Trimming Java Down to Size

UCSC-CRL-97-22

C. E. McDowelt M. R. Allent E. A. Baldwirt B. R. Montague
M. Montoreano

August 26, 1997

Abstract

Java is both a programming language and a collection ofriésaalled packages. Much of the interest in Java
is due to the large collection of existing packages whicbvaltomplex applications to be built quickly. Perhaps
even more important, many programmers find the Java langwwage a more desirable language than C or C++,
Java’s primary competitors. The advantages of Java apgipyapplication domain that previously used C or C++,
including embedded systems. However, typical Java systetay require 4-8 Mbytes of RAM or more, including
those Java systems supplied by traditional embedded sysmpanies. JavaCam is an embedded Java application
that can operate with as little as 1 Mbyte of memory. In thisgrave describe how we were able to build a system
that runs applications that exercise all of the Java lang@eatures in as little as 1 Mbyte of memory.

Keywords: Java, class unloading, embedded systems, Internet device.

1 Introduction

Java is both a programming language and a collection ofrlés&alled packages. Much of the interest in Java is due
to the large collection of existing packages, which allownptex applications to be built quickly. Perhaps even more
important, many programmers find the Java language to be a desirable language to program in than C or C++,
Java'’s primary competitors. The advantages of the Javaibagegapply to any application domain that previously used
C or C++, including embedded systems. However, typical 3ggtems today require 4-8 Mbytes of RAM or more,
including those Java systems supplied by traditional enibedystems companies. Recently, JavaSoft released its
PersonalJava API which is designed to run on systems with 2 &yt RAM and 2 Mbytes of ROM. PersonalJava
applications are still expected to have significant gragdhiser interfaces and as such the API includes a rather large
subset of the Java Abstract Windowing Toolkit (AWT). We argerested in building embedded Java systems that are
mini-servers, not mini-clients. As such, our systems havgraphical displays and hence do not need any part of the
AWT. The result is that we have running systems that suppercomplete Java language, including all of the core
Java packages except AWT, in as little as 1 Mbyte of RAM - withadditional memory, including no disk or ROM
beyond a small boot ROM. Such a system is capable of runningmgal Java programs, although the memory space
available to the application is limited to a few 100 Kbytes.

Java provides remote execution mechanisms which can sugyoamic software updates and dynamic system
reconfiguration. These mechanisms are similar to the mésimathat makes possible Java applets, which are the
primary source of interest in Java by the Internet community

Java applets are programs (technically portions of progydhat are loaded from remote servers onto local ma-
chines and then executed inside of another program thaticenthe Java Virtual Machine (JVM). Java provides

*Computer Science Dept, University of California Santa Cruz
tWork completed at UCSC, now with JavaSoft.
tWork completed at UCSC, now with National Semiconductor Inc

mechanisms for a program to safely execute unknown appiéteut fear of compromising the security of the local
machine. Using these same mechanisms, it is possible faadyt@xecuting program to send program fragments to
a remote machine, and have the remote machine execute gmaeindés by incorporating them into a remotely run-
ning Java program. The remotely running program can thugpbated with new versions of existing capabilities, or
provided with new capabilities not originally configuredarthe system.

Many potential embedded applications do not require a Gdhing on the embedded device. With Java and
the Internet, this does not mean the application cannot Aayaphical end-user, it simply means that the interface
is not running on the embedded device. The GUI for the emlzbd@®ice could be an applet, served up by the
embedded device to another computer that supports grajphitut and the AWT. An example might be a VCR that
is programmed via an applet. At home you could use your gewib browser to program the VCR. But you could
also program your VCR from your office if you found out that &gfr show was going to be coming on before you
could get home. You could similarly check on the securitytexysin your home, or have messages from your home
answering machine mailed to your office. A bank employeedahleck on the status and possibly adjust various
options on an ATM remotely from the main office. A factory sopsor could access and manipulate the various
control systems spread around the factory floor. You do netirava to do any of this, but if Java is the preferred
choice purely from the point of view of the programmer, them believe we have demonstrated that Java is a viable
option for systems that can afford as little as 1 Mbyte of RAM.

