
Arbitrary Rectilinear Block Packing BasedOn Sequence Pair StructureTechnical Report : UCSC-CRL-98-07Maggie Kang Wayne Daimaggiek@cse.ucsc.edu dai@cse.ucsc.eduDept. of Computer EngineeringUniversity of California, Santa CruzApril 28, 1998AbstractDue to layout or speci�c physical requirements, macro blocks can be in an ar-bitrary rectilinear shape. Block packing problem will no longer be limited to therectangle packing. So far no e�cient algorithm has been proposed to solve the gen-eral rectilinear block packing problem. This paper presents a novel representationmethod for arbitrary shaped rectilinear blocks in a sequence pair structure. A se-quence pair is feasible if an optimal packing of arbitrary rectilinear blocks can beguaranteed for the given sequence pair regardless of the dimensions of the blocks.In this paper, three conditions are derived on a sequence pair which are necessaryand su�cient for a sequence pair to be feasible.Furthermore this paper shows that there always exists a feasible sequence pairfor a packing of convex rectilinear blocks. As such, the optimal solution for convexrectilinear block packing can be found by exhausting the �nite number of feasible se-quence pairs. Three sequence pair operations are developed to incrementally changea solution. Each operation takes linear time and generates a feasible sequence pair.An important theoretical result demonstrates that the optimal solution can alwaysbe reachable through a �nite times of the sequence pair operations. Therefore astochastic search based on the three operations can search the feasible solution spaceboth continuously and exhaustively. In such a way, for the �rst time, the arbitraryshaped rectilinear block packing is solved by using a sequence pair structure.1 IntroductionMost of the traditional oorplanning or placement algorithms considered only rectangularshaped macro blocks. The slicing structure was proposed to represent the block placementby recursively dissecting the rectangular plane into two parts using either horizontal orvertical line [1]. Corresponding to the slicing structure, Wong and Liu proposed a datarepresentation called normalized Polish expression, which enables the e�cient local search[2]. As the increase of routing layers, most of channel routing is being replaced by arearouting. A block placement becomes more like a block packing problem, and the wasted1



area introduced by a slicing structure becomes more evident. As such, the non-slicingblock packing becomes more attractive.Murata et al. [3] introduced a sequence pair (SP), and Nakatake et al. [4] proposed abounded slicing grid structure (BSG) to represent the general rectangle packing. Both SPand BSG de�ne the binary relationship for each pair of rectangular blocks, and provide away to independently compact the x and y direction.Due to layout or speci�c physical requirements, macro blocks can be in an arbitraryrectilinear shape. Few previous works have studied the rectilinear shaped blocks wherethe most noticeable one is the bounded 2D contour searching algorithm proposed by [5].The arbitrarily rectilinear shaped blocks are represented by a set of four linear pro�les,each one of them speci�es the pro�le viewed from one side of the block. Given theoriginal placement of blocks, the algorithm iteratively compacts the blocks along a certaindirection, in which the 2D contour searching is carried out on the pro�les of the compacteddesign. As we can see, this compaction method cannot be applied on block packingproblem due to the complicated geometrical calculation.A BSG-based method was proposed by [6] to pack rectangular, L-shaped, T-shaped,and soft blocks. The complicated relationship among rectilinear blocks was indicated anda SP-based algorithm was presented by [7]. Unfortunately the algorithm does not con-verge to the feasible solutions, overlaps may exist in the packing solution. Most recently,an algorithm based on both BSG and SP structures was proposed by [8], in which thetopology constrained block packing can be handled given that blocks belong to a speci�cclass of convex rectilinear shapes. An SP-based algorithm was proposed by [9] to packthe mountain-shaped blocks. However it was not guaranteed that the algorithm couldalways terminate. Based on BSG structures, an algorithm was proposed by [10] whereeach block is sliced into a set of rectangular sub-blocks, one of them is selected to be amaster and the others slaves. Only the master sub-block is assigned into BSG domain.After the compaction, the slaves are attached with the master. A post-process eliminatesoverlaps by pushing the neighboring blocks away. Obviously the optimal solution is notguaranteed to be included, and the post process takes much more time than the BSGcompaction itself.
a2 ana1 ... SP RPA

Figure 1: Each rectilinear shaped macro block, A, is partitioned into a set of rectangular sub-blocks : a1 a2 � � � an , each of them is individually represented in a sequence pair as a unitblock. After the unit blocks are compacted in the x and y directions, a post process aligns thex and y coordinates of the sub-blocks such as to recover the original macro shapes.In this paper, a novel representation method is proposed for arbitrary shaped rectilin-ear blocks in a sequence pair structure. A sequence pair is feasible if an optimal packing ofarbitrary rectilinear blocks for the given sequence pair can always be guaranteed regard-less of the dimensions of the blocks. Three conditions on sequence pair are derived whichare necessary and su�cient for a sequence pair to be feasible. The theoretical proof points2



