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Abstract

As the increasing complexity of IC design, layout reuse becomes more important.
The design for renewed fabrication processes usually maintains the layout technology
but using different design rules. First we extract devices and group them as a set of
macro device blocks. After shrinking the macro device blocks, we would like to pack
the rectilinear shaped blocks together while maintaining the original topological
relationship. Such problem is referred to as topology constrained rectilinear block
packing problem.

In this paper, we propose an efficient data representation for a special class of
rectilinear polygons, called ordered convez rectilinear polygons, using Bounded Slic-
ing Grid (BSG) structure. Based on both Sequence Pair (SP) and BSG structure,
we propose an algorithm, which independently compacts z and y dimension under
the topology constraints given the blocks are ordered convex shapes. By augument-
ing or further partitioning the arbitrary rectilinear polygons into the ordered convex
shapes, this method can be extended to handle the general rectilinear shaped blocks.

1 Block Packing in Layout Reuse

Due to the increasing complexity of IC design and short period requirement from devel-
opment to market, design reuse becomes more interesting problem. Layout is one of the
most complicate steps in IC design and therefore very resource consuming. Especially in
the full custom layout design, various aspects of functional blocks still necessitate tedious
manual work. The renewed fabrication processes usually maintain the basic layout struc-
tures but with different design rules. In order to avoid unnecessary waste of time and
energy, it has become of practical importance to reuse the layout results accumulated so
far in the old fabrication processes. The new design with shrunk devices and wiring can
be much simplified and speeded up by taking advantage of the old design.

Fig. 1 illustrates our layout reuse process : the original layout is given in Fig. 1 (a),
in which the devices are recognized and grouped as shown in Fig. 1 (b). Each group is
called a macro device block, and the internal device and wiring are sized according to the
new design rules. As such, the sizes of the macro device blocks are shrunk and shapes are
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Figure 1: A practical example of the layout reuse process : the original layout is given in (a),
in which the devices are recognized and grouped as shown in (b). Each group is called a macro
device block, and the internal device and wiring are sized according to the new design rules. As
such, the sizes of the macro device blocks are shrunk and shapes are changed, as shown in (c).
After compacting and re-routing the inter-connection between blocks, the final layout design is
achieved as shown in (d).



changed, as shown in Fig. 1 (¢). After compacting the macro device blocks and re-routing
the inter-connection between macro device blocks, the final layout design is achieved as

shown in Fig. 1 (d).

1.1 Topology Constrained Rectilinear Packing

Given the original placement of a set of building blocks, the block sizes are shrunk and
shapes are changed due to the shrunk devices and wiring in the new technology. A packing
algorithm is required for compacting the sized blocks together to eliminate the empty space
in between, while preserving the original topological relationship. Such packing problem,
referred to as topology constrained rectilinear block packing, can be formulated as follows

given a set of rectilinear-shaped blocks and their pre-placed positions, find
a packing which compacts blocks together to eliminate the empty space in
between, while keeping the topological relations among the blocks. Fig. 2
shows that five blocks in the original placement are sized and compacted together. The
topological relation between any two blocks is defined by their pre-placed positions. For
example, block A is left to block B as shown in Fig. 2 (b). There are three key points
which differentiate the new packing problem from the others:

e Packing of general rectilinear-shaped blocks;
e Preservation of topological relationship;

o Possibility of incremental update for easy incorporation of various design rules.

The last one is important for the consideration of the inter-connection between blocks.
In this paper, we focus the rectilinear block packing, ignoring the interblock wiring. The
incorporation of wiring will be presented in a separate paper.
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Figure 2: Given the placement of five macro blocks as shown in (a), the block sizes are shrunk
and shapes are changed after the device and wire sizing, as shown in (b). In (c), they are
compacted together while keeping the same topological relations as in (b).

1.2 Data Structures for Packing Problem

The interdependency of compaction in x and y dimension is the key issue for the optimal
packing solution. Furthermore the topological constraints require the structure, which
represents the placement of macro device blocks, clearly and accurately defines the rela-
tionship between each pair of blocks. Based on that, the local changes can be operated
easily under the topological constraints. Slicing structure was proposed to represent the



rectangle dissection by recursively cutting the rectangle into two parts by either horizontal
or vertical line [1]. Wong and Liu proposed a normalized Polish expression to represent
the slicing structure, which enables the efficient local search [2]. However, the slicing
structure is very limited since most of the packings are non-slicing. To cover this intrinsic
disadvantage, many efforts [3, 4, 5, 6] have been devoted but not satisfactory.

Recently, Nakatake et al. [7] introduced the bounded slicing grid structure (BSG) and
Murata et al. [8] proposed the sequenced pair (SP) to represent the general rectangle
packing including non-slicing structure. Both BSG and SP define the binary relationship
for each pair of rectangles, and provide the way to independently compact = and y di-
mension. [9] applied BSG structure for the general floorplanning problem, in which the
packing of L-shaped, T-shaped and soft blocks was studied. [10] indicated the complicate
relationship between rectilinear blocks and proposed a SP-based compaction algorithm
by using constraint graphs. Unfortunately the algorithm may leads to overlaps in the
final packing, which destroys the relationship defined by SP and generates the infeasible
solution.

1.3 Major Contribution of Our Work

In this paper, we propose an efficient representing method for a special class of rectilinear
polygons, called ordered convex rectilinear polygons, in BSG structure: partitioning a rec-
tilinear polygon into a set of sub-rectangles such that each pair of adjacent sub-rectangles
form an L-shape, which fits in BSG structure very well. An algorithm is derived to inde-
pendently align  and y coordinates of the sub-rectangles after BSG packing, such that
the original rectilinear shape can be recovered. The related proof shows that the algo-
rithm will not cause any overlap if every polygon has ordered convex shape, and they are
partitioned and assigned into BSG structure under some constraints, which are referred
to as aligning rules.

