
A New Gradient-Assent Method forLearning Mixture DistributionsDuncan Herring and David P. HelmboldUCSC-CRL-98-01January 10, 1998
Board of Studies in Computer and Information SciencesUniversity of California, Santa CruzSanta Cruz, CA 95064

abstractThis work investigates some re�nements of the exponentiated gradient algorithm,a recent mixture-solution method. The EG� algorithm uses a relative-entropydistance function as a penalty term inside a gradient-assent framework to learnthe values of the parameters of the log likelihood of a given data sample. Theseparameters include a mixture vector and the mean vectors and covariance matricesof the axis-parallel or spherical Gaussian distributions that comprise the mixturemodel.

1. Introduction 11 IntroductionThis paper describes a new gradient-assent algorithm for learning the parameters of mix-ture distributions. The new method resembles EG�, the exponentiated gradient algorithm,but it contains some important additions and re�nements. We will discuss these changesin section four of this paper, but �rst let us take a quick look at traditional gradient-assenttheory.In unsupervised mixture estimation, we process data that we assume consists of amixture of observations of results of several di�erent processes or of the members of severaldi�erent populations. The object of our e�orts is to model the data with a group ofdistributions whose parameters we can guess or determine.Our data sets consist of P observations with D dimensions each; thus, the data hasP rows of D numbers. We want software that runs quickly and smoothly when P equalsthousands of observations and D is on the order of one hundred dimensions.Early in the process of developing our method, we decided to simplify the solution alongparametric lines by assuming that we could model the data usingN axis-parallel or sphericalGaussian distributions. Because, the covariance matrices of these special Gaussians arediagonal; we need to learn only 2D parameters for each distribution: a D-dimensionalmean vector and the D entries on the diagonal of the covariance matrix. Additionally, weneed to learn the value of an N -dimensional probability vector called the mixture vector.An N -dimensional probability vector, v, is a vector such that 8i : (1 � i � N); vi � 0and PNi=1 vi = 1. The mixture vector, w, is a probability vector such that wi equals theprobability that an arbitrary observation from the data belongs in the ith distribution ofthe solution, 8i : 1 � i � N .In our unsupervised learning setting, we do not know which data points belong wtowhich distribution; thus, we cannot use analytical methods to arrive at a mixture solution.Instead we must resort to using iterative methods for learning the parameters that we seek.A popular Bayesian iterative method of mixture estimation is Expectation Maximization,or EM [2]. Many researchers use EM; because, they believe that it converges predictably(the likelihood is non-decreasing from iteration to iteration) and that it produces reliablesolutions [8]. The present popularity of EM makes its performance an ideal benchmark fortesting our algorithm.2 Gradient AssentThis paper describes a new gradient-assent solution that compares with EM. Like manyother gradient-assent algorithms, our method tempers the gradient of the log-likelihoodfunction with a learning coe�cient, �. Let us begin by representing the current set of pa-rameters using �t and the parameters of the developing iteration by �t+1. Remember thatP = the number of observations in the data set;D = the number of dimensions of each observation;N = the number of Gaussian distributions in our model;w = an N -dimensional probability vector called the mixture vector.Let� = the PxD matrix that holds the raw data set;

2 2. Gradient AssentX = the PxN likelihood matrix wherexp;n = P (�pj�n;�n) ; andxp = (xp;1; : : : ; xp;N) :Axis-parallel Gaussians areD dimensional normal distributions with diagonal covariancematrices: all of the covariance-matrix entries o� of the diagonal are zero. The entries onthe diagonal may take any value. Spherical Gaussians are axis-parallel normal distributionswhere all of the values on the diagonal of the covariance matrix are equal.Because, the multivariate distributions of our model are axis-parallel or spherical Gaus-sians; their D univariate components are all aligned with vectors of the orthogonal basisof the data space; thus they are independent, and the multivariate distributions that theycompose have diagonal covariance matrices. The multivariate densities equal the productsof the densities of the D independent univariate Gaussian distributions that compose them.For the axis-parallel case we havexp;n = DYd=12664 1p2��n;d e� 12�(�p;d��n;d)�n;d �23775 ;and for the spherical case we havexp;n = DYd=12664 1p2��n e� 12�(�p;d��n;d)�n �23775 :Now,w = an N -dimensional probability vector called the mixture vector, andxp = (xp;1; : : : ; xp;N) ;therefore, LogLike(�j�) = 1P PXp=1 ln NXi=1 xp;iwi! = 1P PXp=1 ln(xp �w) :Let rL(�t) stand for the gradient of the log likelihood of our data matrix, �, givenparameter set � and evaluated at � = �t. If M equals the dimensionality of �,rL(�t) def= �@LogLike(�j�)@�1 j�=�t ; : : : ; @LogLike(�j�)@�M j�=�t� ; (2.1)thus, rL(wt) = �@LogLike(�j�)@w1 jw=wt ; : : : ; @LogLike(�j�)@wN jw=wt�= 0@ 1P PXp=1 xp;1xp �wt ; : : : ; 1P PXp=1 xp;Nxp �wt1A :To formulate the updates, we wish to attempt to maximize

2. Gradient Assent 3F (�t+1) = �LogLike(�j�t+1); � > 0 : (2.2)Unfortunately, to maximize F we must �nd the gradient of the unknown log likelihoodof �t+1, rL(�t+1). To avoid this di�culty, we will approximate rL(�t+1) using the �rst-order Taylor approximation of the new mixture vector. Now we are maximizing~F (�t+1) = � (LogLike(�j�t) +rL(�t) � (�t+1 ��t)) : (2.3)Because, LogLike(�t)�rL(�t) ��t is independent of �t+1; it is a constant in ~F (�t+1),and we are really maximizing �F (�t+1) = �rL(�t) ��t+1 : (2.4)Using the Taylor approximation causes inaccuracies when (�t+1 � �t) is large. Thisobservation makes sense; we would not expect rL(�t+1) to point in the same direction asrL(�t) points when �t+1 is far from �t. To minimize this e�ect, we subtract a penaltyterm, d(�t+1jj�t), from �F (�t+1). This penalty term represents a notion of distance between�t+1 and �t and limits the di�erence betweenrL(�t+1) andrL(�t). Another name for thepenalty term is the distance function, d(�t+1jj�t). The new formula that we are maximizingis F̂ (�t+1) = �rL(�t) ��t+1 � d(�t+1jj�t) : (2.5)The learning coe�cient, �, has an expanded role in this new formula. The originallearning coe�cient controlled how far we moved in the direction of rL(�t); a large valuefor the positive coe�cient, �, produced a large jump from �t to �t+1. In the new formula,� controls the relative potency of rL(�t) and d(�t+1jj�t) in developing �t+1 given �t.Several distance functions appear in the paper that motivated our current work [5].These functions take values that represent \distances" between �t+1 and �t. The functionscan assume only non-negative values. They take the value zero if and only if �t+1 = �t.Two distance functions are especially important in gradient-assent methods. We used oneof these distance functions in our work. The �rst important function appears in manystandard gradient-assent algorithms. Its value is half of the square of the Euclidean lengthof (�t+1 ��t); deu2(ujjv) def= 12 jju� vjj22 = 12 NXi=1(ui � vi)2 : (2.6)The second function represents the relative entropy;dre(ujjv) def= NXi=1 ui ln uivi : (2.7)This function plays a fundamental role in our implementation of the EG� algorithm: weuse it in the form with a summation that appears in the de�nition of equation (2.7) toupdate the mixture vector. We use an approximation of another form of the relative-entropy distance function{the general form that contains an integral{to update the meanvectors and covariance matrices of the Gaussian distributions of our model. The use ofa relative-entropy distance function in a gradient-assent framework was investigated byManfred Warmuth and Jyrki Kivinen [6].

4 3. The AlgorithmChoosing a suitable distance formula and maximizing the log likelihood by setting thederivative of equation (2.5) with respect to �t+1 equal to zero and solving for �t+1 motivatesa family of updates for the parameters of our solution. Ideally, we choose some initialvalues for these parameters and apply the updates iteratively until we reach convergence.Eventually, we must prove that our updates converge and that the values at convergenceparameterize a good mixture solution. Such a proof is beyond the scope of our currentwork, but section six of this paper contains empirical evidence that our model does convergequickly to substantially the same solution set that EM provides.3 The Algorithm3.1 InitializationIt is extremely important to choose good initial values for the mixture vector and forthe parameters of the axis-parallel and spherical Gaussian distributions of the model. Goodinitial values must be close to the �nal values. Otherwise the software could easily modela local maximum that happens to be close to the initial settings but has a smaller loglikelihood than the global solution.Finding a starting value for the mixture vector, w is easy. We simply set w equal tothe uniform probability vector in N dimensions, the N -vector, w, such that 8i : (1 � i �N); wi = 1=N .We devised a new method for initializing values for the Gaussian parameters. If N isthe number of distributions that we will consider, let M signify the power of two such thatM = 2�for some integer, �, and M2 < N �M :Initially, we divide the raw data into M groups of observations. We pick one raw-datadimension at random and �nd the mean of the the values that the observations take in thechosen dimension. We split the raw data into two groups; one group has values in the chosendimension that are less than the mean; the other group has values in the chosen dimensionthat are greater than or equal to the mean. We call the splitting routine recursively onthe observations in each group until we have produced exactly M groups of raw dataobservations.We reduce the number of observation groups from M to N by combining neighboringgroups with the fewest total number of elements. The result is one group for each of thedistributions that we believe to be in our mixture.We can use analytical methods to �nd the mean vectors and the covariance matrices ofthe N distributions of points that result from the initialization process described above [3].3.2 The Learning Coe�cient, �Our algorithm has privatized learning coe�cients for the mixture vector and for each ofthe means and covariance matrices of the N Gaussian distributions contained in the model;thus, there are 2N+1 di�erent private learning coe�cients in our updates. We update eachof these � values with every iteration.

