
Topology Constrained Rectilinear BlockPacking for Layout ReuseTechnical Report : UCSC-CRL-97-23Maggie Kang Wayne Daimaggiek@cse.ucsc.edu dai@cse.ucsc.eduDept. of Computer EngineeringUniversity of California, Santa CruzAbstractAs the increasing complexity of IC design, layout reuse becomes more important.The design for renewed fabrication processes usually maintains the layout technologybut using di�erent design rules. First we extract devices and group them as a set ofmacro device blocks. After shrinking the macro device blocks, we would like to packthe rectilinear shaped blocks together while maintaining the original topologicalrelationship. Such problem is referred to as topology constrained rectilinear blockpacking problem.In this paper, we propose an e�cient data representation for a special class ofrectilinear polygons, called ordered convex rectilinear polygons, using Bounded Slic-ing Grid (BSG) structure. Based on both Sequence Pair (SP) and BSG structure,we propose an algorithm, which independently compacts x and y dimension underthe topology constraints given the blocks are ordered convex shapes. By augument-ing or further partitioning the arbitrary rectilinear polygons into the ordered convexshapes, this method can be extended to handle the general rectilinear shaped blocks.1 Block Packing in Layout ReuseDue to the increasing complexity of IC design and short period requirement from devel-opment to market, design reuse becomes more interesting problem. Layout is one of themost complicate steps in IC design and therefore very resource consuming. Especially inthe full custom layout design, various aspects of functional blocks still necessitate tediousmanual work. The renewed fabrication processes usually maintain the basic layout struc-tures but with di�erent design rules. In order to avoid unnecessary waste of time andenergy, it has become of practical importance to reuse the layout results accumulated sofar in the old fabrication processes. The new design with shrunk devices and wiring canbe much simpli�ed and speeded up by taking advantage of the old design.Fig. 1 illustrates our layout reuse process : the original layout is given in Fig. 1 (a),in which the devices are recognized and grouped as shown in Fig. 1 (b). Each group iscalled a macro device block, and the internal device and wiring are sized according to thenew design rules. As such, the sizes of the macro device blocks are shrunk and shapes are1



(a) (b)
(c) (d)Figure 1: A practical example of the layout reuse process : the original layout is given in (a),in which the devices are recognized and grouped as shown in (b). Each group is called a macrodevice block, and the internal device and wiring are sized according to the new design rules. Assuch, the sizes of the macro device blocks are shrunk and shapes are changed, as shown in (c).After compacting and re-routing the inter-connection between blocks, the �nal layout design isachieved as shown in (d). 2



changed, as shown in Fig. 1 (c). After compacting the macro device blocks and re-routingthe inter-connection between macro device blocks, the �nal layout design is achieved asshown in Fig. 1 (d).1.1 Topology Constrained Rectilinear PackingGiven the original placement of a set of building blocks, the block sizes are shrunk andshapes are changed due to the shrunk devices and wiring in the new technology. A packingalgorithm is required for compacting the sized blocks together to eliminate the empty spacein between, while preserving the original topological relationship. Such packing problem,referred to as topology constrained rectilinear block packing, can be formulated as follows: given a set of rectilinear-shaped blocks and their pre-placed positions, �nda packing which compacts blocks together to eliminate the empty space inbetween, while keeping the topological relations among the blocks. Fig. 2shows that �ve blocks in the original placement are sized and compacted together. Thetopological relation between any two blocks is de�ned by their pre-placed positions. Forexample, block A is left to block B as shown in Fig. 2 (b). There are three key pointswhich di�erentiate the new packing problem from the others:� Packing of general rectilinear-shaped blocks;� Preservation of topological relationship;� Possibility of incremental update for easy incorporation of various design rules.The last one is important for the consideration of the inter-connection between blocks.In this paper, we focus the rectilinear block packing, ignoring the interblock wiring. Theincorporation of wiring will be presented in a separate paper.
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(c)(b)(a)Figure 2: Given the placement of �ve macro blocks as shown in (a), the block sizes are shrunkand shapes are changed after the device and wire sizing, as shown in (b). In (c), they arecompacted together while keeping the same topological relations as in (b).1.2 Data Structures for Packing ProblemThe interdependency of compaction in x and y dimension is the key issue for the optimalpacking solution. Furthermore the topological constraints require the structure, whichrepresents the placement of macro device blocks, clearly and accurately de�nes the rela-tionship between each pair of blocks. Based on that, the local changes can be operatedeasily under the topological constraints. Slicing structure was proposed to represent the3



rectangle dissection by recursively cutting the rectangle into two parts by either horizontalor vertical line [1]. Wong and Liu proposed a normalized Polish expression to representthe slicing structure, which enables the e�cient local search [2]. However, the slicingstructure is very limited since most of the packings are non-slicing. To cover this intrinsicdisadvantage, many e�orts [3, 4, 5, 6] have been devoted but not satisfactory.Recently, Nakatake et al. [7] introduced the bounded slicing grid structure (BSG) andMurata et al. [8] proposed the sequenced pair (SP) to represent the general rectanglepacking including non-slicing structure. Both BSG and SP de�ne the binary relationshipfor each pair of rectangles, and provide the way to independently compact x and y di-mension. [9] applied BSG structure for the general 
oorplanning problem, in which thepacking of L-shaped, T-shaped and soft blocks was studied. [10] indicated the complicaterelationship between rectilinear blocks and proposed a SP-based compaction algorithmby using constraint graphs. Unfortunately the algorithm may leads to overlaps in the�nal packing, which destroys the relationship de�ned by SP and generates the infeasiblesolution.1.3 Major Contribution of Our WorkIn this paper, we propose an e�cient representing method for a special class of rectilinearpolygons, called ordered convex rectilinear polygons, in BSG structure: partitioning a rec-tilinear polygon into a set of sub-rectangles such that each pair of adjacent sub-rectanglesform an L-shape, which �ts in BSG structure very well. An algorithm is derived to inde-pendently align x and y coordinates of the sub-rectangles after BSG packing, such thatthe original rectilinear shape can be recovered. The related proof shows that the algo-rithm will not cause any overlap if every polygon has ordered convex shape, and they arepartitioned and assigned into BSG structure under some constraints, which are referredto as aligning rules.Based on this data representation, the topological relationship between the rectilinearpolygons can be simply but accurately described using the binary relations of the corre-sponding sub-rectangles. As such, the topology constrained packing problem is transferredinto the constrained BSG assignment problem : �nd out an assignment of the blocks whichprovides the same topological relations given by the placement, while the aligning rulesare satis�ed. By combining SP with BSG structure, we derive an algorithm to constructsuch a BSG assignment. Finally, by augumenting or further partitioning arbitrary recti-linear polygons into the ordered convex shapes, the method can be extended to generalrectilinear block packing.The rest of the paper is organized as follows : Section 2 introduces both BSG andSP structures. Section 3 describes the representing method for ordered convex rectilinearpolygons in BSG structure. In Section 4, the necessary and su�cient conditions for theconstrained BSG assignment are discussed. A corresponding algorithm is developed, inwhich the SP structure is used as a easy way to control the topological relationship.Section 5 reports the experimental results and concludes the paper.4