Based on this data representation, the topological relationship between the rectilinear
polygons can be simply but accurately described using the binary relations of the corre-
sponding sub-rectangles. As such, the topology constrained packing problem is transferred
into the constrained BSG assignment problem : find out an assignment of the blocks which
provides the same topological relations given by the placement, while the aligning rules
are satisfied. By combining SP with BSG structure, we derive an algorithm to construct
such a BSG assignment. Finally, by augumenting or further partitioning arbitrary recti-
linear polygons into the ordered convex shapes, the method can be extended to general
rectilinear block packing.

The rest of the paper is organized as follows : Section 2 introduces both BSG and
SP structures. Section 3 describes the representing method for ordered convex rectilinear
polygons in BSG structure. In Section 4, the necessary and sufficient conditions for the
constrained BSG assignment are discussed. A corresponding algorithm is developed, in
which the SP structure is used as a easy way to control the topological relationship.
Section 5 reports the experimental results and concludes the paper.



2 Introduction of BSG and SP Structures

Nakatake et al. [7] introduced an meta-grid structure, called bounded slicing grid structure
(BSG), and Murata et al. [8] proposed an equivalent structure, called sequence pair, to
represent the general rectangular dissection. Both structures can provide a finite solution
space at least one of which is optimal.

2.1 Bounded Slicing Grid Structure (BSG)

The BSG structure can be obtained as follows: make a row of non-overlapping horizontal
line segments of two unit length and repeat them row by row, shifting by one unit length
between the adjacent rows. A set of columns of vertical line segments with two unit length
can be constructed in a similar way as shown in Fig. 3 (a). Those line segments are called
horizontal and vertical Bounded Slice Lines, or BS-lines, respectively. The rectangular
space surrounded by adjacent pairs of vertical and horizontal BS-lines is called room.
BSG introduces the orthogonal relations of “right-to” and “above” to each pair of rooms
uniquely. In BSG domain, a packing is represented by an assignment of rectangular
blocks to rooms, called BSG assignment. This assignment is to map each block to a
distinct room, by which the blocks inherit the relationship of the rooms.
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Figure 3: (a) a bounded slicing grid structure, (b) the horizontal acyclic graph G, and (c) the
vertical acyclic graph G,.

Two directed acyclic graphs, horizontal graph G, and vertical graph G, are defined
to represent the binary relations, respectively. The horizontal graph G} puts vertex on
the center of each vertical BS-line as shown in Fig. 3 (b). There is an arc from v; to v;
if the vertical BS-line corresponding to v; is right to the vertical BS-line corresponding
to v; and they share the same room. In particular, s;, is a source connected to all the
vertices representing the leftmost BS-lines, and ¢, a sink connected from all the vertices
corresponding to the rightmost BS-lines. Furthermore the weight of each arc is given
by the width of the block assigned to the corresponding room, if the room is occupied.
Otherwise the weight is zero. The vertical graph G, is similarly defined as shown in Fig.
3 (¢).
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Figure 4: Given three blocks in (a), the a-y packing in (b) is achieved by first compacting «
dimension followed by y dimension, the y-z packing in (c) is achieved by first compacting y
dimension followed by 2 dimension. Neither (b) nor (c) gets the optimal solution. On the other
hand, if the three blocks are assigned into BSG as in (d), the optimal packing in (e) can be
achieved by independently compacting  and y dimension in BSG structure.

The z-coordinate of each block is determined by the length of the longest path from
the source to the BS-line left bounding the corresponding room. In particular, the overall
width equals to the length of the longest path from the source to the sink in the hori-
zontal graph. The y-coordinate and the overall height can be determined similarly in the
vertical graph. In such way, the BSG compaction is independently carried out in z and
y dimension. Given three blocks as shown in Fig. 4 (a), if the compaction is first carried
out in = dimension as shown in Fig. 4 (b), or the compaction is first carried out in y
dimension as shown in Fig. 4 (c), the result is not optimal. On the other hand, given
a BSG assignment as shown in Fig. 4 (d), the optimal compaction can be achieved by
independently compacting # and y dimension as shown in Fig. 4 (e). It has been proved
by [11] that there exists an assignment of n rectangular blocks in BSG domain of n rows
by n columns, such that the corresponding packing is optimal.

2.2 Sequence Pair (SP)

A sequence pair for a set of n blocks is a pair of sequences of n symbols which represent
blocks. The oblique-grid of sequence pair (abe, bac) shown in Figure 5 (a) consists of
two groups of 45° slope lines : n slope lines of +45° are named from left to right by
the symbols in the first sequence, and n slope lines of —45° are similarly named by the
symbols in the second sequence. Each block is placed at the crossing point of the positive
and negative slope lines named by the same symbol. For every block, the plane is divided
by the two crossing slope lines into four cones as shown in Fig. 5 (b). Block « is in the
upper cone of block b, then « is above b. Similarly, block ¢ is in the right cone of block
b, then ¢ is right to b. In general, equivalent with BSG, SP imposes either “right-to” or



€) (b) (©)

Figure 5: (a) the oblique-grid of sequence pair (abe, bac), (b) the four cones of block b, and (c)
the corresponding placement of a, b and c.

“above” relation for each pair of blocks :

) = bisrightto a,
) = b is above a.

(b)

Figure 6: The two acyclic graphs of sequence pair (abe, bac).

Similar to BSG structure, two directed acyclic graphs can be constructed to represent the
binary relationship defined by SP. In the horizontal graph GG, as shown in Fig. 6 (a), each vertex
corresponds to a block, there is an arc from block a to block ¢ if and only if block ¢ is right
to block a. In particular, there is a source s, connected to each leftmost block and a sink ¢,
connected from each rightmost block. Each vertex has a weight which equals to the width of
the block. The vertical graph G, is similarly constructed as shown in Fig. 6 (b).