out that there always exists a feasible sequence pair corresponding to a packing of theconvex rectilinear blocks. As such, an optimal solution for the convex block packing canbe found by enumerating the �nite feasible sequence pairs. Stochastic search is applied,and three sequence pair operations are de�ned such as to continuously search the feasiblesolution space. An important theorem shows that starting from any feasible sequencepair, the feasible sequence pair which yields the optimal packing can always be reachablethrough a �nite steps of the operations. Therefore the stochastic search based on thethree operations searches the feasible solution space both continuously and exhaustively.In the following, the sequence pair structure is �rst introduced in Section 2. ThenSection 3 describes the representation method for arbitrary rectilinear blocks in a sequencepair. The concept of feasible sequence pairs is de�ned, and three conditions on a sequencepair are presented. Section 4 shows that the three conditions are necessary and su�cientfor a sequence pair to be feasible. In Section 5, it is proven that there always existsa feasible sequence pair for a packing of convex rectilinear blocks. Based on this fact,Section 6 applies a stochastic search on the convex block packing. The experimentalresults are reported in Section 7 followed by the conclusion of this paper.2 Sequence Pair (SP) StructureTo clarify the notation, we call the rectangular blocks represented in sequence pair unitblocks. A sequence pair for a set of n unit blocks is a pair of sequences of n symbols whichrepresent the unit blocks : (�1; �2). Given a sequence pair (a b d e c f ; c b f a d e) , anoblique grid can be constructed as shown in Fig. 2 (a) : 450 slope lines are named fromleft to right by the symbols in the �rst sequence �1, and �450 slope lines are similarlynamed by the symbols in the second sequence �2. Each unit block is placed at the crossof the two slope lines which are named by the same symbol corresponding to the unitblock. As shown in Fig. 2 (b), the plane can be divided by the two crossing slope linesinto four cones for any unit block b. Unit a is in the upper cone of b, then a is above b.Similarly, unit d, e and f is in the right cone of b, then they are right to b. In general,the sequence pair imposes the relationship between each pair of unit blocks as follows :(� � a � � b � �; � � a � � b � �) ) a is left to b;(� � b � � a � �; � � a � � b � �) ) a is below b:Given the sequence pair, a horizontal directed graph Gh is derived as shown in Fig. 3 (a).Each vertex corresponds to a unit block, there is an arc from unit a to d if and only if a is left tod. In particular, there is a source sh connected to each leftmost unit and a sink th connected fromeach rightmost unit. Each vertex has a weight which equals to the width of the correspondingunit block. The vertical graph Gv can be similarly derived as shown in Fig. 3 (b).Both Gh and Gv are vertex weighted directed acyclic graphs, the packing of unit blocks canbe obtained by simply applying the well-known longest path algorithm on both graphs. The xand y coordinates of each unit block are determined by the longest path from source to thevertex of the unit in Gh and Gv, respectively. Similarly, the width and height of the overallpacking can be determined by the source-to-sink longest path of Gh and Gv.For any two unit blocks, there is always an arc in either Gh or Gv, but not both. Due tothis fact, the x and y coordinates can be independently determined, and the resultant packing isguaranteed not to contain any overlap. Since the width and the height are independently mini-mum, the resultant packing is optimal for the given sequence pair. The longest path calculationcan be done in the time proportional to the number of arcs in the graphs.3
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(a) (b) (c)Figure 2: (a) Oblique grid of (a b d e c f ; c b f a d e) , (b) the four cones of block b, and (c)the corresponding packing of the six blocks.
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Figure 3: The two vertex weighted directed acyclic graphs derived from the sequence pair(a b d e c f ; c b f a d e) , in which the transitive arcs are deleted for the simpli�cation.
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As a coding scheme, sequence pair becomes an ideal data representation of rectangular blockpacking due to following facts [3] :� Quick evaluation of packing area based on sequence pair : O(n2) time where n is thenumber of unit blocks.� Easy incremental change of packing topology using sequence pair : switch two units inthe �rst or second sequence.� There always exists a sequence pair corresponding to a rectangle packing, and vice versa.Therefore the optimal packing can always be found by exhausting the �nite number (n!)2 ofsequence pairs.3 Arbitrarily Rectilinear Blocks in Sequence Pair3.1 H, V-PartitionLet A denote an arbitrary shaped rectilinear macro block. A can be partitioned into a set ofrectangular sub-blocks by slicing A from the left to right along every vertical boundary of A.As shown in Fig. 4 (a), the partition is referred to as a horizontal partition or H-partition.Similarly A can be vertically partitioned or V-partitioned as shown in Fig. 4 (b). Given thatA is H-partitioned or V-partitioned into a1; a2; � � � an, each sub-block ai 2 A is individuallyrepresented in SP as a unit block. We call the pair of permutations on ai 2 A in the sequencepair a permutation pair of A.
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V-Pair : ,Figure 4: (a) H-partition slices block A on every vertical boundary from the left to right. (b)V-partition slices block A on every horizontal boundary from the bottom to top.For any two unit blocks a and b placed in a plane without overlaps, let ua and la denote theupper and lower boundary of block a, respectively. Block a is left of b if the right boundary ofa is left of the left boundary of b. If [la; ua] \ [lb; ub] 6= � as shown in Fig. 5 (a), a is strictly leftof b. The permutation pair of a; b is (a b; a b). Otherwise [la; ua]\ [lb; ub] = � as shown in Fig.5 (b), a is both left of and below b, and two permutation pairs of a; b are possible.Given that macro block A is either H-partitioned or V-partitioned, the topology betweenthe sub-blocks of A is strictly de�ned. Accordingly there is exactly one permutation pair of Acorresponding to the partition. The following Lemma is true :Lemma 1 Given an arbitrary rectilinear macro block A, there exists only one permutation pairof A corresponding to the H-partition of A, which is referred to as an H-pair of A. Similarly5
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(b)Figure 5: For any two unit blocks a and b placed in a plane without overlaps, a is left of b ifthe right boundary of a is left of the left boundary of b. In (a), [la; ua]\ [lb; ub] 6= �, a is strictlyleft of b. The permutation pair of a; b is (a b; a b). In (b), [la; ua] \ [lb; ub] = �, a is both leftof and below b, and two permutation pairs are possible.there exists only one permutation pair of A corresponding to the V-partition of A, which isreferred to as a V-pair.In the example shown in Fig. 4, the H-pair of A is (a1 a2 a3 a4 a5; a2 a1 a3 a4 a5) and V-pairis (a5 a4 a3 a1 a2; a1 a2 a3 a4 a5).3.2 X, Y-AlignmentGiven a sequence pair representing topological relationships among unit blocks of rectilinearmacro blocks, the unit blocks are compacted left and downward using the longest path algorithmin the x and y directions, respectively. If any unit block is further moved left or downward afterthe compaction, overlaps will occur. In other words, X; Y -alignment can only move unit blocksright and upward. Given a macro block A is H-partitioned as shown in Fig. 6 (a), and thesequence pair is (c a1 a2 e a3 a4 d a5 f; e a2 a1 a3 f c a4 a5 d), the unit blocks are compactedas shown in Fig. 6 (b). In the x direction, a5 is the right-most sub-block of A. X-Alignment(A)freezes a5 and moves a4 to the right until it hits a5, then moves a3 to the right until it hitsa4, and so on. After the right move of a1 and a2, the sub-blocks of A are aligned together inthe x direction as shown in Fig. 6 (c). In the y direction, the highest sub-block of A is a4. Y -Alignment(A) freezes a4, and moves the other sub-blocks of A upward to align with a4 as shownin Fig. 6 (d). When macro block A is V-partitioned, X; Y -alignment can be symmetricallycarried out. Obviously the following Theorem is true :Theorem 1 Given a sequence pair representing topological relationships among unit blocks ofrectilinear macro blocks, X; Y -Alignment yields an optimal packing for the sequence pair.Given a sequence pair, the shapes of macro blocks may not be recovered by X; Y -Alignment.De�nition 1 A sequence pair is feasible if after X; Y -Alignment, the shapes of rectilinearblocks are guaranteed to be recovered regardless of the dimensions of the blocks.De�nition 2 A sequence pair is infeasible if it is not feasible, e.g. the shapes of rectilinearblocks may not be recovered after X; Y -Alignment.6
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Accordingly we de�ne the necessary and su�cient conditions on sequence pair as follows:De�nition 3 A condition is necessary i� when the condition is not satis�ed, the sequence pairis infeasible.De�nition 4 A set of conditions are su�cient i� when the set of conditions are satis�ed, thesequence pair is feasible.

