A New Gradient-Assent Method for
Learning Mixture Distributions

Duncan Herring and David P. Helmbold

UCSC-CRL-98-01
January 10, 1998

Board of Studies in Computer and Information Sciences
University of California, Santa Cruz

Santa Cruz, CA 95064

ABSTRACT

This work investigates some refinements of the exponentiated gradient algorithm,
a recent mixture-solution method. The EG), algorithm uses a relative-entropy
distance function as a penalty term inside a gradient-assent framework to learn
the values of the parameters of the log likelihood of a given data sample. These
parameters include a mixture vector and the mean vectors and covariance matrices
of the axis-parallel or spherical Gaussian distributions that comprise the mixture
model.
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1 Introduction

This paper describes a new gradient-assent algorithm for learning the parameters of mix-
ture distributions. The new method resembles EG,, the exponentiated gradient algorithm,
but it contains some important additions and refinements. We will discuss these changes
in section four of this paper, but first let us take a quick look at traditional gradient-assent
theory.

In unsupervised mixture estimation, we process data that we assume consists of a
mixture of observations of results of several different processes or of the members of several
different populations. The object of our efforts is to model the data with a group of
distributions whose parameters we can guess or determine.

Our data sets consist of P observations with D dimensions each; thus, the data has
P rows of D numbers. We want software that runs quickly and smoothly when P equals
thousands of observations and D is on the order of one hundred dimensions.

Early in the process of developing our method, we decided to simplify the solution along
parametric lines by assuming that we could model the data using IV axis-parallel or spherical
Gaussian distributions. Because, the covariance matrices of these special Gaussians are
diagonal; we need to learn only 2D parameters for each distribution: a D-dimensional
mean vector and the D entries on the diagonal of the covariance matrix. Additionally, we
need to learn the value of an N-dimensional probability vector called the mixture vector.
An N-dimensional probability vector, v, is a vector such that Vi : (1 < i < N),v; > 0
and Zl]il v; = 1. The mixture vector, w, is a probability vector such that w; equals the
probability that an arbitrary observation from the data belongs in the i** distribution of
the solution, Vi : 1 <7 < N.

In our unsupervised learning setting, we do not know which data points belong wto
which distribution; thus, we cannot use analytical methods to arrive at a mixture solution.
Instead we must resort to using iterative methods for learning the parameters that we seek.
A popular Bayesian iterative method of mixture estimation is Ezpectation Mazimization,
or EM [2]. Many researchers use EM; because, they believe that it converges predictably
(the likelihood is non-decreasing from iteration to iteration) and that it produces reliable
solutions [8]. The present popularity of EM makes its performance an ideal benchmark for
testing our algorithm.

2 Gradient Assent

This paper describes a new gradient-assent solution that compares with EM. Like many
other gradient-assent algorithms, our method tempers the gradient of the log-likelihood
function with a learning coefficient, 1. Let us begin by representing the current set of pa-
rameters using ©; and the parameters of the developing iteration by ©;4;. Remember that

P = the number of observations in the data set;

D = the number of dimensions of each observation;

N = the number of Gaussian distributions in our model;

w = an N-dimensional probability vector called the mixture vector.

Let
x = the PxD matrix that holds the raw data set;
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X = the PxN likelihood matrix where
Tpn = P(Xp‘una Un) ) and
Xp = (xp,la s 7mp,N)

Azis-parallel Gaussians are D dimensional normal distributions with diagonal covariance
matrices: all of the covariance-matrix entries off of the diagonal are zero. The entries on
the diagonal may take any value. Spherical Gaussians are axis-parallel normal distributions
where all of the values on the diagonal of the covariance matrix are equal.

Because, the multivariate distributions of our model are axis-parallel or spherical Gaus-
sians; their D univariate components are all aligned with vectors of the orthogonal basis
of the data space; thus they are independent, and the multivariate distributions that they
compose have diagonal covariance matrices. The multivariate densities equal the products
of the densities of the D independent univariate Gaussian distributions that compose them.
For the axis-parallel case we have

D 1 7% [(Xp,d“nvd):r

n.,d

T = —F€
o H \/ﬂan,d ’

d=1

and for the spherical case we have

2
D 1 (Xp,(if'“‘n,(i)
H ]. 2 on
X = ——€
o =1 | V2moy,

Now,
w = an N-dimensional probability vector called the mixture vector, and

Xp = (xp,la 7mp,N) ;
therefore,

1 2 N 1 2
LogLike(x|0) = P Z In (Z mw-wi> =5 Z In(x, - w) .
p=1  \i=1 p=1

Let VL(Oy) stand for the gradient of the log likelihood of our data matrix, y, given
parameter set © and evaluated at ©® = ©,. If M equals the dimensionality of O,

vee) o (REEON L RS e
thus,
_ Ly Ly
szlxp-wt’ ’szlxp'Wt

To formulate the updates, we wish to attempt to maximize
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F(©411) = nLogLike(x|©41), >0 . (2.2)

Unfortunately, to maximize F' we must find the gradient of the unknown log likelihood
of Oy11, VL(O41). To avoid this difficulty, we will approximate VL(O;,1) using the first-
order Taylor approximation of the new mixture vector. Now we are maximizing

F(©u1) = n(LogLike(x|0;) + VL(O;) - (O1 — 6y)) . (2.3)

Because, LogLike(0;) — VL(©,) - O, is independent of Oy 1; it is a constant in F‘(@t+1),
and we are really maximizing

F(©1) = nVLO,) - O . (2.4)

Using the Taylor approximation causes inaccuracies when (0,7 — ©;) is large. This
observation makes sense; we would not expect VL(©;,1) to point in the same direction as
VL(0;) points when ©;; is far from ©;. To minimize this effect, we subtract a penalty
term, d(©;41]/0;), from F(O;,1). This penalty term represents a notion of distance between
©+1 and ©; and limits the difference between VL(041) and VL(O;). Another name for the
penalty term is the distance function, d(©;41|/0¢). The new formula that we are maximizing
is

F(Ou1) = nVL(O)  Opi1 —d(O441]/0y) . (2.5)

The learning coefficient, 7, has an expanded role in this new formula. The original
learning coefficient controlled how far we moved in the direction of VL(0;); a large value
for the positive coefficient, 7, produced a large jump from ©; to ©;5 1. In the new formula,
n controls the relative potency of VL(0;) and d(©;4+1]/©;) in developing ©;41 given 6.

Several distance functions appear in the paper that motivated our current work [5].
These functions take values that represent “distances” between ;1 and ©;. The functions
can assume only non-negative values. They take the value zero if and only if ©,4; = ©,.
Two distance functions are especially important in gradient-assent methods. We used one
of these distance functions in our work. The first important function appears in many
standard gradient-assent algorithms. Its value is half of the square of the Euclidean length

of (0141 — Oy);

N
def
de2(ullv) = Llu—v[3 =13 (u

i=1

—;)?. (2.6)

The second function represents the relative entropy;

dye(ullv) Zul ln— i (2.7)

This function plays a fundamental role in our implementation of the EG,, algorithm: we
use it in the form with a summation that appears in the definition of equation (2.7) to
update the mixture vector. We use an approximation of another form of the relative-
entropy distance function-the general form that contains an integral-to update the mean
vectors and covariance matrices of the Gaussian distributions of our model. The use of

a relative-entropy distance function in a gradient-assent framework was investigated by
Manfred Warmuth and Jyrki Kivinen [6].
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Choosing a suitable distance formula and maximizing the log likelihood by setting the
derivative of equation (2.5) with respect to ©;11 equal to zero and solving for ©;;1 motivates
a family of updates for the parameters of our solution. Ideally, we choose some initial
values for these parameters and apply the updates iteratively until we reach convergence.
Eventually, we must prove that our updates converge and that the values at convergence
parameterize a good mixture solution. Such a proof is beyond the scope of our current
work, but section six of this paper contains empirical evidence that our model does converge
quickly to substantially the same solution set that EM provides.