Given an SP of n blocks, the area minimum packing is achieved by independently compacting
x and y dimension, which is equivalent to BSG compaction. It has been proved that the relations
defined by every sequence pair of n rectangular blocks are satisfiable. Furthermore, there is a
sequence pair which leads to the optimal packing [8].

The above introduction explores two key features for both BSG and SP : (1) the compaction
of z and y dimension can be carried out independently, which is the most critical issue for the



optimal packing; (2) the topological relation between each pair of rectangular blocks is uniquely
defined and maintained during the compaction. Besides, it is very convenient to adjust the
space between blocks by adjusting the weights in acyclic graphs without changing the topological
relations. Therefore BSG and SP are both appropriate structures for the topology constrained
packing problem formulated above. In the following, we will study the packing problem by
focusing on BSG structure.

3 A Representing Method in BSG Structure for
Ordered Convex Rectilinear Polygons

In layout reuse, the blocks can be any rectilinear shaped due to the device and wire sizing. We
have studied the special cases : L-shaped and T-shaped blocks and their representation in BSG
structure [9]. Intuitively L-shaped polygon was sliced into two sub-rectangles and assigned into
adjacent BSG rooms. After the BSG packing, the coordinates of the sub-rectangles are aligned
to recover the L-shape as shown in Fig. 7.
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Figure 7: An L-shaped polygon in BSG structure.

For general rectilinear blocks, the similar method could be applied : partitioning a rectilinear
polygon into a set of sub-rectangles, each of them is assigned to a distinct BSG room such that
the coordinates of the sub-rectangles can be aligned to recover the original shape after the
BSG packing. The constraints for the partition and assignment of such blocks, enforced by
the alignment algorithm, are referred to as aligning rules. To derive the aligning rules, we first
discuss the alignment method. In general, the alignment should disturb the BSG packing as
little as possible : (1) the # and y coordinates are aligned independently; (2) no overlap is
caused; (3) the topological relationship in BSG packing is preserved.

3.1 Coordinate Alignment of Sub-Rectangles

In BSG structure, there are two kinds of rooms : p-typed and g-typed rooms, which are located
alternatively as shown in Fig. 8. Each pair of adjacent rooms are alternatively pg- or gp-adjacent.
The horizontal pg-adjacent rooms share the bottom BS-line, and gp-adjacent rooms share the
top BS-line.

Compared to L-shaped polygons, the alignment of more than two sub-rectangles is more
complicated. Given a BSG assignment of five sub-blocks as shown in Fig. 9, a; and ay should
be aligned down to BS-line uy, while a; and as should be aligned up to BS-line vy, and so
on. Without loss of generality, we assume the BSG compacts the blocks to the left and to the
bottom. To align the y coordinate of a1, a; and a3, we may move up the BS-line u; such that
the distance between vy and wuy equals to the height of ay as shown in Fig. 9. In such way, as
can be aligned down to w; while up to vy at the same time.
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Figure 8: In BSG structure, p-typed and ¢-typed rooms distribute alternatively. Each pair of
adjacent rooms are alternatively pg- or gp-adjacent. The horizontal pg-adjacent rooms share the
bottom BS-line, and gp-adjacent rooms share the top BS-line.

Figure 9: y alignment of sub-rectangles A = {ay,as, - -, as}.

In the following, we are going to present an algorithm which aligns y coordinates of the
sub-blocks assigned into the horizontally adjacent BSG rooms as shown in Fig. 9.

3.1.1 y Alignment

Given an assignment of sub-rectangles A = {ay, as,...,a,} in horizontally adjacent BSG rooms.
If the room of ay is p-typed and a, is g-typed as shown in Fig. 10, then n must be even :
n = 2m, where m is an integer.

Figure 10: y alignment of sub-rectangles A = {ay,az,---,a,}.

Let y,, and y,, denote the y coordinate of BS-lines u; and v;, respectively, and h; denote the
height of rectangle a;. The BSG compaction in y direction has the following relations :

y’Ul = ma$(yu1 —I_ h27 yuQ —I_ h3)
Yy = max(yu2 + h47 Yus + h5)



Y1 = max(yum_l + hn—27 Y, + hn—l) (1)

Therefore, the y coordinate of sub-rectangles ay, as, ..., a, can be aligned if the following rela-
tions are satisfied:

Y1 + hn—2 = Yunm, + hn—l (2)

Let y;l denote the aligned y coordinate of BS-line u;, the non-overlapping constraint requires

y;l > Yu,, that is BS-lines should never be moved downward. The aligned y coordinate of u; is
given by :
yul = max( yu1 9
y’U,Q —I_ h3 - h27

Yus + hs — ha + hs — ho,

Yupoy + s — hp_a+ -+ hs — ha+ hs — ho,
yum‘|’hn—1_hn—2‘|’hn—3_hn—4‘|’""|‘h5_h4‘|’h3_h2) (3)

Once y;l is known, the aligned y coordinate of other BS-lines u;, where ¢ > 1, can be calculated
as follows :

yu2 = yul —I_ h2 - h-?)
Yus = Yu, T ha—hs
y;m_l = y;m_2 +hpg — s
Yo = Yupy + g = hpoy (4)

It can be proved that for each BS-line u;: y;l > Yy;. Therefore no overlap will occur since
the horizontal BS-lines never be moved downward. For the other three cases where both room
of ay and a, are p-typed, or a; is ¢-typed while a,, is p-typed, or both a; and a, are ¢-typed,
the similar equations can be derived. We can conclude that the y alignment is applicable for the
assignment in which the rooms of sub-rectangles are in the same row, and there is no occupied
room in between. The dummy blocks with zero width can be inserted into the empty rooms in

between as shown in Fig. 11. Obviously y alignment will not affect the topological relations
defined by the BSG structure.