In order to determine how small a Java system we could buddytowe built one. We wrote a very thin OS which
we call N, for Java Nanokernel. Its primary purpose is tqosupa Java Virtual Machine and be as small as possible.
We then ported Sun’s JDK1.0.1 to JN. As suggested abovepahigncludes the complete Java language and all of the
core Java packages excgmtva. awt . Our first significant application was a camera that is relggieogrammable
in Java and is Internet accessible. We call this system amaC

2 JN

JN[Mon97b] follows a classic soft-real-time architectiméormally known as a Cutler kernel. Although he was not
the first to use the architecture, David Cutler led teamsubedl this architecture to implement the kernels for RSX-11,
VMS, and NT.

The kernel consists of a single work-loop driven by a queueasttrol blocks. The kernel begins execution in
response to an interrupt. Once started, the kernel corgitmexecute until no control blocks remain in the queue.
Each control block contains the address of a routine whietkdrnel must execute. Historically, these routines have
been calledork routines in the Cutler kernels. Other common names for soakirres, especially as found in 1/O
managers, includ8econd Level Interrupt Handl€SLIH) andDeferred Procedure CallDPC). Since fork routines
cannot block and must have a bounded execution time, theyhawy characteristics of routines written for a hard—
real-time environment. Neither the fork routines nor theniedneed to use explicit mutual exclusion to access global
data structures, reducing the need for explicit synchietion.

Because JN is intended to support a Java Virtual Machineg ieeo concept of protection or security in JN. All
security is handled by the JVM.

The JN file system supports a Unix-like directory structufee actual implementation is a flat file system sup-
porting long filenames which can contain slashes. This givesppearance of a hierarchical file system, as required
by the JVM. In addition, our implementation supports Uniaige-file semantics in that only sections of the file that
contain actual data are allocated space. Currently ounfiieem can reside either in volatile RAM or persistent RAM
on a PCMCIA RAM card.

JN currently runs on two embedded processors from Natioaai&nductor - the NS486SXF and the CR32. The
NS486SXF is a “single-chip” 32-bit 486 PC. Included on thepcliie a PCMCIA controller, a UART serial port, an
enhanced bidirectional parallel port, an LCD display coltr, infrared serial control, a real-time clock/calenda
watchdog timer, programmable interval timers, two perighenterrupt controllers, a serial high-speed synchranou
interface (Microwire), a degree of power management, a DMAtioller, a DRAM controller, and a bus interface unit.
The bus interface unit can control the standard PC ISA buseoPtV104 embedded system variant of ISA. We have
currently implemented device drivers for the clock/cal@ndhe serial UART, the parallel port, and the PCMCIA. In
addition we have implemented a driver for an Atlantic Etle¢rcard. The CR32 configuration is similar.

The JN Nanokernel consists of approximately 2000 lines ofiis does not include the KA9Q TCP/IP stack
which has been ported to work with JN.

3 Porting JVM

We originally ported the JVM from Sun’s JDK1.0.1 to JN rungion the NS486SXF. This port includes all Java
language features and all of the core Java packages gxagpt awmt . The JVM, as implemented in JDK1.0.1 and
modified to run on JN, requires about 183Kbytes of memoryjmmuding any dynamic data structures.

Most of the OS support required by the JVM in JDK1.0.1 is tistea file,sys_api . h, that is part of the standard
JDK1.0.1 distribution. There were a few direct calls to Urowtines that were not listed sys_api . h. In a port
to a traditional operating system, it would be necessaryritevgome interface glue to map the calls that the JVM
code was making into the actual calls supported by the OSauBecIN did not have a fixed API, we simply modified
the JN API to exactly match that needed by the JVM code. We miéted what the JVM needed by removing the
interface files from the Unix version of JDK1.0.1 and tryiledink. The missing routines were the ones we needed to
implement. It was only somewhat later that we discoveretttiepublic filesys_api . h included most of what we
needed. We would still have had to do the exercise, becyseapi . h is not complete.