3 The Algorithm

3.1 Initialization

It is extremely important to choose good initial values for the mixture vector and for
the parameters of the axis-parallel and spherical Gaussian distributions of the model. Good
initial values must be close to the final values. Otherwise the software could easily model
a local maximum that happens to be close to the initial settings but has a smaller log
likelihood than the global solution.

Finding a starting value for the mixture vector, w is easy. We simply set w equal to
the uniform probability vector in N dimensions, the N-vector, w, such that Vi : (1 < i <
N),w; =1/N.

We devised a new method for initializing values for the Gaussian parameters. If NV is
the number of distributions that we will consider, let M signify the power of two such that

M =2¢

for some integer, o, and

M
7<N§M.

Initially, we divide the raw data into M groups of observations. We pick one raw-data
dimension at random and find the mean of the the values that the observations take in the
chosen dimension. We split the raw data into two groups; one group has values in the chosen
dimension that are less than the mean; the other group has values in the chosen dimension
that are greater than or equal to the mean. We call the splitting routine recursively on
the observations in each group until we have produced exactly M groups of raw data
observations.

We reduce the number of observation groups from M to N by combining neighboring
groups with the fewest total number of elements. The result is one group for each of the
distributions that we believe to be in our mixture.

We can use analytical methods to find the mean vectors and the covariance matrices of
the N distributions of points that result from the initialization process described above [3].

3.2 The Learning Coefficient, 7

Our algorithm has privatized learning coefficients for the mixture vector and for each of
the means and covariance matrices of the N Gaussian distributions contained in the model;
thus, there are 2N + 1 different private learning coefficients in our updates. We update each
of these n values with every iteration.
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When a parameter is far from the area of maximum log likelihood, there is an advantage
to keeping its private value of n large: a large 1 value means quick progress toward the
solution.

When we are close to the area of maximum log likelihood, there is an advantage to
keeping the value of 7 small: a small 5 value reduces the probability of jumping over the
top of the maximum. If ) is too large near the solution, the algorithm will fail to converge.

We vary the value of each of the 2V 4 1 learning coefficients from one iteration to the
next, maintaining a data structure that contains arrays for storing the values of the various
coefficients of the log-likelihood parameter updates. Each parameter has its own individual
array in the learning-coefficient data structure.

During each iteration we update the values of the parameters of the log likelihood: the
mixture vector, w, and the mean vectors and covariance matrices of the N Gaussian distri-
butions. Because, the Gaussian distributions are axis parallel, their covariance matrices are
diagonal-that is all of the values off of the diagonal are zero. Clearly, we only need to update
the D values on the diagonal when we update a covariance matrix. Notice that now we
are updating only vectors; the N-dimensional mixture vector, the N D-dimensional mean
vectors, and the N D-dimensional vectors whose components are the values that fall on the
diagonals of the covariance matrices. I have coined the term standard-deviation wvector to
label these last vectors; please do not confuse this new usage of the term with the scalar
standard deviation of a single univariate Gaussian distribution. The connection between
the standard scalar usage of the term “standard deviation” and this new vector usage will
soon be obvious.

To make the implementation easy, the vector that we actually update when we are
dealing with a covariance matrix is the standard-deviation vector, o, whose components
are the square roots of the values that fall on the diagonal of the matrix. The components
of o are the standard deviations of the univariate Gaussian distributions whose product
equals one of the multivariate Gaussians of our model.

Now we are updating 2N + 1 vectors: the mixture vector, w; N mean vectors, p,, : (1 <
n < N); and N standard-deviation vectors, o, : (1 < n < N). Each of these vectors has
its own private learning coefficient.

We use a simple method for adjusting the 2N + 1 1) values. At the end of each iteration,
we tabulate the changes that we made to each of the 2N +1 parameter vectors. For example,
during iteration ¢ + 1, the change in the mean vector of a given distribution, g, is equal
to pyq — py- Notice that p, is a vector. Using a well-known property of the dot product,
we can find the cosine of the angle, ¢, between any change vector from the current iteration
and the corresponding change vector from the previous iteration, for example pn ;11 and
KA - When we know the value of cos(¢), we can calculate the new value of the learning
coefficient, 7,41, using the formula

o)) o)

g

We have determined typical values for « and # by experiment. For the typical spherical
Gaussian model, « = 0.70 and # = 3. For the typical axis-parallel Gaussian model, & = 0.75
and B = 3. The values for § are stable for most types of data; however, the correct value
for a depends upon both the model type and the data. The typical « values above work
for many data sets. In section six we discuss fine tuning the « value.

N+l = Nt (0/ +
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Whenever we jump over the point of maximum log likelihood, the gradient changes
direction drastically causing cos(¢) to assume a negative value and reducing or tempering
the value of 1. Otherwise the direction of the gradient is comparable from one iteration to
the next, and the resulting positive value for cos(¢) causes 7 to increase with each iteration.
Increasing 7 in this way is called the bold-driver strategy [10].

3.3 Approximation of The Relative-Entropy Distance Function

The distance functions that we use to form the exponentiated-gradient updates all spring
from the relative-entropy distance function. Let & € R”. The general form of the relative-
entropy distance function is

Pt+1(€|@t+1)>
D = P, e In{ —————|d€ .
Re Ccipolix) = [, o Pra(€l00) In (FHEE gt e
Unfortunately, evaluating this function and its derivatives is difficult. The probabilities
behind the logarithms are really sums of products of more basic probabilities;

N D
Po©) = Z wnHP(€|@n,d) .
n=1 d=1

The derivations of the updates for the all of the exponentiated-gradient algorithms that
we have seen depend upon approximations to circumvent the difficulties in evaluating the
derivatives of the general form of the relative-entropy distance function.

We avoided the sums behind the logs entirely while deriving the updates of our algorithm.
To make the update of parameters of distribution n, we approximated Dgg (Xiit00|| X 1)
with drg (Op,141/|On,); thus while working with the parameters of distribution n, we used

Pn,t+1 (£‘®n,t+1)
Pn,t(g‘e)n,t) >d§

dre (Oni41]|@Ons) = /5 RP P i4+1(€]04,441) In (
J€c

as the distance function for the p and o updates.

Our approximation will clearly work well when the distances between the means of the
model distributions are large compared to their standard deviations. When the Gaussians
are widely spread, an arbitrary data point will tend to have a significant density in only
one of the model distributions; thus, our approximation will be a natural simplification of
the general relative-entropy equation.

Presently, we will compare our method with an exponentiated-gradient algorithm due
to Manfred Warmuth. Mr. Warmuth’s derivations are not sensitive to the distance between
the means of the model distributions.

