
Rapid Decimation for Direct Volume RenderingJonathan Gibbs, Allen Van Gelder, Vivek Verma, and Jane WilhelmsUniversity of California, Santa CruzUCSC{CRL{97-26December 19, 1997AbstractAn approach for eliminating unnecessary portions of a volume when producing a direct volume render-ing is described. This reduction in volume size sacri�ces some image quality in the interest of renderingspeed. Since volume visualization is often used as an exploratory visualization technique, it is importantto reduce rendering times, so the user can e�ectively explore the volume. The methods presented canspeed up rendering by factors of 2 to 3 with minor image degradation.A family of decimation algorithms to reduce the number of primitives in the volume without alteringthe volume's grid in any way is introduced. This allows the decimation to be computed rapidly, makingit easier to change decimation levels on the y. Further, because very little extra space is required, thismethod is suitable for the very large volumes that are becoming common. The method is also grid-independent, so it is suitable for multiple overlapping curvilinear and unstructured, as well as regular,grids. The decimation process can proceed automatically, or can be guided by the user so that importantregions of the volume are decimated less than unimportant regions.A formal error measure is described based on a three-dimensional analog of the Radon transform.Decimation methods are evaluated based on this metric and on direct comparison with reference images.Keywords: Computer Graphics, Scienti�c Visualization, Direct Volume Rendering, Decimation, Level-of-detail, Irregular Grids.1 IntroductionDirect volume rendering is an attractive visualization technique because it can convey a lot of informationin a single image. This is done by mapping the data values directly to color and opacity. Direct volumerendering is ideal for initial explorations of new data sets because it requires minimal knowledge of thedata values to produce meaningful images. However, rendering an image is computationally expensive,particularly when the data is not on a regular grid. Large data sets are becoming very common due to therapid increase in CPU speed, and the increasing a�ordability of 3D data acquisition techniques. The datacalculation can be done o�-line, but the visualization demands interactivity. Although many advances havebeen made in direct volume rendering in the last several years, interactivity is possible only with small datasets, and often only if they are on regular grids. Work in computation uid dynamics, such as NASA's studyof the space shuttle, is done on multiple overlapping curvilinear grids or large unstructured grids. Even withstate-of-the-art hardware and algorithms, direct volume rendering of these data sets is far from interactive.A solution to this problem is to use partial data sets for interactive exploration, and then switch to thecomplete data set when more details are necessary. This paper presents a process whereby the original, large1



data set can be rapidly decimated for faster rendering, producing images with few visual artifacts. Sincelarge data sets can be hundreds of megabytes, it is vital that this method introduce a minimal amount ofnew data. This means that the data cannot be re-sampled, or re-gridded. Since the data set is not altered inmemory, there is no penalty for switching back and forth from decimated to non-decimated volumes. Thispaper is organized as follows:� Background in volume rendering and decimation is discussed in section 2.� We present a method of rendering decimated grids without re-meshing or re-gridding. This requiresa direct volume renderer that can handle arbitrary grids. To achieve this, we deal exclusively withpolygons instead of cells, using a volume rendering approach described previously [WVGTG96]. Thispolygon-based rendering technique and the general decimation algorithm are described in sections 3and 3.1.� In section 3.2, we present several methods of guiding the decimation. The decimation can be generatedautomatically, but it is often advantageous to allow the user to indicate important data values to helpguide the decimation.� We also present an image-based method for quantifying the error introduced in the volume at anygiven level of detail. This is covered in section 4.