3.1.2 =z Alignment

Given block A = {ay, as, as, a4, as} assigned into the horizontally adjacent BSG rooms as shown
in Fig. 12 (a), a1 and ay should be aligned to the BS-line {; in « direction, while ay and as
should be aligned to BS-line /5, and so on. The 2 coordinates can be aligned if the following
condition holds:

Xy, = o+ ws
T, = T, + w3
T, = T, + w4 (5)
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Figure 11: The BSG rooms of the sub-rectangles are in the same row, and there is no occupied
room in between. Dummy blocks with zero width are inserted into the internal empty rooms, if
exist.

where z;, denote the 2 coordinate of BS-line /; and w; the width of block ;. In other words,
BS-line I3 must be exactly right to [; by ws + ws. However, in the horizontal graph as shown
in Fig. 12 : 23, = maxz(x;, + wa + ws, ], + wy + w,), where wy and wy denote the width of
block a; and aé, respectively. As such, the above condition may not be satisfiable. However if
we move ay all the way to the right until hitting as, followed by a; to the right until hitting as
as shown in Fig. 12 (b), similarly move a4 and a5 to the left, the z coordinates can be aligned.
No overlap is caused if the sub-rectangles satisfy :

hl S h2 S h3 and h3 2 h4 2 h5 (6)

(b)

Figure 12: 2 alignment of sub-rectangles {ay, as, as, a4, as}.

The above property is required by z alignment. Since the blocks are moved only in horizontal
direction, z alignment will not affect the vertical relations. For each right-aligned block a; such
as aq, if any other block b is left to a;, then b is still left to a; after moving a; to the right. On
the other hand, h; < h;y1q according to Eq. 6. If b is right to a;, then b is a;44 itself or b is
also right to a;41 in the BSG packing. Thus b will be still right to a; after the right moving of
a;. The similar situation exists for the left-aligned blocks. Therefore the topological relations of
BSG packing is preserved by z alignment. Overall, the  and y coordinates are independently
aligned without causing overlaps or changing the relations of BSG packing.

The symmetrical alignment method applicable for the vertically adjacent assignments of the
sub-rectangles with the similar property as Eq. 6. In the following, we will derive the aligning
rules which guide the block partition and assignment.
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3.2 Ordered Convex Rectilinear Polygon

A rectilinear polygon A is referred to as convez rectilinear polygon (CRP) if and only if : given
any two points inside A, there exists a shortest Manhatann path inside A. Fig. 13 (a)(1)-(6)
show some convex rectilinear polygons, and (7)—(9) give three examples of non-convex rectilinear
shapes.
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Figure 13: (a) Given a set of rectilinear polygons, in which (1)—(6) are convex shape, while
(7)—(9) are non-convex. (b) When “down” edges are always right to “up” edges, such CRP is
H-ordered. Similarly when “left” edges are always below “right” edges, such CRP is V-ordered.

Given a CRP A, traverse the vertices in clockwise direction and mark each edge by “up”,
“right”, “down” and “left”, respectively as shown in Fig. 13(b). A is called H-ordered CRP if
and only if “down” edges are always right to “up” edges. Symmetrically, A is called V-ordered
CRP if and only if “left” edges are always below “right” edges. The CRP shown in Fig. 13 (a)
(1), (2) and (3) are both H-ordered and V-ordered CRP. On the other hand, the CRP shown in
Fig. 13 (a) (4) is only H-ordered and Fig. 13 (a) (5) only V-ordered. However the CRP shown
in Fig. 13 (a) (6) is neither H-ordered nor V-ordered.

3.2.1 Partition of Ordered CRPs
An H-ordered CRP A will be partitioned as follows :

1. Put a vertical slicing line on each vertical edge of A, the rectangular space bounded by any
two adjacent slicing lines forms a sub-rectangle. In particular, the sub-rectangle bounded
by two overlapped slicing lines has zero width as shown in Fig. 14 (a).

2. Visit sliced sub-rectangles from the left to right, and mark each sub-rectangle as shown
in Fig. 14 (b).

3. If one sub-rectangle is marked by both p and ¢, bi-partition it such that the two new
sub-rectangles are marked by p and ¢, respectively as shown in Fig. 14 (c).

We call such partition H-partition. Symmetrically the V-partition can be defined for V-ordered
CRPs.

12
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Figure 14: H-partition for an H-ordered CRP.

3.2.2 Property of Ordered CRPs
The following property of H-ordered CRP can be proved :

Lemma 1 Given an H-ordered CRP is H-partitioned : A = {ay, a9, -+, a,}, in which a; is
the it leftmost sub-rectangle, there exists a sub-rectangle ay, k € [1,n], which is referred to as
dominant sub-rectangle :

hi < hijyy, foriel[l, k)
hi > hiy1, fori €[k, n)
where h; denotes the height of block a;.

Similar property can be proved for V-ordered CRPs.

3.2.3 Assignment of Ordered CRPs

Given an H-partitioned CRP : A = {ay, as, --- a, }, in which a; is the i*" left-most sub-rectangle.
Let r; denote the BSG room assigned to a;. We call the BSG assignment of A H-assignment if

and only if :
1. If a; is marked by p, the room r; is p-typed, and if a; is marked by ¢, the room r; is
g-typed;

2. The room r; is on the left of the room r;4+1, and they are in the same row;
3. There is no occupied room between r; and r;4q.

Similarly V-assignment can be defined for the V-partitioned CRP. Based on the alignment
method discussed above, together with the property of Lemma 1, we can derive the following
theorem:

Theorem 1 Given a placement of a set of blocks with ordered convex rectilinear shape, the x
and y dimension can be independently compacted without overlaps if each H-ordered block is
H-partitioned and H-assigned, and each V-ordered block is V-partitioned and V-assigned in BSG
structure.