2 Introduction of BSG and SP StructuresNakatake et al. [7] introduced an meta-grid structure, called bounded slicing grid structure(BSG), and Murata et al. [8] proposed an equivalent structure, called sequence pair, torepresent the general rectangular dissection. Both structures can provide a �nite solutionspace at least one of which is optimal.2.1 Bounded Slicing Grid Structure (BSG)The BSG structure can be obtained as follows: make a row of non-overlapping horizontalline segments of two unit length and repeat them row by row, shifting by one unit lengthbetween the adjacent rows. A set of columns of vertical line segments with two unit lengthcan be constructed in a similar way as shown in Fig. 3 (a). Those line segments are calledhorizontal and vertical Bounded Slice Lines, or BS-lines, respectively. The rectangularspace surrounded by adjacent pairs of vertical and horizontal BS-lines is called room.BSG introduces the orthogonal relations of \right-to" and \above" to each pair of roomsuniquely. In BSG domain, a packing is represented by an assignment of rectangularblocks to rooms, called BSG assignment. This assignment is to map each block to adistinct room, by which the blocks inherit the relationship of the rooms.
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(c)Figure 3: (a) a bounded slicing grid structure, (b) the horizontal acyclic graph Gh, and (c) thevertical acyclic graph Gv .Two directed acyclic graphs, horizontal graph Gh and vertical graph Gv, are de�nedto represent the binary relations, respectively. The horizontal graph Gh puts vertex onthe center of each vertical BS-line as shown in Fig. 3 (b). There is an arc from vi to vjif the vertical BS-line corresponding to vj is right to the vertical BS-line correspondingto vi and they share the same room. In particular, sh is a source connected to all thevertices representing the leftmost BS-lines, and th a sink connected from all the verticescorresponding to the rightmost BS-lines. Furthermore the weight of each arc is givenby the width of the block assigned to the corresponding room, if the room is occupied.Otherwise the weight is zero. The vertical graph Gv is similarly de�ned as shown in Fig.3 (c). 5
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aFigure 4: Given three blocks in (a), the x-y packing in (b) is achieved by �rst compacting xdimension followed by y dimension, the y-x packing in (c) is achieved by �rst compacting ydimension followed by x dimension. Neither (b) nor (c) gets the optimal solution. On the otherhand, if the three blocks are assigned into BSG as in (d), the optimal packing in (e) can beachieved by independently compacting x and y dimension in BSG structure.The x-coordinate of each block is determined by the length of the longest path fromthe source to the BS-line left bounding the corresponding room. In particular, the overallwidth equals to the length of the longest path from the source to the sink in the hori-zontal graph. The y-coordinate and the overall height can be determined similarly in thevertical graph. In such way, the BSG compaction is independently carried out in x andy dimension. Given three blocks as shown in Fig. 4 (a), if the compaction is �rst carriedout in x dimension as shown in Fig. 4 (b), or the compaction is �rst carried out in ydimension as shown in Fig. 4 (c), the result is not optimal. On the other hand, givena BSG assignment as shown in Fig. 4 (d), the optimal compaction can be achieved byindependently compacting x and y dimension as shown in Fig. 4 (e). It has been provedby [11] that there exists an assignment of n rectangular blocks in BSG domain of n rowsby n columns, such that the corresponding packing is optimal.2.2 Sequence Pair (SP)A sequence pair for a set of n blocks is a pair of sequences of n symbols which representblocks. The oblique-grid of sequence pair (abc; bac) shown in Figure 5 (a) consists oftwo groups of 450 slope lines : n slope lines of +450 are named from left to right bythe symbols in the �rst sequence, and n slope lines of �450 are similarly named by thesymbols in the second sequence. Each block is placed at the crossing point of the positiveand negative slope lines named by the same symbol. For every block, the plane is dividedby the two crossing slope lines into four cones as shown in Fig. 5 (b). Block a is in theupper cone of block b, then a is above b. Similarly, block c is in the right cone of blockb, then c is right to b. In general, equivalent with BSG, SP imposes either \right-to" or6
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(a)Figure 6: The two acyclic graphs of sequence pair (abc; bac).Similar to BSG structure, two directed acyclic graphs can be constructed to represent thebinary relationship de�ned by SP. In the horizontal graph Gh as shown in Fig. 6 (a), each vertexcorresponds to a block, there is an arc from block a to block c if and only if block c is rightto block a. In particular, there is a source sh connected to each leftmost block and a sink thconnected from each rightmost block. Each vertex has a weight which equals to the width ofthe block. The vertical graph Gv is similarly constructed as shown in Fig. 6 (b).Given an SP of n blocks, the area minimum packing is achieved by independently compactingx and y dimension, which is equivalent to BSG compaction. It has been proved that the relationsde�ned by every sequence pair of n rectangular blocks are satis�able. Furthermore, there is asequence pair which leads to the optimal packing [8].The above introduction explores two key features for both BSG and SP : (1) the compactionof x and y dimension can be carried out independently, which is the most critical issue for the7