3. The Algorithm 5When a parameter is far from the area of maximum log likelihood, there is an advantageto keeping its private value of � large: a large � value means quick progress toward thesolution.When we are close to the area of maximum log likelihood, there is an advantage tokeeping the value of � small: a small � value reduces the probability of jumping over thetop of the maximum. If � is too large near the solution, the algorithm will fail to converge.We vary the value of each of the 2N + 1 learning coe�cients from one iteration to thenext, maintaining a data structure that contains arrays for storing the values of the variouscoe�cients of the log-likelihood parameter updates. Each parameter has its own individualarray in the learning-coe�cient data structure.During each iteration we update the values of the parameters of the log likelihood: themixture vector, w, and the mean vectors and covariance matrices of the N Gaussian distri-butions. Because, the Gaussian distributions are axis parallel, their covariance matrices arediagonal{that is all of the values o� of the diagonal are zero. Clearly, we only need to updatethe D values on the diagonal when we update a covariance matrix. Notice that now weare updating only vectors; the N -dimensional mixture vector, the N D-dimensional meanvectors, and the N D-dimensional vectors whose components are the values that fall on thediagonals of the covariance matrices. I have coined the term standard-deviation vector tolabel these last vectors; please do not confuse this new usage of the term with the scalarstandard deviation of a single univariate Gaussian distribution. The connection betweenthe standard scalar usage of the term \standard deviation" and this new vector usage willsoon be obvious.To make the implementation easy, the vector that we actually update when we aredealing with a covariance matrix is the standard-deviation vector, �, whose componentsare the square roots of the values that fall on the diagonal of the matrix. The componentsof � are the standard deviations of the univariate Gaussian distributions whose productequals one of the multivariate Gaussians of our model.Now we are updating 2N +1 vectors: the mixture vector, w; N mean vectors, �n : (1 �n � N); and N standard-deviation vectors, �n : (1 � n � N). Each of these vectors hasits own private learning coe�cient.We use a simple method for adjusting the 2N +1 � values. At the end of each iteration,we tabulate the changes that we made to each of the 2N+1 parameter vectors. For example,during iteration t+ 1, the change in the mean vector of a given distribution, ��, is equalto �t+1 ��t. Notice that �� is a vector. Using a well-known property of the dot product,we can �nd the cosine of the angle, �, between any change vector from the current iterationand the corresponding change vector from the previous iteration, for example ��;t+1 and��;t. When we know the value of cos(�), we can calculate the new value of the learningcoe�cient, �t+1, using the formula�t+1 = �t��+ cos(�)� � : (3.1)We have determined typical values for � and � by experiment. For the typical sphericalGaussian model, � = 0:70 and � = 3. For the typical axis-parallel Gaussian model, � = 0:75and � = 3. The values for � are stable for most types of data; however, the correct valuefor � depends upon both the model type and the data. The typical � values above workfor many data sets. In section six we discuss �ne tuning the � value.

6 3. The AlgorithmWhenever we jump over the point of maximum log likelihood, the gradient changesdirection drastically causing cos(�) to assume a negative value and reducing or temperingthe value of �. Otherwise the direction of the gradient is comparable from one iteration tothe next, and the resulting positive value for cos(�) causes � to increase with each iteration.Increasing � in this way is called the bold-driver strategy [10].3.3 Approximation of The Relative-Entropy Distance FunctionThe distance functions that we use to form the exponentiated-gradient updates all springfrom the relative-entropy distance function. Let � 2 RD. The general form of the relative-entropy distance function isDRE (�t+1jj�t) = Z�2RD Pt+1(�j�t+1) ln�Pt+1(�j�t+1)Pt(�j�t) �d� :Unfortunately, evaluating this function and its derivatives is di�cult. The probabilitiesbehind the logarithms are really sums of products of more basic probabilities;P (�j�) = NXn=1wn DYd=1P (�j�n;d) :The derivations of the updates for the all of the exponentiated-gradient algorithms thatwe have seen depend upon approximations to circumvent the di�culties in evaluating thederivatives of the general form of the relative-entropy distance function.We avoided the sums behind the logs entirely while deriving the updates of our algorithm.To make the update of parameters of distribution n, we approximated DRE (�t+1jj�t)with dRE (�n;t+1jj�n;t); thus while working with the parameters of distribution n, we useddRE (�n;t+1jj�n;t) = Z�2RD Pn;t+1(�j�n;t+1) ln Pn;t+1(�j�n;t+1)Pn;t(�j�n;t) !d�as the distance function for the � and � updates.Our approximation will clearly work well when the distances between the means of themodel distributions are large compared to their standard deviations. When the Gaussiansare widely spread, an arbitrary data point will tend to have a signi�cant density in onlyone of the model distributions; thus, our approximation will be a natural simpli�cation ofthe general relative-entropy equation.Presently, we will compare our method with an exponentiated-gradient algorithm dueto Manfred Warmuth. Mr. Warmuth's derivations are not sensitive to the distance betweenthe means of the model distributions.In a yet unpublished manuscript [11], Manfred Warmuth introduces an exponentiated-gradient algorithm that uses an approximation of the general relative-entropy distancefunction to form the updates. In his approximation, DRE(�t+1;�t), Mr. Warmuth beginswith the general form itself and moves the summations over N outside of the log for greaterconvexity and easier calculation. Appendix E contains a derivation of an axis-parallelversion of Mr. Warmuth's algorithm. Assume � 2 RD anddRE (�n;t+1jj�n;t) = Z�2RD Pn;t+1(�j�n;t+1) ln Pn;t+1(�j�n;t+1)Pn;t(�j�n;t) !d� ;

3. The Algorithm 7thenDRE(�t+1;�t) = Z�2RD NXn=1wn;t+1P (�j�t+1) ln(wn;t+1P (�j�n;t+1)wn;tP (�j�n;t))d�= NXn=1wn;t+1 ln(wn;t+1wn;t) + NXn=1wn;t+1 Z�2RD P (�j�n;t+1) ln(P (�j�n;t+1)P (�j�n;t))= NXn=1wn;t+1 ln(wn;t+1wn;t) + NXn=1wn;t+1dRE(�n;t+1;�n;t) :
3.4 The UpdatesAs we explained in the learning-rate section, during each iteration, we update threetypes of vectors, the mixture vector, w; the mean vectors, �; and the standard-deviationvectors, �. For those readers who are interested, we derive the updates for axis-parallelGaussians in Appendix B and the updates for the spherical Gaussian model in AppendixC.The Axis-Parallel Update for the Mixture VectorWe use the relative-entropy distance function,dre(wt+1jjwt) = NXi=1wt+1 ln wt+1wt ; (3.2)to produce the exponentiated gradient update for the mixture vector, w,wn;t+1 = wn;te�rL(wt)nPNi=1wi;te�rL(wt)i (3.3)= wn;te24 �P PXp=1 xp;nxp �wt!35PNi=1wi;te24 �P PXp=1 xp;ixp �wt!35 : (3.4)
The Axis-Parallel Update for the Mean VectorLet � 2 RD. We will use an approximation of the general form of the relative-entropy distance function. In the update of �n;d, we will approximate DRE(�t+1jj�t)with dRE(�n;t+1jj�n;t), wheredRE (�t+1jj�t) = Z�2RD Pn;t+1(�j�t+1) ln Pn;t+1(�j�t+1)Pn;t(�j�t) !d� :The exponentiated-gradient update for the mean vector, �, is

8 3. The Algorithm�n;d;t+1 = �n�2n;drL(�n;t)d + �n;d;t (3.5)= �n�2n;dP PXp=1 wnxp;n;txp;t �w (�p;d � �n;d)�2n;d !+ �n;d;t (3.6)= �nP PXp=1 wnxp;n;txp;t �w (�p;d � �n;d)!+ �n;d;t : (3.7)The �2 co-factor limits the size of a proposed change in � whenever � is small. When � issmall, we have a sharply peaked distribution, and we certainly cannot tolerate large changesin the mean. A large change could take us past the desired convergence value; after a reallylarge change we could actually be farther from the desired value than we were before thechange. The result is divergence. Alternately, the co-factor increases the size of changes tothe mean when � is large. When � is large, we have a wide distribution; thus, we desirelarge changes in the mean; they are necessary for quick convergence when � is large.The Axis-Parallel Update for the Covariance MatrixIn updating the covariance matrix, we actually update the vector whose components arethe square roots of the elements on the matrix diagonal, the standard deviation vector, �.We will use an approximation of the the general form of the relative-entropy distance func-tion. In the update of �n;d, we will approximate DRE (�t+1jj�t) with dRE(�n;t+1jj�n;t)to arrive at the update,�n;d;t+1 = q�2nrL(�n;t)d2�4n;d;t + 4�2n;d;t + �nrL(�n;t)d�2n;d;t2
= vuuut0@ �n2P PXp=1wnxp;n;txp;t �w " (�p;d � �n;d)2�n;d � �n;d#1A2 + �2n;d;t+ �n2P PXp=1wnxp;n;txp;t �w "(�p;d � �n;d)2�n;d � �n;d# :Updates for the Spherical Gaussian ModelThe updates in the previous sections are based on modeling the data using N axis-parallel Gaussian distributions. The axis-parallel model is one important special case ofthe general Gaussian solution. Another special case assumes a model of spherical Gaussiandistributions{normal distributions with diagonal covariance matrices such that all of theentries on the diagonal equal some single value, �2.The mixture-vector and mean-vector updates for the spherical-Gaussian solution are thesame as the corresponding updates for the axis-parallel model; one simply uses the formulasthat appear above. The covariance-matrix update for the spherical-Gaussian model di�ers