NSP : sequence pairs which satisfy the necessary conditions.
SSP : sequence pairs which satisfy the sufficient conditions.

NSSP : sequence pairs which satisfy the necessary and sufficient conditions.

FSP : feasible sequence pairs.

(a) (b)

NSSP = FSP

SPSP
NSP

FSP

SSP

Figure 7: (a) Let FSP denote a set of feasible sequence pairs, NSP the sequence pairs whichsatisfy the necessary conditions, and SSP the sequence pairs which satisfy the su�cient condi-tions, then SSP � FSP � NSP . (b) If we can derive a set of conditions which are necessaryand su�cient, the solution space for feasible sequence pairs can be completely characterized bythe necessary and su�cient conditions: a sequence pair is feasible if the conditions are satis�ed,otherwise infeasible.Let FSP denote a set of feasible sequence pairs, NSP the sequence pairs which satisfy thenecessary conditions, and SSP the sequence pairs which satisfy the su�cient conditions, thenSSP � FSP � NSP as shown in Fig. 7 (a). If the necessary conditions are not met, thesequence pair is infeasible. If the necessary conditions are met, the sequence pair may or maynot be feasible. On the other hand, if the su�cient conditions are met, the sequence pair isfeasible. If the su�cient conditions are not met, the sequence pair may or may not be feasible.As such, necessary conditions can not completely characterize the solution space for feasiblesequence pairs, neither can su�cient conditions.If we can derive a set of conditions which are necessary and su�cient, as shown in Fig. 7 (b),the solution space for feasible sequence pairs can be completely characterized by the necessaryand su�cient conditions: a sequence pair is feasible if the conditions are satis�ed, otherwiseinfeasible. In the following, we �rst present three conditions on sequence pair, and later we willprove that the three conditions are both necessary and su�cient.3.3 Three Conditions on Sequence PairsBefore presenting the detailed conditions, we �rst de�ne four relations for the unit blocks in asequence pair. 8