In a yet unpublished manuscript [11], Manfred Warmuth introduces an exponentiated-
gradient algorithm that uses an approximation of the general relative-entropy distance
function to form the updates. In his approximation, Drp (0411, ), Mr. Warmuth begins
with the general form itself and moves the summations over NV outside of the log for greater
convexity and easier calculation. Appendix E contains a derivation of an axis-parallel
version of Mr. Warmuth’s algorithm. Assume & € R” and

Pn ®Tl
dre (Oni+1][Ong) = /£ RD Pn,t+1(€@n,t+1)1n< 1108 ’Hl))dé ;
€

Pn,t(g‘en,t)
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then
RE\Yt+1, Yt €E]RD = n,t+1 t+1 U)n’tp(§|@n,t)
N N
W, t+1 P(€|@n t+1)

= w In(———) + w / P(&OG In(——————=
TLEZ:I n,t+1 ( Wt ) ngl n,t+1 se]RD (6‘ n,t+1) ( P(§‘®n,t) )
N W t+1 N

= Z W t+1 ln(n’—_l_) + Z 'wn,t+1dRF)(®n,t+1a Gn,t) .
n=1 Wn,t n=1

3.4 The Updates

As we explained in the learning-rate section, during each iteration, we update three
types of vectors, the mixture vector, w; the mean vectors, pu; and the standard-deviation
vectors, o. For those readers who are interested, we derive the updates for axis-parallel
Gaussians in Appendix B and the updates for the spherical Gaussian model in Appendix
C.

The Axis-Parallel Update for the Mixture Vector

We use the relative-entropy distance function,

N
A%
dre(Wes|lwi) = Y wipiln vl:rl, (3.2)
i=1 t

to produce the exponentiated gradient update for the mixture vector, w,

Wy eV EWE),

w = 3.3
n,t+1 Zl]\il U)i’tEHVL(Wt)i ( )

25 ()|

The Axis-Parallel Update for the Mean Vector

Let £ € RP. We will use an approximation of the general form of the relative-
entropy distance function. In the update of p, 4, we will approximate Drg (X 400||X1)
with dRE(@n,t—HH@n,t)a where

dre (®t+1”@t) = -/SG]RD Pn,t+1(€‘®t+1) In (M) de¢ .

Pp1(£164)

The exponentiated-gradient update for the mean vector, u, is
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Pnditt = Tn0naVL(nt)d + fnd (3.5)
2 P
9y, 4 WnTpn,t (Xp d— Hn,d)
— ) 3 ) 3 3 3‘6
P 21<Xpt'w Ogd + bt ( )

P
- B3 (B ) s 31
The 02 co-factor limits the size of a proposed change in 1 whenever o is small. When o is
small, we have a sharply peaked distribution, and we certainly cannot tolerate large changes
in the mean. A large change could take us past the desired convergence value; after a really
large change we could actually be farther from the desired value than we were before the
change. The result is divergence. Alternately, the co-factor increases the size of changes to
the mean when o is large. When o is large, we have a wide distribution; thus, we desire
large changes in the mean; they are necessary for quick convergence when o is large.

The Axis-Parallel Update for the Covariance Matrix

In updating the covariance matrix, we actually update the vector whose components are
the square roots of the elements on the matrix diagonal, the standard deviation vector, o.
We will use an approximation of the the general form of the relative-entropy distance func-
tion. In the update of o, 4, we will approximate Drg(Xytoo||X1y) With drg(On i41/|On )
to arrive at the update,

\/772V£ (Tn,t)y ’fl,d,t + 4Ug’d’t + nnV/l(Un,t)dUi,d,t
2

On,dt+1 —

(Xp.d — Hnd)’
On,d

P
_ TIn anxp,n,t

2
+ o
2Pp:1 Xp i W n.dt

—Ond

wnxpnt
s

2P Xp t- O'n’d

2
(Xp,d - Un,d) ]
—On,d

Updates for the Spherical Gaussian Model

The updates in the previous sections are based on modeling the data using N axis-
parallel Gaussian distributions. The axis-parallel model is one important special case of
the general Gaussian solution. Another special case assumes a model of spherical Gaussian
distributions normal distributions with diagonal covariance matrices such that all of the
entries on the diagonal equal some single value, o2.

The mixture-vector and mean-vector updates for the spherical-Gaussian solution are the
same as the corresponding updates for the axis-parallel model; one simply uses the formulas

that appear above. The covariance-matrix update for the spherical-Gaussian model differs
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from the axis-parallel case. One can specify a spherical-model covariance matrix with a
single value, o; because, the only non-zero values in the matrix are on the diagonal, and
they all equal 0. A derivation for the o update appears in appendix C. The update is

\/”%VL(Un,t)QUé,t + 4D20721,t + ”nVL(Un,t)UTQL,t
Ont+1 = oD

(Xp.d — Hnd)”

On,d

P
Tin Z WnTpm,t

2DPp:1 Xpt W

—Ond

P
TIn WnLpmn,t
2DPp:1 Xp,t W

+

2

(Xp,d = Hn,d) ]

— On,d
On,d

3.5 The Magic of EG,

For the mixture vector, the EG, algorithm produces a multiplicative update that is
greater than or equal to zero. The mean, however, must take on negative values, and
the EG,, algorithm updates it additively. It is not necessary to produce these appropriate
updates by manipulation, the algorithm produces them automatically.

Another strange feature of the EG, update is the resemblance of the mixture-vector
update to the equation in Bayes’ theorem. Perhaps this fact will remind us that when
we do updates, we are developing posterior values from the prior values that enter each
iteration.

4 Producing the Test Data

We performed most of the tests of the engine using data that we generated with two
modules that produce test files consisting of points on an annulus. The first module, testdisc,
produces random data on the annulus, the second module, testgrid, produces uniform data
on the annulus. The module, “testdisc”, selects a random probability, P, from the interval
[0, 1] and selects a radius, r, for each test point according to the following algorithm. Let

M = the outer radius of the annulus;
m = theinner radius of the annulus;
calculate
r = /P(M—-m)+m .

The module then selects an angle, # randomly and exports the rectangular coordinates
corresponding to r and 6 to a file.

The module, “testgrid”, merely selects all of the test points on a rectangular mesh that
also fall inside the annulus and exports these values to a file.

A third module, generate, produces D univariate Gaussian distributions of P/D points
each using random parameters. The program then combines these distributions into a single
P-point multivariate sample with D dimensions. This module is useful whenever we need
data with more than the two dimensions inherent in all of the annulus samples.



10 5. Testing the Algorithms

The final module, testboz, generates a uniform, three-dimensional, rectilinear distribu-
tion centered on the origin. We used “generate” and “testbox” together to produce files
with both uniform and Gaussian Components.

5 Testing the Algorithms

An enormous quantity of data is available from sources who collect it during their own
scientific endeavors. We used artificial means to build most of the files that we will use
during our tests, but the lure of using our software to analyze “live” data is too tempting to
ignore entirely. Consequently, we tested our program using data that B.S Everitt and D.J
Hand [4] claim has known parameters for two Gaussian distributions. One test consisted
of the ash-content figures for 430 peat samples; another test involved the lengths of 1000
trypanosome protozoon from two species. Our results for the first test were substantially
the same as those that Everitt and Hand calculated. Our results for the second test varied
slightly from those of the Everitt and Hand; however, we determined that the original
calculations were for grouped data. Our engine does not deal directly with grouped data,
and we undoubtedly introduced some inaccuracy in the sample when we converted the data
for use with our program.