4. Producing the Test Data 9from the axis-parallel case. One can specify a spherical-model covariance matrix with asingle value, �; because, the only non-zero values in the matrix are on the diagonal, andthey all equal �2. A derivation for the � update appears in appendix C. The update is�n;t+1 = q�2nrL(�n;t)2�4n;t + 4D2�2n;t + �nrL(�n;t)�2n;t2D
= vuuut0@ �n2DP PXp=1wnxp;n;txp;t �w " (�p;d � �n;d)2�n;d � �n;d#1A2 + �2n;d;t+ �n2DP PXp=1wnxp;n;txp;t �w "(�p;d � �n;d)2�n;d � �n;d# :3.5 The Magic of EG�For the mixture vector, the EG� algorithm produces a multiplicative update that isgreater than or equal to zero. The mean, however, must take on negative values, andthe EG� algorithm updates it additively. It is not necessary to produce these appropriateupdates by manipulation, the algorithm produces them automatically.Another strange feature of the EG� update is the resemblance of the mixture-vectorupdate to the equation in Bayes' theorem. Perhaps this fact will remind us that whenwe do updates, we are developing posterior values from the prior values that enter eachiteration.4 Producing the Test DataWe performed most of the tests of the engine using data that we generated with twomodules that produce test �les consisting of points on an annulus. The �rst module, testdisc,produces random data on the annulus, the second module, testgrid, produces uniform dataon the annulus. The module, \testdisc", selects a random probability, P , from the interval[0; 1] and selects a radius, r, for each test point according to the following algorithm. LetM = the outer radius of the annulus;m = the inner radius of the annulus;calculater = qP (M �m) +m :The module then selects an angle, � randomly and exports the rectangular coordinatescorresponding to r and � to a �le.The module, \testgrid", merely selects all of the test points on a rectangular mesh thatalso fall inside the annulus and exports these values to a �le.A third module, generate, produces D univariate Gaussian distributions of P=D pointseach using random parameters. The program then combines these distributions into a singleP -point multivariate sample with D dimensions. This module is useful whenever we needdata with more than the two dimensions inherent in all of the annulus samples.

10 5. Testing the AlgorithmsThe �nal module, testbox, generates a uniform, three-dimensional, rectilinear distribu-tion centered on the origin. We used \generate" and \testbox" together to produce �leswith both uniform and Gaussian Components.5 Testing the AlgorithmsAn enormous quantity of data is available from sources who collect it during their ownscienti�c endeavors. We used arti�cial means to build most of the �les that we will useduring our tests, but the lure of using our software to analyze \live" data is too tempting toignore entirely. Consequently, we tested our program using data that B.S Everitt and D.JHand [4] claim has known parameters for two Gaussian distributions. One test consistedof the ash-content �gures for 430 peat samples; another test involved the lengths of 1000trypanosome protozoon from two species. Our results for the �rst test were substantiallythe same as those that Everitt and Hand calculated. Our results for the second test variedslightly from those of the Everitt and Hand; however, we determined that the originalcalculations were for grouped data. Our engine does not deal directly with grouped data,and we undoubtedly introduced some inaccuracy in the sample when we converted the datafor use with our program.All of the remaining tests utalize data that we produced arti�cially using the specialbuilt-in modules that we described in the previous section of this paper. These special data-generation units include the \testdisc", \testgrid", \testbox", and \generate" modules. The�rst series of tests involves running our software engine on three data �les that we producedusing \testdisc". This module makes two-dimensional data on an annulus. The �les thatwe obtained contain one thousand two-dimensional points each. During testing, we invokethe \C" \times" command just before our software terminates; thus, it is possible to printout a record of the amount of user time that the program needs for learning the parametersof the model.
Our �rst test is for machine independence. We ran our software and a specially preparedversion of the EM program on two di�erent machines, a Solaris 2.x and a Sun-4. We usedthe �rst of the three \testdisc" data �les as input and varied the number of axis-parallelGaussian distributions of the model from two to fourteen. The results of the tests thatwe ran on the Solaris 2.x machine appear in graphical form in Figure 1. The results ofthe tests that we ran on the Sun-4 machine appear in Figure 2. The Solaris 2.x is a muchfaster machine than the Sun-4, but the graphs of the results have an almost identical shapeMy conclusion is that despite the compiler optimization that we did while �ne tuning theprogram, our software runs equally well on the two machines that we used for testing.

5. Testing the Algorithms 11

2 4 6 8 10 12 14
0

1

2

3

4

5

6
x 10

4

Number of Distributions

U
N

IX
 ti

m
e

C
om

m
an

d
U

ni
ts

Figure 2: UNIX User Time v.s. Number of Distributions; data set = 1; machine = Sun−4

EG
EM

Figure 3 gives more information about the same tests, showing the number of iterationsrequired to arrive at a solution when the number of axis-parallel Gaussians of the modelvaries from two to fourteen. We used the �rst \testdisc" �le as input and ran the softwareon the Solaris 2.x machine.
Figure 4 depicts the log likelihood of the same solutions. We used the �rst \testdisc"�le as input and varied the number of axis-parallel Gaussians of the model from two tofourteen. We ran the software on the Solaris 2.x machine.

12 5. Testing the Algorithms

2 4 6 8 10 12 14
0

200

400

600

800

1000

1200

1400

1600

1800

Number of Distributions

Ite
ra

tio
ns

Figure 3: Number of Iterations v.s. Number of Distributions; data set = 1; machine = Solaris 2.x

EG
EM

2 4 6 8 10 12 14
−6.1

−6.05

−6

−5.95

−5.9

−5.85

−5.8

−5.75

−5.7

−5.65

−5.6

Number of Distributions

Lo
g

Li
ke

lih
oo

d

Figure 4: Log Likelihood v.s. Number of Distributions; data set = 1; machine = Solaris 2.x

EG
EM

5. Testing the Algorithms 13To discover how running time relates to the number of distributions of the model, wedid execution-time tests using the second and third \testdisc" �les, running the softwareon the Solaris 2.x machine. Figure 5 shows the time required for a solution using thesecond \testdisc" �le as input, and Figure 6 shows the time needed for a solution using thethird \testdisc" �le. In these tests and the �rst \testdisc" trial, our algorithm performscomparably with EM. Neither method has a clear-cut advantage in regard to the runningtime.

2 4 6 8 10 12 14
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Number of Distributions

U
N

IX
 ti

m
e

C
om

m
an

d
U

ni
ts

Figure 5: UNIX User Time v.s. Number of Distributions; data set = 2; machine = Solaris 2.x

EG
EM

14 5. Testing the Algorithms

2 4 6 8 10 12 14
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Number of Distributions

U
N

IX
 ti

m
e

C
om

m
an

d
U

ni
ts

Figure 6: UNIX User Time v.s. Number of Distributions; data set = 3; machine = Solaris 2.x

EG
EM

The complexity of the algorithms that we used to make the program suggests that therunning time per iteration should vary linearly with the number of Gaussians in the model.Figures 6a and 6b show the time per iteration versus the number of Gaussian distributions inthe model when the input �les were the �rst and second \testdisc" �les respectively. Thesegraphs show monotonic increasing functions, and it is easy to imagine that the motivationbehind these curves is, indeed, linear.

5. Testing the Algorithms 15

2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

8

Distribution Number

U
N

IX
 ti

m
e

C
om

m
an

d
U

ni
ts

 p
er

 It
er

at
io

n

Figure 6a: UNIX User Time / Iteration v.s. Number of Distributions; data set = 1

EG
EM

2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

8

Distribution Number

U
N

IX
 ti

m
e

C
om

m
an

d
U

ni
ts

 p
er

 It
er

at
io

n

Figure 6b: UNIX User Time / Iteration v.s. Number of Distributions; data set = 2

EG
EM

16 5. Testing the AlgorithmsClearly, increasing the number of distributions in our model causes a correspondingincrease in the amount of time that it takes the program to do an average iteration ofthe solution. Why is it that the total time to �nd a solution is not a monotonic increasingfunction of the number of distributions in the model? To �nd out if our initialization processis causing the jaggedness of the initial graphs, we repeated the tests using several randominitializations of the distribution parameters for each model size instead of employing thestandard initialization module. These new tests would determine if the jagged quality ofthe �rst graphs resulted from our standard initialization process. As before, we varied themodel size from two to fourteen distributions. We used �ve random initializations for eachmodel size. When we made the graphs that depict the results of these tests, we drew aspecial curve to represent the average of the running times associated with the �ve randominitializations. We used the �rst \testdisc" data �le to make the graph in Figure 7. Figure8 shows the results when the input �le was the second \testdisc" �le.

2 4 6 8 10 12 14
0

2000

4000

6000

8000

10000

12000

14000

Number of Distributions

U
N

IX
 ti

m
e

C
om

m
an

d
U

ni
ts

Figure 7: UNIX User Time v.s. Number of Distributions; data set = 1; machine = Solaris 2.x; Random Initialization

average EG
average EM

5. Testing the Algorithms 17

2 4 6 8 10 12 14
0

2000

4000

6000

8000

10000

12000

14000

Number of Distributions

U
N

IX
 ti

m
e

C
om

m
an

d
U

ni
ts

Figure 8: UNIX User Time v.s. Number of Distributions; data set = 2; machine = Solaris 2.x; Random Initialization

average EG
average EM

These graphs are certainly less jagged than the ones in Figure 1 and Figure 5, but thenew curves are still not monotonic increasing. I conclude that the initialization process haslittle e�ect on the jaggedness of the graphs. That Figure 7 and Figure 8 are smoother thanFigure 1 and Figure 5 appears to be an e�ect of the averaging process. Running time isproportional to the number of iterations needed for a solution. The number of iterations isnot proportional to the number of distributions in the model.The dashed lines in all of the graphs represent the performance of the EM algorithm.Note that Figure 6a and Figure 6b both indicate that our solution spends more time periteration than the EM solution spends. EM, however, often requires more iterations to learnthe parameters of the model; thus, the running times for our program compare with theEM running times when the input �les for both engines result from the \testdisc" module.The \testgrid" module produces a di�erent sort of data set from the \testdisc" data �les;\testgrid" makes uniform distributions. Figure 9 and Figure 10 show how our program andEM compare when the input is uniform data. As before, we have plotted the runningtimes against the number of distributions in the model. We used the standard initializationmodule in preparing Figure 9 and random initialization for Figure 10. The curves in Figure10 represent an average of the data points.