� Experimental results are discussed in section 5.2 Background and Related WorkWe will �rst briey discuss direct volume rendering. Next, we will survey the literature on decimation,covering surface decimation techniques �rst, and then discussing the volume-related work.2.1 Volume RenderingEarly approaches for direct volume rendering used ray-casting, cell projection, and splatting [FDFH90].Most research has addressed only rectilinear (regular) grids, and most previously reported acceleration andoptimization techniques apply only to such grids. New methods such as Fourier transforms [Lev92, Mal93],shear-warp transforms [LL94], and 3D texture maps [CCF94] su�er this limitation.However, many applications create non-rectilinear volume data sets, such as computational uid dynamics(CFD), �nite element analysis (FEM), and atmospheric and oceanographic measurements. Such data is oftenfound on curvilinear grids (where a computational regular grid is warped to �t around objects of interest),and unstructured grids (where data points are connected to form tetrahedral or other polyhedral cells).Sometimes non-tetrahedral cells are broken into tetrahedra to simplify processing; however, this can leadto artifacts and increases the number of primitives that the renderer has to handle. Multiple, overlapping,and intersecting grids may be used to sample space around very complex shapes [BCFM+89]. Our researchconcentrates on rendering such irregular data.A number of algorithms have been developed for irregular grids. Ray-casting general irregular grids iscomplicated and slow, though it does parallelize beautifully [Gar90, Cha92, Use93, Ma95]. Cell projectionand splatting have been used for irregular grids in software [MHC90, Gie92, Koy92, Wil92, GP93, MHK95,SMK96] and hardware [ST90, VGW93, YRL+96]. Instead of projecting cells, several algorithms have beendeveloped which project faces [Luc92, Cha93, WVGTG96].2



2.2 Surface DecimationWhile there has not been a lot of work in the decimation of volumes, there have been many papers addressingthe issue of decimation of surface meshes. There are several applications which typically create very largesurface meshes, such as those that generate isosurfaces from large volumes or acquire surfaces from real-worldobjects via 3D scanning.Surface simpli�cation techniques take a surface mesh comprised of a large number of polygons, andattempt to build a new model with fewer polygons, whose surface deviates as little as possible from theoriginal. Some methods require the surface to be re-sampled, so that the new model does not includevertices from the old. Most methods also require re-meshing, so the new connections are not a subset of theold.The simplest type of surface to decimate is the height �eld. This is essentially only a 2D problem.Garland and Heckbert present an overview of these techniques [GH95], most of which center around creatinga Delauney triangularization of the data at various error levels. More recently, work in this area has involvedgenerating the display in real-time and maintaining continuity between di�erent levels of detail [LKR+96].When dealing with an arbitrary surface, the problem becomes more complicated because the surfacecannot be easily parameterized in a 2D world space. DeHaumer and Zyda proposed two solutions: eitherstart with a coarse grid, and incrementally re�ne it until a criterion is met (adaptive subdivision), or startwith the �nest data, and group small polygons into larger ones (polygon growth) [DZ91]. Later algorithmshave built on these two fundamental concepts.Turk presented a method called re-tiling [Tur92]. Re-tiling re-samples the surface uniformly, and addsnew vertices to the original mesh. The old vertices are then removed one by one, making local adjustmentsto preserve the topology of the surface. Other algorithms have been presented which are also based on theincremental removal of vertices, followed by a re-triangulation [SZL92, KT96]. Some recent vertex-removalalgorithms have focused on more sophisticated error control [CCMS96, KLS96]. Other methods group planarpolygons, and replace them with fewer, larger, polygons [HH93, RB93], or remove polygons by iterativelycollapsing edges [HDD+93, Hop96]. Recent edge-collapsing algorithms have addressed edge selection, andallow the mesh to be non-uniformly decimated [AS96, RR96, XV96]. Another way to achieve non-uniformdecimation is by using simpli�cation envelopes [CVM+96]. An envelope consists of an inner and outersurface, and the simpli�cation is constrained to fall between these two surfaces. Volumetric methods canalso be employed by voxelizing the original mesh into a multi-resolution hierarchy, and extracting iso-surfacesof varying complexity [HHVW96, SFYC96].A very di�erent approach to providing many di�erent levels of detail from a complex model is a theoret-ically sound framework for multi-resolution models [EDD+95, CPD+96]. A multi-resolution model consistsof a simple base mesh, which is triangulated, and a series of local wavelet coe�cents, which capture thedetails of the original mesh at various resolutions.2.3 Volume DecimationThe surface methods are designed to reproduce the geometry of the surface as faithfully as possible. Forvolume rendering, it is not necessary to preserve the geometry of the volume, since the geometry is notreadily perceived in the �nal image. However, we still wish to produce an image which is as close to theoriginal as possible using fewer cells. Since the running time of most visualization techniques is dependenton the number of cells in the volume, this translates directly to improved performance.Cignoni et al. have presented a method for deriving multiple resolutions of a scattered volume dataset [CDFM+94]. The scattered data is visualized by �rst tetrahedralizing it, and then applying standardvisualization techniques for tetrahedral data sets. The multi-resolution model is built by constructing a3