optimal packing; (2) the topological relation between each pair of rectangular blocks is uniquelyde�ned and maintained during the compaction. Besides, it is very convenient to adjust thespace between blocks by adjusting the weights in acyclic graphs without changing the topologicalrelations. Therefore BSG and SP are both appropriate structures for the topology constrainedpacking problem formulated above. In the following, we will study the packing problem byfocusing on BSG structure.3 A Representing Method in BSG Structure forOrdered Convex Rectilinear PolygonsIn layout reuse, the blocks can be any rectilinear shaped due to the device and wire sizing. Wehave studied the special cases : L-shaped and T-shaped blocks and their representation in BSGstructure [9]. Intuitively L-shaped polygon was sliced into two sub-rectangles and assigned intoadjacent BSG rooms. After the BSG packing, the coordinates of the sub-rectangles are alignedto recover the L-shape as shown in Fig. 7.
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y alignment x alignmentFigure 7: An L-shaped polygon in BSG structure.For general rectilinear blocks, the similar method could be applied : partitioning a rectilinearpolygon into a set of sub-rectangles, each of them is assigned to a distinct BSG room such thatthe coordinates of the sub-rectangles can be aligned to recover the original shape after theBSG packing. The constraints for the partition and assignment of such blocks, enforced bythe alignment algorithm, are referred to as aligning rules. To derive the aligning rules, we �rstdiscuss the alignment method. In general, the alignment should disturb the BSG packing aslittle as possible : (1) the x and y coordinates are aligned independently; (2) no overlap iscaused; (3) the topological relationship in BSG packing is preserved.3.1 Coordinate Alignment of Sub-RectanglesIn BSG structure, there are two kinds of rooms : p-typed and q-typed rooms, which are locatedalternatively as shown in Fig. 8. Each pair of adjacent rooms are alternatively pq- or qp-adjacent.The horizontal pq-adjacent rooms share the bottom BS-line, and qp-adjacent rooms share thetop BS-line.Compared to L-shaped polygons, the alignment of more than two sub-rectangles is morecomplicated. Given a BSG assignment of �ve sub-blocks as shown in Fig. 9, a1 and a2 shouldbe aligned down to BS-line u1, while a2 and a3 should be aligned up to BS-line v1, and soon. Without loss of generality, we assume the BSG compacts the blocks to the left and to thebottom. To align the y coordinate of a1, a2 and a3, we may move up the BS-line u1 such thatthe distance between v1 and u1 equals to the height of a2 as shown in Fig. 9. In such way, a2can be aligned down to u1 while up to v1 at the same time.8
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pFigure 8: In BSG structure, p-typed and q-typed rooms distribute alternatively. Each pair ofadjacent rooms are alternatively pq- or qp-adjacent. The horizontal pq-adjacent rooms share thebottom BS-line, and qp-adjacent rooms share the top BS-line.
a1 5a

v2

u3u1
u2

1v

a2 a3
a4Figure 9: y alignment of sub-rectangles A = fa1; a2; � � �; a5g.In the following, we are going to present an algorithm which aligns y coordinates of thesub-blocks assigned into the horizontally adjacent BSG rooms as shown in Fig. 9.3.1.1 y AlignmentGiven an assignment of sub-rectangles A = fa1; a2; : : : ; ang in horizontally adjacent BSG rooms.If the room of a1 is p-typed and an is q-typed as shown in Fig. 10, then n must be even :n = 2m, where m is an integer.
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1 2 3 m-1v v v vFigure 10: y alignment of sub-rectangles A = fa1; a2; � � �; ang.Let yui and yvi denote the y coordinate of BS-lines ui and vi, respectively, and hi denote theheight of rectangle ai. The BSG compaction in y direction has the following relations :yv1 = max(yu1 + h2; yu2 + h3)yv2 = max(yu2 + h4; yu3 + h5)9