{ Given three unit blocks ai; aj 2 A and c =2 A, if c is between ai and aj in both sequences, forexample (ai c aj ; ai c aj). we call c interrupts ai and aj.{ Given two pairs of unit blocks ai; aj 2 A and bi; bj 2 B, A 6= B. In the �rst sequence :ai � � aj � � bi � � bj , we call (ai; aj) and (bi; bj) as separates of each other.ai � � bi � � aj � � bj , we call (ai; aj) and (bi; bj) as interleaves of each other.ai � � bi � � bj � � aj , we call (ai; aj) as covering (bi; bj).{ Similarly, the separate, interleave and cover relations can be de�ned in the second sequence.The �rst condition is referred to as condition-1 :For any H-partitioned macro A, the permutation pair of A equals the H-Pair of A,similarly for any V-partitioned A, the permutation pair of A equals the V-pair ofA.The second condition is referred to as condition-2 :Any two units ai; aj 2 A are not interrupted by a unit c =2 A.Finally the third condition is referred to as condition-3 :Any two pairs of unit blocks ai; aj 2 A and bi0 ; bj0 2 B, A 6= B. (ai; aj) separates(bi0 ; bj0) in the �rst or second sequence.Overall the three conditions are called 3-conditions.4 3-Conditions Are Necessary and Su�cient4.1 3-Conditions Are NecessaryGiven the sequence pair which does not satisfy condition-1, without loss of generality, we assumethe permutation pair of an H-partitioned macro block A does not equal the H-pair of A. Theremust exist two sub-blocks ai; aj 2 A, whose permutations in SP are di�erent from those inthe H-pair of A. For example, sub-block a1 is left of a2 in the H-partitioned A, the H-pair ofA is (a1 a2 ; a1 a2). On the other hand, the permutations of a1; a2 in the sequence pair is(a1 a2 ; a2 a1). X; Y -Alignment preserve the topological relationships de�ned in the sequencepair, block a1 will be above a2 after the alignment and the shape of macro block A cannot berecovered. Therefore condition-1 is a necessary condition.
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Given the sequence pair does not satisfy condition-2, there must exist two unit blocks ai; aj 2A interrupted by a unit block c =2 A. The sequence pair will be either (ai �� c �� aj ; ai �� c �� aj)or (ai � � c � � aj ; aj � � c � � ai). In the �rst case, c is right of ai while left of aj, ai and ajmay not be aligned in the x direction as shown in Fig. 8 (a). While in the second case, c isbelow ai while above aj , ai and aj may not be aligned in the y direction as shown in Fig. 8 (b).Therefore condition-2 is also a necessary condition.
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When the �rst sequence �1 is ai bi0 bj0 aj , the second sequence is enumerated in Fig. 11. Sincea-pair does not separate b-pair in �2, the second sequence can not be the case (1.1.1), (1.1.2),(1.3.3), (1.3.4), (2.1.3), (2.1.4), (2.3.1) or (2.3.2). On the other hand, if the second sequenceis the case (1.1.3), (1.3.2), (2.1.2) or (2.3.3), condition-2 will be violated in the sequence pair.Therefore �2 can only be case (1.1.4), (1.3.1), (2.1.1) or (2.3.4). The four corresponding sequencepairs are : 3: (ai bi0 bj0 aj ; bi0 ai aj bj0)4: (ai bi0 bj0 aj ; bj0 ai aj bi0)5: (ai bi0 bj0 aj ; bi0 aj ai bj0)6: (ai bi0 bj0 aj ; bj0 aj ai bi0)
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Figure 10: Given a-pair does not separate b-pair in either sequence, and the �rst sequenceis ai bi0 aj bj0 . The second sequence �2 is enumerated in this Figure. Since a-pair does notseparate b-pair in �2, the second sequence can not be the case (1.1.1), (1.1.2), (1.3.3), (1.3.4),(2.1.3), (2.1.4), (2.3.1) or (2.3.2). On the other hand, if the second sequence is the case (1.1.4),(1.3.1), (1.3.2), (2.1.1), (2.3.3) or (2.3.4), condition-2 will be violated. Therefore �2 can only becase (1.1.3) or (2.1.2).In each of the above six sequence pairs, a-pair and b-pair are either H-crossed or V-crossedto each other, the corresponding sequence pair is infeasible. Therefore condition-3 is a necessarycondition.Lemma 3 The 3-conditions are necessary for a sequence pair to be feasible.Based on the similar analysis, we can derive the following property :Lemma 4 Given condition-3 is satis�ed in the sequence pair, any two pairs of unit blocksai; aj 2 A and bi0 ; bj0 2 B, A 6= B, are neither H-crossed nor V-crossed to each other.4.2 3-Conditions Are Su�cientGiven 3-conditions are satis�ed in the sequence pair, the following Lemma is true :11



a ia j b i’b j’

a j b j’a i b i’

a j a i b j’b i’

a i b i’ b j’a j

a j a ib j’b i’

a ia jb i’b j’

a jb i’ b j’ a i

b j’a ia jb i’

...a aj i

b i’ a j a i

a i a jb j’ b i’

b j’a ja i b i’

a i a j b i’ b j’

b i’b j’ a i a j

a i a jb i’ b j’

a i a jb i’ b j’

b j’a ja ib i’

a i a jb j’ b i’

a i b i’b j’a j

a i a j...

b i’ a i a j

2

1

a i b i’a ja i b i’ a j b i’a j a i b i’a j a i

1.1 1.2 1.3 2.1 2.32.2

(2.1.4)(1.1.4)

(1.1.3)

(1.1.2)

(1.1.1) (1.3.1)

(1.3.2)

(1.3.3)

(1.3.4)

(2.1.1)

(2.1.2)

(2.1.3)

(2.3.1)

(2.3.2)

(2.3.3)

