, and a; is above bj, a;, a; and by, bj are V-crossed
to each other.

In the following, we refer two unit blocks a;, a; € A as a-pair. Similarly two unit blocks
bir, bjr € B as b-pair, where A # B. If a; is left of by while a; is right of b;; as shown in Fig. 9 (a),
we call a-pair and b-pair H-crossing each other. In X-Alignment(A), the right move of a; may
push unit by to the right. Then b; has to be moved to the right along with b;, which may push
unit a; to the right. Again a; is moved to the right along with a; and so on ... , the = alignment
might continue infinitely. When the similar situation happens in the vertical dimension as shown
in Fig. 9 (b), we call a-pair and b-pair V-crossing each other, and Y-Alignment might continue
infinitely. We can conclude the following fact :

Lemma 2 If two pairs of unit blocks are H-crossed or V-crossed to each other, the shapes of
the corresponding macro blocks may not be recovered after X, Y -Alignment.

Given the sequence pair does not satisfy condition-3, there must exist a-pair and b-pair
which do not separate each other in either sequence. Without loss of generality, we assume a;
is before a;, and by is before by in the first sequence I'1. Then I'y will be either a; by a; bjr,
or a; by bj aj . When the first sequence is a; by a; bj , the second sequence I'; is enumerated
in Fig. 10. Since a-pair does not separate b-pair in I's, the second sequence can not be the
case (1.1.1), (1.1.2), (1.3.3), (1.3.4), (2.1.3), (2.1.4), (2.3.1) or (2.3.2). On the other hand, if the
second sequence is the case (1.1.4), (1.3.1), (1.3.2), (2.1.1), (2.3.3) or (2.3.4), condition-2 will
be violated. Therefore I'y can only be case (1.1.3) or (2.1.2). The two corresponding sequence
pairs are :

1. ((I,i bi’ (],j b]/ s bi’ a; b]/ (I,])
2. ((I,i bi’ a; bj/ , Qy bj/ a; bz’)

10

When the first sequence I'y is a; by bjr a; , the second sequence is enumerated in Fig. 11. Since
a-pair does not separate b-pair in I's, the second sequence can not be the case (1.1.1), (1.1.2),

(1.3.3), (1.3.4), (2.1.3), (2.1.4), (2.3.1) or
is the case (1.1.3), (1.3.2), (2.

Therefore I's can only be case
pairs are :

1.2) or (2.3.
(1.1.4), (1.3

(2.3.2).

1), (2.1.1) or

On the other hand, if the second sequence
3), condition-2 will be violated in the sequence pair.
(2.3.4). The four corresponding sequence

/T\

3. ((I,i bi’ bjl a; z’ a; (1])
4. ((I,i bi’ bjl (J,j 7 a; (1] /)
5. (a; by by aj , by aj a; bj)
6. (ai bi’ b]I 7 5! a; al)
/—1 ‘:734 bil aj bJ’ \
[aj-- _gje-aj

PN

, 21 22 2.3
by g aJH ai b, aj\ Y aJ b;: 'biraj aj [ajbpaj | gjaib; |
I R X
@1y by by ajaj x @3anbpajajbyx @Y bpajaibyx (231 by b ajaix
(112 by by aja)x (132ajbpajbyx (212 \kajbj,iaibi;\\/ (2.32)| -fb-faj i X
(113 by ajbyaj., (133a abybyx (213 @jaibybyx (233) by ajby aj
(L14) by aj ajby| x (134) g aj by by |x (21.4) (8 @j by bj x (2.3.4) bi & aj by x

Figure 10: Given a-pair does not separate b-pair in either sequence, and the first sequence
is a; by aj by . The second sequence I'y is enumerated in this Figure. Since a-pair does not
separate b-pair in I'9, the second sequence can not be the case (1.1.1), (1.1.2), (1.3.3), (1.3.4),
(2.1.3), (2.1.4), (2.3.1) or (2.3.2). On the other hand, if the second sequence is the case (1.1.4),
(1.3.1), (1.3.2), (2.1.1), (2.3.3) or (2.3.4), condition-2 will be violated. Therefore Iy can only be
case (1.1.3) or (2.1.2).

In each of the above six sequence pairs, a-pair and b-pair are either H-crossed or V-crossed
to each other, the corresponding sequence pair is infeasible. Therefore condition-3 is a necessary
condition.

Lemma 3 The 3-conditions are necessary for a sequence pair to be feasible.
Based on the similar analysis, we can derive the following property :

Lemma 4 Given condition-3 is satisfied in the sequence pair, any two pairs of unit blocks
a;, a; € A and by, by € B, A# B, are neither H-crossed nor V-crossed to each other.