...yvm�1 = max(yum�1 + hn�2; yum + hn�1) (1)Therefore, the y coordinate of sub-rectangles a1; a2; : : : ; an can be aligned if the following rela-tions are satis�ed: yu1 + h2 = yu2 + h3yu2 + h4 = yu3 + h5...yum�1 + hn�2 = yum + hn�1 (2)Let y0ui denote the aligned y coordinate of BS-line ui, the non-overlapping constraint requiresy0ui � yui , that is BS-lines should never be moved downward. The aligned y coordinate of u1 isgiven by :y0u1 = max( yu1 ;yu2 + h3 � h2;yu3 + h5 � h4 + h3 � h2;...yum�1 + hn�3 � hn�4 + � � �+ h5 � h4 + h3 � h2;yum + hn�1 � hn�2 + hn�3 � hn�4 + � � �+ h5 � h4 + h3 � h2 ) (3)Once y0u1 is known, the aligned y coordinate of other BS-lines ui, where i > 1, can be calculatedas follows : y0u2 = y0u1 + h2 � h3y0u3 = y0u2 + h4 � h5...y0um�1 = y0um�2 + hn�4 � hn�3y0um = y0um�1 + hn�2 � hn�1 (4)It can be proved that for each BS-line ui: y0ui � yui . Therefore no overlap will occur sincethe horizontal BS-lines never be moved downward. For the other three cases where both roomof a1 and an are p-typed, or a1 is q-typed while an is p-typed, or both a1 and an are q-typed,the similar equations can be derived. We can conclude that the y alignment is applicable for theassignment in which the rooms of sub-rectangles are in the same row, and there is no occupiedroom in between. The dummy blocks with zero width can be inserted into the empty rooms inbetween as shown in Fig. 11. Obviously y alignment will not a�ect the topological relationsde�ned by the BSG structure.3.1.2 x AlignmentGiven block A = fa1; a2; a3; a4; a5g assigned into the horizontally adjacent BSG rooms as shownin Fig. 12 (a), a1 and a2 should be aligned to the BS-line l1 in x direction, while a2 and a3should be aligned to BS-line l2, and so on. The x coordinates can be aligned if the followingcondition holds: xl2 = xl1 + w2xl3 = xl2 + w3xl4 = xl3 + w4 (5)10
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a2 a3Figure 11: The BSG rooms of the sub-rectangles are in the same row, and there is no occupiedroom in between. Dummy blocks with zero width are inserted into the internal empty rooms, ifexist.where xli denote the x coordinate of BS-line li and wi the width of block ai. In other words,BS-line l3 must be exactly right to l1 by w2 + w3. However, in the horizontal graph as shownin Fig. 12 : xl3 = max(xl1 + w2 + w3; xl1 + w02 + w02), where w02 and w03 denote the width ofblock a02 and a03, respectively. As such, the above condition may not be satis�able. However ifwe move a2 all the way to the right until hitting a3, followed by a1 to the right until hitting a2as shown in Fig. 12 (b), similarly move a4 and a5 to the left, the x coordinates can be aligned.No overlap is caused if the sub-rectangles satisfy :h1 � h2 � h3 and h3 � h4 � h5 (6)
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l2Figure 12: x alignment of sub-rectangles fa1; a2; a3; a4; a5g.The above property is required by x alignment. Since the blocks are moved only in horizontaldirection, x alignment will not a�ect the vertical relations. For each right-aligned block ai suchas a1, if any other block b is left to ai, then b is still left to ai after moving ai to the right. Onthe other hand, hi � hi+1 according to Eq. 6. If b is right to ai, then b is ai+1 itself or b isalso right to ai+1 in the BSG packing. Thus b will be still right to ai after the right moving ofai. The similar situation exists for the left-aligned blocks. Therefore the topological relations ofBSG packing is preserved by x alignment. Overall, the x and y coordinates are independentlyaligned without causing overlaps or changing the relations of BSG packing.The symmetrical alignment method applicable for the vertically adjacent assignments of thesub-rectangles with the similar property as Eq. 6. In the following, we will derive the aligningrules which guide the block partition and assignment.11



3.2 Ordered Convex Rectilinear PolygonA rectilinear polygon A is referred to as convex rectilinear polygon (CRP) if and only if : givenany two points inside A, there exists a shortest Manhatann path inside A. Fig. 13 (a)(1){(6)show some convex rectilinear polygons, and (7){(9) give three examples of non-convex rectilinearshapes.
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Ordered Convex Rectilinear Polygon(b)Figure 13: (a) Given a set of rectilinear polygons, in which (1){(6) are convex shape, while(7){(9) are non-convex. (b) When \down" edges are always right to \up" edges, such CRP isH-ordered. Similarly when \left" edges are always below \right" edges, such CRP is V-ordered.Given a CRP A, traverse the vertices in clockwise direction and mark each edge by \up",\right", \down" and \left", respectively as shown in Fig. 13(b). A is called H-ordered CRP ifand only if \down" edges are always right to \up" edges. Symmetrically, A is called V-orderedCRP if and only if \left" edges are always below \right" edges. The CRP shown in Fig. 13 (a)(1), (2) and (3) are both H-ordered and V-ordered CRP. On the other hand, the CRP shown inFig. 13 (a) (4) is only H-ordered and Fig. 13 (a) (5) only V-ordered. However the CRP shownin Fig. 13 (a) (6) is neither H-ordered nor V-ordered.3.2.1 Partition of Ordered CRPsAn H-ordered CRP A will be partitioned as follows :1. Put a vertical slicing line on each vertical edge of A, the rectangular space bounded by anytwo adjacent slicing lines forms a sub-rectangle. In particular, the sub-rectangle boundedby two overlapped slicing lines has zero width as shown in Fig. 14 (a).2. Visit sliced sub-rectangles from the left to right, and mark each sub-rectangle as shownin Fig. 14 (b).3. If one sub-rectangle is marked by both p and q, bi-partition it such that the two newsub-rectangles are marked by p and q, respectively as shown in Fig. 14 (c).We call such partition H-partition. Symmetrically the V-partition can be de�ned for V-orderedCRPs. 12



(a) slicing CRP on each vertical edge

(b) marking each sub-rectangle
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Figure 14: H-partition for an H-ordered CRP.3.2.2 Property of Ordered CRPsThe following property of H-ordered CRP can be proved :Lemma 1 Given an H-ordered CRP is H-partitioned : A = fa1; a2; � � �; ang, in which ai isthe ith leftmost sub-rectangle, there exists a sub-rectangle ak, k 2 [1; n], which is referred to asdominant sub-rectangle : hi � hi+1; for i 2 [1; k)hi � hi+1; for i 2 [k; n)where hi denotes the height of block ai.Similar property can be proved for V-ordered CRPs.3.2.3 Assignment of Ordered CRPsGiven an H-partitioned CRP : A = fa1; a2; ��� ang, in which ai is the ith left-most sub-rectangle.Let ri denote the BSG room assigned to ai. We call the BSG assignment of A H-assignment ifand only if :1. If ai is marked by p, the room ri is p-typed, and if ai is marked by q, the room ri isq-typed;2. The room ri is on the left of the room ri+1, and they are in the same row;3. There is no occupied room between ri and ri+1.Similarly V-assignment can be de�ned for the V-partitioned CRP. Based on the alignmentmethod discussed above, together with the property of Lemma 1, we can derive the followingtheorem:Theorem 1 Given a placement of a set of blocks with ordered convex rectilinear shape, the xand y dimension can be independently compacted without overlaps if each H-ordered block isH-partitioned and H-assigned, and each V-ordered block is V-partitioned and V-assigned in BSGstructure. 13