series of tetrahedralizations based on decreasing tolerance values. The �rst tetrahedralization is built usinga small subset of the vertices, which permits approximation of all the other vertices within a certain errorbound. The next tetrahedralization is built from the previous by adding vertices until the new error criterionis met. A disadvantage of this method is the need to re-grid the volume by adding edges not present in theoriginal volume.Of course, instead of decimating the volume before it is rendered, some rendering techniques intrinsicallyallow for multiple levels of detail. Volume rendering algorithms which are slice-based allow the user to de�nethe number of slices used (for instance [YRL+96]) and can be seen as a limited form of multi-resolutionrendering. We can also achieve multiple levels of detail by modeling the data itself in a hierarchical fashion[LH91, WVG94, WVGTG96]. Hierarchical data models allow standard volume rendering methods to workon volumes of di�erent sizes. Building hierarchies is most e�ective for regular grids, since the hierarchicaldecomposition can easily follow cell boundaries. However, the rendered images typically have artifacts dueto the discontinuities which arise because di�erent parts of the volume are rendered at di�erent levels ofhierarchy. Using hierarchies also adds a signi�cant memory overhead.3 Polygon-Based Volume Rendering and DecimationFor rendering decimated volumes, we use a direct volume rendering system which is based on a generalizedsoftware scan conversion of polygons, rather than the more conventional ray-casting, projection, or splattingof cells [WVGTG96]. This di�erence is motivated by the fact that any cell type can be decomposed into a setof bounding polygons. This method also solves two key problems which are important to this work. First, itis able to render overlapping cells which occur in multi-grid data sets. Second, it is able to handle grids whichare not made up of simple cell types. The scan conversion algorithm generalizes traditional polygon scan-linemethods in that it renders semi-transparent regions of space between polygons, as well as opaque surfaces.This method requires no graphics hardware, and produces excellent quality images. For more details on therendering algorithm, and comparisons to other methods, see [WVGTG96]. The rendering time is based onthe number of polygons in the volume, after culling out those which don't lie in the viewing frustum andthose smaller than one pixel. To achieve faster rendering times, we need to further reduce the number ofpolygons used to render the image.Because the renderer sees only polygons, it is completely independent of grid type. We exploit thisadvantage when building simpli�ed models. The decimation process is not constrained to produce onlysimple hexahedral or tetrahedral cells. This is important since, when decimating polygons, we cannot a�ordto re-grid the volume to maintain simple cell types. Thus, the decimation process turns a grid made ofall hexahedra or tetrahedra into a hybrid grid with many-sided cells, and some polygons which are not apart of any cell. Given a volume of polygons, we identify those that are not needed to render the volume.For instance, if all the polygons in a sub-volume map to the exact same color, then clearly the internalpolygons are not needed for rendering. We only need the polygons that form the border (outer surface) ofthat sub-volume.3.1 The Decimation ProcessThe basic decimation process proceeds as follows. We examine the whole volume at the vertex level, attempt-ing to identify important vertices. Un-important vertices can be decimated. If a vertex is decimated, allpolygons which include this vertex are decimated as well. Thus, vertex decimation is equivalent to polygondecimation, in our algorithm. 4