All of the remaining tests utalize data that we produced artificially using the special
built-in modules that we described in the previous section of this paper. These special data-
generation units include the “testdisc”, “testgrid”, “testbox”, and “generate” modules. The
first series of tests involves running our software engine on three data files that we produced
using “testdisc”. This module makes two-dimensional data on an annulus. The files that
we obtained contain one thousand two-dimensional points each. During testing, we invoke
the “C” “times” command just before our software terminates; thus, it is possible to print
out a record of the amount of user time that the program needs for learning the parameters
of the model.

Our first test is for machine independence. We ran our software and a specially prepared
version of the EM program on two different machines, a Solaris 2.x and a Sun-4. We used
the first of the three “testdisc” data files as input and varied the number of axis-parallel
Gaussian distributions of the model from two to fourteen. The results of the tests that
we ran on the Solaris 2.x machine appear in graphical form in Figure 1. The results of
the tests that we ran on the Sun-4 machine appear in Figure 2. The Solaris 2.x is a much
faster machine than the Sun-4, but the graphs of the results have an almost identical shape
My conclusion is that despite the compiler optimization that we did while fine tuning the
program, our software runs equally well on the two machines that we used for testing.
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4 Figure 2: UNIX User Time v.s. Number of Distributions; data set = 1; machine = Sun—4
T T T T T
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Figure 3 gives more information about the same tests, showing the number of iterations
required to arrive at a solution when the number of axis-parallel Gaussians of the model
varies from two to fourteen. We used the first “testdisc” file as input and ran the software

on the Solaris 2.x machine.

Figure 4 depicts the log likelihood of the same solutions. We used the first “testdisc”
file as input and varied the number of axis-parallel Gaussians of the model from two to

fourteen. We ran the software on the Solaris 2.x machine.
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Figure 3: Number of Iterations v.s. Number of Distributions; data set = 1; machine = Solaris 2.x
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Figure 4: Log Likelihood v.s. Number of Distributions; data set = 1; machine = Solaris 2.x
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To discover how running time relates to the number of distributions of the model, we
did execution-time tests using the second and third “testdisc” files, running the software
on the Solaris 2.x machine. Figure 5 shows the time required for a solution using the
second “testdisc” file as input, and Figure 6 shows the time needed for a solution using the
third “testdisc” file. In these tests and the first “testdisc” trial, our algorithm performs
comparably with EM. Neither method has a clear-cut advantage in regard to the running

time.

Figure 5: UNIX User Time v.s. Number of Distributions; data set = 2; machine = Solaris 2.x
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Figure 6: UNIX User Time v.s. Number of Distributions; data set = 3; machine = Solaris 2.x
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The complexity of the algorithms that we used to make the program suggests that the
running time per iteration should vary linearly with the number of Gaussians in the model.
Figures 6a and 6b show the time per iteration versus the number of Gaussian distributions in
the model when the input files were the first and second “testdisc” files respectively. These
graphs show monotonic increasing functions, and it is easy to imagine that the motivation

behind these curves is, indeed, linear.



5. Testing the Algorithms

UNIX time Command Units per Iteration

UNIX time Command Units per Iteration

(o2}

ol

IS

w

N

Figure 6a: UNIX User Time / Iteration v.s. Number of Distributions; data set = 1

0
2 4 6 8 10 12 14
Distribution Number
Figure 6b: UNIX User Time / Iteration v.s. Number of Distributions; data set = 2
8 T T T T

(o2}

ol

IS

w

N

1 1 1 1 1

1 1 1 1 1
2 4 6 8 10 12 14
Distribution Number

15



16 5. Testing the Algorithms

Clearly, increasing the number of distributions in our model causes a corresponding
increase in the amount of time that it takes the program to do an average iteration of
the solution. Why is it that the total time to find a solution is not a monotonic increasing
function of the number of distributions in the model? To find out if our initialization process
is causing the jaggedness of the initial graphs, we repeated the tests using several random
initializations of the distribution parameters for each model size instead of employing the
standard initialization module. These new tests would determine if the jagged quality of
the first graphs resulted from our standard initialization process. As before, we varied the
model size from two to fourteen distributions. We used five random initializations for each
model size. When we made the graphs that depict the results of these tests, we drew a
special curve to represent the average of the running times associated with the five random
initializations. We used the first “testdisc” data file to make the graph in Figure 7. Figure

8 shows the results when the input file was the second “testdisc” file.

Figure 7: UNIX User Time v.s. Number of Distributions; data set = 1; machine = Solaris 2.x; Random Initialization
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Figure 8: UNIX User Time v.s. Number of Distributions; data set = 2; machine = Solaris 2.x; Random Initialization
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These graphs are certainly less jagged than the ones in Figure 1 and Figure 5, but the
new curves are still not monotonic increasing. I conclude that the initialization process has
little effect on the jaggedness of the graphs. That Figure 7 and Figure 8 are smoother than
Figure 1 and Figure 5 appears to be an effect of the averaging process. Running time is
proportional to the number of iterations needed for a solution. The number of iterations is
not proportional to the number of distributions in the model.

The dashed lines in all of the graphs represent the performance of the EM algorithm.
Note that Figure 6a and Figure 6b both indicate that our solution spends more time per
iteration than the EM solution spends. EM, however, often requires more iterations to learn
the parameters of the model; thus, the running times for our program compare with the
EM running times when the input files for both engines result from the “testdisc” module.

The “testgrid” module produces a different sort of data set from the “testdisc” data files;
“testgrid” makes uniform distributions. Figure 9 and Figure 10 show how our program and
EM compare when the input is uniform data. As before, we have plotted the running
times against the number of distributions in the model. We used the standard initialization
module in preparing Figure 9 and random initialization for Figure 10. The curves in Figure
10 represent an average of the data points.
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Figure 9: UNIX User Time v.s. Number of Distributions; data set = 4; machine = Solaris 2.x
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Figure 10: UNIX User Time v.s. Number of Distributions; data set = 4; machine = Solaris 2.x; Random Initialization
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Our algorithm seems to be slightly faster than EM when the input is uniform data from
“testgrid”.

Figure 11 depicts the total running time in terms of the number of observations in the
data sample. We used the first “testdisc” file and fixed the number of distributions of the
model at four. The result is not linear; sometimes the new points that we add to the file

enhance an existing clump of points, and sometimes they set up a competing clump.

The surprising graph is Figure 12. Here the plot of running time versus the number
of data dimensions seems almost linear. We used the “testgrid” file and four distributions
in preparing this chart. It is possible that the uniform distribution “testgrid” foils the
“clumping effect” that caused the non-linearity in the graph of running time v.s. the

number of observations that appears in Figure 11.

Figure 11: UNIX User Time v.s. Size of Data Set; machine = Solaris 2.x
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Figure 12: UNIX User Time v.s. Number of Dimensions; machine = Solaris 2.x
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Our program increases the privatized learning rate for a parameter vector whenever the
present value of that vector is quite different from the value at the time of the solution.
This strategy is called the “bold driver” [10]. Unfortunately, it is not possible to make the
rate of increase large; because, its cumulative effect is exponential. We use a default value
of 1.08333334 for the bold-driver increase rate. As shown in Figure 13 and Figure 14, when
the data set is the first “testdisc” file, setting the bold-driver rate too low results in large
total execution times for the program. Fixing the rate too high degrades the solutions and

increases the running time. The default rate works well with the first “testdisc” input file.
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Figure 13: UNIX User Time v.s. Value of Bold Driver; data set = 1; machine = Solaris 2.x
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Figure 14: Log Likelihood v.s. Value of Bold Driver; data set = 1; machine = Solaris 2.x
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Figure 15 and Figure 16 show similar experiments with a very different data set. Data set
eight has 784 observations generated by the “generate” module and 216 observations from
“testbox”. We adjusted the “generate” to produce an equal number of points from each of
four axis-parallel Gaussian distributions with random means and covariance matrices. The
“testbox” module gives a three-dimensional, uniform distribution that is rectilinear and

centered at the origin.