3.3 Constrained BSG AssignmentGiven a pair of non-overlapping rectangles, there is either \right-to" or \above" relation, whichis captured by BSG structure exactly. However, the topological relation between two generalrectilinear polygons will be much more complicated. Rather than enumerating all possiblerelations as done by [10], we can simply but accurately describe such relation using the binaryrelations of the corresponding sub-rectangles. Given two rectilinear polygons A = fa1; a2; a3gand B = fb1; b2; b3g as shown in Fig. 15 (a), the relation between A and B can be de�ned by therelations of ai and bj , i; j 2 [1; 3] as shown in Fig. 15 (b), which are illustrated by the relationdiagram shown in Fig. 15 (c).
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(c)Figure 15: Given two rectilinear polygons A and B in (a), the topological relations can bedescribed using the binary relations of the corresponding sub-blocks in (b), which are illustratedby the relation diagram in (c).If a sub-rectangle of B is right to a sub-rectangle of A, we say B is right to A. Similarly wecan de�ne B below A. Due to the general rectilinear shape, there may exist multiple relationsbetween two polygons. We call A and B have consistent relationship if and only if B is not bothright to and left to A, and B is not both above and below A.Lemma 2 Any two convex rectilinear polygons have the consistent relationship.Based on the data representation presented above, the topology constrained rectilinear blockpacking can be transferred to a constrained BSG assignment problem : given a set of rectilinearblocks with ordered convex shapes, in which H-ordered CRPs are H-partitioned and V-orderedCRPs are V-partitioned, �nd a BSG assignment in which the H-partitioned CRPs are H-assignedand V-partitioned CRPs are V-assigned, while the topological relations de�ned in the BSGstructure are the same with the given placement. In the following, we will propose an algorithmto construct such a BSG assignment for a given placement.4 Constrained BSG AssignmentTo construct such a BSG assignment, we decompose the problem into two steps : (1) constructa BSG assignment which provides the equivalent relations with the given placement; (2) eachH-partitioned CRP is H-assigned and V-partitioned CRP is V-assigned. As introduced earlier,SP de�nes the binary relation between each pair of blocks by the order of their symbols inboth sequences. Given n rectangular blocks and their topological relations, a sequence pair canbe easily constructed in O(n2) time [8]. In the following, we state a method proposed by S.14



Nakatake and K. Fujiyoshi, which constructs a BSG assignment for a given SP such that theyde�nes the exact same topological relationship.4.1 SP-based BSG AssignmentHere we adopt a coordinate system composed by two sets of +450 and �450 slant integer axes,both ordered from the left side as shown in Fig. 16 (a). A room centered at the cross of ith+positive and ith� negative axes is referred to by r(i+; i�):Fact 1 In the slant coordinate system, if r(0; 0) is assumed to be a p-typed BSG room, thenr(i+; i�) is a p-typed room if and only if both i+ and i� are even. On the other hand, r(i+; i�)is a q-typed room if and only if both i+ and i� are odd.
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(a) (b)Figure 16: (a) The slant coordinate system of BSG structure, (b) the BSG assignment for thegiven sequence pair : �+ = a1 a2 a3 a4 a5 a6 a7 a8 and �� = a1 a3 a5 a7 a6 a4 a2 a8.Let (�+;��) denote the given sequence pair, and �+(ai) denote the index of block ai in the �rstsequence �+. Without loss of generality, we assume the �rst sequence �+ = a1 a2 � � � an, byrelabeling if necessary, so �+(ai) = i for i 2 [1; n]. For example, �+ = a1 a2 a3 a4 a5 a6 a7 a8,and �� = a1 a3 a5 a7 a6 a4 a2 a8. The SP-based BSG assignment can be constructed as follows:1. Placing a dummy block a0 at the beginning of �� : a0 a1 a3 a5 a7 a6 a4 a2 a8, andassigning �+(a0) = 0.2. Traversing �� from left to right and grouping every maximal sub-sequence which is eitherconsecutive blocks whose �+() values are even and decreasing, or consecutive blocks whose�+() values are odd and increasing. In the above example, �� = [a0] [a1 a3 a5 a7] [a6 a4 a2] [a8].A grouped sub-sequence is called a group. The �+() values of blocks in a group are uniquelyeven or odd, thus the group is called even or odd accordingly. For example, [a1 a3 a5 a7]is an odd group, and [a6 a4 a2] is a even group.3. Placing an empty group between every pair of consecutive even groups or consecutive oddgroups : [a0] [a1 a3 a5 a7] [a6 a4 a2] [ ] [a8].4. ��(ai) denotes the number of groups in �� before the group that contains ai. In thisexample, ��(a1) = 1 and ��(a8) = 4. 15