4.2 3-Conditions Are Sufficient

Given 3-conditions are satisfied in the sequence pair, the following Lemma is true :

11

/1 aibpbpay |

/77, a| -.-aj \ / aJ ...ai |

o1 12 13 2.1 22 23

by aj g (@ bpaj (aa by by g aj) @ bpaj (3 &by
X

| <]

@1y bpbpaia)x @anbpaabyn @Dy aibiv @3y bybyajax

(1.1.2) by by ai g x (132§ 51" a;j by x (212 \/aj b'|' ajb;yx (232 bi'b"aj aj| X

(113) (bi ajbpajx @33 (@ aby by x (@L3)@aibpbpx (233) (b ajby ajx
(114 bpaj ajby s 34 @jajby by x (149 & A bpbyx (234 by aj a by

Figure 11: Given a-pair does not separate b-pair in either sequence, and the first sequence
is a; by by aj . The second sequence I's is enumerated in this Figure. Since a-pair does not
separate b-pair in I'y, the second sequence can not be the case (1.1.1), (1.1.2), (1.3.3), (1.3.4),
(2.1.3), (2.1.4), (2.3.1) or (2.3.2). On the other hand, if the second sequence is the case (1.1.3),
(1.3.2), (2.1.2) or (2.3.3), condition-2 will be violated. Therefore I'y can only be case (1.1.4),
(1.3.1), (2.1.1) or (2.3.4).

Lemma 5 If a unit block a; € A is left of a unit by € B, A # B, then no unit of A is right of
a unit of B. Similarly, if a; is below by, no unit of A is above a unit of B.

Lemma 5 can be proven by the contradiction. Let’s assume that a; is left of by, and a unit block
a;j € A is right of a unit by € B. If a; = a; or by = by, we can easily derive that a; interrupts
(bir, bjr) or by interrupts (a;, a;) in the sequence pair, which contradicts the assumption. Thus
a; # aj, by # bj. As such a-pair and b-pair are H-crossed to each other, then a-pair does
not separate b-pair in either sequence. Again the assumption that sequence pair satisfies the
3-conditions is contradicted. Therefore Lemma 5 is true. Based on this property, we can sort
the macro blocks in z and y direction, respectively :

z-order : macro block A is before macro block B if a unit of A is left of a unit of B;
y-order : macro block A is before macro block B if a unit of A is below a unit of B.

In the following, we show that the shapes of macro blocks can be exactly recovered by
applying X, Y-Alignment on each macro block in z and y-order, respectively. Based on the
horizontal graph G, X-Alignment(A) is carried out, a unit a; € A is moved right, the unit
by € B is pushed to the right by a; only when b; is right of a; and B # A, as shown in Fig. 12
(a). The right move of by may further affect the unit blocks of A if and only if:

1. a unit block a; € A is right of by, or
2. a umit block a; € A is right of another unit block b;; € B.

In the first case, by is right of a; while left of a; as shown in Fig. 12 (b). Then b; interrupts a;, a;
in the sequence pair, condition-2 is violated. In the second case, a;, a; and by, bj are H-crossed
to each other as shown in Fig. 12 (¢). Then a-pair does not separate b-pair in either sequence

12

@
a; b i
a b . aj o——=0
U—==0—=0
o——0
by &
(b) (©

Figure 12: (a) In X-Alignment(A), unit block a; € A is moved to the right, a unit by € B is
pushed to the right by a; only when by is right of a; and B # A. The right move of b; may
further affect the unit blocks of A if and only if : (b) a unit block a; € A is right to by, or (c) a
unit block a; € A is right of a unit block b; € B.

and condition-3 is violated. Due to the assumption that sequence pair satisfies the 3-conditions,
neither case 1 nor case 2 will happen. In other words, the right move of a; in z-align(A) will
not affect any other unit of A. X-Alignment(A) exactly aligns the z coordinates of A.

On the other hand, when X-Alignment is carried out on macro B after X-Alignment(A), no
unit of B can be left of a unit of A due to the z-order. As such, the right move of unit blocks in
X-Alignment(B) will not affect macro block A. It implies that once X-Alignment(A) is carried
out, the z coordinates of A will not be affected later. We can conclude the following Lemma :

Lemma 6 The 3-conditions are sufficient for a sequence pair to be feasible.
Followed by Lemma 3 and Lemma 6, we can conclude :

Theorem 2 The 3-conditions are necessary and sufficient for a sequence pair to be feasible.