Changing the bold-driver rate with data set eight seems to effect the running time in
a way that is similar to what we saw with the first “testdisc” input. The log-likelihood is,
however, very unstable. A good value for the bold-driver rate for data set eight might be
1.05.

Clearly, we need to learn the proper bold-driver rate for our input data by training the
software: running it repeatedly on a representative portion of the data to locate the area of
the bold-driver rate curve where the solutions are reliable and the running times are quick.

Figure 15: UNIX User Time v.s. Value of Bold Driver; data set = 8; machine = Solaris 2.x
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Figure 16: Log Likelihood v.s. Value of Bold Driver; data set = 8; machine = Solaris 2.x
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Data sets five through ten contain points from “generate”, “testbox”, or both. The sizes
of the contributions of these modules appear below in table 1.

Table 1
file name | generate | testbox
inputh 0 1000
input6 272 729
input? 488 512
input8 656 343
input9 784 216
input10 1000 0

Interestingly enough, both our program and EM seem to have long execution times when
between a quarter and a half of the points are from the Gaussian distributions produced by
“generate”. At that frequency, the Gaussian points do not occur often enough to be easy
to locate, and the execution times can be large. The uniform distribution of the “input5”
file is sometimes easier; because, it has no clumps to attract the model distributions. The
pure Gaussian distribution of the “input10” file is almost always easier; because, it lacks
the distraction of the uniform distribution points.

Figure 17 and Figure 18 show running time versus input file number. Figure 17 uses the
standard initialization module, and Figure 18 utalizes random initialization and averaging.

In the results from Figure 18, our method seems to have a slight advantage over EM
when the data is uniform or almost uniform.
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Figure 17: UNIX User Time v.s. Data Set Number; machine = Solaris 2.x
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Figure 18: UNIX User Time v.s.Data Set Number; machine = Solaris 2.x; Random Initialization
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All of the previous results came from modeling the input data using axis-parallel Gaus-
sian distributions. Figure 19 and Figure 20 give running time and log-likelihood results
using spherical Gaussian distributions in the model.

Spherical Gaussians are not as powerful as axis-parallel Gaussians for modeling arbitrary
data sets; however, when the data occurs in isolated spherical clumps, they will obviously
offer an economical solution. Other data configurations often work well with the spherical
model if the number of distributions is limited to a certain range. We are able to model the
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first “testdisk” data quickly and accurately using either nine or ten spherical Gaussians.
The log likelihoods of the results from these spherical modelings compare with the axis-
parallel log likelihoods, and the running times for the spherical model are thirty to fifty
percent smaller than the corresponding axis-parallel running times.

Figure 19: UNIX User Time v.s. Number of Distributions; data set = 1; machine = Solaris 2.x; Spherical Gaussians
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Figure 20: Log Likelihood v.s. Number of Distributions; data set = 1; machine = Solaris 2.x; Spherical Gaussians
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We made a MATLAB engine to model mixture solutions with axis-parallel Gaussian
distributions. Our software contains routines that implement axis-parallel EM, an axis-
parallel version of an EG algorithm due to Manfred Warmuth [11], and the EG algorithm
that we developed. We borrowed much of the MATLAB code from Yoram Singer of AT&T

Bell Laboratories.

Mr. Warmuth’s algorithm is very efficient; because, it works with a single, fixed learning
rate. Our program has higher overhead due to the work of updating the privatized learning
coefficients. Our method compares well with both EM and Mr. Warmuth’s EG under some
conditions, but Mr. Warmuth’s program is often the fastest. I suspect that low overhead

is the reason that his method succeeds.

We wondered if difficulty in breaking symmetry of the distributions of the model was
causing our method to run slowly. Because, our approximation of the relative entropy
distance function express the distance in terms of the relative entropy of an update of a
single Gaussian distribution; we are at our theoretical best during times when the model
distributions do not overlap significantly. We might, therefore, have problems breaking
model symmetry. Figure 21 shows the results of running the MATLAB engine on a tight
round cloud of random points surrounding the origin. The initialization is a set of axis-
parallel Gaussians that are all practically identical.

Figure 21: MATLAB User Time v.s. Number of Distributions; data set = 3
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Figure 22 shows results with the same cloud of points, but the initialization here is a set
of Gaussians with widespread mean vectors. These initial distributions are quite far apart
in contrast to the starting distributions in Figure 21.

We do not know if the distributions overlap significantly at some time after initialization;
however, we do know that they do not overlap much at the point of initialization.

All of the algorithms seem to perform better with the new initial conditions, but our
method shows the same improvement as the other two algorithms show. We conclude that

poor symmetry breaking is not our most significant performance problem.

Figure 22: MATLAB User Time v.s. Number of Distributions; data set = 11
12 T T T T T
_— EM
- = = Warmuth EG
— == My EG

10 b

MATLAB User Time Units
\

Number of Distributions



28 5. Testing the Algorithms

Figure 23: Number of Iterations v.s. Number of Distributions; data set = 11
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Figure 23 shows the number of iterations that the three methods required for conver-
gence. In this frame, our algorithm performs quite well compared to the other two, but
these results do not include the overhead for updating the many privatized learning rates.
EM has no learning coefficient, and Manfred Warmuth uses a single fixed learning rate.
Neither of these methods spends time changing the value of . The graph of these results
with the overhead included is Figure 22.

In Figures 24 and 25 we repeat the experiment using the familiar first “testdisc” data set.
The annulus configuration of these points automatically assures that we have a minimum of
overlapping whenever the distributions are evenly spaced around the ring. Tests using the
visualization functions of MATLAB convince us that this experiment contains only slight
Gaussian intersection.
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Figure 24: MATLAB User Time v.s. Number of Distributions; data set = 1
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Figure 25: Number of Iterations v.s. Number of Distributions; data set = 1
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6 Conclusion

Using relative-entropy distance functions, we produced a variant of the exponentiated-
gradient algorithm for a mixture solution that features especially formulated updates for the
parameters of the model of axis-parallel or spherical Gaussian distributions and a privatized
and articulated learning rate. The private learning rate for a given parameter vector is small
when that vector is nearly the same as a potential solution vector and large when the given

vector is not part of a potential solution.

The performance of our new algorithm rivals that of EM in tests using uniform or
random quasi-uniform data on an annulus, and three-dimensional data that is a mixture of

Gaussian and uniform points.