18 5. Testing the Algorithms

2 4 6 8 10 12 14
0

500

1000

1500

2000

2500

Number of Distributions

U
N

IX
 ti

m
e

C
om

m
an

d
U

ni
ts

Figure 9: UNIX User Time v.s. Number of Distributions; data set = 4; machine = Solaris 2.x

EG
EM

2 4 6 8 10 12 14
0

1000

2000

3000

4000

5000

6000

7000

Number of Distributions

U
N

IX
 ti

m
e

C
om

m
an

d
U

ni
ts

Figure 10: UNIX User Time v.s. Number of Distributions; data set = 4; machine = Solaris 2.x; Random Initialization

average EG
average EM

5. Testing the Algorithms 19Our algorithm seems to be slightly faster than EM when the input is uniform data from\testgrid".Figure 11 depicts the total running time in terms of the number of observations in thedata sample. We used the �rst \testdisc" �le and �xed the number of distributions of themodel at four. The result is not linear; sometimes the new points that we add to the �leenhance an existing clump of points, and sometimes they set up a competing clump.The surprising graph is Figure 12. Here the plot of running time versus the numberof data dimensions seems almost linear. We used the \testgrid" �le and four distributionsin preparing this chart. It is possible that the uniform distribution \testgrid" foils the\clumping e�ect" that caused the non-linearity in the graph of running time v.s. thenumber of observations that appears in Figure 11.

100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

Number of Data Points

U
N

IX
 ti

m
e

C
om

m
an

d
U

ni
ts

Figure 11: UNIX User Time v.s. Size of Data Set; machine = Solaris 2.x

EG
EM

20 5. Testing the Algorithms

2 3 4 5 6 7 8
50

100

150

200

Number of Dimensions

U
N

IX
 ti

m
e

C
om

m
an

d
U

ni
ts

Figure 12: UNIX User Time v.s. Number of Dimensions; machine = Solaris 2.x

EG
EM

Our program increases the privatized learning rate for a parameter vector whenever thepresent value of that vector is quite di�erent from the value at the time of the solution.This strategy is called the \bold driver" [10]. Unfortunately, it is not possible to make therate of increase large; because, its cumulative e�ect is exponential. We use a default valueof 1.08333334 for the bold-driver increase rate. As shown in Figure 13 and Figure 14, whenthe data set is the �rst \testdisc" �le, setting the bold-driver rate too low results in largetotal execution times for the program. Fixing the rate too high degrades the solutions andincreases the running time. The default rate works well with the �rst \testdisc" input �le.

5. Testing the Algorithms 21

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35
100

200

300

400

500

600

700

800

900

1000

1100

Value of Bold Driver

U
N

IX
 ti

m
e

C
om

m
an

d
U

ni
ts

Figure 13: UNIX User Time v.s. Value of Bold Driver; data set = 1; machine = Solaris 2.x

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35
−6.2

−6.15

−6.1

−6.05

−6

−5.95

−5.9

−5.85

−5.8

−5.75

−5.7

Value of Bold Driver

Lo
g

Li
ke

lih
oo

d

Figure 14: Log Likelihood v.s. Value of Bold Driver; data set = 1; machine = Solaris 2.x

22 5. Testing the AlgorithmsFigure 15 and Figure 16 show similar experiments with a very di�erent data set. Data seteight has 784 observations generated by the \generate" module and 216 observations from\testbox". We adjusted the \generate" to produce an equal number of points from each offour axis-parallel Gaussian distributions with random means and covariance matrices. The\testbox" module gives a three-dimensional, uniform distribution that is rectilinear andcentered at the origin.Changing the bold-driver rate with data set eight seems to e�ect the running time ina way that is similar to what we saw with the �rst \testdisc" input. The log-likelihood is,however, very unstable. A good value for the bold-driver rate for data set eight might be1.05.Clearly, we need to learn the proper bold-driver rate for our input data by training thesoftware: running it repeatedly on a representative portion of the data to locate the area ofthe bold-driver rate curve where the solutions are reliable and the running times are quick.

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35
100

200

300

400

500

600

700

800

900

1000

1100

Value of Bold Driver

U
N

IX
 ti

m
e

C
om

m
an

d
U

ni
ts

Figure 15: UNIX User Time v.s. Value of Bold Driver; data set = 8; machine = Solaris 2.x

5. Testing the Algorithms 23

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4
−8

−7.5

−7

−6.5

−6

−5.5

−5

−4.5

−4

−3.5

−3

Value of Bold Driver

Lo
g

Li
ke

lih
oo

d

Figure 16: Log Likelihood v.s. Value of Bold Driver; data set = 8; machine = Solaris 2.x

Data sets �ve through ten contain points from \generate", \testbox", or both. The sizesof the contributions of these modules appear below in table 1.Table 1�le name generate testboxinput5 0 1000input6 272 729input7 488 512input8 656 343input9 784 216input10 1000 0Interestingly enough, both our program and EM seem to have long execution times whenbetween a quarter and a half of the points are from the Gaussian distributions produced by\generate". At that frequency, the Gaussian points do not occur often enough to be easyto locate, and the execution times can be large. The uniform distribution of the \input5"�le is sometimes easier; because, it has no clumps to attract the model distributions. Thepure Gaussian distribution of the \input10" �le is almost always easier; because, it lacksthe distraction of the uniform distribution points.Figure 17 and Figure 18 show running time versus input �le number. Figure 17 uses thestandard initialization module, and Figure 18 utalizes random initialization and averaging.In the results from Figure 18, our method seems to have a slight advantage over EMwhen the data is uniform or almost uniform.

24 5. Testing the Algorithms

5 6 7 8 9 10
0

1000

2000

3000

4000

5000

6000

7000

Data Set Number

U
N

IX
 ti

m
e

C
om

m
an

d
U

ni
ts

Figure 17: UNIX User Time v.s. Data Set Number; machine = Solaris 2.x

EG
EM

5 6 7 8 9 10
0

1000

2000

3000

4000

5000

6000

7000

8000

Data Set Number

U
N

IX
 ti

m
e

C
om

m
an

d
U

ni
ts

Figure 18: UNIX User Time v.s.Data Set Number; machine = Solaris 2.x; Random Initialization

average EG
average EM

All of the previous results came from modeling the input data using axis-parallel Gaus-sian distributions. Figure 19 and Figure 20 give running time and log-likelihood resultsusing spherical Gaussian distributions in the model.Spherical Gaussians are not as powerful as axis-parallel Gaussians for modeling arbitrarydata sets; however, when the data occurs in isolated spherical clumps, they will obviouslyo�er an economical solution. Other data con�gurations often work well with the sphericalmodel if the number of distributions is limited to a certain range. We are able to model the

5. Testing the Algorithms 25�rst \testdisk" data quickly and accurately using either nine or ten spherical Gaussians.The log likelihoods of the results from these spherical modelings compare with the axis-parallel log likelihoods, and the running times for the spherical model are thirty to �ftypercent smaller than the corresponding axis-parallel running times.

2 4 6 8 10 12 14
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Number of Distributions

U
N

IX
 ti

m
e

C
om

m
an

d
U

ni
ts

Figure 19: UNIX User Time v.s. Number of Distributions; data set = 1; machine = Solaris 2.x; Spherical Gaussians

EG
EM

2 4 6 8 10 12 14
−6.2

−6.15

−6.1

−6.05

−6

−5.95

−5.9

−5.85

−5.8

−5.75

−5.7

Number of Distributions

Lo
g

Li
ke

lih
oo

d

Figure 20: Log Likelihood v.s. Number of Distributions; data set = 1; machine = Solaris 2.x; Spherical Gaussians

EG
EM

26 5. Testing the AlgorithmsWe made a MATLAB engine to model mixture solutions with axis-parallel Gaussiandistributions. Our software contains routines that implement axis-parallel EM, an axis-parallel version of an EG algorithm due to Manfred Warmuth [11], and the EG algorithmthat we developed. We borrowed much of the MATLAB code from Yoram Singer of AT&TBell Laboratories.Mr. Warmuth's algorithm is very e�cient; because, it works with a single, �xed learningrate. Our program has higher overhead due to the work of updating the privatized learningcoe�cients. Our method compares well with both EM and Mr. Warmuth's EG under someconditions, but Mr. Warmuth's program is often the fastest. I suspect that low overheadis the reason that his method succeeds.We wondered if di�culty in breaking symmetry of the distributions of the model wascausing our method to run slowly. Because, our approximation of the relative entropydistance function express the distance in terms of the relative entropy of an update of asingle Gaussian distribution; we are at our theoretical best during times when the modeldistributions do not overlap signi�cantly. We might, therefore, have problems breakingmodel symmetry. Figure 21 shows the results of running the MATLAB engine on a tightround cloud of random points surrounding the origin. The initialization is a set of axis-parallel Gaussians that are all practically identical.

2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

Number of Distributions

M
A

T
LA

B
 U

se
r

T
im

e
U

ni
ts

Figure 21: MATLAB User Time v.s. Number of Distributions; data set = 3

EM
Warmuth EG
My EG

5. Testing the Algorithms 27Figure 22 shows results with the same cloud of points, but the initialization here is a setof Gaussians with widespread mean vectors. These initial distributions are quite far apartin contrast to the starting distributions in Figure 21.We do not know if the distributions overlap signi�cantly at some time after initialization;however, we do know that they do not overlap much at the point of initialization.All of the algorithms seem to perform better with the new initial conditions, but ourmethod shows the same improvement as the other two algorithms show. We conclude thatpoor symmetry breaking is not our most signi�cant performance problem.