(2.3.4)Figure 11: Given a-pair does not separate b-pair in either sequence, and the �rst sequenceis ai bi0 bj0 aj . The second sequence �2 is enumerated in this Figure. Since a-pair does notseparate b-pair in �2, the second sequence can not be the case (1.1.1), (1.1.2), (1.3.3), (1.3.4),(2.1.3), (2.1.4), (2.3.1) or (2.3.2). On the other hand, if the second sequence is the case (1.1.3),(1.3.2), (2.1.2) or (2.3.3), condition-2 will be violated. Therefore �2 can only be case (1.1.4),(1.3.1), (2.1.1) or (2.3.4).Lemma 5 If a unit block ai 2 A is left of a unit bi0 2 B, A 6= B, then no unit of A is right ofa unit of B. Similarly, if ai is below bi0, no unit of A is above a unit of B.Lemma 5 can be proven by the contradiction. Let's assume that ai is left of bi0 , and a unit blockaj 2 A is right of a unit bj0 2 B. If ai = aj or bi0 = bj0 , we can easily derive that ai interrupts(bi0 ; bj0) or bi0 interrupts (ai; aj) in the sequence pair, which contradicts the assumption. Thusai 6= aj ; bi0 6= bj0 . As such a-pair and b-pair are H-crossed to each other, then a-pair doesnot separate b-pair in either sequence. Again the assumption that sequence pair satis�es the3-conditions is contradicted. Therefore Lemma 5 is true. Based on this property, we can sortthe macro blocks in x and y direction, respectively :x-order : macro block A is before macro block B if a unit of A is left of a unit of B;y-order : macro block A is before macro block B if a unit of A is below a unit of B.In the following, we show that the shapes of macro blocks can be exactly recovered byapplying X; Y -Alignment on each macro block in x and y-order, respectively. Based on thehorizontal graph Gh, X-Alignment(A) is carried out, a unit ai 2 A is moved right, the unitbi0 2 B is pushed to the right by ai only when bi0 is right of ai and B 6= A, as shown in Fig. 12(a). The right move of bi0 may further a�ect the unit blocks of A if and only if:1. a unit block aj 2 A is right of bi0 , or2. a unit block aj 2 A is right of another unit block bj0 2 B.In the �rst case, bi0 is right of ai while left of aj as shown in Fig. 12 (b). Then bi interrupts ai; ajin the sequence pair, condition-2 is violated. In the second case, ai; aj and bi0 ; bj0 are H-crossedto each other as shown in Fig. 12 (c). Then a-pair does not separate b-pair in either sequence12
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(b) (c)Figure 12: (a) In X-Alignment(A), unit block ai 2 A is moved to the right, a unit bi0 2 B ispushed to the right by ai only when bi0 is right of ai and B 6= A. The right move of bi0 mayfurther a�ect the unit blocks of A if and only if : (b) a unit block aj 2 A is right to bi0 , or (c) aunit block aj 2 A is right of a unit block bj0 2 B.and condition-3 is violated. Due to the assumption that sequence pair satis�es the 3-conditions,neither case 1 nor case 2 will happen. In other words, the right move of ai in x-align(A) willnot a�ect any other unit of A. X-Alignment(A) exactly aligns the x coordinates of A.On the other hand, when X-Alignment is carried out on macro B after X-Alignment(A), nounit of B can be left of a unit of A due to the x-order. As such, the right move of unit blocks inX-Alignment(B) will not a�ect macro block A. It implies that once X-Alignment(A) is carriedout, the x coordinates of A will not be a�ected later. We can conclude the following Lemma :Lemma 6 The 3-conditions are su�cient for a sequence pair to be feasible.Followed by Lemma 3 and Lemma 6, we can conclude :Theorem 2 The 3-conditions are necessary and su�cient for a sequence pair to be feasible.5 Convex Rectilinear Block PackingA rectilinear block is called convex if any two points in the block have a shortest Manhattanpath inside the block, as shown in Fig. 13 (a). Otherwise the block is called concave, as shownin Fig. 13 (b). It can be observed that some packing of concave blocks can not be representedby the feasible sequence pair. For example, in the packing of Fig. 13 (c), block c is right ofblock a1 while left of a3, then c must interrupt a1; a3 in the corresponding sequence pair.Let � denote an arbitrary convex block packing. By H- or V-partitioning the rectilinearmacro blocks, � becomes a rectangle packing. The corresponding sequence pair SP (�) canbe easily derived, in which the sub-blocks are treated as individual unit blocks. Obviouslycondition-1 is satis�ed in SP (�).If condition-2 is not satis�ed in the sequence pair, there exist two unit blocks ai; aj 2 Ainterrupted by a unit c =2 A. It can be easily derived that A has concave shape, which contradictsthe convex assumption. Therefore condition-2 is also satis�ed in SP (�).If the condition-3 is not satis�ed in the sequence pair SP (�), there exist ai; aj 2 A andbi0 ; bj0 2 B such that a-pair does not separate b-pair in either sequence. According to the13
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(a) (b) (c)Figure 13: (a) Any two points of the convex rectilinear block have a shortest Manhattan pathinside the block. (b) At least two points in the concave block have no shortest Manhattan pathlocated inside the block. (c) The packing of concave blocks can not be representable by feasiblesequence pairs.
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analysis of Fig. 10 and Fig. 11, a total of six non-symmetrical sequence pairs are possible.When the sequence pair is the �rst case, SP (�) = (ai bi0 aj bj0 ; bi0 ai bj0 aj), ai is above bi0and aj is above bj0 . Let li and ui denote the lower and upper y coordinate of ai, respectively.Then li � ui0 and lj � uj0 . If li � uj0 as shown in Fig. 14 (a), ai is both left of and above bj0 ,SP (�) can be transformed as follows:(ai bi0 aj bj0 ; bi0 ai bj0 aj) ) (ai bi0 aj bj0 ; bi0 bj0 ai aj) (1)Otherwise li < uj0 as shown in Fig. 14 (b), lj � uj0 > li � ui0 , then lj > ui0 . Block aj is bothright of and above bi0 in the packing �. Thus SP (�) can be transformed as follows :(ai bi0 aj bj0 ; bi0 ai bj0 aj) ) (ai aj bi0 bj0 ; bi0 bj0 ai aj): (2)Obviously the transformation will not cause any violation of 3-conditions, a-pair will separateb-pair in at least one sequence of SP (�), meanwhile the topology de�ned by the sequence pair isconsistent with the packing �. For case 2 through case 6, SP (�) can be similarly transformed.In such a way, a feasible sequence pair can be eventually achieved, that isLemma 7 There always exists a feasible sequence pair corresponding to a packing of convexrectilinear blocks.ForM convex macro blocks, each of them includes at most n rectangular sub-blocks, the optimalsolution for convex rectilinear block packing can be found by exhausting the �nite numberO((nM)!2) of feasible sequence pairs.When a convex macro block A is H-partitioned as shown in Fig. 15 (a), ai denotes the ithleftmost sub-block, the H-pair of A is (a1 � � ai ai+1 � � am; a1 � � ai ai+1 � � am). When A isV-partitioned as shown in Fig. 15 (b), ai denotes the ith lowest sub-block, the V-pair of A is(am � � ai+1 ai � � a1; a1 � � ai ai+1 � � am).
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Figure 15: (a) Convex block A is H-partitioned where ai is the ith leftmost sub-block of A. TheH-pair of A equals to (a1 � � ai ai+1 � � am; a1 � � ai ai+1 � � am). (b) When A is V-partitioned, aiis the ith lowest sub-block of A. The V-pair A equals to (am � � ai+1 ai � � a1; a1 � � ai ai+1 � � am).
6 Stochastic Search on Convex Block PackingIn the following, a stochastic search is applied to the optimization of convex block packing.Three sequence pair operations are de�ned to incrementally change the feasible sequence pair :rotation, �1-mutation, and �2-mutation. 15