Our initial attempt at this decimation process was strictly local. We examined the region comprised ofa vertex and its neighbors. We were able to assign an error metric based on the linearity of this region. Ifthe local region was very linear in all directions, then the region could be represented without the interiorvertex, or the polygons associated with it. Indeed, this method did work well locally, but globally it led tomany problems. The worst problem was the appearance of holes in images of the volume. A hole appearedwhere a long string of vertices along the view were all decimated due to their local linearity. There werealso bad artifacts when strong non-linearities in the transfer function (particularly around the free-streamin CFD volumes) caused certain small areas to allow their color to bleed very noticeably into the otherwiseclear portion of the volume. Figure 2 shows an example of these problems.To solve these problems, we propose a decimation method based on dividing up the data range intoseveral sub-ranges. There are certain boundaries in the volume which must be maintained for an intelligentvisualization. In a CFD volume, the boundary between the free-stream and other data values is one ofthese. In medical data, a few examples are the boundary between bone, di�erent types of tissue, and air.Our decimation method preserves these boundaries as accurately as possible, and only decimates the regionsbetween them.The �rst step in the decimation process is to break up the data range into several sub-ranges, or buckets.Each vertex is then mapped into one bucket. The bucket boundaries represent the critical values in thedata which contribute to the boundaries of interesting features in the rendered image. Hence adjacentvertices which lie on opposite sides of these bucket boundaries are very important. The other vertices canbe decimated from the volume without losing too much information. The bucket boundaries can be placedin several ways, and we will discuss several methods in the next section.The next step is to traverse the volume examining each vertex and its neighbors. In a regular or curvilineardataset several notions of \neighbor" are possible. For this work we consider each vertex to have 26 neighborsfound by incrementing the (i; j; k) location of the vertex by �1 in each direction. For tetrahedral grids, anexplicit list of neighbors must be generated for each vertex.If the vertex maps to the same bucket as all of its neighbors, then it will be decimated. Since buckets areplaced to indicate regions of related data values, and which map to similar colors, our heuristic is to throwthe vertex away hoping that the neighbors will do a su�cient job of representing the region.After the decimation pass has occurred and all vertices have been examined, each decimated regionconsists of a set of connected vertices that map to the same bucket, none of which is adjacent to a vertexin a di�erent bucket. The only vertices left active in the volume are those which are adjacent to verticesin buckets di�erent from the one they are in. These vertices should represent the important boundaries inthe volume. We also ensure that the vertices on the exterior boundary of any grid are retained. These arenecessary to identify the region of space which is inside the volume.In our implementation, we simply keep a boolean array indicating which polygons are in the volume. Toreduce even this memory overhead, the polygon list could be sorted so the decimated vertices are listed �rst,and an o�set could be kept to indicate where the active, or un-decimated, vertices begin.3.2 Bucket PlacementWe explored �ve automatic strategies for bucket placement: uniform by range, uniform by histogram, his-togram curvature, histogram features, and transfer function. It is also possible for the user to guide theplacement of the buckets interactively. Raw histograms consist of 256 equal-width buckets spanning therange of the data. Figure 1 shows raw histograms for three di�erent CFD volumes. However, all methodsthat use \histogram" actually use a histogram that has been smoothed by a Gaussian �lter of standarddeviation 2.82. 5



1. Uniform by Range: The simplest strategy places a user-speci�ed number of buckets at equal intervalsover the data range of the volume. More buckets typically lead to less decimation. This methodsometimes works well, but often generates artifacts due to imprecise bucket placement. Also, whenthe user changes the number of buckets by one, all but the �rst and last buckets move. Since thedecimation is very sensitive to bucket boundaries, moving the buckets in this manner can lead toun-intuitive changes in the decimation of the volume.2. Uniform by Histogram: Our second strategy is equally simple. Instead of placing buckets uniformly,based on the range of data, we place them uniformly based on the frequency of data, as judged bythe smoothed histogram. Smoothing the histogram lowers extreme peaks (such as the free stream ofaeronautical simulations), and allows the buckets to be spread more evenly.If based on the raw histogram, the approximately same number of vertices are found in each bucket.It is very hard to get substantial decimation rates using this strategy, since many buckets tend to getplaced where there is a lot of data. While this protects important data ranges from being decimated,it also prevents most of the vertices from being decimated. Inferior performance on raw histogramsmotivated the use of smoothing.3. Histogram Curvature: This strategy places the bucket boundaries based on the magnitudes of thesecond derivatives of the smoothed histogram. Bucket