5 Convex Rectilinear Block Packing

A rectilinear block is called convez if any two points in the block have a shortest Manhattan
path inside the block, as shown in Fig. 13 (a). Otherwise the block is called concave, as shown
in Fig. 13 (b). It can be observed that some packing of concave blocks can not be represented
by the feasible sequence pair. For example, in the packing of Fig. 13 (c), block ¢ is right of
block a; while left of a3, then ¢ must interrupt a;, as in the corresponding sequence pair.

Let II denote an arbitrary convex block packing. By H- or V-partitioning the rectilinear
macro blocks, IT becomes a rectangle packing. The corresponding sequence pair SP(II) can
be easily derived, in which the sub-blocks are treated as individual unit blocks. Obviously
condition-1 is satisfied in SP(II).

If condition-2 is not satisfied in the sequence pair, there exist two unit blocks a;, a; € A
interrupted by a unit ¢ ¢ A. It can be easily derived that A has concave shape, which contradicts
the convex assumption. Therefore condition-2 is also satisfied in SP(II).

If the condition-3 is not satisfied in the sequence pair SP(II), there exist a;, a; € A and
by, by € B such that a-pair does not separate b-pair in either sequence. According to the

13

NEie
L asay

(@ (b) (©)

Figure 13: (a) Any two points of the convex rectilinear block have a shortest Manhattan path
inside the block. (b) At least two points in the concave block have no shortest Manhattan path
located inside the block. (c) The packing of concave blocks can not be representable by feasible
sequence pairs.

@ (b)

Figure 14: Let I; and u; denote the lower and upper boundary of unit a;, respectively. Given
sequence pair SP(II) = (a; by a; by, by a; by aj), a; is above by and a; is above bj,. Then in
the packing II, I; > uy and I; > uj. (a) l; > uj : block a; is both left of and above bj. Then
SP(II) can be transformed to (a; by a;j b]'/, b bjl a; aj). (b) I; < Ui l; > Ujr > l; > u;, then
lj > uy. Block aj is both right of and above by in the packing II. SP(II) can be transformed to
(ai a; bil b]'/, bi’ b]‘/ a; a]').

14

analysis of Fig. 10 and Fig. 11, a total of six non-symmetrical sequence pairs are possible.
When the sequence pair is the first case, SP(II) = (a; by aj by, by a; by aj), a; is above by
and a; is above b;. Let [; and u; denote the lower and upper y coordinate of a;, respectively.
Then l; > uy and I; > uj. If I; > uy as shown in Fig. 14 (a), a; is both left of and above b,
SP(II) can be transformed as follows:

((J,Z' b’i’ (],j bjl’ bil a; b]' (I,]) = ((J,Z' b’i’ (I,j bjl’ bil b]l a; (I,]) (].)

Otherwise [; < uj as shown in Fig. 14 (b), I; > uj > I; > uy, then I; > uy. Block a; is both
right of and above b; in the packing IT. Thus SP(II) can be transformed as follows :

((I,i by a; b]‘/, by a; bjl (J,j) = ((I,i a; by bj/, by bj/ a; (],j). (2)

Obviously the transformation will not cause any violation of 3-conditions, a-pair will separate
b-pair in at least one sequence of SP(II), meanwhile the topology defined by the sequence pair is
consistent with the packing II. For case 2 through case 6, SP(II) can be similarly transformed.
In such a way, a feasible sequence pair can be eventually achieved, that is

Lemma 7 There always exists a feasible sequence pair corresponding to a packing of convex
rectilinear blocks.

For M convex macro blocks, each of them includes at most n rectangular sub-blocks, the optimal
solution for convex rectilinear block packing can be found by exhausting the finite number
O((nM)'?) of feasible sequence pairs.

When a convex macro block A is H-partitioned as shown in Fig. 15 (a), a; denotes the i
leftmost sub-block, the H-pair of A is (a1 - - a; ajy1 - Gy @1 - G Gjx1 - Q). When A is
V-partitioned as shown in Fig. 15 (b), a; denotes the i’ lowest sub-block, the V-pair of A is
(@m -~ Gig1 @i -- a1, a1 - G Gigr - Gy).

@ (b)
Figure 15: (a) Convex block A is H-partitioned where a; is the i'" leftmost sub-block of A. The

H-pair of A equals to (a1 - a; aj41 +* Gm, a1 - @ Gjy1 ** Q). (b) When A is V-partitioned, a;
is the i"" lowest sub-block of A. The V-pair A equals to (@, -+ Gip1 @i - @1, a1 - G; Qg1 -+ Q).