5. Assigning block ai into BSG room r(�+(ai); ��(ai)) : a1 will be assigned into room r(1; 1)while a8 to room r(8; 4), as shown in Fig. 16 (b).The following property can be proved :Lemma 3 In SP-based BSG assignment, each cross r(�+(ai); ��(ai)) is a BSG room, and therelation between each pair of rooms r(�+(ai); ��(ai)) and r(�+(aj); ��(aj)) is exactly the samerelation between the corresponding blocks ai and aj de�ned in the given SP.Using this method, a BSG assignment of n blocks can be constructed such that it providesthe same relations with the given placement. To incorporate the H-assignment and V-assignmentinto the construction, we �rst derive the necessary and su�cient conditions for such assignments.Since H-assignment and V-assignment are symmetrical, we will only focus on H-assignment.4.2 Necessary and Su�cient Conditions for H-AssignmentLemma 4 In the SP-based assignment, an H-partitioned CRP A = fa1; a2; � � �; ang is H-assigned if and only if :1. If ai is p-marked, both �+(ai) and ��(ai) should be even; if ai is q-marked, both �+(ai)and ��(ai) should be odd.2. If ai and aj are adjacent sub-blocks in A, and ai is left to aj, then �+(aj) � �+(ai) =��(aj)� ��(ai).Due to the Fact 1, the �rst condition above is equivalent to the �rst requirement of H-assignment de�ned in Section 3:2:3. In the slant coordinate system, room r(i+; i�) and r(j+; j�)are in the same row if and only if j+ � i+ = j� � i�. Therefore the second condition above isequivalent to the second requirement of H-assignment. As such, both conditions are necessaryfor H-assignment. On the other hand, if there is an occupied room r(�+(ak);��(ak)) betweenai and aj : �+(ai) < �+(ak) < �+(aj); ��(ai) < ��(ak) < ��(aj)then both sequences should be like : ai � � ak � � aj , which implies that block ak is right toai and left to aj . If ak belongs to the same CRP with ai and aj , then ak must be between aiand aj , which con
icts to the assumption that ai and aj are adjacent. On the other hand, ifak belongs to a distinct CRP, this CRP will be both left to and right to the CRP of ai andaj , which con
icts to the consistent relationship in Lemma 2. Therefore the rooms betweenai and aj can not be occupied and the third requirement of H-assignment in Section 3:2:3 willbe automatically satis�ed in the SP-based assignment. As such, the above two conditions aresu�cient for H-assignment. In the following, we will propose two operations on SP such thatthe SP-based assignment satis�es the two conditions of Lemma 4.4.3 PQ-AdjustmentTo satisfy the �rst condition of Lemma 4, we de�ne an operation called pq-adjustment. In theSP-based assignment, �+(i) and ��(i) are both even or both odd. Without loss of generality,we assume ai is a p-marked block, �+(i) and ��(i) are both odd. pq-adjustment is carried outby inserting two dummy blocks * into the �rst sequence �+, one right before and the other rightafter ai, respectively, and appending two empty groups at the end of the second sequence ��,as shown in Fig. 17 (a).After this operation, �+(i) is increased by one and becomes even. The �+() values of thoseblocks after ai in the �rst sequence are increased by two. The parity of �+() values will not bea�ected except block ai. Given aj is the predecessor of ai in the second sequence, overall thereare four possible cases as shown in Fig. 17 (b) :16



1. �+(j) is odd, aj and ai are originally grouped together as shown in Fig. 17 (b) (1). Thegroup will split when �+(i) becomes even after the operation. So the number of groupsbetween aj and ai is increased by one.2. �+(j) is odd, aj and ai are grouped separately, an empty group must be in between asshown in Fig. 17 (b) (2). When �+(i) becomes even, the empty group is deleted, and thenumber of groups between aj and ai is decreased by one.3. �+(j) is even, aj and ai are grouped separately, as shown in Fig. 17 (b) (3). When �+(i)becomes even, which is greater than �+(j), aj and ai will be grouped separately and oneempty group is inserted in between, as shown in Fig. 17 (b) (3). The number of groupsbetween aj and ai is increased by one.4. �+(j) is even, aj and ai are grouped separately, as shown in Fig. 17 (b) (4). When �+(i)becomes even, which is smaller than �+(j), aj and ai will be grouped together, and thenumber of groups between aj and ai is reduced by one.
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Figure 17: pq-adjustment inserts two dummy blocks in the �rst sequence, right before and afterai, respectively as shown in (a). �+(ai) is increased by one, and the �+() values of blocks afterai will be increased by two. On the other hand, given aj is the predecessor of ai in the secondsequence, overall there are four possible cases as shown in (b) (1) { (4). It can be derived thatthe number of groups between aj and ai will be increased or decreased by one.Since the parity of �+() values are preserved for the other blocks, the groups before aj in thesecond sequence will not be changed, and ��() values remain the same for those blocks beforeai in the second sequence. Due to the changed groups between aj and ai, ��(ai) is increased ordecreased by one and becomes even.On the other hand, given ak is the successor of ai in the second sequence, the similar analysisderives that the number of groups between ai and ak will be increased or decreased by one, andthe groups after ak in the second sequence will not be a�ected. So together with the changedgroups between aj and ai, the ��() values are changed by either 0 or 2 for those blocks after aiin the second sequence. Overall we can conclude :17



Lemma 5 Given block ai is p-marked, and the corresponding room (�+(ai); ��(ai)) is q-typed,pq-adjustment can adjust the room of ai to p-typed by simultaneously changing the parity of�+(ai) and ��(ai). Furthermore the pq-adjustment carried for block ai will not a�ect the parityof �+() or ��() values of the other blocks.Similarly, the pq-adjustment can be applied for q-marked block. In such way, the �rst conditionof Lemma 4 can be satis�ed for all marked blocks by carrying out pq-adjustment for each ofthem, individually.4.4 �-AdjustmentGiven sub-blocks ai and aj are adjacent and ai is left to aj , both sequences should be : ai � � aj .We de�ne �ij+ and �ij� as follows :�ij+ = �+(aj)� �+(ai); �ij� = ��(aj)� ��(ai):The second condition of Lemma 4 is equivalent to �ij+ = �ij� . The following Lemma can beproved :Lemma 6 j �ij+ ��ij� j= 2m, where m is an integer.When �ij� ��ij+ = 2m > 0, an operation called �+-adjustment is applied by consecutivelyinserting 2m dummy blocks * in the �rst sequence �+, somewhere between ai and aj (the exactposition will be discussed later), while appending 2m empty groups at the end of the secondsequence ��.In the example shown in Fig. 18, given a1 and a3 are adjacent sub-blocks, �13� ��13+ = 4.Four dummy blocks are inserted in the �rst sequence while four empty groups attached atthe end of the second sequence. Obviously, �+(3) is increased by four and accordingly �13+ isincreased by four. On the other hand, the parity of the �+() values are not a�ected due to theeven number of dummy blocks, so the groups of the second sequence will not be a�ected, and�ij� remains the same. Therefore �13+ = �13� after the �+-adjustment.
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- adjustment+Figure 18: Given a sequence pair and adjacent sub-blocks a1 and a3 : �13� � �13+ = 4. �+-adjustment is applied: insert four dummy blocks � into the �rst sequence between a1 and a3,while attach four empty groups [ ] at the end of the second sequence. As such, �13+ = �13� .Similarly when �ij+ � �ij� = 2m > 0, another operation called ��-adjustment is applied :consecutively inserting 2m empty groups [ ] in the second sequence ��, somewhere between thegroups contain ai and aj (the exact position will be discussed later). If ai and aj are originallygrouped together, the group will split and 2m empty groups are inserted in between. On the18