boundaries are thus placed in regions of highcurvature. A typical histogram will have several at areas, separated by steep spikes or valleys. Thesespikes and valleys often represent interesting features in the volume. We would like to place a bucketboundary on each side of such spikes and valleys to preserve the boundaries between this feature andother parts of the volume. If hi represents the histogram value at i, this method places buckets wherej(hi�1 � 2hi + hi+1)j is largest. The number of buckets can be chosen by the user. This strategyhas fewer artifacts than the previous two strategies, but it often places more buckets than are ideallynecessary. In particular, it often places boundaries not only on both sides of spikes and valleys, butalong these features as well. Again, smoothing the histogram can eliminate noise which can producehigh curvatures in the histogram, but which doesn't really represent a feature in the data.4. HistogramFeature: This strategy analyzes the smoothed histogram and attempts to �nd the featuresdiscussed above. Once these features are found, a good strategy would be to place a bucket boundaryon either side, and avoid placing a bucket in the middle of the feature. The strategy proceeds as follows.First, the histogram is scanned to identify the point with the highest curvature magnitude. This isthe center of a feature. We then scan both left and right, looking for the next peak in the curvatureof opposite sign, on opposite sides of the feature. A bucket boundary is placed at both of these datavalues. We then begin the search again, excluding any features already found, or any histogram entrieswhich already have bucket boundaries. This can proceed to place as many buckets as the user likes.5. Transfer Function: This strategy addresses the problem with previous strategies that they do nottake the transfer function into account. The boundaries that are perceived in the �nal images are largelythe result of the transfer function, and not simply the underlying data. Transfer functions are oftenused to produce sharp changes in hue, even when the data is smoothly varying, to perceive surfacesand subtle variations in the data. Our rendering system uses a piecewise linear transfer function. Acontrol point in the transfer function usually indicates a change in the hue at the corresponding datavalue. We can generate a very good set of buckets for the decimation process by simply placing abucket boundary at each control point. Figure 3 shows a typical histogram and transfer function, andillustrates where the buckets would be placed. The transfer function also often has more detail in6



0.1926 4.9775Blunt Fin 0.1161 2.9780Lockheed Fighter 0.0381 2.5629Space Shuttle Launch VehicleFigure 1: Histograms of three CFD volumes.regions of high interest, so this method places more buckets in these regions as well. This method ofgenerating buckets can produce images which are practically identical to images rendered using thenon-decimated volume.The user can often increase the percentage of polygons decimated by using a subset of the bucket bound-aries generated automatically. This is particularly true of the histogram feature and the transfer functionstrategies. If the user knows what data values correspond to important features, he can help the histogramfeature method by choosing which features to use. When using the transfer function strategy, it is often wiseto reduce the complexity of the transfer function, so fewer buckets are used. It should be noted, however,that reducing the number of bucket boundaries may increase the number of artifacts that appear in the �nalimages.4 Image-Based Error MetricWhile volume rendering does not display the geometry of the volume, it does display the light �eld associatedwith it. If we are to decimate volumes successfully for direct volume rendering, we must be able to analyzethe e�ect of decimation on the light �eld produced by the volume.The notion of a light �eld was introduced as an image-based rendering architecture [LH96, GGSC96].Levoy and Hanrahan de�ned an object's light �eld as a 4D function of position and direction in regions offree space. This function describes the light emitted by the object. A single rendered image is a 2D slice ofthis 4D function. Therefore, an appropriate sampling of rendered images can be used as an approximationof this light �eld. To give us a metric on how the decimation process has e�ected the visualization of thedataset, we want to compare the light �eld produced by the decimated volume with the light �eld producedby the original volume.We represent the light �eld with 32 \x-ray" images, two per viewpoint, taken at regular spacing on thehemisphere surrounding one side the volume. Image resolution was 500 by 500 pixels. The x-ray images aregenerated using a linear gray-scale transfer function with zero opacity. Thus the image from the sphericallyopposing viewpoint is identical, and need not be computed. The absence of opacity allows us to integratethe density (or other �eld function) through the volume, producing an approximate 3D analog of the Radontransformation [Mal93, CCF94, LH96]. 7