2 4 6 8
0

2

4

6

8

10

12

Number of Distributions

M
A

T
LA

B
 U

se
r

T
im

e
U

ni
ts

Figure 22: MATLAB User Time v.s. Number of Distributions; data set = 11

EM
Warmuth EG
My EG

28 5. Testing the Algorithms

2 4 6 8
0

100

200

300

400

500

600

700

Number of Distributions

N
um

be
r

of
 It

er
at

io
ns

Figure 23: Number of Iterations v.s. Number of Distributions; data set = 11

EM
Warmuth EG
My EG

Figure 23 shows the number of iterations that the three methods required for conver-gence. In this frame, our algorithm performs quite well compared to the other two, butthese results do not include the overhead for updating the many privatized learning rates.EM has no learning coe�cient, and Manfred Warmuth uses a single �xed learning rate.Neither of these methods spends time changing the value of �. The graph of these resultswith the overhead included is Figure 22.In Figures 24 and 25 we repeat the experiment using the familiar �rst \testdisc" data set.The annulus con�guration of these points automatically assures that we have a minimum ofoverlapping whenever the distributions are evenly spaced around the ring. Tests using thevisualization functions of MATLAB convince us that this experiment contains only slightGaussian intersection.

5. Testing the Algorithms 29

2 4 6 8
0

2

4

6

8

10

12

14

16

18

Number of Distributions

M
A

T
LA

B
 U

se
r

T
im

e
U

ni
ts

Figure 24: MATLAB User Time v.s. Number of Distributions; data set = 1

EM
Warmuth EG
My EG

2 4 6 8
0

50

100

150

200

250

300

Number of Distributions

N
um

be
r

of
 It

er
at

io
ns

Figure 25: Number of Iterations v.s. Number of Distributions; data set = 1

EM
Warmuth EG
My EG

30 6. Conclusion6 Conclusion

Using relative-entropy distance functions, we produced a variant of the exponentiated-gradient algorithm for a mixture solution that features especially formulated updates for theparameters of the model of axis-parallel or spherical Gaussian distributions and a privatizedand articulated learning rate. The private learning rate for a given parameter vector is smallwhen that vector is nearly the same as a potential solution vector and large when the givenvector is not part of a potential solution.
The performance of our new algorithm rivals that of EM in tests using uniform orrandom quasi-uniform data on an annulus, and three-dimensional data that is a mixture ofGaussian and uniform points.
Possible future work involves adding a training mechanism to our program for discoveringthe data-dependent optimum rate of increase of the privatized learning rates when theparameter vectors are far from the solution.

References 31References[1] Christopher M. Bishop; Neural Networks for Pattern Recognition; Clarendon Press,Oxford, (1995).[2] A. P. Dempster; N. M. Laird; and D. B. Rubin; \Maximum Likelihood From IncompleteData via the EM Algorithm (with discussion)"; Journal of the Royal Statistical SocietyB, 39, 1-38 (1977).[3] Richard O. Duda and Peter E. Hart; Pattern Classi�cation and Scene Analysis; JohnWiley and Sons, New York (1973).[4] B.S. Everitt and D.J. Hand; Finite Mixture Distributions; Chapman and Hall; London,1981; p34, p46.[5] David P. Helmbold; Robert E. Schapire; Yoram Singer; and Manfred K. Warmuth; \AComparison ofNewandOldAlgorithms forAMixtureEstimationProblem";Proceedingsof the Eighth Conference on Computational Learning Theory; July, 1995.[6] Jyrki Kivinen; Manfred Warmuth; \Additive Versus Exponentiated Gradient Updatesfor Linear Prediction"; Journal of Information and Computation; vol. 132, no. 1, pp1-64;January 1997.[7] Alberto Leon-Garcia; Probability and Random Processes for Electrical Engineering;Addison-Wesley, Reading, MA(1994).[8] Geo�rey J.McLachlan andThriyambakamKrishnan;TheEMAlgorithmandExtensions;John Wiley and Sons, New York, (1997).[9] John A. Rice; Mathematical Statistics and Data Analysis (Second Addition); DuxburyPress, Belmont, CA(1995).[10] Dilip Sarkar; \Methods to Speed Up Error Back-Propagation Learning Algorithm";ACM Computing Surveys; December 1995; v27, n4, pp519-42[11] Yoram Singer; Manfred Warmuth; \Learning Gaussian Mixtures Based on the RelativeEntropy"; yet unpublished.

32 A. De�nitions for Deriving the UpdatesA De�nitions for Deriving the UpdatesLetP = the number of observations in the data set;D = the number of dimensions of each observation;N = the number of Gaussian distributions in our model;w = an N -dimensional probability vector called the mixture vector.� = the PxD matrix that holds the raw data set;X = the PxN likelihood matrix wherexp;n = P (�pj�n;�n) ; andxp = (xp;1; : : : ; xp;N) :Because, the distributions are spherical or axis-parallel Gaussians; their covariance matri-ces are all diagonal; therefore, the entries o� of the diagonal are all zero for these matrices,and the univariate densities of the D dimensions of the raw data are independent. Themultivariate density under distribution n of observation p of the raw data matrix, �p, isthe product of the univariate densities of the D dimensions of the raw data, �p;1 : : : �p;D;thus, for the axis-parallel casexp;n = DYd=12664 1p2��n;d e� 12�(�p;d��n;d)�n;d �23775 ;and for the spherical casexp;n = DYd=12664 1p2��n e� 12�(�p;d��n;d)�n �23775 :Now,xp = (xp;1; : : : ; xp;N) ; andw = an N -dimensional probability vector called the mixture vector;therefore, LogLike(�j�) = 1P PXp=1 ln NXi=1 xp;iwi! = 1P PXp=1 ln(xp �w) :
To formulate the updates, we wish to maximize the function F̂ ,F̂ (�t+1) = �rL(�t) ��t+1 � d(�t+1jj�t) ; (A.1)thus, we wish to �nd the value of �t+1 that makes the derivative of F̂ with respect to �and evaluated at �t+1 vanish.

B. The Axis-Parallel Update 33B The Axis-Parallel Update
B.1 The Likelihood and Log Likelihood of the Raw DataThe likelihood of our raw data matrix, �, is

likelihood(�j�) = PYp=1 NXn=1hwnP ��p j �n; �n�i= PYp=1 NXn=12664wn DYd=12664 1p2��n;d e� 12�(�p;d��n;d)�n;d �237753775 :
The log likelihood of our raw data matrix, �, is

LogLike(�j�) = 1P PXp=1 ln2664 NXn=10BB@wn DYd=12664 1p2��n;d e� 12�(�p;d��n;d)�n;d �237751CCA3775 :
The 1=P is a scaling factor.Because, the Gaussians of our model are axis-parallel; the multivariate density underdistribution n of observation p of the raw data matrix, �p, is the product of the univariatedensities of the D dimensions of the raw data, �p;1 : : : �p;D; thus, X is the likelihood matrix,ifxp;n = DYd=12664 1p2��n;d e� 12�(�p;d��n;d)�n;d �23775 :

34 B. The Axis-Parallel UpdateB.2 Updating the Mixture Vector
@LogLike(�j�)@wn = 1P PXp=1

0BBBBBBBBBB@
DYd=12664 1p2��n;d e� 12�(�p;d��n;d)�n;d �23775NXn=10BB@wn DYd=12664 1p2��n;d e� 12�(�p;d��n;d)�n;d �237751CCA

1CCCCCCCCCCA= 1P PXp=1 xp;nxp �w! ;rL(wt)n = 1P PXp=1 xp;nxp �wt! :We wish to update the mixture vector; therefore, equation (A.1) becomesF̂ (wt+1) = �rL(wt) �wt+1 � d(wt+1jjwt) : (B.1)We add a Lagrangian term to enforce the constraint thatNXn=1wn;t+1 = 1 ; (B.2)and̂F (wt+1;
) = �rL(wt) �wt+1 � d(wt+1jjwt) +
 NXn=1wn;t+1 � 1! ; � > 0 : (B.3)To maximize F̂ (wt+1;
), set the N partial derivatives of F̂ (wt+1;
) with respect to thecomponents of w and evaluated at w = wt+1 equal to zero and obtain@F̂ (wt+1;
)@wn;t+1 = �rL(wt)n � @d(wt+1jjwt)@wn;t+1 +
 = 0 : (B.4)Set the partial derivative with respect to
 of F̂ (wt+1;
) equal to zero, and discover thatNXn=1wn;t+1 = 1 : (B.5)If we use the summation form of the relative-entropy distance function,dre(wt+1jjwt) = NXn=1wn;t+1 ln wn;t+1wn;t ;

B. The Axis-Parallel Update 35the N equations (B.4) become�rL(wt)n � (ln wn;t+1wn;t + 1) +
 = 0 :Solving this system of equations for wn;t+1 we havewn;t+1 = wn;te�rL(wt)n+
�1 (B.6)= wn;te�rL(wt)ne
�1 (B.7)= �wn;te�rL(wt)n ; � = e
�1 : (B.8)Summing the N equations we getNXn=1wn;t+1 = � NXi=1wi;te�rL(wt)i :By equation (B.5), � = 1PNi=1 wi;te�rL(wt)i ;and we get the exponentiated gradient update for the mixture vector,wn;t+1 = wn;te�rL(wt)nPNi=1wi;te�rL(wt)i (B.9)= wn;te24 �P PXp=1 xp;nxp �wt!35PNi=1wi;te24 �P PXp=1 xp;ixp �wt!35 : (B.10)