13



3.3 Constrained BSG Assignment

Given a pair of non-overlapping rectangles, there is either “right-to” or “above” relation, which
is captured by BSG structure exactly. However, the topological relation between two general
rectilinear polygons will be much more complicated. Rather than enumerating all possible
relations as done by [10], we can simply but accurately describe such relation using the binary
relations of the corresponding sub-rectangles. Given two rectilinear polygons A = {ay, as, as}
and B = {by, by, b3} as shown in Fig. 15 (a), the relation between A and B can be defined by the
relations of a; and b;, 7, j € [1,3] as shown in Fig. 15 (b), which are illustrated by the relation
diagram shown in Fig. 15 (c).

—=z— rightto
—<X- - above

(©)

@ (b)

Figure 15: Given two rectilinear polygons A and B in (a), the topological relations can be
described using the binary relations of the corresponding sub-blocks in (b), which are illustrated
by the relation diagram in (c).

If a sub-rectangle of B is right to a sub-rectangle of A, we say B is right to A. Similarly we
can define B below A. Due to the general rectilinear shape, there may exist multiple relations
between two polygons. We call A and B have consistent relationship if and only if B is not both
right to and left to A, and B is not both above and below A.

Lemma 2 Any two convex rectilinear polygons have the consistent relationship.

Based on the data representation presented above, the topology constrained rectilinear block
packing can be transferred to a constrained BSG assignment problem : given a set of rectilinear
blocks with ordered convex shapes, in which H-ordered CRPs are H-partitioned and V-ordered
CRPs are V-partitioned, find a BSG assignment in which the H-partitioned CRPs are H-assigned
and V-partitioned CRPs are V-assigned, while the topological relations defined in the BSG
structure are the same with the given placement. In the following, we will propose an algorithm
to construct such a BSG assignment for a given placement.

4 Constrained BSG Assignment

To construct such a BSG assignment, we decompose the problem into two steps : (1) construct
a BSG assignment which provides the equivalent relations with the given placement; (2) each
H-partitioned CRP is H-assigned and V-partitioned CRP is V-assigned. As introduced earlier,
SP defines the binary relation between each pair of blocks by the order of their symbols in
both sequences. Given n rectangular blocks and their topological relations, a sequence pair can
be easily constructed in O(n?) time [8]. In the following, we state a method proposed by S.
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Nakatake and K. Fujiyoshi, which constructs a BSG assignment for a given SP such that they
defines the exact same topological relationship.

4.1 SP-based BSG Assignment

Here we adopt a coordinate system composed by two sets of 445 and —45° slant integer axes,
both ordered from the left side as shown in Fig. 16 (a). A room centered at the cross of )’
positive and i’* negative axes is referred to by r(iy,i_):

Fact 1 In the slant coordinate system, if r(0,0) is assumed to be a p-typed BSG room, then
r(ig, 1) is a p-typed room if and only if both iy and i_ are even. On the other hand, r(iy, i_)
is a g-typed room if and only if both 1y and i_ are odd.
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Figure 16: (a) The slant coordinate system of BSG structure, (b) the BSG assignment for the
given sequence pair : 'y = a1 ag a3 a4 a5 ag a7 ag and I'_ = a1 a3 a5 ar ag a4 ay ag.

Let (I'y, ') denote the given sequence pair, and I'; (@;) denote the index of block a; in the first
sequence ['y. Without loss of generality, we assume the first sequence I'y = ay az --- a,, by
relabeling if necessary, so 'y (a;) =i for ¢ € [1,n]. For example, I'y = a1 a2 a3 a4 a5 as a7 as,
and I'_ = a; as a5 a7 ag a4 a2 ag. The SP-based BSG assignment can be constructed as follows:

1. Placing a dummy block ag at the beginning of I'_ : ag a1 a3 as ay ag a4 az ag, and
assigning ['y (ag) = 0.

2. Traversing I'_ from left to right and grouping every maximal sub-sequence which is either
consecutive blocks whose I'y () values are even and decreasing, or consecutive blocks whose
I'; () values are odd and increasing. In the above example, I'_ = [ao] [a1 a3 a5 a7] [as a4 a2] [as].
A grouped sub-sequence is called a group. The I'; () values of blocks in a group are uniquely
even or odd, thus the group is called even or odd accordingly. For example, [a; a3 a5 a7]
is an odd group, and [ag a4 a3] is a even group.

3. Placing an empty group between every pair of consecutive even groups or consecutive odd
groups : [ag] [a1 as as a7] [ag a4 az] [ ] [as].

4. I'_(a;) denotes the number of groups in I'_ before the group that contains ;. In this
example, I'_(a;) =1 and I'_(ag) = 4.
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5. Assigning block a; into BSG room r(I'j (a;), I'_(a;)) : a1 will be assigned into room r(1,1)
while ag to room r(8,4), as shown in Fig. 16 (b).

The following property can be proved :

Lemma 3 In SP-based BSG assignment, each cross r(I'y (a;), I'_(a;)) is a BSG room, and the
relation between each pair of rooms r(I'y(a;), I'_(a;)) and r(U'y(a;), I'_(a;)) is exactly the same
relation between the corresponding blocks a; and a; defined in the given SP.

Using this method, a BSG assignment of n blocks can be constructed such that it provides
the same relations with the given placement. To incorporate the H-assignment and V-assignment
into the construction, we first derive the necessary and sufficient conditions for such assignments.
Since H-assignment and V-assignment are symmetrical, we will only focus on H-assignment.