6 Stochastic Search on Convex Block Packing

In the following, a stochastic search is applied to the optimization of convex block packing.
Three sequence pair operations are defined to incrementally change the feasible sequence pair :
rotation, I'i-mutation, and ['s-mutation.

15

6.1 Rotation

Rotation rotates a macro block by 90° in the clockwise direction as shown in Fig. 16. Given
macro block A = {a1, ag, -, ay }, rotate(A) switches the height with the width for each unit block
of A. The sequence pair is accordingly changed by switching unit a; with a,,11-4, 7 € [1, n],
in the first sequence (90° to 180°, 270° to 0°) or the second sequence (0° to 90°, 180° to 270°).
Rotation takes O(n) time, which is close to constant time.

¢

o 0 0 0
0 90 180 270
a
N o N
>
(a1a0a3,aaa3) (a1apaz, agayay) (agaja; ,agajay) (azayay ,ajaas)

Figure 16: A macro block A = {a1,as,a3} is rotated from 0° through 90° and 180° to 270° in
the clockwise direction. rotate(A) switches the height and width for each unit block of A, and
changes the sequence pair by switching a; with a,,4+1_; in the first or second sequence.

Given a rotation is carried out on macro block A represented in a feasible sequence pair
(I'1,T9), only the permutation pair of A is changed from H-pair to V-pair, or vice versa. Ac-
cordingly the orientation of A is rotated such that the H-partition of A becomes the V-partition,
or vice versa. As such, the resultant sequence pair (I‘ll, F’Q) still satisfies condition-1.

If the resultant sequence pair does not satisfy condition-2, there exists a unit ¢ € C between
two units b;, b; € B in both Fll and F/Q, C # B. Three cases are possible :

1. B# A, C # A.
The positions of b;, b; and c in the resultant sequence pair are exactly the same with those
in the original sequence pair. Thus ¢ also interrupts b;, b; in (I'1,I'2), which contradicts
the feasible assumption.

2. B# A, C=A.
Without loss of generality, we assume ¢ = ay, the resultant sequence pair is (b; ax, b;, b; aj b;).
According to rotate(A), the original sequence pair should be either (b; ay b;, b; apq1-p bj)
or (bj ami1—k bj, by ap bj). If K = m 41—k, then g interrupts b;, b;. Otherwise
Ay Gmi1—k and by, b; will not separate each other in either sequence of (I't, I'y), then
condition-3 is violated. Either case contradicts the feasible assumption of the original
sequence pair.

3. B=A, C #A.
Without loss of generality, we assume b; = a;, b; = a; and the resultant sequence pair is
(a; ¢ aj, a; ¢ aj). According to rotate(A), the original sequence pair should be either
(@i ¢ aj, Gmi1—i € Gmy1—j) O (@my1—i € Gmy1—j, a; ¢ a;). Since the two cases are
symmetrical, we only discuss the first one. Due to the feasible assumption, unit ¢ can not
appear between a; and a; in the second sequence I'y. Similarly, ¢ can not appear between
am+1—i and ap41-—j in the first sequence I';. Therefore the original sequence pair (I'y, ')

16

will be one of the four possible cases shown in Fig. 17. In each of them there are two
units of A interrupted by unit ¢. A contradiction exists.

As such, we can derive that the resultant sequence pair also satisfies condition-2.

@) 2

©) 4

Figure 17: In a feasible sequence pair (a; ¢ aj, amy1—i € @mi1—j), ai, aj will be both before
or both after ¢ in the second sequence. Similarly a,,1-i, @my1-; will be both before or both
after ¢ in the first sequence. As such, the sequence pair will be one of the four possible cases:
(1) aj, am41—; are interrupted by ¢, (2) @i, am41—; are interrupted by ¢, (3) aj, api1-; are
interrupted by ¢, (4) a;, apmy1-; are interrupted by c. The sequence pair can not be feasible.

If the resultant sequence pair does not satisfy condition-3, there exist b;, b; € B and ¢, ¢ €
C, B # C, b-pair does not separate c-pair in either sequence of (I‘ll, F’Q) When B # A, C # A,
the original sequence pair will also violate condition-3. Thus let B = A, b; = a;, b; = a;.
In the original sequence pair, a;, a; do not separate cg, ¢; in one sequence, say I';, while
Am+1—i, Gm+1—j do not separate ci, ¢; in the other sequence, say I's.