36 B. The Axis-Parallel UpdateB.3 Updating the � VectorWe are updating the means; therefore, equation (A.1) becomesF̂ (�n;d;t+1) = �nrL(�n;t)d � �n;d;t+1 � d(�n;d;t+1jj�n;d;t) ; (B.11)
@LogLike(�j�)@�n;d = 1P PXp=1

0BBBBBBBBBB@ wn DYd=12664 1p2��n;d e� 12�(�p;d��n;d)�n;d �23775NXn=10BB@wn DYd=12664 1p2��n;d e� 12�(�p;d��n;d)�n;d �237751CCA (�p;d � �n;d)�2n;d
1CCCCCCCCCCA= 1P PXp=1 wnxp;nxp �w (�p;d � �n;d)�2n;d ! ;rL(�n;t)d = 1P PXp=1 wnxp;n;txp;t �w (�p;d � �n;d)�2n;d ! :

We use the following derivation for an update for � based on an approximationof the relative-entropy distance formula. In the update of �n;d, we will approximateDRE (�t+1jj�t) with dRE(�n;t+1jj�n;t).Let � 2 RD. For distribution n,
dRE (�n;t+1jj�n;t) = Z�2RD Pn;t+1(�j�n;t+1) ln Pn;t+1(�j�n;t+1)Pn;t(�j�n;t) !d� ;

= Z�2RD Pn;t+1(�j�n;t+1) ln0BBBBBBBBBB@ DYd=1
2664 1p2��n;d e� 12�(�d��n;d;t+1)�n;d �237752664 1p2��n;d e� 12�(�d��n;d;t)�n;d �23775

1CCCCCCCCCCAd� ;

B. The Axis-Parallel Update 37
= DXd=1 Z�2RD Pn;t+1(�j�n;t+1) ln e� 12�(�d��n;d;t+1)�n;d �2d�� DXd=1 Z�2RD Pn;t+1(�j�n;t+1) ln e� 12�(�d��n;d;t)�n;d �2d� ;= �12 DXd=1 Z�2RD Pn;t+1(�j�n;t+1) " (�d � �n;d;t+1)� (�d � �n;d;t)�n;d # d� ;= �12 DXd=1 Z�2RD Pn;t+1(�j�n;t+1) "�2n;d;t+1 � �2n;d;t � 2�d (�n;d;t+1 � �n;d;t)�n;d # d� ;= �12 DXd=1 "�2n;d;t+1 � �2n;d;t � 2�n;d;t+1 (�n;d;t+1 � �n;d;t)�n;d # ;= 12 DXd=1(�n;d;t+1 � �n;d;t)2�n;d :Di�erentiating with respect to �n;d;t+1 we get(�n;d;t+1 � �n;d;t)�n;d :To maximize F̂ (�n;d;t+1), we wish to solve�nrL(�n;t)d � (�n;d;t+1 � �n;d;t)�n;d = 0 ;thus, the new update is�n;d;t+1 = �n�2n;drL(�n;t)d + �n;d;t (B.12)= �n�2n;dP PXp=1 wnxp;n;txp;t �w (�p;d � �n;d)�2n;d !+ �n;d;t (B.13)= �nP PXp=1 wnxp;n;txp;t �w (�p;d � �n;d)!+ �n;d;t : (B.14)The �2 co-factor that appears in this update limits the size of a proposed change in �whenever � is small. When � is small, we have a sharply peaked distribution, and wecertainly cannot tolerate large changes in the mean. A large change could take us past thedesired convergence value; after a really large change we could actually be farther from thedesired value than we were before the change. The result is divergence. Alternately, theco-factor increases the size of changes to the mean when � is large. When � is large, wehave a wide distribution; thus, we desire large changes in the mean; they are necessary forquick convergence when � is large.

38 B. The Axis-Parallel UpdateB.4 The � UpdateWe are updating �; therefore, equation (A.1) becomesF̂ (�n;d;t+1) = �nrL(�n;t)d � �n;d;t+1 � d(�n;d;t+1jj�n;d;t) ; (B.15)
@LogLike(�j�)@�n;d = 1P PXp=1

0BBBBBBBBBB@ wn DYd=12664 1p2��n;d e� 12�(�p;d��n;d)�n;d �23775NXn=10BB@wn DYd=12664 1p2��n;d e� 12�(�p;d��n;d)�n;d �237751CCA" (�p;d � �n;d)2�3n;d � 1�n;d#1CCCCCCCCCCA= 1P PXp=1 wnxp;nxp �w "(�p;d � �n;d)2�3n;d � 1�n;d#! ;rL(�n;t)d = 1P PXp=1 wnxp;n;txp;t �w " (�p;d � �n;d)2�3n;d � 1�n;d#! :
We use the following derivation for an update for � based on an approximationof the relative-entropy distance formula. In the update of �n;d, we will approximateDRE (�t+1jj�t) with dRE(�n;t+1jj�n;t).Let � 2 RD. For distribution n,

dRE (�n;t+1jj�n;t) = Z�2RD Pn;t+1(�j�n;t+1) ln Pn;t+1(�j�n;t+1)Pn;t(�j�n;t) !d� ;
= Z�2RD Pn;t+1(�j�n;t+1) ln0BBBBBBBBBB@ DYd=1

2664 1p2��n;d;t+1 e� 12�(�d��n;d)�n;d;t+1 �237752664 1p2��n;d;t e� 12�(�d��n;d)�n;d;t �23775
1CCCCCCCCCCAd� ;

B. The Axis-Parallel Update 39
= DXd=1 Z�2RD Pn;t+1(�j�n;t+1) ln �n;d;t�n;d;t+1!d�+ DXd=1 Z�2RD Pn;t+1(�j�n;t+1)(�d � �n;d)2 12 1�2n;d;t � 1�2n;d;t+1! d� ;= DXd=1 "ln��n;d;t�t+1 �+ 12�2n;d;t+1 1�2n;d;t � 1�2n;d;t+1!# ;= DXd=1 "ln �n;d;t�n;d;t+1!+ 12 �2n;d;t+1�2n;d;t � 1!# :Di�erentiating with respect to �n;d;t+1 we get�n;d;t+1�2n;d;t � 1�n;d;t+1 :To maximize F̂ (�n;d;t+1), we wish to solve�nrL(�n;t)d + 1�n;d;t+1 � �n;t+1�2n;t ;thus, the new update is�n;d;t+1 = q�2nrL(�n;t)d2�4n;d;t + 4�2n;d;t + �nrL(�n;t)d�2n;d;t2

= vuuut0@ �n2P PXp=1wnxp;n;txp;t �w " (�p;d � �n;d)2�n;d � �n;d#1A2 + �2n;d;t+ �n2P PXp=1wnxp;n;txp;t �w "(�p;d � �n;d)2�n;d � �n;d# :

40 C. The Spherical UpdateC The Spherical Update
C.1 The Likelihood and Log Likelihood of the Raw Data

The likelihood of our raw data matrix, �, is
likelihood(�) = PYp=1 NXn=1hwnP ��p j �n; �n�i= PYp=1 NXn=12664wn DYd=12664 1p2��n e� 12�(�p;d��n;d)�n �237753775 :

The log likelihood of our raw data matrix, �, is
LogLike(�) = 1P PXp=1 ln2664 NXn=10BB@wn DYd=12664 1p2��n e� 12�(�p;d��n;d)�n �237751CCA3775 :

The 1=P is a scaling factor.As in the axis-parallel case, because, the Gaussians of our model are spherical; the mul-tivariate density under distribution n of observation p of the raw data matrix, �p, is theproduct of the univariate densities of the D dimensions of the raw data, �p;1 : : : �p;D; thus,X is the likelihood matrix, if
xp;n = DYd=12664 1p2��n e� 12�(�p;d��n;d)�n �23775 :

C. The Spherical Update 41C.2 Updating the Mixture Vector
@LogLike(�j�)@wn = 1P PXp=1

0BBBBBBBBBB@
DYd=12664 1p2��n e� 12�(�p;d��n;d)�n �23775NXn=10BB@wn DYd=12664 1p2��n e� 12�(�p;d��n;d)�n �237751CCA

1CCCCCCCCCCA= 1P PXp=1 xp;nxp �w! ;rL(wt)n = 1P PXp=1 xp;nxp �wt! :
The relative-entropy update, EG�, uses the distance functiondre(wt+1jjwt) = NXn=1wn;t+1 ln(wn;t+1=wn;t) :The derivation for the EG� update in the spherical-Gaussian case is analogous with thederivation in the axis-parallel case. The EG� update for a mixture-vector component is

wn;t+1 = wn;te�rL(wt)nPNi=1wi;te�rL(wt)i (C.1)= wn;te24 �P PXp=1 xp;nxp �wt!35PNi=1wi;te24 �P PXp=1 xp;ixp �wt!35 : (C.2)

42 C. The Spherical UpdateC.3 Updating the � Vector
@LogLike(�j�)@�n;d = 1P PXp=1

0BBBBBBBBBB@ wn DYd=12664 1p2��n e� 12�(�p;d��n;d)�n �23775NXn=10BB@wn DYd=12664 1p2��n e� 12�(�p;d��n;d)�n �237751CCA (�p;d � �n;d)�2n
1CCCCCCCCCCA= 1P PXp=1 wnxp;nxp �w (�p;d � �n;d)�2n !rL(�n;t)d = 1P PXp=1 wnxp;n;txp;t �w (�p;d � �n;d)�2n ! :Again, the derivation is analogous with the axis-parallel case, and the exponentiated-gradient update for � is�n;d;t+1 = �n�2nrL(�n;t)d + �n;d;t (C.3)= �n�2nP PXp=1 wnxp;n;txp;t �w (�p;d � �n;d)�2n !+ �n;d;t (C.4)= �nP PXp=1 wnxp;n;txp;t �w (�p;d � �n;d)!+ �n;d;t : (C.5)C.4 The � UpdateIn updating the variance, we actually update its square root, the standard deviation, �.@LogLike(�j�)@�n = 1P PXp=1

0BBBBBBBBBB@ wn DYd=12664 1p2��n e� 12�(�p;d��n;d)�n �23775NXn=10BB@wn DYd=12664 1p2��n e� 12�(�p;d��n;d)�n �237751CCA DXd=1"(�p;d � �n;d)2�3n � 1�n#1CCCCCCCCCCA= 1P PXp=1 wnxp;nxp �w DXd=1"(�p;d � �n;d)2�3n � 1�n#! ;rL(�n;t)d = 1P PXp=1 wnxp;n;txp;t �w DXd=1"(�p;d � �n;d)2�3n � 1�n#! :We use the following derivation for an update for � based on an approximationof the relative-entropy distance formula. In the update of �n;d, we will approximateDRE (�t+1jj�t) with dRE(�n;t+1jj�n;t).