4.2 Necessary and Sufficient Conditions for H-Assignment

Lemma 4 [In the SP-based assignment, an H-partitioned CRP A = {ay, ag, -+, ap} is H-
assigned if and only if :
1. If a; is p-marked, both Iy (a;) and I'_(a;) should be even; if a; is q-marked, both 'y (a;)
and I'_(a;) should be odd.

2. If a; and a; are adjacent sub-blocks in A, and a; is left to a;, then I'y(a;) — I'y(a;) =
I'_(a;) — I'_(a;).

Due to the Fact 1, the first condition above is equivalent to the first requirement of H-
assignment defined in Section 3.2.3. In the slant coordinate system, room r(iy, i) and r(j4+,j—)
are in the same row if and only if j, — ¢4 = j_ — ¢—. Therefore the second condition above is
equivalent to the second requirement of H-assignment. As such, both conditions are necessary
for H-assignment. On the other hand, if there is an occupied room r(I'y (ag), '_(a)) between
a; and a; :

Py(ai) <Tylar) <Tilay),  To(a;) <T_(ar) <T_(a;)

then both sequences should be like : a; -- ay -- a;, which implies that block a; is right to
a; and left to a;. If a; belongs to the same CRP with a; and a;, then a; must be between a;
and a;, which conflicts to the assumption that a; and a; are adjacent. On the other hand, if
aj belongs to a distinct CRP, this CRP will be both left to and right to the CRP of a; and
a;, which conflicts to the consistent relationship in Lemma 2. Therefore the rooms between
a; and a; can not be occupied and the third requirement of H-assignment in Section 3.2.3 will
be automatically satisfied in the SP-based assignment. As such, the above two conditions are
sufficient for H-assignment. In the following, we will propose two operations on SP such that
the SP-based assignment satisfies the two conditions of Lemma 4.

4.3 PQ-Adjustment

To satisfy the first condition of Lemma 4, we define an operation called pg-adjustment. In the
SP-based assignment, I'y (¢) and I'_(7) are both even or both odd. Without loss of generality,
we assume a; is a p-marked block, 'y (¢) and I'_(¢) are both odd. pg-adjustment is carried out
by inserting two dummy blocks * into the first sequence 'y, one right before and the other right
after a;, respectively, and appending two empty groups at the end of the second sequence I'_,
as shown in Fig. 17 (a).

After this operation, [';(¢) is increased by one and becomes even. The I'; () values of those
blocks after a; in the first sequence are increased by two. The parity of [';() values will not be
affected except block a;. Given a; is the predecessor of a; in the second sequence, overall there
are four possible cases as shown in Fig. 17 (b) :
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1. I'4(j) is odd, @; and @; are originally grouped together as shown in Fig. 17 (b) (1). The
group will split when '} (¢) becomes even after the operation. So the number of groups
between a; and a; is increased by one.

2. I'y(j) is odd, a; and a; are grouped separately, an empty group must be in between as
shown in Fig. 17 (b) (2). When I'} (¢) becomes even, the empty group is deleted, and the
number of groups between a; and a; is decreased by one.

3. I'y(j) is even, a; and a; are grouped separately, as shown in Fig. 17 (b) (3). When I'y (7)
becomes even, which is greater than I'y (), ¢; and a; will be grouped separately and one
empty group is inserted in between, as shown in Fig. 17 (b) (3). The number of groups
between a; and a; is increased by one.

4. I'4(j) is even, a; and a; are grouped separately, as shown in Fig. 17 (b) (4). When '} (¢)
becomes even, which is smaller than I'y (j), a; and a; will be grouped together, and the
number of groups between a; and a; is reduced by one.

...... al > R al K annnes
@
odd odd even
@ .. [aj ai] R . [a]] [ai]

@ .. [aj j)dcf ] [aﬁjd... e [aﬁd[aﬁ/en...

even

@Q . [aj] [aicid(.j.. —— [a?/fn[ ] [a?'fn...

4 ...[aje]ver[]ai(idc.i.. — .. [aJ aie\]/enm

(b)

Figure 17: pg-adjustment inserts two dummy blocks in the first sequence, right before and after
a;, respectively as shown in (a). I'y(a;) is increased by one, and the I'; () values of blocks after
a; will be increased by two. On the other hand, given a; is the predecessor of a; in the second
sequence, overall there are four possible cases as shown in (b) (1) — (4). It can be derived that
the number of groups between a; and a; will be increased or decreased by one.

Since the parity of ' () values are preserved for the other blocks, the groups before a; in the
second sequence will not be changed, and I'_() values remain the same for those blocks before
a; in the second sequence. Due to the changed groups between «; and a;, I'_(«a;) is increased or
decreased by one and becomes even.

On the other hand, given ay is the successor of a; in the second sequence, the similar analysis
derives that the number of groups between a; and ag will be increased or decreased by one, and
the groups after ay in the second sequence will not be affected. So together with the changed
groups between a; and «a;, the I'_() values are changed by either 0 or 2 for those blocks after a;
in the second sequence. Overall we can conclude :
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Lemma 5 Given block a; is p-marked, and the corresponding room (I'y(a;), I'_(a;)) is g-typed,
pg-adjustment can adjust the room of a; to p-typed by simultaneously changing the parity of
't (a;) and U'_(a;). Furthermore the pg-adjustment carried for block a; will not affect the parity
of 't () or I'_() values of the other blocks.

Similarly, the pg-adjustment can be applied for ¢-marked block. In such way, the first condition
of Lemma 4 can be satisfied for all marked blocks by carrying out pg-adjustment for each of
them, individually.

4.4 A-Adjustment

Given sub-blocks a; and a; are adjacent and a; is left to a;, both sequences should be : a; -- a;.

We define Ai_j and Ai_] as follows :
A =Ti(a) = To(a), A =T_(a)) - T_(a).