Due to the feasible assumption of (I't,T'2), @m+1—i, @my1—; must separate ¢, ¢ in I'1. As
shown in Fig. 18, we can draw a line to separate ¢, ¢; from a;,41—i, Gp1—; in the first sequence
I'y. Either a; or a; will be on the different side of a,,1-i, @my1-j, otherwise a;, a; will separate
¢k, ¢ in the first sequence. In the second sequence I'y, we can derive the symmetrical situation.
Then totally four cases are possible as shown in Fig. 18, in each of them condition-3 is not
satisfied, and the original sequence pair could not be feasible. As such, we can derive that the
resultant sequence pair satisfies condition-3. Overall we can conclude :

Lemma 8 When a rotation is carried out on a macro block represented in a feasible sequence
pair, the resultant sequence pair remains feasible.

6.2 ['y-Mutation And I's>-Mutation

I'y-Mutation switches two adjacent unit blocks in the first sequence : -- ab -+ = -- ba --,
in which a € A, b € B, A # B. I's>-Mutation is similarly carried out on the second sequence.
Both operations take constant time. Since two mutations are symmetrical, we will only discuss
I';-mutation.

17

| T 1 |
! | |
Ck C i Am+1 Ck C : Am+1 Ck C : Amn+1-i Ck C : Am+1-
1 & | am1y aj | amij a1 Amel a1 amsg
! ! | |
! ! | |
‘ |
/7 Ck Ci ! @ Ck € i & Ck Cliai Ck € &
2 . ! .
Ame+1- : aJ am+l-j : aj Am+1-i : aj am+1—J : aJ
: | | |
)) 3) 4

Figure 18: Given a feasible sequence pair (I'1,I's) where a;, a; do not separate ¢, ¢ in I'y,
and @, 41-i, am4+1—; do not separate cg, ¢; in I's. Then ay,41—i, Gpq1—; must separate ci, ¢
in I'1. We can draw a line to separate cg, ¢ from apq1-4, apme1-j. Either a; or a; will be on
a different side of ay,41-i, @my1-j, otherwise a;, a; will separate ci, ¢; in the first sequence.
The similar case can be derived in the second sequence. Totally four cases are possible for the
sequence pair : (1) a;, amy1- and ¢, ¢, (2) @i, amy1—j and g, ¢, (3) aj, amy1—; and ¢, ¢,
or (4) a;, am1-; and ¢, ¢ violate condition-3. As such, the sequence pair can not be feasible.

Given I'i-mutation is carried out on a feasible sequence pair, the permutation pair of every
macro block will be preserved in the resultant sequence pair, as such condition-1 is satisfied
after the operation. In the following, we assume A = {ay ag -+ ap} and B = {by by - - by}.
By relabeling the sub-blocks of A and B, a; and b; are the i*" sub-block of A and B in the first
sequence I'y, respectively.

Lemma 9 When I't-mutation is carried out on a feasible sequence pair : -- a; bj -~ = - b;j a; -,
the resultant sequence pair may wviolate condition-2 only when a; = a,, b; = bi. And the
violation only happens on a,, and by.

Given the resultant sequence pair violates condition-2, then d € D is between ¢,, ¢, € C in
both sequences of (I‘ll, FIQ) According to I'i-mutation, F’Q =TIy, then d is between ¢, and ¢, in
I'y. On the other hand, if d # a;, d # bj, d is also between ¢, and ¢, in I'y, the original sequence
pair violates condition-2. Thus d must be either a; or b;. Similarly we can derive that one unit
of (cy, ¢y) must be a; or b;. Therefore in the resultant sequence pair (Fll, F'Q), two cases are
possible :

1. ag, a; € Ais interrupted by b;. Due to I'-mutation, Fll must be - a; --bj a; -, then
ag = a;_p, where k > 0.

2. by, b; € B is interrupted by a;. Due to I';-mutation, Fll must be -- bj a; -+ by --, then
by = bj, where | > 0.

In the following, we assume that the resultant sequence pair is the first case. If i < m, the
original first sequence I'y will be -- a;_ -- a; b; -- a,, --. The original second sequence I'y will
be either - - a;_x --b; -~ a; -~ apy --or-- ay --a; - bj --a;_p --. Then b; will interrupt
a;_k, G in the original sequence pair. Therefore, 7 must equal m, i.e. a; = a,,.