6.1 RotationRotation rotates a macro block by 900 in the clockwise direction as shown in Fig. 16. Givenmacro block A = fa1; a2; ��; ang, rotate(A) switches the height with the width for each unit blockof A. The sequence pair is accordingly changed by switching unit ai with am+1�i, i 2 [1; n],in the �rst sequence (900 to 1800, 2700 to 00) or the second sequence (00 to 900, 1800 to 2700).Rotation takes O(n) time, which is close to constant time.
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a2a3a1a2 a3a1 ,( ) a3 a1a2 a2 a3a1,( )a2 a3a1 a3 a1a2,( ) a3 a1a2a3 a1a2( ),Figure 16: A macro block A = fa1; a2; a3g is rotated from 00 through 900 and 1800 to 2700 inthe clockwise direction. rotate(A) switches the height and width for each unit block of A, andchanges the sequence pair by switching ai with am+1�i in the �rst or second sequence.Given a rotation is carried out on macro block A represented in a feasible sequence pair(�1;�2), only the permutation pair of A is changed from H-pair to V-pair, or vice versa. Ac-cordingly the orientation of A is rotated such that the H-partition of A becomes the V-partition,or vice versa. As such, the resultant sequence pair (�01;�02) still satis�es condition-1.If the resultant sequence pair does not satisfy condition-2, there exists a unit c 2 C betweentwo units bi; bj 2 B in both �01 and �02, C 6= B. Three cases are possible :1. B 6= A, C 6= A.The positions of bi; bj and c in the resultant sequence pair are exactly the same with thosein the original sequence pair. Thus c also interrupts bi; bj in (�1;�2), which contradictsthe feasible assumption.2. B 6= A, C = A.Without loss of generality, we assume c = ak, the resultant sequence pair is (bi ak bj; bi ak bj).According to rotate(A), the original sequence pair should be either (bi ak bj ; bi am+1�k bj)or (bi am+1�k bj; bi ak bj). If k = m + 1 � k, then ak interrupts bi; bj . Otherwiseak; am+1�k and bi; bj will not separate each other in either sequence of (�1; �2), thencondition-3 is violated. Either case contradicts the feasible assumption of the originalsequence pair.3. B = A, C 6= A.Without loss of generality, we assume bi = ai; bj = aj and the resultant sequence pair is(ai c aj ; ai c aj). According to rotate(A), the original sequence pair should be either(ai c aj ; am+1�i c am+1�j) or (am+1�i c am+1�j ; ai c aj). Since the two cases aresymmetrical, we only discuss the �rst one. Due to the feasible assumption, unit c can notappear between ai and aj in the second sequence �2. Similarly, c can not appear betweenam+1�i and am+1�j in the �rst sequence �1. Therefore the original sequence pair (�1;�2)16



will be one of the four possible cases shown in Fig. 17. In each of them there are twounits of A interrupted by unit c. A contradiction exists.As such, we can derive that the resultant sequence pair also satis�es condition-2.
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Figure 17: In a feasible sequence pair (ai c aj ; am+1�i c am+1�j), ai; aj will be both beforeor both after c in the second sequence. Similarly am+1�i; am+1�j will be both before or bothafter c in the �rst sequence. As such, the sequence pair will be one of the four possible cases:(1) aj ; am+1�j are interrupted by c, (2) ai; am+1�j are interrupted by c, (3) aj ; am+1�i areinterrupted by c, (4) ai; am+1�i are interrupted by c. The sequence pair can not be feasible.If the resultant sequence pair does not satisfy condition-3, there exist bi; bj 2 B and ck; cl 2C, B 6= C, b-pair does not separate c-pair in either sequence of (�01;�02) When B 6= A; C 6= A,the original sequence pair will also violate condition-3. Thus let B = A, bi = ai; bj = aj.In the original sequence pair, ai; aj do not separate ck; cl in one sequence, say �1, whileam+1�i; am+1�j do not separate ck; cl in the other sequence, say �2.Due to the feasible assumption of (�1;�2), am+1�i; am+1�j must separate ck; cl in �1. Asshown in Fig. 18, we can draw a line to separate ck; cl from am+1�i; am+1�j in the �rst sequence�1. Either ai or aj will be on the di�erent side of am+1�i; am+1�j , otherwise ai; aj will separateck; cl in the �rst sequence. In the second sequence �2, we can derive the symmetrical situation.Then totally four cases are possible as shown in Fig. 18, in each of them condition-3 is notsatis�ed, and the original sequence pair could not be feasible. As such, we can derive that theresultant sequence pair satis�es condition-3. Overall we can conclude :Lemma 8 When a rotation is carried out on a macro block represented in a feasible sequencepair, the resultant sequence pair remains feasible.6.2 �1-Mutation And �2-Mutation�1-Mutation switches two adjacent unit blocks in the �rst sequence : � � a b � � ) � � b a � �,in which a 2 A, b 2 B, A 6= B. �2-Mutation is similarly carried out on the second sequence.Both operations take constant time. Since two mutations are symmetrical, we will only discuss�1-mutation. 17
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(1) (2) (3) (4)Figure 18: Given a feasible sequence pair (�1;�2) where ai; aj do not separate ck; cl in �1,and am+1�i; am+1�j do not separate ck; cl in �2. Then am+1�i; am+1�j must separate ck; clin �1. We can draw a line to separate ck; cl from am+1�i; am+1�j . Either ai or aj will be ona di�erent side of am+1�i; am+1�j , otherwise ai; aj will separate ck; cl in the �rst sequence.The similar case can be derived in the second sequence. Totally four cases are possible for thesequence pair : (1) ai; am+1�i and ck; cl, (2) ai; am+1�j and ck; cl, (3) aj ; am+1�i and ck; cl,or (4) ai; am+1�j and ck; cl violate condition-3. As such, the sequence pair can not be feasible.Given �1-mutation is carried out on a feasible sequence pair, the permutation pair of everymacro block will be preserved in the resultant sequence pair, as such condition-1 is satis�edafter the operation. In the following, we assume A = fa1 a2 � � amg and B = fb1 b2 � � bng.By relabeling the sub-blocks of A and B, ai and bi are the ith sub-block of A and B in the �rstsequence �1, respectively.Lemma 9 When �1-mutation is carried out on a feasible sequence pair : �� ai bj �� ) �� bj ai ��,the resultant sequence pair may violate condition-2 only when ai = am; bj = b1. And theviolation only happens on am and b1.Given the resultant sequence pair violates condition-2, then d 2 D is between cu; cv 2 C inboth sequences of (�01; �02). According to �1-mutation, �02 = �2, then d is between cu and cv in�2. On the other hand, if d 6= ai; d 6= bj , d is also between cu and cv in �1, the original sequencepair violates condition-2. Thus d must be either ai or bj . Similarly we can derive that one unitof (cu; cv) must be ai or bj . Therefore in the resultant sequence pair (�01; �02), two cases arepossible :1. ax; ai 2 A is interrupted by bj. Due to �1-mutation, �01 must be � � ax � � bj ai � �, thenax = ai�k, where k > 0.2. by; bj 2 B is interrupted by ai. Due to �1-mutation, �01 must be � � bj ai � � by � �, thenby = bj+l, where l > 0.In the following, we assume that the resultant sequence pair is the �rst case. If i < m, theoriginal �rst sequence �1 will be � � ai�k � � ai bj � � am � �. The original second sequence �2 willbe either � � ai�k � � bj � � ai � � am � � or � � am � � ai � � bj � � ai�k � �. Then bj will interruptai�k; am in the original sequence pair. Therefore, i must equal m, i.e. ai = am.If j > 1, the original �rst sequence �1 will be either �� ai�k �� b1 �� ai bj �� or �� b1 �� ai�k �� ai bj ��.Due to condition-3, ai�k; ai and b1; bj must separate each other in the original second sequence�2. Since �2 = �02, bj can not be between ai�k; ai in �02, which contradicts the assumptionthat bj interrupts ai�k and ai in the resultant sequence pair. Therefore j must equal 1, i.e.bj = b1. Similarly when the resultant sequence pair is the second case, we can derive thatai = am; bj = b1. Therefore, Lemma 9 is true.18