The support required by the JVM code falls into six categorighread routines, monitor routines, file routines,
exception handling routines, socket routines, and varimoissellaneous routines which are largely standard Unix
routines such asmal | oc() andfree(). The thread routines are such thingssassThr eadCr eat e() and
sysThr eadResume() . The monitor routines includeyshMoni t or Ent er () andsysMoni torExit (). File
routines are the usual read, write, open, close, etc.. Tier®are equally predictable. The details of the JN API are
available in a technical report{Mon97a].

JN does not support the dynamic loading and running of progrdnstead, JN is linked with the application as a
single image, that is, we link JN with the JVM. The JVM is rundalling the main routine of the Java interpreter.

A similar restriction applies to native methods used by dda@sses. Because JN does not support dynamic linking,
the standard Java meth&ist em | oadLi br ary() is not supported. All required native methods must be linked
into JN at build time along with the JVM. Native methods aii# supported, they are just not linked dynamically.
The other major change we made to get the JVM code, as writ&uh, to work with JN was to eliminate all code
with virtual memory dependencies. We also made some changfes handling of garbage collection and added class
unloading as discussed below.

4 JavaCam

Our first significant application was a network camera [A]l9%e wanted an example sensor that would be accessible
via the Internet and that would demonstrate Java's builuippsrt for dynamically updating code running in the
embedded system. Applications for such a device includergg@and traffic monitoring.

JavaCam is an example of such a remote network sensor, ttedtby Java, that is fully programmable over the
network without ever shutting down the sensor.

The camera we choose to use is the Connectix QuickCam, a camatheavailable product costing around $250.
It uses a charged coupled device (CCD) to take a digital pctThe QuickCam receives control parameters and
delivers image data using a standard bidirectional PC ghpaikt. The Connectix QuickCam camera always acquires
an image 340 pixels wide (columns) and 250 pixels high (rosjubset rectangle from this image may be returned
from the camera on request. The camera can control the lefidlige, saturation, contrast, black-level, white-level,
and exposure time. The camera delivers pixels in 24-bitctiat is, a byte of red, green, and blue is returned for each
pixel. The camera operates in one of three decimation maugisating whether the camera is to deliver all rows and
columns, every other row and column, or every fourth row aoldimn. The JavaCam user can specify these settings
via the Java camera control applet inside a Web browser a @ameraControl servlet as described below.

The camera driver provides the basic interface to the cameedlows higher-level programs to send commands
to the camera and provides a simple interface to receiveemaghe driver communicates with the camera over the
parallel port. The driver provides a basic API of three fuois:

void gqc_initialize();
int qc_send_comand(unsigned char command, unsigned char paraneter);
int qc_take_picture(char *array, char node, int length);

These functions are implemented in C and called by Javaenat@thods.

Functiongc_i nital i ze() resets the camera to a known state with all settings set sutlefalues. It also
terminates any camera operation already in progress.

The gc_send_conmmand() function sends a command and argument to the camera. Eaadmaimnto the
QuickCam consists of two bytes - a command and an argumelné tmoimmand. The camera echos the command and
argument back to the driver, in order to verify command réicep

The functionqc_t ake_pi ct ur e() obtains an image frame from the camera. It has 3 argumentsffer in
which to place the image pixels; a bitmask representing #meeca mode (specifying color scheme and decimation
level); and the length of the expected image in bytes. PreSlynthe program has already sent any other parameters
to the camera vigc_send_command() .

4.1 JavaCam Internet Systems

JavaCam provides two distinct ways to access the camerdtaverternet at the Java level: tappletmethod and the
servletmethod.