Possible future work involves adding a training mechanism to our program for discovering
the data-dependent optimum rate of increase of the privatized learning rates when the

parameter vectors are far from the solution.
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A Definitions for Deriving the Updates

Let
P = the number of observations in the data set;
D = the number of dimensions of each observation;
N = the number of Gaussian distributions in our model;
w = an N-dimensional probability vector called the mixture vector.
x = the PxD matrix that holds the raw data set;
X = the PxN likelihood matrix where
Tpn = P(Xp“l'nvo'n) s and
Xy = (Tp1s - - s TpN)

Because, the distributions are spherical or axis-parallel Gaussians; their covariance matri-
ces are all diagonal; therefore, the entries off of the diagonal are all zero for these matrices,
and the univariate densities of the D dimensions of the raw data are independent. The
multivariate density under distribution n of observation p of the raw data matrix, X, is
the product of the univariate densities of the D dimensions of the raw data, xp1 ... Xp,D;
thus, for the axis-parallel case

D 1 7% [(Xp,d“nafi)r

Tn,d

X = —€
P H \/ﬂan,d ’

d=1

and for the spherical case

D 1 (Xp,d“n,d)r
1 2T en
a1 | V2moy,
Now,
x, = (Tp1, --- ,2pN) , and

w = an IN-dimensional probability vector called the mixture vector;
therefore,

P N P
. 1 1
LogLike(x|0) = P Z In (Z xp,iwl) =5 Z In(x, - w) .
le =1 p:l

To formulate the updates, we wish to maximize the function ﬁ‘,
F(®t+1) = nVL(O)  Ory1 — d(O111]|04) ; (A.1)

thus, we wish to find the value of ©;,; that makes the derivative of F with respect to ©
and evaluated at ©;; 1 vanish.
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B The Axis-Parallel Update

B.1 The Likelihood and Log Likelihood of the Raw Data

The likelihood of our raw data matrix, y, is

P N
likelihood(x|©®) = HZ[u;nP(x,,lun,onﬂ
p=1n=1
el
= pl:[mZ:_l Lwndl:[l [\/%Und JJ i

The log likelihood of our raw data matrix, y, is

P N D 7% [(Xp,:“n,d)} :
LogLike(x|®) = Z Z W, H \/ﬁg i
p=1 n=1 n d

d=1

The 1/P is a scaling factor.

Because, the Gaussians of our model are axis-parallel; the multivariate density under
distribution n of observation p of the raw data matrix, x,, is the product of the univariate
densities of the D dimensions of the raw data, x,.1 -..Xxp,n; thus, X is the likelihood matriz,
if
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B.2 Updating the Mixture Vector

0LogLike(x|O)

Own p=1| N D 1 L {(Xp,d“n a) } ’
n,d
w — e
n=1 ndl;Il 27T0n,d

1 & Tpn )

Pp2_21<xp w)/’

VL(w), = 153 Lpn

t = — _— .

n Pp:1 X, - W

We wish to update the mixture vector; therefore, equation (A.1) becomes

F(wi) = nVL(wy) - wip — d(wiga|[wy) . (B.1)

We add a Lagrangian term to enforce the constraint that

N
S wpp =1, (B.2)
n=1

and
) N
F(wii1,7) = nVL(Wy) - Wiy — d(wig||wye) +7 <Z W 141 — 1) , n>0. (B3)
n=1

To maximize F'(wyy1,7), set the N partial derivatives of F'(wy,1,v) with respect to the
components of w and evaluated at w = w1 equal to zero and obtain

aF (Wt+1 3 7)
0w, 141

 O0d(wyp||wy)

= nVL(Wi)n +y=0. (B.4)

Own 141

Set the partial derivative with respect to v of F(WH_l, 7v) equal to zero, and discover that

N
> wppgr=1. (B.5)
n=1

If we use the summation form of the relative-entropy distance function,

N
W, t+1
dre(Wip1|[wy) = Z Wn,t+1 ln;—Jr ;

n=1 n;t
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the N equations (B.4) become

NV L(Wi)p — (In 2 4y 4y =0
Wn, t

)

Solving this system of equations for w, ;41 we have

Wppy1 = wn,tenvqw‘)n*"yfl (B.6)
= wn,tenvqw‘)nﬁ*l (B.7
= ?wn,te"VL(wt)n, 7=t (B.8)

Summing the N equations we get

N N

VL(we),
Z Wp,41 =7 Zwiyte" (Wi,
n=1 i=1

By equation (B.5),

1
? =
Z’L]\Ll wl te"v‘c(wt)z

)

and we get the exponentiated gradient update for the mixture vector,

w1V EW ),

— B.9
W, t4+1 SN w; eV EW); (B.9)

P =
- wn,te[ " : (B.10)
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B.3 Updating the i Vector

We are updating the means; therefore, equation (A.1) becomes

Flunair1) = VL (ng)d - tndirr — dlpindps || inds) ; (B.11)
D 1 (Xp,dfpn,d) ’
H ]- e 2 n,d
w —¢
. P nd:] v 27T0.n,d
O0LogLike(x|0©) _ lz (Xp.d = Hn,d)
Otin,a Pp:] N L[ pua—tn,a) ’ U?z,d
Z w H #Pig o
el nd 1| V21on.4
1 wnTp n Xp d— Un,d) .
p=1 Tl,d
1V (wapns (Xpd — fhn.a)
VL(nt)a = — ( m PR 2B = > :
P;u§:1 Xpt W %7(1

We use the following derivation for an update for g based on an approximation
of the relative-entropy distance formula. In the update of u, 4, we will approximate
Dre(Xutool|¥11) with dre(On,i11]|On.).-

Let £ € R”. For distribution n,

Pnt+l(§‘®nt+1)
dr (O, (—)n:/ P, O i) In [ 22 1)) ge
RE (On,141]|On,t) ¢RP 41 (€[Oni41) ( Poi(€6m1) 3
2
’V l|:(£d”‘n,d,t+]):| “
1 2 Tn.d
VIr . d"
= / Pp1+1(€1On,141) In ﬁ[ | J d€ ;
JEeR? ’ d=1 1{(5d“n,dt)r ’
1 2 Tn.d
\/ﬂan,de
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1 (5(1 “n,d,t+1):|2
- Z/ T e

D 1[M

2
_Z /%G]RD Pn,t+1(€|®n,t+1) Ine

)rds ;

- 752 /§eIRD Priy1(€1Ont11) [(gd ~ Hndu) (G u"’d’t)]

On,d

— 284 (P, d,t+1

d€ ;

1 :u2dt+1_:u2dt
= —52/ RD P t11(&1On,t+1) l — —
— J&c

On,d

_ lz Mo i1 = Moy = 2tn.di1 (Hnder1 = fn,
2d:1 On,d
D 2
_ 12 (Hn,di+1 — Pnd,t)
2.3 Tn,d

Differentiating with respect to py, 4,41 we get

(Mn,d,t+1 - ,un,d,t)
On,d

To maximize F(pp 4441), we wish to solve

nnv‘c(un,t)d . (:u‘n,d,t+1 B ,U‘n,d,t)

On,d

thus, the new update is

fndis1 = TnOnaVL(nt)a+ tndz

)] |

=0 ;

2
Xpit W Td

2 P
_ nnon’dz <1l)n.’I,‘p’n’t (Xp.d = Hn,a)

P
In Wn T t
= FZ< R (Xpd — n,a)

) + Mndt -

- ,un,d,t) ]

> + M dt

d€ ;
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(B.12)

(B.13)

(B.14)