Method Blunt Fin Lockheed Fighter Space ShuttleUniform by Range 0.089 0.056 0.061Uniform by Histogram 0.117 0.042 0.040Histogram Curvature 0.062 0.048 0.004Histogram Features 0.058 0.065 0.031Transfer Function 0.074 0.071 0.022Table 1: Errors computed using the image-based error metric, as discussed in section 4. All data sets weredecimated approximately 45{62%.For our CFD data, we had to generate two images per viewpoint using separate linear gray-scale transferfunctions: one to show the data below free-stream, and the other to show the data above free-stream. If asingle gray-scale ramp were used, the free-stream data would obliterate any interesting features.The sixteen views are generated by tessellating a sphere into 60 congruent triangles [VGK96], and usingthe vertices of the triangles as the viewing directions. A ray from each vertex through the center of thesphere indicates a viewing direction. This method considers both an icosahedron, which has twelve vertices,and its dual �gure, the dodecahedron, which has 20 vertices, for a total of 32 vertices. Figure 4 shows thevertices of these dual polyhedra, and �gure 5 shows the 16 views of the data above free stream in the blunt�n (section 5).To evaluate the error of decimation in one direction, the decimated version of the image is compared withthe undecimated version, and pixel by pixel di�erences (with gray level scaled from 0 to 1.0) are computed.Since the two images were generated from precisely the same view, using the same rendering software, wedo not need to worry about registering the images. The sum-of-squares of these di�erences is accumulatedand averaged. For averaging purposes, pixels that were black in both images of the pair are discarded (i.e.,do not contribute to the number of \observations").After comparing the 32 image pairs, we have a set of 32 error values. In this paper we present the squareroot of the average of these values, which corresponds to the standard deviation, as a global error measure.This treatment of the errors is preliminary, and requires further study. Possible alternatives would weightlarger errors more heavily, with the extreme example being to use the maximum pixel error as the measurefor the whole dataset.5 Experimental ResultsWe examined the results of the decimation algorithm on three volumes, and compared the images gener-ated by several methods. We used the following CFD volumes: the blunt �n [HB85], a single curvilinear gridof 40,960 data points; the Space Shuttle launch vehicle [BCFM+89], consisting of nine curvilinear grids with941,159 data points; and the Lockheed �ghter (courtesy of John Batina of NASA Langley Research Center),an unstructured tetrahedral grid consisting of 13,382 data points and 70,125 tetrahedra. Comparable resultswere observed on CT data, but are not described further.Table 1 shows the error generated using di�erent bucket methods (see section 4). All methods wereadjusted to produced volumes that were about 45{62% decimated. No method is the winner in all cases,and many of the errors are closely clustered. Errors over 0.10 seem to predict substantial artifacts in theimages. In particular, the decimation method used for Figure 2, which was discussed in section 3.1, has anerror value of 0.203. In practice we have found the uniform by histogram and histogram curvature methods8



Blunt Fin Lockheed Fighter Space ShuttleNo Decimation:polygons total 173,752 290,096 1,524,791CPU seconds 73.2 228.6 328.8Transfer Function strategy:polygons retained 68,029 160,358 726,969decimation 61% 44% 52%CPU seconds 26.5 101.6 148.6speedup 2.8 2.3 2.2Histogram Feature strategy:polygons retained 67,956 182,559 550,764decimation 61% 37% 64%CPU seconds 25.4 116.6 125.3speedup 2.9 2.0 2.6Table 2: This table shows the decimation and rendering speedup obtained using the two more successfuldecimation methods, transfer function and histogram features, on three CFD volumes. The images corre-sponding to these numbers are �gures 6, 8, and 10. All times are based on a 150-MHz R4400 processor.Polygon counts refer to polygons processed for these images, not those in the whole volume.hard to control. However, the histogram features method is intuitive and easy to control, so it was selectedas the data-based method for image production.The image-based error metric gives us an indication of how well the decimated volume represents theunderlying data. However, the transfer function strategy makes its decimation choices based on a certaintransfer function. These choices may not reect the underlying data as well as other methods, yet still givesuperior results when the data is visualized with the same transfer function. For this reason, the transferfunction