If 5 > 1, the original first sequence I'y will be either -- a;_j -- by - a; bj --or -- by -~ a;—j -~ a; bj --.
Due to condition-3, a;_x, a; and by, b; must separate each other in the original second sequence
I'y. Since I'y = F’2, b; can not be between a;_j, a; in F’2, which contradicts the assumption
that b; interrupts a;_, and a; in the resultant sequence pair. Therefore j must equal 1, i.e.
bj = b;. Similarly when the resultant sequence pair is the second case, we can derive that
a; = @y, bj = by. Therefore, Lemma 9 is true.

18

Lemma 10 When I'i-mutation is carried out on a feasible sequence pair : - - a; b -- =
bj a; - -, the resultant sequence pair may violate condition-3 only when a; = ap,, b; = by.
And the violation only happens on a,, and by.

If the resultant sequence pair does not satisfy condition-3, there exist two pairs of unit blocks
which separate each other in neither Fll nor FIQ. Since I'y = FIQ, the two pairs must separate
each other in the first sequence I'y due to the feasible assumption of the original sequence pair.
Therefore the two pairs must include both a; and b; : a;_x,a; € A and bj,b;; € B, where
k, 1>0.

If i« < m, the original first sequence I'y will be either - - a;_p - a; bj -+ ay -- bjy
or-- aj g --a; bj --bjy - ay - Due to the feasible assumption of the original sequence
pair, in the second sequence I's, both a;,_, a,, and a;, ap, should separate b;, b;1;. Therefore
a;, a; will separate b;, bj,; in I's. Since I'y = FIQ, a; g, a; and bj, b;y satisfy condition-3 in
the resultant sequence pair, which contradicts the assumption. So ¢ must equal m, i.e. a; = an,.
In the same way, we can derive that b; = b;. Therefore, Lemma 10 is true.

As we can see, an infeasible solution can be generated by a mutation. During the stochastic
search, the infeasible solutions can be avoided by simply cancelling the operation. However
the continuity of the local search may be destroyed, the optimal solution may not be reachable.
Based on above analysis, the infeasible solution can only be generated when a mutation is carried
out on -- ay az -- Gy by by -- b, --, where switching a,, with b; may cause the violation of
condition-2 or condition-3. Due to this fact, we can develop a very simple procedure called
adaptation to adapt the infeasible solution into a new feasible solution. In such a way, the
continuous search of the feasible solution space can be guaranteed.

6.3 Adaptation

Given that I'y-mutation generates an infeasible solution, the original first sequence I'; must be
a1 c-ay - Gy by - by - by, --. For example,

F1:a1cagdeagfa4blgb2hijb3 (3)

We define squeeze-to-right (I'y, A) as follows : applying I'y-mutation on a3 and its right neighbor
until a3 is left adjacent to a4, then applying I'y-mutation on a9 and its right neighbor until as
is left adjacent to ag, and so on ... :

Flzcdefala2a3a4blgb2hijb3 (4)

Based on the analysis of the mutations, it can be guaranteed that the intermediate sequence
pairs generated during squeeze-to-right (I';, A) are always feasible. Similarly we define squeeze-
to-left (I'y, B) as follows : applying I';-mutation on by and its left neighbor until by is right
adjacent to by, then applying I';-mutation on b3 and its left neighbor until b3 is right adjacent
to bg .

Flzcdefala2a3a4blbgbggh7§j (5)

The intermediate sequence pairs generated during squeeze-to-left (I'y, B) are always feasible.
After the squeeze operations, the unit blocks of both A and B are consecutive in the

first sequence. Then adaptation swaps A and B : -+ aj ao - ay by by --b, -+ =

b1 by --b, a1 as -- a, --. Obviously no violation of 3-conditions can occur during the swap-

ping, and the resultant sequence pair is feasible. In the above example, the first sequence is

adapted to :

I'i'=cde fb byb3ayazazasghij (6)

In O(m +n) time, adaptation generates a new feasible sequence pair which is different from the
original one.

19

Lemma 11 The resultant infeasible sequence pair after a mutation can always be transformed
to a feasible sequence pair by the adaptation.

As such, the local moves of the stochastic search are completed. Each local move (a rotation
or a mutation followed by an adaptation) takes the time proportional to the number of unit
blocks in a macro block, which is close to constant time. In addition, each local move generates
a feasible sequence pair. In such a way, the feasible solution space can be continuously searched
by the local moves.

6.4 Rotation + Mutations + Adaptation = Exhaustive Search

Theorem 3 The optimal solution can always be reachable through a finite steps of the rotation
and mutations followed by the adaptation.