The o? co-factor that appears in this update limits the size of a proposed change in u
whenever ¢ is small. When o is small, we have a sharply peaked distribution, and we
certainly cannot tolerate large changes in the mean. A large change could take us past the
desired convergence value; after a really large change we could actually be farther from the
desired value than we were before the change. The result is divergence. Alternately, the
co-factor increases the size of changes to the mean when o is large. When o is large, we
have a wide distribution; thus, we desire large changes in the mean; they are necessary for

quick convergence when o is large.
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B.4 The o Update

We are updating o; therefore, equation (A.1) becomes

F(Un,d,t—l—l) = nnv£(0n,t)d “On,dt+1 — d(on,d,t—lean,d,t) ; (B15)

D 1 {(Xp,d“n fi)} ’
2 Tn.d
Wy,
. P dl;ll \ 27”7" d
OLogLike(x|©) lz (Xp.d = Hn,d)
= 2 3
aonyd Pp:1 N D 7% |:_(Xp’dlj‘n1d):| O—nyd
In.,d
Wy,
EZ: e \/27T0'n d
2
o lz <11)nTpn Xp,d_,un,d) _ 1 ]) .
= 3 ;
Pp:1 Ond Ond
1 A (wnpni [ pd — Bna)” 1
Vﬁ(gn’t)d = FZ (xn pzv D, — n, _ - .
p=1 D5t n,d n,d

We use the following derivation for an update for ¢ based on an approximation
of the relative-entropy distance formula. In the update of o, 4, we will approximate
Dre(Xutool|X1) With drE (O t41]1Ont)-

Let £ € R”. For distribution n,

P, O,
drE (Ont11]Ons) = /g]RDPn,tH(oE@n,tH)ln( 14108 ’tH))d ;
S

Py 1(€1On,) ¢
{ 1 67% [%} w

D ma’n,d,t{»l
= / Py i1 (€[Onp1) In | I L
JERP d—1 N
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Differentiating with respect to oy, 4441 we get

On,dit4+1 1

2
Un,d,t Un,d,t—l—l

To maximize F(0y, 4441), we wish to solve

1 _ Ongit+l

nnv£(0n,t)d + 92
0n,d,t+1 Uﬂ,t

thus, the new update is

\/n2V£ Tnit)g fl’d’t + 40,21,,1,,5 + UnV£(Un,t)dU%,d,t

On,dt+1 — 2

2
(Xp,d - ,un,d)

On,d

P
Tin WnTpmn,t
2P — Xpt W

—Ona| | +op

2

(Xp,d — Hn,d) ]

—Onyd
On,d

(it

39



40 C. The Spherical Update

C The Spherical Update

C.1 The Likelihood and Log Likelihood of the Raw Data

The likelihood of our raw data matrix, y, is

S [P (3 | tns0n)]

=

likelihood(x) =
p=1In=1
P N D %{(Xp,do“n,d)r
= I (w]l | =
p=1n=1 d=1 27m"

The log likelihood of our raw data matrix, y, is

1 P N D 1 1 (Xpd “md)r
2 on

LogLike(x E In E w

g p:l el "dl;[l V2rmoy,

The 1/P is a scaling factor.
As in the axis-parallel case, because, the Gaussians of our model are spherical; the mul-
tivariate density under distribution n of observation p of the raw data matrix, x,, is the
product of the univariate densities of the D dimensions of the raw data, x,1 ... xp, p; thus,
X is the likelihood matriz, if
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C.2 Updating the Mixture Vector

D 1 l[(xpd“nd)r
2 on
P
p dl:[1 \V2mwoy,
OLogLike(x|®©) lz -
Bwn Pp:] i ﬁ 1 7% (Xp dony‘"vd):|2
Wy, e
n=1 4=t | V2mon
1 Tp.n
Pljz;(xp W) '
1 & x
_ 1 Tpn
V(W) P;(TWJ.

The relative-entropy update, EG,), uses the distance function

N
dre(Wig1||wy) = Z W41 In(We g1 /W t)
n=1

The derivation for the EG, update in the spherical-Gaussian case is analogous with the
derivation in the axis-parallel case. The EG, update for a mixture-vector component is

Wpit1 = = (C.1)
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C.3 Updating the i Vector

O0LogLike(x|0©)
a,un,d

VE(Nn,t)d

1
P
1
P

>

p=1

P
(wnxp,n,t (Xp,d - Nn,d))
3 .

p=1

2
D ;{(Xp,d“ﬂd)}
]. 2 on
wnH Nor e
d=1 n
(Xp,d - ,un,d)
N D 1 (Xp,dfpn d) ’ 0.721
H ]. 2 on
W, e
n=1 i—1 | V2Toy

(wnmp,n (Xp,d - Un,d))
2

Xp W on

xp,t -W oy

Again, the derivation is analogous with the axis-parallel case, and the exponentiated-

gradient update for y is

MHpdt+1 = UnUTQLV‘C(Mn,t)d+Mn,d,t (CS)
2 P
o W Tp.nt (Xp.d = Hnyd
_ ”yz( npnt (Xpd — iin )>+un,d,t (C.4)
=\ Xpt W o2
Ui " (waa t
= =2 it L — . C.5
Pp§—1 (Xp,t T Xpd Mn,d)> + lndyt (C.5)

C.4 The o Update

In updating the variance, we actually update its square root, the standard deviation, o.

O0LogLike(x|©)
do,

VL(O’n’t)d

(
(

(Xp,(ifﬁ"n,(i)

2
_1
2 on
€

d=1 2
3 (Xp,d = tn,d)
( ~ ) 2 03
N D 1 { Xp,d”Hn.d } d=1 n
H ]_ e 2 on
W,
= et \V2moy,
D 2 1
WnTp,n Z (Xp.d = Hn,a) o .
xp W et O'% On /
D
WnTpn,t Z (Xp,d - 'U‘"ad)2 _ i .
xp,t - W a1 O'?l Op

We use the following derivation for an update for ¢ based on an approximation

of the relative-entropy distance formula.

In the update of o, 4, we will approximate

Dre(Xutool|xu) with dre(On,111/|On ).

1

On
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Let & € R”. For distribution n,

dRE‘ (@n,t+]”®n,t) =

/§€IRD Poi4+1(€1Oni41) In <

-/SG]RD

-/SG]RD

P i1+1(€1On,141)

Pn,t(g‘e)n,t)

d=1

P 11(£1On,t41) In

D/ Pri11(£|Ont41) In
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Ont D 2 1
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D
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lil(ﬁdun,d)r

On,t+1
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On,t
On,t+1

1 (o2
P | MY QAR RRREY (TR
On,t+1 2 Ont

Differentiating with respect to o, ;11 we get

D (Un,2t+] . 1

We wish to solve (for oy, 141)

1
MV L(ont) + D ( - U"’H'l) = 0 ;
n,t

thus, the new update is

Onit+1 =
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p:l Xpyt "W Un:d
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C. The Spherical Update
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D Axis-Parallel and Spherical Versions of EM

We need standard algorithms to act as controls in our experiments. These special
versions of the EM algorithm work with axis-parallel and spherical Gaussian distributions;
they will be the benchmarks that we require. To develop axis-parallel and spherical EM,
remember that the standard EM updates for Gaussian mixture solutions are [1]

Zf:lpt(nb(p)Xp

MUndt+1 =
ZlePt(nlxp)
2
2 _ Zi:lpt(mXp)[Xp — Pndit1]
A+l =
" Zf:lpt(”‘Xp)
12
Wp, 41l = FZB(”‘X;})
=1