other hand, 2m dummy blocks � are appended at the end of the �rst sequence �+. So the �+()values remain the same, while ��() values of those blocks after the empty groups are increasedby 2m. Therefore �ij� is increased by 2m and �ij+ = �ij�. Overall we call both operations�-adjustment.4.4.1 Two Basic Properties of SPGiven two pairs of adjacent blocks (ai; aj) and (bi; bj), their relative order in a sequence will beone of the following three cases :� ai � � aj � � bi � � bj ) a-pair separates from b-pair;� ai � � bi � � aj � � bj ) a-pair interleaves with b-pair;� ai � � bi � � bj � � aj ) a-pair includes b-pair.The following two properties can be proved :Lemma 7 If a-pair includes b-pair in one sequence of SP, then a-pair separates from b-pair inthe other sequence.Lemma 8 If a-pair interleaves with b-pair in one sequence of SP, then a-pair separates fromb-pair in the other sequence.Since the proofs of the above two Lemmas are very similar, we will only show the �rst one.Without loss of generality, we assume ai is left to aj , and bi left to bj . Then both �+ and �� willhave : ai � � aj and bi � � bj . If a-pair includes b-pair in the �rst sequence : �+ = ai � � bi � � bj � � aj ,then in the second sequence bi will not be between ai and aj . Otherwise, (ai bi aj ; ai bi aj)implies bi is right to ai and left to aj . With this relationship, if bi belongs to the same CRPwith ai and aj , bi will be left to ai while right to aj , which con
icts to the assumption that aiand aj are adjacent. On the other hand, if bi belongs to a distinct CRP, the CRP of bi will beboth left to and right to the CRP of ai and aj , which con
icts to the consistent relationship ofLemma 2. Therefore, the second sequence must be either bi � � ai � � aj or ai � � aj � � bi. Thesame situation happens for bj . Thus there are only three possible permutations for the secondsequence ��: bi � � ai � � aj � � bjai � � aj � � bi � � bjbi � � bj � � ai � � ajIf �� is in the �rst case, we can derive the relation graph as shown in Fig. 19 (a). If ai and ajare adjacent sub-blocks as shown in Fig. 19 (b), bi and bj should be located at the two shadowedcones, respectively. So they could not be adjacent. Similarly ai and aj could not be adjacentgiven bi and bj are adjacent as shown in Fig. 19 (c). Therefore we can conclude �� can only beone of the last two cases, in which a-pair separates from b-pair.4.4.2 �-Adjustment OrderingTo satisfy the second condition of Lemma 4, �-adjustment will be carried out individually foreach pair of adjacent sub-blocks. It can be proved that :Lemma 9 Given a non-overlapping placement of n blocks, there exists a SP such that all adja-cent sub-blocks can be ordered such that :1. If a-pair includes b-pair in one sequence : ai bi bj aj , b-pair will be operated earlier thana-pair; 19
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(a) (b) (c)Figure 19: If the relations between blocks ai, aj , bi, and bj are as shown in (a), assume ai andaj are adjacent sub-blocks as shown in (b), the bi and bj would be located at the two shadowedcones, respectively. They could not be adjacent. If we assume bi and bj are adjacent sub-blocksas shown in (c), ai and aj could not be adjacent, either.2. If a-pair, b-pair and c-pair interleave with each other in one sequence : ai � � bi � � ci �� aj � � bj � � cj , b-pair will be operated earlier than a-pair or c-pair.Given two adjacent sub-blocks ai and aj , when �-adjustment is carried out for a-pair, 2mdummy blocks or empty groups are inserted in one sequence, the inserting position is withinsome range between ai and aj , denoted by I(ai; aj) :1. If b-pair interleaves with a-pair as : bi � � ai � � bj � � aj , and the ordering of b-pair is earlierthan the ordering of a-pair, then I(ai; aj) must be right to bj ;2. If c-pair interleaves with a-pair as : ai � � ci � � aj � � cj , and the ordering of c-pair is earlierthan the ordering of a-pair, then I(ai; aj) must be left to ci.The following Lemma can be derived :Lemma 10 Given the adjacent sub-blocks are ordered according to Lemma 9, the �-adjustmentare carried out in this order for each pair of adjacent sub-blocks, the second condition of Lemma4 will be satis�ed.Since �-adjustment doesn't change the parity of �+() or ��() values, the �rst condition ofLemma 4 will not be a�ected. Overall we can conclude the following theorem :Theorem 2 The necessary and su�cient conditions for H-assignment in Lemma 4 can be sat-is�ed by applying pq-adjustment and �-adjustment in SP-based BSG assignment.The same operations can also be applied to SP-based BSG assignment such that the necessaryand su�cient conditions for V-assignment are satis�ed.4.5 One Example of Constrained BSG AssignmentIn the following, we will give an example to show how the pq-adjustment and �-adjustment arecarried out in the SP-based BSG assignment. Given the placement of �ve blocks as shown inFig. 20, in which four L-shaped blocks are either H-partitioned or V-partitioned. The sequencepair extracted from the placement is as follows :�+ = a1 a2 a3 a4 a5 a6 a7 a8 a9; �� = a1 a8 a4 a7 a5 a3 a6a2 a9:To simplify the notation, we abbreviate ai as i, and let �n and [ ]n denote the n consecutivedummy blocks and empty groups, respectively. In addition, we ignore the dummy blocks orempty groups attached at the end of the sequences. The grouped SP is as follows :20
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Figure 20: Given the placement of �ve blocks, in which four L-shaped blocks are either H-partitioned or V-partitioned.(1 2 3 4 5 6 7 8 9; [0] [1] [8 4] [7] [ ] [5] [ ] [3] [6 2] [9]):Blocks a1, a2, a8 and a9 are q-marked, in which the �rst condition of Lemma 4 has already beensatis�ed for blocks a1 and a9, so the pq-adjustment is carried out only for a2 and a8 :(1 � 2 � 3 4 5 6 7 � 8 � 9; [0] [1 8] [4] [7] [ ] [5] [ ] [3] [6] [2 9]):There are totally four pairs of adjacent sub-blocks, and according to Lemma 9 they are orderedas follows: (a4; a8) > (a2; a6) > (a1; a3) > (a7; a9);in which > means \earlier than". �-adjustment is carried out for each of them in such order.First four empty groups are inserted into �� for pair (a4; a8):(1 � 2 � 3 4 5 6 7 � 8 � 9; [0] [1 8] [ ]4 [4] [7] [ ] [5] [ ] [3] [6] [2 9]):Second four empty groups are inserted into �� for pair (a2; a6):(1 � 2 � 3 4 5 6 7 � 8 � 9; [0] [1 8] [ ]4 [4] [7] [ ] [5] [ ] [3] [6] [ ]4 [2 9]):Then six dummy blocks are inserted into �+ for pair (a1; a3):(1 � �6 2 � 3 4 5 6 7 � 8 � 9; [0] [1 8] [ ]4 [4] [7] [ ] [5] [ ] [3] [6] [ ]4 [2 9]):At last, six dummy blocks are inserted into �+ for pair (a7; a9):(1 �7 2 � 3 4 5 6 7 � 8 � �6 9; [0] [1 8] [ ]4 [4] [7] [ ] [5] [ ] [3] [6] [ ]4 [2 9]):Finally the SP-based assignment is as follows:a1 ! (1; 1) a2 ! (9; 17) a3 ! (11; 11)a4 ! (12; 6) a5 ! (13; 9) a6 ! (14; 12)a7 ! (15; 7) a8 ! (17; 1) a9 ! (25; 17)The necessary and su�cient conditions of both H-assignment and V-assignment are satis�ed.21