The second condition of Lemma 4 is equivalent to AY = AY. The following Lemma can be
proved :

Lemma 6 | A — AY |=2m, where m is an integer.

When AY — Ai_j = 2m > 0, an operation called I';-adjustment is applied by consecutively
inserting 2m dummy blocks * in the first sequence I'}, somewhere between a; and a; (the exact
position will be discussed later), while appending 2m empty groups at the end of the second
sequence ['_.

In the example shown in Fig. 18, given a; and a3 are adjacent sub-blocks, A!® — Af’ = 4.
Four dummy blocks are inserted in the first sequence while four empty groups attached at
the end of the second sequence. Obviously, I';(3) is increased by four and accordingly Af’ is
increased by four. On the other hand, the parity of the I'; () values are not affected due to the
even number of dummy blocks, so the groups of the second sequence will not be affected, and
AY remains the same. Therefore A}* = A3 after the I'y-adjustment.

123456, [0 [1] [4[]1[62] [5] [1[3]

(S

2 6
/7 - adjustment

\

1x**> 23456, [0 [1) [4[][62 [5 []3 [1T]101I]

—
6 6

Figure 18: Given a sequence pair and adjacent sub-blocks a; and az : A — Af’ =4. [y-
adjustment is applied: insert four dummy blocks * into the first sequence between a; and ag,
while attach four empty groups [ | at the end of the second sequence. As such, Af’ = A3,

Similarly when Ai_j — AY = 2m > 0, another operation called I'_-adjustment is applied :
consecutively inserting 2m empty groups [ | in the second sequence I'_, somewhere between the
groups contain a; and a; (the exact position will be discussed later). If a; and a; are originally
grouped together, the group will split and 2m empty groups are inserted in between. On the
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other hand, 2m dummy blocks * are appended at the end of the first sequence I';. So the I'; ()
values remain the same, while I'_ () values of those blocks after the empty groups are increased
by 2m. Therefore AY is increased by 2m and A7 = AY. Overall we call both operations
A-adjustment.

4.4.1 Two Basic Properties of SP

Given two pairs of adjacent blocks (a;, a;) and (b, b;), their relative order in a sequence will be
one of the following three cases :
® a; --a; --b; --b; = a-pair separates from b-pair;

e a; --b; --a; --b; = a-pair interleaves with b-pair;
® a; --b; --b; -+ a; = a-pair includes b-pair.

The following two properties can be proved :

Lemma 7 If a-pair includes b-pair in one sequence of SP, then a-pair separates from b-pair in
the other sequence.

Lemma 8 If a-pair interleaves with b-pair in one sequence of SP, then a-pair separates from
b-pair in the other sequence.

Since the proofs of the above two Lemmas are very similar, we will only show the first one.
Without loss of generality, we assume a; is left to a;, and b; left to b;. Then both I'y and I'_ will
have : a; - a; and b; -- b;. If a-pair includes b-pair in the first sequence : I'y =a; - b; -- b; -~ a;,
then in the second sequence b; will not be between a; and a;. Otherwise, (a; b; a;, a; b; a;)
implies b; is right to a; and left to a;. With this relationship, if b; belongs to the same CRP
with a; and aj, b; will be left to a; while right to a;, which conflicts to the assumption that «;
and a; are adjacent. On the other hand, if b; belongs to a distinct CRP, the CRP of b; will be
both left to and right to the CRP of a; and a;, which conflicts to the consistent relationship of
Lemma 2. Therefore, the second sequence must be either b; --a; --a; ora; --a; --b;. The
same situation happens for b;. Thus there are only three possible permutations for the second
sequence ['_:

If I'_ is in the first case, we can derive the relation graph as shown in Fig. 19 (a). If ¢; and «q;
are adjacent sub-blocks as shown in Fig. 19 (b), b; and b; should be located at the two shadowed
cones, respectively. So they could not be adjacent. Similarly a; and a; could not be adjacent
given b; and b; are adjacent as shown in Fig. 19 (c). Therefore we can conclude I'_ can only be
one of the last two cases, in which a-pair separates from b-pair.

4.4.2 A-Adjustment Ordering

To satisfy the second condition of Lemma 4, A-adjustment will be carried out individually for
each pair of adjacent sub-blocks. It can be proved that :

Lemma 9 Given a non-overlapping placement of n blocks, there exists a SP such that all adja-
cent sub-blocks can be ordered such that :
1. If a-pair includes b-pair in one sequence : a; b; b; a;, b-pair will be operated earlier than
a-pair;
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Figure 19: If the relations between blocks a;, a;, b;, and b; are as shown in (a), assume a; and
a; are adjacent sub-blocks as shown in (b), the b; and b; would be located at the two shadowed
cones, respectively. They could not be adjacent. If we assume b; and b; are adjacent sub-blocks
as shown in (c¢), a; and a; could not be adjacent, either.

2. If a-pair, b-pair and c-pair interleave with each other in one sequence : a; - - b; -- ¢
~a; --b; - c;, b-pair will be operated earlier than a-pair or c-pair.

Given two adjacent sub-blocks a; and a;, when A-adjustment is carried out for a-pair, 2m
dummy blocks or empty groups are inserted in one sequence, the inserting position is within
some range between a; and a;, denoted by I(a;,a;) :
1. If b-pair interleaves with a-pair as : b; --a; -- b; -- a;, and the ordering of b-pair is earlier
than the ordering of a-pair, then I(a;, a;) must be right to b;;

2. If c-pair interleaves with a-pair as : a; -+ ¢; -- a; -- ¢;, and the ordering of c-pair is earlier
than the ordering of a-pair, then I(a;, a;) must be left to ¢;.

The following Lemma can be derived :

Lemma 10 Given the adjacent sub-blocks are ordered according to Lemma 9, the A-adjustment

are carried out in this order for each pair of adjacent sub-blocks, the second condition of Lemma
4 will be satisfied.