The applet approach works as shown in Figure 1. In this approach thesmiBITTP server running on the
JavaCam system. When a WWW browser issues an appro@idiecommand to the HTTP server, it hands back
a page containing a Java applet. This Java applet, calle@thekCamAppl et , communicates back across the
network and contacts another server running on the Java@stens, theQui ckCantSer ver .

N
QuickCam
Applet

Y
QuickCam
Server

A

HTTP

JVM

Y JIN
Device drv

486—> O

Figure 1: JavaCam being controlled by an applet.

The Qui ckCamAppl et sends parameters to tiii ckCanBer ver , and then makes a request for an image.
TheQui ckCaner ver contains &ui ckCamobject which contains native methods that call the JN cardgvar
routines. The native methods fill in the image buffer and hitmedbuffer back to th€ui ckCam The server then
sends the data over the network back toGhe ck CamAppl et , to be displayed inside the user’s browser.

Theservletapproach works as shown in Figure 2 skrvletmode, aCl assLoader Ser ver must be runningon
the JavaCam system. This class listens on a particulankttport for requests to load servlets to control the camera.
A servlet is akin to an applet; itis a Java class which impiatsi@ specific Javimterface Like an applet, a servlet is
not an entire program. It requires another program to inggeand fill out the missing parts of its expected run-time
environment. An applet is downloaded from a server to a lapglication in order to extend the functionality of that
application. A servlet is sent from a local application teeaver in order to extend the functionality of that server.

In order to control the QuickCam on a JavaCam system, a classimplement th€aner aCont r ol interface.

A Caner aCont r ol servlet, if authorized, is instantiated and given a refeesio aCaner a object, which provides
access to the QuickCam JN device driver. The instantiatetEsés also given a socket providing a connection back

Application—— Application
A . CCl: | CC A
ClassLoader
Server
CameraContro / \ CameraContro
Camera| | JCFCP| | Camera
JVM
Y JN
Device drv

486—> (O)

Figure 2: JavaCam being controlled by a servlet.

to the client which provided the servlet. Once instantiaird started, th€aner aCont r ol servlet can perform
any desired processing of camera data before sending dzktadothe client. Like an applet, the servlet runs within a
Securi t yManager class. TheSecur i t yMangager checks all servlet operations to make sure that no unautho-
rized operations are performed. For example, in JavaCawigtgare not permitted to access the file system or open
arbitrary network connections.

5 Finetuning memory requirements

In a system with a tight memory budget, it is important not &ste memory. We identified two primary areas where

it was possible to reduce memory requirements. First, oloeglted application does not use all the core Java classes,
therefore storing them is wasted memory. Second, prior #11D, the memory used for the system data structures
associated with dynamically loaded classes could neveebtavered, even when the class was no longer needed
or even accessible. The Java Language Specification psofadeslass unloading, but it was not implemented in
JDK1.0.1. We have implemented both class unloading andl é&hafoallows us to identify and load just those classes
needed by our application.

5.1 Custom subsetting of the standard classes

In a traditional embedded system, all routines needed fafiplication are linked together into a single executable
image that is loaded onto the embedded system. This is gxaletlt we do with the C portion of our system, i.e., JN
and the JVM. In JavaCam, the real application is a Java pnoginat is dynamically loaded into the running JVM.
Because of Java’s late binding semantics, it is not a normilgs Java development to identigll of the classes
that will be needed by a particular Java program. The nepestasses are simply loaded on the fly as the program
executes. In non-embedded systems this is not an issueideettee nearly 1.5 Mbytes required for all the JDK1.0.1
core Java classes is not a significant amount of storage. &ay embedded systems, this much storage is unavailable.
In JDK1.1 this requirement has shot up to nearly 10 MbytesenEafter we eliminated the packagava. awt ,
which we do not support, we were still left with approximat8b0 Kbytes for the class files, a significant portion of

a 1 Mbyte budget.