Lemma 10 When �1-mutation is carried out on a feasible sequence pair : � � ai bj � � )� � bj ai � �, the resultant sequence pair may violate condition-3 only when ai = am; bj = b1.And the violation only happens on am and b1.If the resultant sequence pair does not satisfy condition-3, there exist two pairs of unit blockswhich separate each other in neither �01 nor �02. Since �2 = �02, the two pairs must separateeach other in the �rst sequence �1 due to the feasible assumption of the original sequence pair.Therefore the two pairs must include both ai and bj : ai�k; ai 2 A and bj; bj+l 2 B, wherek; l > 0.If i < m, the original �rst sequence �1 will be either � � ai�k � � ai bj � � am � � bj+l � �or � � ai�k � � ai bj � � bj+l � � am � �. Due to the feasible assumption of the original sequencepair, in the second sequence �2, both ai�k; am and ai; am should separate bj ; bj+l. Thereforeai�k; ai will separate bj; bj+l in �2. Since �2 = �02, ai�k; ai and bj ; bj+l satisfy condition-3 inthe resultant sequence pair, which contradicts the assumption. So i must equal m, i.e. ai = am.In the same way, we can derive that bj = b1. Therefore, Lemma 10 is true.As we can see, an infeasible solution can be generated by a mutation. During the stochasticsearch, the infeasible solutions can be avoided by simply cancelling the operation. Howeverthe continuity of the local search may be destroyed, the optimal solution may not be reachable.Based on above analysis, the infeasible solution can only be generated when a mutation is carriedout on � � a1 a2 � � am b1 b2 � � bn � �, where switching am with b1 may cause the violation ofcondition-2 or condition-3. Due to this fact, we can develop a very simple procedure calledadaptation to adapt the infeasible solution into a new feasible solution. In such a way, thecontinuous search of the feasible solution space can be guaranteed.6.3 AdaptationGiven that �1-mutation generates an infeasible solution, the original �rst sequence �1 must be� � a1 � � a2 � � am b1 � � b2 � � bn � �. For example,�1 = a1 c a2 d e a3 f a4 b1 g b2 h i j b3 (3)We de�ne squeeze-to-right (�1; A) as follows : applying �1-mutation on a3 and its right neighboruntil a3 is left adjacent to a4, then applying �1-mutation on a2 and its right neighbor until a2is left adjacent to a3, and so on ... :�1 = c d e f a1 a2 a3 a4 b1 g b2 h i j b3 (4)Based on the analysis of the mutations, it can be guaranteed that the intermediate sequencepairs generated during squeeze-to-right (�1; A) are always feasible. Similarly we de�ne squeeze-to-left (�1; B) as follows : applying �1-mutation on b2 and its left neighbor until b2 is rightadjacent to b1, then applying �1-mutation on b3 and its left neighbor until b3 is right adjacentto b2 : �1 = c d e f a1 a2 a3 a4 b1 b2 b3 g h i j (5)The intermediate sequence pairs generated during squeeze-to-left (�1; B) are always feasible.After the squeeze operations, the unit blocks of both A and B are consecutive in the�rst sequence. Then adaptation swaps A and B : � � a1 a2 � � am b1 b2 � � bn � � ) � �b1 b2 � � bn a1 a2 � � am � �. Obviously no violation of 3-conditions can occur during the swap-ping, and the resultant sequence pair is feasible. In the above example, the �rst sequence isadapted to : �1 = c d e f b1 b2 b3 a1 a2 a3 a4 g h i j (6)In O(m+n) time, adaptation generates a new feasible sequence pair which is di�erent from theoriginal one. 19