Given any two feasible sequence pairs ISP = (IT'y, IT'y) and OSP = (OI'y, OT'y), we can always
find a search path from ISP to OSP, which consists of only a finite times of the local moves. In
such way, the above Theorem can be proven. The path can be constructed by following four
phases :

Phase 1 for every macro block A
rotate A until
the permutation pair of A in ISP equals that in OSP
endfor
Phase 2 for every macro block A
squeeze-to-right(IT';, A)
squeeze-to-right(IT'y, A)
endfor
Phase 3 adjust II'y such that II'; equals OI'y
Phase 4 adjust II'y such that II's equals OI'9

Phase 1 first applies the rotation in ISP such that the permutation pair of every macro block
equals that in OSP. Given total M macro blocks, at most 3M times rotation are required,
in which 3-conditions are always satisfied. In Phase 2, squeeze operation is applied in both
sequences of ISP such that the unit blocks of each macro are consecutive in both II'; and
IT"y. Based on the description of squeeze operations, Phase 2 includes mutations only, and the
intermediate sequence pairs are always feasible. After Phase 2, for any unit blocks a;, a; € A
and by € B, A # B, b, will not appear between q;, a; in either II'y or IT'y. Given total N unit
blocks in the sequence pair, Phase 2 will take O(N?) times mutations.

In Phase 3, II'y is adjusted to OI'y by applying I'y-mutations followed by adaptations. As
shown in Fig. 19 (a), starting from i = 0, Phase 3 compares i'? unit of OI'y, u;, with the i unit
of II'y, v;. If u; = v;, 1 increases by one, i.e. Phase 3 compares the following units. Otherwise,
the unit w; is located in II'y : u; = v;4, where k is a positive integer.

Let v;; ;1 denote the left neighbor of v; 1 in II'y. Then in OI'y, v; ;1 will be after u; which
equals v; ¢, as shown in Fig. 19 (b). If v;14 1 and v;;, belong to the same macro block V', the
permutation of V in IT'; is different from that in OI';. Due to Phase 1, we can derive that v,
and v;4 do not belong to the same macro. Therefore in II'y, mutation can be applied on v; ;1
and v;x. If the mutation generates a feasible sequence pair, the unit u; will be moved to the left
by one step in II'y : u; = v; ;1 as shown in Fig. 19 (c). Otherwise, v, x 1 = @, Vitr = 1.

If a; is before v; in IT'y as shown in Fig. 19 (d), then in OT'y, a1 must be before u; = v; 1 = by.
Due to condition-2, by can not be between a1, a,, in the second sequence of OSP. If IT'y has not
been adjusted to OI'y so far, b; will not be between ay, a,, due to Phase 2. On the other hand,

20

B
] i k1 | Viek 17 =V == Vi+k—2____
O/_l’ ———— __Vi+k»1 - - =

(b) ©
/7 ——V, —— a, —— a,lb,—-—
O/_]_’ ——al ——\[217—— Ay —— —— 1 ! 1 m
—— Vi == NMam |m— == ——
03 —=8 ——an-—(bj—--- 171 i Vivtem
/3 ——a, —— an——(b|—— ——
(d) C

Figure 19: (a) Starting from i = 0, Phase 3 compares the i'® unit of OT';, u;, with the 4
unit of IT'y, v;. If u; # v;, the unit u; must be located in Iy as v; g, where & > 0. (b) Let
viyk—1 denote the left neighbor of v;; in II';. Then in OI'y, v;5 1 will be after u; = v;44.
The permutation of v;,_1 and vy in OT'; is different from that in IT';. (c) If the mutation of
Vitk_1, Uitk generates a feasible sequence pair, the unit u; will be moved to v; 1, 1 in IT'y. (d)
If the mutation causes an infeasible solution, v;y 1 = an, and v, = b1. If a; is before v; in
II'y, then in OI'y, a; must be before u; = v;;; = b;. Due to condition-2, b; can not be between
a1, G, in O'9. Then by can not be between a1, a,, in I';y. The mutation of a,,, b; can not
lead to an infeasible solution. (e) As such, in II'y, a; must be after v;. After the adaptation,
unit u; will be moved to the left by m steps in II'1: u; = vjyg_m, where 1 + &k —m > 1.

21

if IT'y has been adjusted to OTI'g, by still can not be between a1, a,,. As such, the mutation of
am, b1 can not lead to an infeasible solution. Therefore in II'y, a; must be after v; as shown
in Fig. 19 (e). After the adaptation, unit u; will be moved to the left by m steps in IT'y:
Uj = Vjyk—m, where i +k —m > 1.