C. The Spherical Update 43Let � 2 RD. For distribution n,dRE (�n;t+1jj�n;t) = Z�2RD Pn;t+1(�j�n;t+1) ln Pn;t+1(�j�n;t+1)Pn;t(�j�n;t) !d� ;= Z�2RD Pn;t+1(�) ln DYd=1Pn;d;t+1(�j�n;t+1)Pn;d;t(�j�n;t) !d� ;
= Z�2RD Pn;t+1(�j�n;t+1) ln

0BBBBBBBBBBBBBBB@
266664 1(p2��n;t+1)D e� 12 DXd=1" (�d � �n;d)�n;t+1 #2377775266664 1(p2��n;t)D e� 12 DXd=1"(�d � �n;d)�n;t #2377775

1CCCCCCCCCCCCCCCAd� ;
= D Z�2RD Pn;t+1(�j�n;t+1) ln �n;t�n;t+1!d�+ DXd=1 Z�2RD Pn;t+1(�j�n;t+1)(�d � �n;d)2 12 1�2n;t � 1�2n;t+1! d� ;= D ln �n;t�n;t+1!+ D2 �2n;t+1 1�2n;t � 1�2n;t+1! ;= D "ln �n;t�n;t+1!+ 12 �2n;t+1�2n;t � 1!# :Di�erentiating with respect to �n;t+1 we getD �n;t+1�2n;t � 1�n;t+1! :We wish to solve (for �n;t+1)�nrL(�n;t) +D 1�n;t+1 � �n;t+1�2n;t ! = 0 ;thus, the new update is�n;t+1 = q�2nrL(�n;t)2�4n;t + 4D2�2n;t + �nrL(�n;t)�2n;t2D
= vuuut0@ �n2DP PXp=1wnxp;n;txp;t �w " (�p;d � �n;d)2�n;d � �n;d#1A2 + �2n;d;t

44 C. The Spherical Update+ �n2DP PXp=1wnxp;n;txp;t �w "(�p;d � �n;d)2�n;d � �n;d# :

D. Axis-Parallel and Spherical Versions of EM 45D Axis-Parallel and Spherical Versions of EMWe need standard algorithms to act as controls in our experiments. These specialversions of the EM algorithm work with axis-parallel and spherical Gaussian distributions;they will be the benchmarks that we require. To develop axis-parallel and spherical EM,remember that the standard EM updates for Gaussian mixture solutions are [1]�n;d;t+1 = PPp=1Pt(nj�p)�pPPp=1Pt(nj�p)�2n;d;t+1 = PPp=1Pt(nj�p)[�p � �n;d;t+1]2PPp=1Pt(nj�p)wn;t+1 = 1P PXp=1Pt(nj�p) :In the axis-parallel case, Bayes' theorem results inPt(nj�p) = Pt(�pjn)Pt(n)PNi=1Pt(�pji)Pt(i)= Pt(�pjn)wn;tPNi=1Pt(�pji)wi;t= wn;t DYd=12664 1p2��n;d e� 12�(�p;d��n;d)�n;d �23775NXi=10BB@wi;t DYd=12664 1p2��i;d e� 12�(�p;d��i;d)�i;d �237751CCA= wn;txp;nxp �w ;thus, we have �n;d;t+1 = PPp=1wn;txp;nxp�w �p;dPPp=1wn;txp;ixp�w�2n;d;t+1 = PPp=1wn;txp;nxp�w [�p;d � �n;d;t+1]2PPp=1wn;txp;nxp�wwn;t+1 = 1P PXp=1wn;txp;nxp �w :In the spherical case, Bayes' theorem results inPt(nj�p) = Pt(�pjn)Pt(n)PNi=1Pt(�pji)Pt(i)= Pt(�pjn)wn;tPNi=1Pt(�pji)wi;t

46 D. Axis-Parallel and Spherical Versions of EM
= wn;t DYd=12664 1p2��n e� 12�(�p;d��n;d)�n �23775NXn=10BB@wn DYd=12664 1p2��i e� 12�(�p;d��i;d)�i �237751CCA= wn;txp;nxp �w ;

thus, we have
�n;d;t+1 = PPp=1wn;txp;nxp�w �p;dPPp=1wn;txp;ixp�w�2n;d;t+1 = DXd=1 1DPPp=1wn;txp;nxp�w [�p;d � �n;d;t+1]2PPp=1wn;txp;nxp�wwn;t+1 = 1P PXp=1wn;txp;nxp �w :

E. The Axis-Parallel Updates of Manfred Warmuth's Method 47E The Axis-Parallel Updates of Manfred Warmuth's MethodE.1 The Likelihood and Log Likelihood of the Raw DataThe likelihood of our raw data matrix, �, islikelihood(�j�) = PYp=1 NXn=1hwnP ��p j �n; �n�i= PYp=1 NXn=12664wn DYd=12664 1p2��n;d e� 12�(�p;d��n;d)�n;d �237753775 :The log likelihood of our raw data matrix, �, isLogLike(�j�) = 1P PXp=1 ln2664 NXn=10BB@wn DYd=12664 1p2��n;d e� 12�(�p;d��n;d)�n;d �237751CCA3775 :The 1=P is a scaling factor.E.2 The AlgorithmIn a yet unpublished manuscript [11], Manfred Warmuth introduces a new EG� methodbuilt on his special approximation of the general form of the relative-entropy distanceformula,DRE(�t+1jj�t) = NXn=1wn;t+1 ln(wn;t+1wn;t) + NXn=1wn;t+1dRE(�n;t+1;�n;t) :Mr. Warmuth uses a loss function based on the negative log likelihood, and he wishes tominimize U1(�t+1) = DRE(�t+1;�t)� �j�j ln(P (�j�t+1)) : (E.1)An easier update, however, minimizesU2(�t+1) = DRE(�t+1;�t)� �j�j (ln(P (�j�t)) + (�t+1 ��t)r�t ln(P (�j�t))) :If we remove the parts of equation U2(�t+1) that do not depend upon �t+1, we obtainÛ2(�t+1) = DRE(�t+1jj�t)� �rL(�t) ��t+1 : (E.2)

48 E. The Axis-Parallel Updates of Manfred Warmuth's MethodE.3 Updating the Mixture Vector
@LogLike(�j�)@wn = 1P PXp=1

0BBBBBBBBBB@
DYd=12664 1p2��n;d e� 12�(�p;d��n;d)�n;d �23775NXn=10BB@wn DYd=12664 1p2��n;d e� 12�(�p;d��n;d)�n;d �237751CCA

1CCCCCCCCCCA= 1P PXp=1 xp;nxp �w! ;rL(wt)n = 1P PXp=1 xp;nxp �w! :We add a Lagrangian term to equation (E.2) to enforce the constraint thatNXn=1wn;t+1 = 1 ; (E.3)andÛ2(�t+1;
) = DRE(�t+1jj�t)� �rL(wt) �wt+1 +
 NXn=1wn;t+1 � 1! ; � > 0 :To minimize Û2(�t+1;
), set the N partial derivatives of Û2(�t+1;
) with respect tothe components of w and evaluated at w = wt+1 equal to zero and obtain@Û2(�t+1;
)@wn;t+1 = �@DRE(�t+1jj�t)@wn;t+1 � �rL(wt)n +
 = 0 : (E.4)Set the partial derivative with respect to
 of Û2(�t+1;
) equal to zero, and discover thatNXn=1wn;t+1 = 1 : (E.5)The N equations (E.4) becomeln wn;t+1wn;t + 1 + dRE(�n;t+1;�n;t)� �rL(wt)n +
 = 0 :Solving this system of equations for wn;t+1 we havewn;t+1 = wn;te�rL(wt)n�
�1�dRE(�n;t+1;�n;t)= wn;te�rL(wt)ne�
�1�dRE(�n;t+1;�n;t)= �wn;te�rL(wt)n ; � = e
�1�dRE(�n;t+1;�n;t) :

E. The Axis-Parallel Updates of Manfred Warmuth's Method 49Summing the N equations we getNXn=1wn;t+1 = � NXi=1wi;te�rL(wt)i :By equation (E.5), � = 1PNi=1 wi;te�rL(wt)i ;and we get the exponentiated gradient update for the mixture vector,wn;t+1 = wn;te�rL(wt)nPNi=1 wi;te�rL(wt)i= wn;te24 �P PXp=1 xp;nxp �wt!35PNi=1 wi;te24 �P PXp=1 xp;ixp �wt!35 :
E.4 Updating the � VectorWe are updating the mean vectors; therefore, equation (E.2) becomesÛ2(�t+1) = DRE(�t+1jj�t)� �nrL(�n;t)d � �n;d;t+1 ; (E.6)
@LogLike(�j�)@�n;d = 1P PXp=1