Since A-adjustment doesn’t change the parity of I'y () or I'_() values, the first condition of
Lemma 4 will not be affected. Overall we can conclude the following theorem :

Theorem 2 The necessary and sufficient conditions for H-assignment in Lemma 4 can be sat-
isfied by applying pg-adjustment and A-adjustment in SP-based BSG assignment.

The same operations can also be applied to SP-based BSG assignment such that the necessary
and sufficient conditions for V-assignment are satisfied.

4.5 One Example of Constrained BSG Assignment

In the following, we will give an example to show how the pg-adjustment and A-adjustment are
carried out in the SP-based BSG assignment. Given the placement of five blocks as shown in
Fig. 20, in which four L-shaped blocks are either H-partitioned or V-partitioned. The sequence
pair extracted from the placement is as follows :

'y =ay a3 a3 a4 a5 as a7 ag ag, ' = ay ag a4 a7 as as agay aog.

To simplify the notation, we abbreviate a; as ¢, and let *™ and [ ]” denote the n consecutive
dummy blocks and empty groups, respectively. In addition, we ignore the dummy blocks or
empty groups attached at the end of the sequences. The grouped SP is as follows :
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Figure 20: Given the placement of five blocks, in which four L-shaped blocks are either H-
partitioned or V-partitioned.

(123456789, [0][1][84][7][][5][]3][62][9])

Blocks ay, as, ag and ag are g-marked, in which the first condition of Lemma 4 has already been
satisfied for blocks a; and ag, so the pg-adjustment is carried out only for a; and ag :

(1£2x34567x8x9, [0][18][4][7][][5][][3][6][29]).

There are totally four pairs of adjacent sub-blocks, and according to Lemma 9 they are ordered

as follows:
(ag, ag) > (az, as) > (a1, a3) > (a7, ag),

in which > means “earlier than”. A-adjustment is carried out for each of them in such order.
First four empty groups are inserted into I'_ for pair (a4, as):

(1 +2%34567 %89, [0J[LS8[1*[4[T15]1[][3]1[6]29].

Second four empty groups are inserted into I'_ for pair (az, as):

(1234567 8«9, [0][L8][1*MI[7[]BII]3I6][]* [29]).

Then six dummy blocks are inserted into I'y for pair (a1, as):

(1+ 222 % 34567 %8 %9, [0][L8][]"[4][7][][5][][3][6][1"[29]).

At last, six dummy blocks are inserted into I'y for pair (a7, ag):

(1+7 234567 «8 %29, [0][L8][1*[4][7][1[5] [1(3][6] [1" [29]).

Finally the SP-based assignment is as follows:

a; — (1, 1) ag — (9, 17) as — (11, 11)
ag — (12, 6) a5 — (13, 9) ag — (14, 12)
ar — (15, 7) as — (17, 1) ag — (25, 17)

The necessary and sufficient conditions of both H-assignment and V-assignment are satisfied.
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Figure 21: A rectilinear polygon can be transferred to an ordered convex shape by sacrificing
some area, as shown in (a) and (b). However, the sacrificed area may be too large to be ignored
as shown in (c). Thus a further partition of the original macro block is appropriate as shown in

(d).

5 Experimental Results and Conclusion

For the application of the layout reuse problem, the constraint of ordered convex shape may
be too restrict. Ideally any rectilinear shaped block can be transferred to an ordered convex
shape by sacrificing a minimum area as shown in Fig. 21 (a) and (b). After the packing, those
sacrificed area can be utilized as the routing area. In some cases as shown in Fig. 21 (c), the
sacrificed area may be even larger than the area of original block. A further partition of the
macro block into a set of ordered convex sub-blocks as shown in Fig. 21 (d) is more appropriate,
which may requires the knowledge about the layout structure inside the macro block.

As such, how to transfer a general rectilinear block into an ordered convex shaped block
with minimum additional area, and how to partition a rectilinear block into a minimum number
of ordered convex shaped sub-blocks become interesting problems. We will not present the
algorithms here due to the limitation of the paper length.

5.1 Experimental Results

To demonstrate the efficiency of the algorithm presented in this paper, we randomly generated
the example shown in Fig. 22 (a), in which all of 31 blocks have ordered convex rectilinear
shapes. The packing result achieved by our algoirithm is shown in Fig. 22 (b), in which the
2 and y dimension are independently compacted and the topological relations of blocks in (a)
are preserved. On the other hand, we compact the 31 blocks without considering the relation
constraints, the packing result shown in Fig. 22 (c) is achieved by first packing z dimension
followed by y dimension, and Fig. 22 (d) is the result by first packing y dimension followed by
2 dimension. Obviously, our algorithm give the best result.

5.2 Conclusion

In this paper, we derived an efficient data representation for a special class of rectilinear polygons
: ordered convex rectilinear polygons in BSG structure. As such, the z and y dimension can
be independently compacted given every polygon is ordered convex shape. By transferring or
partitioning arbitrary rectilinear polygons into the ordered convex shapes, the general rectilinear
compaction can be dealed with. Furthermore the topology constrained rectilinear block packing
is applied to the layout reuse problem. A SP-based BSG assignment is constructed such that
the rectilinear blocks can be compacted under the topology constraints.
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Figure 22: (a) shows the initial placement of 31 rectilinear blocks, each of them has ordered
convex shape. (b) shows the packing of 31 blocks achieved by the algorithm presented in this
paper, in which the x and y dimension are independently compacted, and the relations of
blocks in (a) is preserved. On the other hand, we compact the 31 blocks without considering
the topological constraints : (c) shows the packing by first compacting & dimension then y
dimension, and (d) shows the packing by first compacting y dimension then z dimension.
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