is capable of producing actual color images with much less error than the image-based error metricsuggests.Figures 6 { 11 show decimated and un-decimated images using the histogram features and the transferfunction strategies. Table 2 shows the decimation and speedup obtained for �gures 6, 8, and 10. Thedecimated volumes can generally be drawn 2 to 3 times faster than un-decimated volumes, and generally arevery close to the original images. Figures 7, 9, and 11 provide closeups of interesting regions in the volumes.The decimation rate for the closeup images in nearly identical to the decimation rate in the entire volume,so the decimation algorithms are removing polygons fairly equally from the entire volume.As expected, the blunt �n proved to be an easy volume to decimate. We obtained decimation rates ofover 60 percent with almost no artifacts visible. The images of the Lockheed �ghter also have few artifacts,but the decimation rates are lower, close to 40 percent. This may be because the �ghter volume has manymore complex boundaries than the blunt �n. The small white dots on the images of the decimated �ghterare the �ghter's opaque surface showing through the volume, and hiding volume polygons. The �ghter'ssurface geometry was not considered in the decimation calculation.The Space Shuttle proved to be a di�cult image to decimate without artifacts, due to the very large andvery thin cone of air just slightly above free stream, which surrounds the shuttle. The histogram curvaturestrategy (no image shown) gave unusually good results by focusing exclusively on the border between thefree-stream and neighboring data values, and ignoring other features (see table 1). As one can see in �gure 10,9



both the histogram features and transfer function strategies produce some artifacts on the large green surface.However, all the important features in the volume are still readily visible, and the images still carry the sameinformation as the un-decimated image.The decimation algorithm took 0.85 seconds for the blunt �n, 4.26 seconds for the �ghter, and 26.6seconds for the space shuttle datasets, using a 150-MHz R4400 processor. As can be seen from table 2, thesetimes are only a fraction of the time it takes to render the �nal images.6 Conclusion and Future WorkWe need to better understand the elements in a volume that play an active role in the �nal image. Onlya stronger understanding of these roles will help us produce substantially faster, perhaps real-time, volumerendering architectures for large irregular grids.This work has shown that one can indeed remove over 50 percent of the polygons in a volume, andnot readily tell the di�erence in the �nal images. However, the decimation process is very sensitive to thepreservation of important boundary surfaces in the volume. It is hard to get decimation rates much largerthan 50 percent by our methods, and still preserve image quality, because important surfaces tend to getviolated. We have shown that by identifying the key changes in color, we can remove those portions of thevolume which lie in between the transition points without substantial loss in the image quality in severaldata sets. However, more study is needed before we can tell whether this is a general phenomenon.References[AS96] Maria-Elena Algorri and Francis Schmitt. Mesh simpli�cation. Computer Graphics Forum(EUROGRAPHICS '96), 15(3):C{77{C{86, 1996.[BCFM+89] P.G. Buning, I.T. Chiu, Jr. F.W. Martin, R.L. Meakin, S. Obayashi, Y.M. Rizk, J.L. Steger,and M. Yarrow. Flow�eld simulation of the space shuttle vehicle in ascent. Fourth InternationalConference on Supercomputing, 2:20{28, 1989.[CCF94] Brian Cabral, Nancy Cam, and Jim Foran. Accelerated volume rendering and tomographicreconstruction using texture mapping hardware. In 1994 Symposium on Volume Visualization,pages 91{98, Washington, D.C., October 1994. ACM.[CCMS96] A. Ciampalini, P. Cignoni, C. Montani, and R. Scopigno. Multiresolution decimation basedon global error. submitted for publication, 1996.[CDFM+94] Paolo Cignoni, Leila De Floriani, Claudio Montani, Enrico Puppo, and Roberto Scopigno.Multiresolution modeling and visualization of volume data based on simplicial complexes. In1994 Symposium on Volume Visualization, Washington, D.C., October 1994. ACM.[Cha92] Judy Challinger. Parallel volume rendering for curvilinear volumes. In Proceedings of the Scal-able High Performance Computing Conference, pages 14{21. IEEE Computer Society Press,April 1992.[Cha93] Judy Challinger. Scalable parallel volume raycasting for nonrectilinear computational grids.In IEEE Parallel Visualization Workshop, October 1993.[CPD+96] Andrew Certain, Jovan Popovic, Tony DeRose, Tom Duchamp, David H. Salesin, and WernerStuetzle. Interactive multiresolution surface viewing. In Proceedings of SIGGRAPH, ComputerGraphics, Annual Conference Series, pages 91{98, August 1996.10
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