0BBBBBBBBBB@ wn DYd=12664 1p2��n;d e� 12�(�p;d��n;d)�n;d �23775NXn=10BB@wn DYd=12664 1p2��n;d e� 12�(�p;d��n;d)�n;d �237751CCA (�p;d � �n;d)�2n;d
1CCCCCCCCCCA= 1P PXp=1 wnxp;nxp �w (�p;d � �n;d)�2n;d ! ;rL(�n;t)d = 1P PXp=1 wnxp;n;txp;t �w (�p;d � �n;d)�2n;d ! :The update for � is based on Mr. Warmuth's approximation of the relative-entropydistance formula,DRE(�t+1jj�t) = NXn=1wn;t+1 ln(wn;t+1wn;t) + NXn=1wn;t+1dRE(�n;t+1;�n;t) :

50 E. The Axis-Parallel Updates of Manfred Warmuth's MethodLet � 2 RD. For distribution n,dRE (�n;t+1jj�n;t) = Z�2RD Pn;t+1(�j�n;t+1) ln Pn;t+1(�j�n;t+1)Pn;t(�j�n;t) !d� ;
= Z�2RD Pn;t+1(�j�n;t+1) ln0BBBBBBBBBB@ DYd=1

2664 1p2��n;d e� 12�(�d��n;d;t+1)�n;d �237752664 1p2��n;d e� 12�(�d��n;d;t)�n;d �23775
1CCCCCCCCCCAd� ;

= DXd=1 Z�2RD Pn;t+1(�j�n;t+1) ln e� 12�(�d��n;d;t+1)�n;d �2d�� DXd=1 Z�2RD Pn;t+1(�j�n;t+1) ln e� 12�(�d��n;d;t)�n;d �2d� ;= �12 DXd=1 Z�2RD Pn;t+1(�j�n;t+1) " (�d � �n;d;t+1)2 � (�d � �n;d;t)2�2n;d # d� ;= �12 DXd=1 Z�2RD Pn;t+1(�j�n;t+1) "�2n;d;t+1 � �2n;d;t � 2�d (�n;d;t+1 � �n;d;t)�2n;d # d� ;= �12 DXd=1 "�2n;d;t+1 � �2n;d;t � 2�n;d;t+1 (�n;d;t+1 � �n;d;t)�2n;d #= 12 DXd=1(�n;d;t+1 � �n;d;t)2�2n;d :Di�erentiating with respect to �n;d;t+1 we get@dRE(�t+1;�t)@�n;d;t+1 = (�n;d;t+1 � �n;d;t)�2n;d :RememberDRE(�t+1jj�t) = NXn=1wn;t+1 ln(wn;t+1wn;t) + NXn=1wn;t+1dRE(�n;t+1;�n;t) :Di�erentiating DRE(�t+1jj�t) with respect to �n;d;t+1 we obtain@DRE(�t+1;�t)@�n;d;t+1 = wn@dRE(�t+1;�t)@�n;d;t+1 :To minimize Û2(�n;d;t+1), we wish to solve

E. The Axis-Parallel Updates of Manfred Warmuth's Method 51wn (�n;d;t+1 � �n;d;t)�2n;d � �nrL(�n;t)d = 0 ;thus, the new update is�n;d;t+1 = �nwn�2n;drL(�n;t)d + �n;d;t (E.7)= �n�2n;dwnP PXp=1 wnxp;n;txp;t �w (�p;d � �n;d)�2n;d !+ �n;d;t (E.8)= �nP PXp=1 xp;n;txp;t �w (�p;d � �n;d)!+ �n;d;t : (E.9)E.5 The � UpdateWe are updating �; therefore, equation (E.2) becomesÛ2(�t+1) = DRE(�t+1jj�t)� �nrL(�n;t)d � �n;d;t+1 ; (E.10)
@LogLike(�j�)@�n;d = 1P PXp=1

0BBBBBBBBBB@ wn DYd=12664 1p2��n;d e� 12�(�p;d��n;d)�n;d �23775NXn=10BB@wn DYd=12664 1p2��n;d e� 12�(�p;d��n;d)�n;d �237751CCA" (�p;d � �n;d)2�3n;d � 1�n;d#1CCCCCCCCCCA= 1P PXp=1 wnxp;nxp �w "(�p;d � �n;d)2�3n;d � 1�n;d#! ;rL(�n;t)d = 1P PXp=1 wnxp;n;txp;t �w "(�p;d � �n;d)2�3n;d � 1�n;d#! :The update for � is based on Mr. Warmuth's approximation of the relative-entropydistance formula,DRE(�t+1jj�t) = NXn=1wn;t+1 ln(wn;t+1wn;t) + NXn=1wn;t+1dRE(�n;t+1;�n;t) :Let � 2 RD. For distribution n,dRE (�n;t+1jj�n;t) = Z�2RD Pn;t+1(�j�n;t+1) ln Pn;t+1(�j�n;t+1)Pn;t(�j�n;t) !d� ;

52 E. The Axis-Parallel Updates of Manfred Warmuth's Method
= Z�2RD Pn;t+1(�j�n;t+1) ln0BBBBBBBBBB@ DYd=1

2664 1p2��n;d;t+1 e� 12�(�d��n;d)�n;d;t+1 �237752664 1p2��n;d;t e� 12�(�d��n;d)�n;d;t �23775
1CCCCCCCCCCAd� ;

= DXd=1 Z�2RD Pn;t+1(�j�n;t+1) ln �n;d;t�n;d;t+1!d�+ DXd=1 Z�2RD Pn;t+1(�j�n;t+1)(�d � �n;d)2 12 1�2n;d;t � 1�2n;d;t+1! d� ;= DXd=1 "ln��n;d;t�t+1 �+ 12�2n;d;t+1 1�2n;d;t � 1�2n;d;t+1!# ;= DXd=1 "ln �n;d;t�n;d;t+1!+ 12 �2n;d;t+1�2n;d;t � 1!# :Di�erentiating with respect to �n;d;t+1 we get@dRE(~�;�)@�n;d;t+1 = �n;d;t+1�2n;d;t � 1�n;d;t+1 :RememberDRE(�t+1jj�t) = NXn=1wn;t+1 ln(wn;t+1wn;t) + NXn=1wn;t+1dRE(�n;t+1;�n;t) :Di�erentiating DRE(�t+1jj�t) with respect to �n;d;t+1 we obtain@DRE(�t+1;�t)@�n;d;t+1 = wn@dRE(�t+1;�t)@�n;d;t+1 :To minimize Û2(�n;d;t+1), we wish to solvewn 1�n;d;t+1 � �n;t+1�2n;t !� �nrL(�n;t)d = 0 ;thus, the new update is
�n;d;t+1 = s �2nw2nrL(�n;t)d2�4n;d;t + 4�2n;d;t + �nwnrL(�n;t)d�2n;d;t2

F. Reverse-Order Evaluation: dRE(�tjj�t+1) 53
= vuuut0@ �n2P PXp=1 xp;n;txp;t �w" (�p;d � �n;d)2�n;d � �n;d#1A2 + �2n;d;t+ �n2P PXp=1 xp;n;txp;t �w"(�p;d � �n;d)2�n;d � �n;d# :F Reverse-Order Evaluation: dRE(�tjj�t+1)In updating the variance, we actually update its square root, the standard deviation, �.@LogLike(�j�)@�n = 1P PXp=1

0BBBBBBBBBB@ wn DYd=12664 1p2��n e� 12�(�p;d��n;d)�n �23775NXn=10BB@wn DYd=12664 1p2��n e� 12�(�p;d��n;d)�n �237751CCA DXd=1"(�p;d � �n;d)2�3n � 1�n#1CCCCCCCCCCA= 1P PXp=1 wnxp;nxp �w DXd=1" (�p;d � �n;d)2�3n � 1�n#! :Here is the derivation for an update for � based our approximation of the relative-entropydistance formula.Let � 2 RD. For distribution n,dRE (�n;tjj�n;t+1) = Z�2RD Pn;t(�j�n;t) ln Pn;t(�j�n;t)Pn;t+1(�j�n;t+1)!d� ;= Z�2RD Pn;t(�j�n;t) ln DYd=1 Pn;d;t(�j�t)Pn;d;t+1(�j�n;t+1)!d� ;
= Z�2RD Pn;t(�j�n;t) ln

0BBBBBBBBBBBBBBB@
266664 1(p2��n;t)D e� 12 DXd=1" (�d � �n;d)�n;t #2377775266664 1(p2��n;t+1)D e� 12 DXd=1"(�d � �n;d)�n;t+1 #2377775

1CCCCCCCCCCCCCCCAd� ;
= D Z�2RD Pn;t(�j�n;t) ln �n;t+1�n;t !d�

54 F. Reverse-Order Evaluation: dRE(�tjj�t+1)+D Z�2RD Pn;t(�j�n;t)(�d � �n;d)2 12 1�2n;t+1 � 1�2n;t! d� ;= D ln �n;t+1�n;t !+ D2 �2n;t 1�2n;t+1 � 1�2n;t! ;= D "ln �n;t+1�n;t !+ 12 �2n;t�2n;t+1 � 1!# :Di�erentiating with respect to �n;t+1 we getD 1�n;t+1 � �2n;t�3n;t+1! :We wish to solve (for �n;t+1)�nrL(�n;t)i �D 1�n;t+1 � �2n;t�3n;t+1! = 0 ;thus, the new update is �n;t+1 =264�12 D�2n;t�nrL(�n;t)!+ 127 D�nrL(�n;t)!3 + 1180@81 D�2n;t�nrL(�n;t)!2 � 12 D�nrL(�n;t)!4�2n;t1A 12375 13
+190BBBBBBBB@ � D�nrL(�n;t)�224�12� D�2n;t�nrL(�n;t)�+ 127� D�nrL(�n;t)�3 + 118 81� D�2n;t�nrL(�n;t)�2 � 12� D�nrL(�n;t)�4�2n;t! 1235 13 1CCCCCCCCA+13 D�nrL(�n;t)! :