We have developed a tool that examines the class files reelyrsitarting from the main application class, iden-
tifying all classes that are used by the application. Ushig tool we now only need approximately 250 Kbytes for
the class files for our JavaCam application, a savings of t€epeof our 1 Mbyte budget. The only classes that
are missed by our tool are classes that are loaded by nanmedasé with the metho@l ass. f or Nanme() in the
standard packageava. | ang.

For applications that do not use a custom class loader todtzases from a network or other source, our tool
will identify all classes loaded during the execution of egplication. If classes can be loaded by a custom class
loader, as is done in JavaCam, then there is no way to knowemae what classes will be needed. Our solutionis to
provide a tool that can be used to filter classes that aredetéto be downloaded and notify the user if the classes do
not conform to the subset loaded on the embedded systemisTthis same approach used in the subsets defined by
JavaSoft such as JavaCard and PersonalJava. Sending ardasysTam a servlet that requires some standard class
that is not loaded on the JavaCam system will not crash JamaCwill simply result in a failure of the servlet.

Another solution that we have not yet implemented is to altewtain standard classes that have not been preloaded
to be loaded from the same location as the servlet. This amatlde done for all classes because of security reasons.

5.2 Classunloading

When a Java program uses a class the first time, the JVM loadsabs and builds some internal data structures. The
Java Language Specification (JLS)[GJS96] allows for theadihg of classes, i.e., the reclaiming of these internal
data structures. Without class unloading, a Java Virtuathitee (JVM) is like an OS that never releases the memory
allocated for the code space of an application, even afeepfiplication has completed. In particular the JLS states
that “This can be used, for example, to unload a group ofedlatpes... Such a group might consist of all the classes
implementing a single applet.” Class unloading is impdrfan any long running Java program that continuously
loads classes, uses them for some time, and then no longethese. This is exactly the type of behavior that occurs
with servlets sent to our JavaCam. The servlets are Javsesl#isat are intended to be loaded into JavaCam, and used
only for the duration of a single connection. One of the fesglof Java that makes it attractive for many applications
is the security model that makes this dynamic loading andui@n of untrusted program fragments possible. It is
essential that classes be unloaded periodically. Othertivss computer's memory will become cluttered with unused
classes. This is marginally tolerable in a system with @rtaemory or one in which the JVM is frequently restarted.
For long running or embedded systems without virtual mepsugh as JavaCam, class unloading is necessary.

We completed the addition of class unloading to our port d€ 0.1 about the same time the JDK1.1 was released
[Bal97]. JDK1.1 now includes class unloading. Our impletagnon of class unloading behaves similarly to that of
JDK1.1, however, we are a bit more conservative about umgazlasses. We believe the JDK1.1 implementation
violates the requirement of the Java Language Specificatioch states that for static fields “there exists exactly one
incarnation of the field, no matter how many instances (fabggero) of the class may eventually be created.” This is
discussed in detail in another paper[MB97].

6 Conclusion

We have implemented an embedded Internet device in whiatutirg Java programs can be dynamically updated,
that is, altered on-the-fly. We can build useful devices is émvironment with as little as 1 Mbyte of memory.

References

[AlI97] M. R. Allen. JavaCam: Java Enabled Internet CameM.S. Thesis University of California, Santa Cruz,
1997.

[Bal97] E. A. Baldwin. Memory Management in Embedded Javd.S. Thesis University of California, Santa
Cruz, 1997.

[GJS96] J. Gosling, B. Joy, and G. Ste€lde Java Language Specificatiohddison Wesley, 1996.

[MB97] C. E. McDowell and E. A. Baldwin. Unloading Java clasghat contain static fields. Technical report, U.
of Calif. Santa Cruz, UCSC-CRL-97-18, 1997.

[Mon97a] B. R. Montague. JN external API. Technical reportptICalif. Santa Cruz, UCSC-CRL-97-17, 1997.

[Mon97b] B. R. Montague. JN: OS for an embedded Java netwampeiter. IEEE Micro, 17(3):54-60, May/June
1997.