Lemma 11 The resultant infeasible sequence pair after a mutation can always be transformedto a feasible sequence pair by the adaptation.As such, the local moves of the stochastic search are completed. Each local move (a rotationor a mutation followed by an adaptation) takes the time proportional to the number of unitblocks in a macro block, which is close to constant time. In addition, each local move generatesa feasible sequence pair. In such a way, the feasible solution space can be continuously searchedby the local moves.6.4 Rotation + Mutations + Adaptation = Exhaustive SearchTheorem 3 The optimal solution can always be reachable through a �nite steps of the rotationand mutations followed by the adaptation.Given any two feasible sequence pairs ISP = (I�1, I�2) and OSP = (O�1, O�2), we can always�nd a search path from ISP to OSP, which consists of only a �nite times of the local moves. Insuch way, the above Theorem can be proven. The path can be constructed by following fourphases :Phase 1 for every macro block Arotate A untilthe permutation pair of A in ISP equals that in OSPendforPhase 2 for every macro block Asqueeze-to-right(I�1; A)squeeze-to-right(I�2; A)endforPhase 3 adjust I�1 such that I�1 equals O�1Phase 4 adjust I�2 such that I�2 equals O�2Phase 1 �rst applies the rotation in ISP such that the permutation pair of every macro blockequals that in OSP. Given total M macro blocks, at most 3M times rotation are required,in which 3-conditions are always satis�ed. In Phase 2, squeeze operation is applied in bothsequences of ISP such that the unit blocks of each macro are consecutive in both I�1 andI�2. Based on the description of squeeze operations, Phase 2 includes mutations only, and theintermediate sequence pairs are always feasible. After Phase 2, for any unit blocks ai; aj 2 Aand bk 2 B, A 6= B, bk will not appear between ai; aj in either I�1 or I�2. Given total N unitblocks in the sequence pair, Phase 2 will take O(N2) times mutations.In Phase 3, I�1 is adjusted to O�1 by applying �1-mutations followed by adaptations. Asshown in Fig. 19 (a), starting from i = 0, Phase 3 compares ith unit of O�1, ui, with the ith unitof I�1, vi. If ui = vi, i increases by one, i.e. Phase 3 compares the following units. Otherwise,the unit ui is located in I�1 : ui = vi+k, where k is a positive integer.Let vi+k�1 denote the left neighbor of vi+k in I�1. Then in O�1, vi+k�1 will be after ui whichequals vi+k, as shown in Fig. 19 (b). If vi+k�1 and vi+k belong to the same macro block V , thepermutation of V in I�1 is di�erent from that in O�1. Due to Phase 1, we can derive that vi+k�1and vi+k do not belong to the same macro. Therefore in I�1, mutation can be applied on vi+k�1and vi+k. If the mutation generates a feasible sequence pair, the unit ui will be moved to the leftby one step in I�1 : ui = vi+k�1 as shown in Fig. 19 (c). Otherwise, vi+k�1 = am; vi+k = b1.If a1 is before vi in I�1 as shown in Fig. 19 (d), then in O�1, a1 must be before ui = vi+k = b1.Due to condition-2, b1 can not be between a1; am in the second sequence of OSP. If I�2 has notbeen adjusted to O�2 so far, b1 will not be between a1; am due to Phase 2. On the other hand,20
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if I�2 has been adjusted to O�2, b1 still can not be between a1; am. As such, the mutation ofam; b1 can not lead to an infeasible solution. Therefore in I�1, a1 must be after vi as shownin Fig. 19 (e). After the adaptation, unit ui will be moved to the left by m steps in I�1:ui = vi+k�m, where i+ k �m � i.Therefore in I�1, the unit ui is either moved to vi+k�1 as shown in Fig. 19 (c) or vi+k�m asshown in Fig. 19 (e). In such way, ui can be continuously moved to the left in I�1 until ui = vi.Then i increases by one and Phase 3 visits the following unit ui+1 in O�1. When i reaches N ,the �rst sequence of ISP is adjusted to be O�1, Phase 3 terminates. Phase 4 repeats the similarprocess on the second sequence of ISP. It can be easily derived that Phase 3 and Phase 4 takeO(N2) times mutations and adaptations, together with the �rst two phases, the search pathconsists of at most O(M +N2) times of local moves.7 Experimental Results and Conclusion7.1 Packing ResultsWe have implemented the algorithm proposed in this paper using C language and tested it onSUN SPARC 20 workstation. The data are generated randomly. Figure 20 (a) gives the packingof ten L-shaped blocks, which takes about two minutes, the total packing area is 1.09 times ofthe total block area. On the other hand, Figure 20 (b) reports the packing result of 19 convexrectilinear blocks, which takes about 35 minutes, the total packing area is 1.13 times of the totalblock area. Due to the tight schedule, we have not enough time to re�ne the source code. Webelieve that the tradeo� of the packing quality and CPU time can be much improved, and weare working on this right now.
(a) (b)Figure 20: (a) The packing of ten L-shaped blocks, which takes about two minutes, the totalpacking area is 1.09 times of total block area. (b) The packing result of 19 convex rectilinearblocks, which takes about 45 minutes, the total packing area is 1.13 times of total block area.7.2 Concluding RemarksIn this paper, for the �rst time, we solve the arbitrary shaped rectilinear block packing problem.Rectilinear macro blocks are partitioned into a set of rectangular sub-blocks, each of them isindividually represented as a unit block in the sequence pair. The feasible solution space is22
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