In the axis-parallel case, Bayes’ theorem results in

Py(xpln) Pe(n)
SN Pyxpli) Pi (i)
Pr(xp/n)wn ¢
YL Pi(xpi)wig

Pt(n‘Xp) =

_1
2 Tn.,d

(pa=sna) |’
ol mand | |

d=1

N _1 {(X%d“i,d)r
Z ws ¢ H : T
i=1 d=1 \/%UZ d

_ WptTpn |

o ox,w

thus, we have

P WntTpn

p:l Xp W Xp,d
MHndt+1 = P Wnidp;
p=1 x,w

2
Xp,d — Mn,d,t+1]

P wnp, twpn[
2 _ p=1
Un,d,t—l—l - ZP Wn tTp,n
p=1" x,w
1 P
- Wn tTp,n
Wnt+1 = inx w

In the spherical case, Bayes’ theorem results in

Py(xp|n) P (n)
1Ly Pixpli) P (i)
Pr(xp/n)wn ¢
YL P (xpi)wiyg

Pt(n|Xp) =
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D
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Xp W
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E The Axis-Parallel Updates of Manfred Warmuth’s Method

E.1 The Likelihood and Log Likelihood of the Raw Data

The likelihood of our raw data matrix, y, is

likelihood(x|®) = ﬁi {wn (Xp | Mn,ffn)}

p:ln:
1[(Xnd“nﬂ)}2
2

P N D —
= 13 |l | e

p=1n=1 d=1

—

The log likelihood of our raw data matrix, y, is

D l[Mr
2

P N
LogLike(x|©) = wn o
g EZ: a1 |V 27r0n d

The 1/P is a scaling factor.

E.2 The Algorithm

In a yet unpublished manuscript [11], Manfred Warmuth introduces a new EG,, method
built on his special approximation of the general form of the relative-entropy distance
formula,

N N
w
Dre(0m10:) = > wni ln(u”)’—t“) + 3 wo i 1dRE(On i1, Ony)

n=1 n,t n=1

Mr. Warmuth uses a loss function based on the negative log likelihood, and he wishes to
minimize

U1(O141) = DRE(em,@a—%ln(P(xwam)). (E.1)

An easier update, however, minimizes

Us(©141) = Drp(©111,0;) — % (In(P(x]©1)) + (Or1 — ©:)Ve, In(P(x|04)))

If we remove the parts of equation Us(©;41) that do not depend upon ©,41, we obtain

U2(0141) = Dge(©u1]]0:) —nVL(O,) - Oy (E.2)
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E.3 Updating the Mixture Vector

0LogLike(x|O©)

Oowy, |~ D . 1 (Xpd“n,d):|2
Tn,d
w e
n;l "dl;[l V21oy, 4
1 & ( Tp.n )
Pp;l Xp W i
VLi(w,), = li Ty
tn P\ xp-w

We add a Lagrangian term to equation (E.2) to enforce the constraint that

N
Z Wpie1 =1, (E.3)
n=1

and

N
U2(©141,7) = Dre(©111[01) —nVL(W) - Wi +y (Z W, t41 — 1) ;, n>0.

n=1

To minimize UQ(@t+1,7), set the N partial derivatives of U2(6t+1,7) with respect to
the components of w and evaluated at w = w1 equal to zero and obtain

U (© ODrE(0.41]1©
2( t+17’y) _ RE( H—IH t) - nVE(Wt)n ty= 0. (E4)
Own 141 Own 141

Set the partial derivative with respect to v of UQ(®t+1,’y) equal to zero, and discover that

N
Z Wpie1 =1 . (E.5)
n=1
The N equations (E.4) become
In 1 4 A (O a1, Ont) — VLW +7 =0

“)n,t

Solving this system of equations for w;, ;41 we have
Wnir1 = “)n’tenVL(Wt)n77*1*dRE(®n,t+1,G)n,t)

= w, teﬂVC(Wt)n e*V*I*dRE(@n,Hl,@n,t)

?U)n’tE’HVE(wt)", ? :e'Y*l*dRE(en,t—Fl:en,t) _
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Summing the N equations we get

N N
S wppr =7 w; eV EW:
n=1 i=1

By equation (E.5),
1

? —
Z’L]\Ll wl teﬂVE(Wt)z

’

and we get the ezponentiated gradient update for the mixture vector,

Wy, thVﬁ(wt)

ZZ 1 w; teﬂV£ Wt

Wnt+1 =

E.4 Updating the y Vector

We are updating the mean vectors; therefore, equation (E.2) becomes

Us(O111) = Dre(©m1]100) — 1o VL (tnt)a - findis1

O0LogLike(x|©) 1 Z =1

49

(E-6)

aNn,d

_ i(wnxpn(Xpd2Mnd)> :

p: ]9 w n,d
r N 1 a WnTpn,t (Xp,d - Un,d)
\Y (,un,t)d - F % W 0_2 -
p:l pzt n,d

The update for p is based on Mr. Warmuth’s approximation of the relative-entropy

distance formula,

N

w
Drp(0i1110) = Y wnis In(—0) +anf+1dRE(@nf+1a@nf) :

1)nf

n=1 n=1
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Let £ € R”. For distribution n,
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Differentiating with respect to p, 441 we get

9dre(0141,00) _ (Bndis1 — pndi)
O, d,t+1 U?L,d
Remember
ol w t+1
Dre(©m|0) = > wpin ln(:)— + Z Wn t+1dRE(On t+1, Onyt) -
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Differentiating D g (©441|/©;) with respect to p, 4,41 we obtain

ODrE(O141,01) . O0drE(©111,0y)

- n

8,U*n,d,t+1 8Nn,d,iH»l

To minimize Us(fip a¢+1), we wish to solve
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w, (Nn,d,t+12* Nn,d,t) —nnV£(,Un,t)d = 0;
an,d

thus, the new update is

n
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E.5 The o0 Update

We are updating o; therefore, equation (E.2) becomes

Uz(©111) = Dru(©141]161) — mVL(Ow)d " Ondier ; (E.10)
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The update for o is based on Mr. Warmuth’s approximation of the relative-entropy
distance formula,

N
w
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Let &€ € R”. For distribution n,
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Differentiating with respect to o, q441 we get
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Differentiating D g (©441|/©;) with respect to o, 4,41 we obtain
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To minimize Us (0, 44+1), we wish to solve
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F Reverse-Order Evaluation: drg(©:||O:y1)
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In updating the variance, we actually update its square root, the standard deviation, o.
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Here is the derivation for an update for o based our approximation of the relative-entropy

distance formula.
Let £ € R”. For distribution n,

o 0 _ Q Pn,t(&‘e)n,t) i
dre (Ongl|Onis1) = /&RD P 1(€]©n,¢) In (Pn,t+1 (§®n,t+])>d§ ;
D
Py a.:(€©1)
= Pn t n,t 1 — d )
-/SGIRD +(&[6n)In (dl—[] Pn,d,t+1(§@n,t+1)> ¢
D 2
Rl Nn,d)]
(Vo) f;[ ot
2mont
= P, 6n )1 d )
/&e]R” +(£[On ) In li[(fdﬂn,d)]Q ¢
(Var 1 )D—e 2d:1 Tn.t+1
270y 141

On,t+1
D /&RD Po(€]On) In (—) de

On,t




54 F. Reverse-Order Evaluation: drpg(®¢||®¢+1)
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Differentiating with respect to o, 41 we get
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