Therefore in Iy, the unit u; is either moved to v; 4 1 as shown in Fig. 19 (c) or v;4k_,, as
shown in Fig. 19 (e). In such way, u; can be continuously moved to the left in IT'y until u; = v;.
Then 4 increases by one and Phase 3 visits the following unit «;,; in OI';. When 4 reaches N,
the first sequence of ISP is adjusted to be OI'y, Phase 3 terminates. Phase 4 repeats the similar
process on the second sequence of ISP. It can be easily derived that Phase 3 and Phase 4 take
O(N?) times mutations and adaptations, together with the first two phases, the search path
consists of at most O(M + N?) times of local moves.

7 Experimental Results and Conclusion

7.1 Packing Results

We have implemented the algorithm proposed in this paper using C language and tested it on
SUN SPARC 20 workstation. The data are generated randomly. Figure 20 (a) gives the packing
of ten L-shaped blocks, which takes about two minutes, the total packing area is 1.09 times of
the total block area. On the other hand, Figure 20 (b) reports the packing result of 19 convex
rectilinear blocks, which takes about 35 minutes, the total packing area is 1.13 times of the total
block area. Due to the tight schedule, we have not enough time to refine the source code. We
believe that the tradeoff of the packing quality and CPU time can be much improved, and we
are working on this right now.

.
= — %ﬁi
= By

L

1

=

Figure 20: (a) The packing of ten L-shaped blocks, which takes about two minutes, the total
packing area is 1.09 times of total block area. (b) The packing result of 19 convex rectilinear
blocks, which takes about 45 minutes, the total packing area is 1.13 times of total block area.

7.2 Concluding Remarks

In this paper, for the first time, we solve the arbitrary shaped rectilinear block packing problem.
Rectilinear macro blocks are partitioned into a set of rectangular sub-blocks, each of them is
individually represented as a unit block in the sequence pair. The feasible solution space is

22

defined. Three conditions on the sequence pair are derived, which are necessary and sufficient
for a sequence pair to be feasible. Furthermore it is proven that there always exists a feasible
sequence pair corresponding to a packing of convex rectilinear blocks. Based on this fact, a
stochastic search is applied on the optimization of convex block packing. Local moves are
defined to search the feasible solution space both continuously and exhaustively.

References

1]

2]

[10]

R. Otten, “Automatic Floorplan Design,” in Proc. of 19th ACM/IEEE Design Automation
Conf., pp. 261-267, 1982.

D. F. Wong and C. L. Liu, “A New Algorithm for Floorplan Design,” in Proc. of 23rd
ACM/IEEE Design Automation Conf., pp. 101 107, June 1986.

H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “Rectangle-Packing-Based Module
Placement,” in IEEE/ACM International Conf. on Computer Aided Design, (San Jose,
CA), pp. 472-479, November 1995.

S. Nakatake, K. Fujiyoshi, H. Murata, and Y. Kajitani, “Module Placement on BSG-
Structure and IC Layout Applications,” in IEEE/ACM International Cof. on Computer
Aided Design, (San Jose, CA), pp. 484-491, November 1996.

T. Chang Lee, “A Bounded 2D Contour Searching Algorithm for Floorplan Design with
Arbitrarily Shaped Rectilinear and Soft Modules,” in Proc. 30th ACM/IEEE Design Au-
tomation Conf., (Dallas, TX), pp. 525 530, June 1993.

M. Kang and W. W.-M. Dai, “General Floorplanning with L-shaped, T-shaped and Soft
Blocks Based on Bounded Slicing Grid Structure,” in Proc. of Asia and South Pacific
Design Automation Conf. 1997, (Chiba, Japan), pp. 265 270, Feburary 1997.

J. Dufour, R. McBride, P. Zhang, and C. Kuan Cheng, “A Building Block Placement
Tool,” in Proc. 1997 Aisa and South Pacific Design Automation Conf., (Chiba, Japan),
pp. 271-276, January 1997.

M. Kang and W. W.-M. Dai, “Topology Constrained Rectilinear Block Packing for Layout
Reuse,” in International Symposium of Physical Design, (Monterey, CA), pp. 179 186, April
1998.

J. Xu and C. Kuan Cheng, “Rectilinear Block Placement Using Permutation-pair,” in
International Symposium of Physical Design, (Monterey, CA), pp. 173178, April 1998.

S. Nakatake, M. Furuya, and Y. Kanitani, “Module Placement on BSG-Structure with Pre-
Placed Modules and Rectilinear Modules,” in Proc. 1998 Asia and South Pacific Design
Automation Conf., (Yokohama, Japan), pp. 571-576, January 1998.

23