sacrificed area

(a) (b) (c) (d)Figure 21: A rectilinear polygon can be transferred to an ordered convex shape by sacri�cingsome area, as shown in (a) and (b). However, the sacri�ced area may be too large to be ignoredas shown in (c). Thus a further partition of the original macro block is appropriate as shown in(d).5 Experimental Results and ConclusionFor the application of the layout reuse problem, the constraint of ordered convex shape maybe too restrict. Ideally any rectilinear shaped block can be transferred to an ordered convexshape by sacri�cing a minimum area as shown in Fig. 21 (a) and (b). After the packing, thosesacri�ced area can be utilized as the routing area. In some cases as shown in Fig. 21 (c), thesacri�ced area may be even larger than the area of original block. A further partition of themacro block into a set of ordered convex sub-blocks as shown in Fig. 21 (d) is more appropriate,which may requires the knowledge about the layout structure inside the macro block.As such, how to transfer a general rectilinear block into an ordered convex shaped blockwith minimum additional area, and how to partition a rectilinear block into a minimum numberof ordered convex shaped sub-blocks become interesting problems. We will not present thealgorithms here due to the limitation of the paper length.5.1 Experimental ResultsTo demonstrate the e�ciency of the algorithm presented in this paper, we randomly generatedthe example shown in Fig. 22 (a), in which all of 31 blocks have ordered convex rectilinearshapes. The packing result achieved by our algoirithm is shown in Fig. 22 (b), in which thex and y dimension are independently compacted and the topological relations of blocks in (a)are preserved. On the other hand, we compact the 31 blocks without considering the relationconstraints, the packing result shown in Fig. 22 (c) is achieved by �rst packing x dimensionfollowed by y dimension, and Fig. 22 (d) is the result by �rst packing y dimension followed byx dimension. Obviously, our algorithm give the best result.5.2 ConclusionIn this paper, we derived an e�cient data representation for a special class of rectilinear polygons: ordered convex rectilinear polygons in BSG structure. As such, the x and y dimension canbe independently compacted given every polygon is ordered convex shape. By transferring orpartitioning arbitrary rectilinear polygons into the ordered convex shapes, the general rectilinearcompaction can be dealed with. Furthermore the topology constrained rectilinear block packingis applied to the layout reuse problem. A SP-based BSG assignment is constructed such thatthe rectilinear blocks can be compacted under the topology constraints.22



(a) total area = 535 � 392 = 209; 720: (b) total area = 301 � 296 = 78; 260:
(c) total area = 320 � 310 = 99; 200: (d) total area = 450 � 240 = 108; 000:Figure 22: (a) shows the initial placement of 31 rectilinear blocks, each of them has orderedconvex shape. (b) shows the packing of 31 blocks achieved by the algorithm presented in thispaper, in which the x and y dimension are independently compacted, and the relations ofblocks in (a) is preserved. On the other hand, we compact the 31 blocks without consideringthe topological constraints : (c) shows the packing by �rst compacting x dimension then ydimension, and (d) shows the packing by �rst compacting y dimension then x dimension.
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