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Abstract

Java is both a programming language and a collection of libraries called packages. Much of the interest in Java
is due to the large collection of existing packages which allow complex applications to be built quickly. Perhaps
even more important, many programmers find the Java languageto be a more desirable language than C or C++,
Java’s primary competitors. The advantages of Java apply toany application domain that previously used C or C++,
including embedded systems. However, typical Java systemstoday require 4-8 Mbytes of RAM or more, including
those Java systems supplied by traditional embedded systems companies. JavaCam is an embedded Java application
that can operate with as little as 1 Mbyte of memory. In this paper we describe how we were able to build a system
that runs applications that exercise all of the Java language features in as little as 1 Mbyte of memory.
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1 Introduction

Java is both a programming language and a collection of libraries called packages. Much of the interest in Java is due
to the large collection of existing packages, which allow complex applications to be built quickly. Perhaps even more
important, many programmers find the Java language to be a more desirable language to program in than C or C++,
Java’s primary competitors. The advantages of the Java language apply to any application domain that previously used
C or C++, including embedded systems. However, typical Javasystems today require 4-8 Mbytes of RAM or more,
including those Java systems supplied by traditional embedded systems companies. Recently, JavaSoft released its
PersonalJava API which is designed to run on systems with 2 Mbytes of RAM and 2 Mbytes of ROM. PersonalJava
applications are still expected to have significant graphical user interfaces and as such the API includes a rather large
subset of the Java Abstract Windowing Toolkit (AWT). We are interested in building embedded Java systems that are
mini-servers, not mini-clients. As such, our systems have no graphical displays and hence do not need any part of the
AWT. The result is that we have running systems that support the complete Java language, including all of the core
Java packages except AWT, in as little as 1 Mbyte of RAM - with no additional memory, including no disk or ROM
beyond a small boot ROM. Such a system is capable of running non-trivial Java programs, although the memory space
available to the application is limited to a few 100 Kbytes.

Java provides remote execution mechanisms which can support dynamic software updates and dynamic system
reconfiguration. These mechanisms are similar to the mechanism that makes possible Java applets, which are the
primary source of interest in Java by the Internet community.

Java applets are programs (technically portions of programs) that are loaded from remote servers onto local ma-
chines and then executed inside of another program that contains the Java Virtual Machine (JVM). Java provides�Computer Science Dept, University of California Santa Cruz.yWork completed at UCSC, now with JavaSoft.zWork completed at UCSC, now with National Semiconductor Inc.
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mechanisms for a program to safely execute unknown applets without fear of compromising the security of the local
machine. Using these same mechanisms, it is possible for a locally executing program to send program fragments to
a remote machine, and have the remote machine execute the fragments by incorporating them into a remotely run-
ning Java program. The remotely running program can thus be updated with new versions of existing capabilities, or
provided with new capabilities not originally configured into the system.

Many potential embedded applications do not require a GUI running on the embedded device. With Java and
the Internet, this does not mean the application cannot havea graphical end-user, it simply means that the interface
is not running on the embedded device. The GUI for the embedded device could be an applet, served up by the
embedded device to another computer that supports graphical output and the AWT. An example might be a VCR that
is programmed via an applet. At home you could use your set-top web browser to program the VCR. But you could
also program your VCR from your office if you found out that a great show was going to be coming on before you
could get home. You could similarly check on the security system in your home, or have messages from your home
answering machine mailed to your office. A bank employee could check on the status and possibly adjust various
options on an ATM remotely from the main office. A factory supervisor could access and manipulate the various
control systems spread around the factory floor. You do not need Java to do any of this, but if Java is the preferred
choice purely from the point of view of the programmer, then we believe we have demonstrated that Java is a viable
option for systems that can afford as little as 1 Mbyte of RAM.

In order to determine how small a Java system we could build today, we built one. We wrote a very thin OS which
we call JN, for Java Nanokernel. Its primary purpose is to support a Java Virtual Machine and be as small as possible.
We then ported Sun’s JDK1.0.1 to JN. As suggested above, thisport includes the complete Java language and all of the
core Java packages exceptjava.awt. Our first significant application was a camera that is remotely programmable
in Java and is Internet accessible. We call this system JavaCam.

2 JN

JN[Mon97b] follows a classic soft-real-time architectureinformally known as a Cutler kernel. Although he was not
the first to use the architecture, David Cutler led teams thatused this architecture to implement the kernels for RSX-11,
VMS, and NT.

The kernel consists of a single work-loop driven by a queue ofcontrol blocks. The kernel begins execution in
response to an interrupt. Once started, the kernel continues to execute until no control blocks remain in the queue.
Each control block contains the address of a routine which the kernel must execute. Historically, these routines have
been calledfork routines in the Cutler kernels. Other common names for such routines, especially as found in I/O
managers, includeSecond Level Interrupt Handler(SLIH) andDeferred Procedure Call(DPC). Since fork routines
cannot block and must have a bounded execution time, they have many characteristics of routines written for a hard–
real-time environment. Neither the fork routines nor the kernel need to use explicit mutual exclusion to access global
data structures, reducing the need for explicit synchronization.

Because JN is intended to support a Java Virtual Machine, there is no concept of protection or security in JN. All
security is handled by the JVM.

The JN file system supports a Unix-like directory structure.The actual implementation is a flat file system sup-
porting long filenames which can contain slashes. This givesthe appearance of a hierarchical file system, as required
by the JVM. In addition, our implementation supports Unix sparse-file semantics in that only sections of the file that
contain actual data are allocated space. Currently our file system can reside either in volatile RAM or persistent RAM
on a PCMCIA RAM card.

JN currently runs on two embedded processors from National Semiconductor - the NS486SXF and the CR32. The
NS486SXF is a “single-chip” 32-bit 486 PC. Included on the chip are a PCMCIA controller, a UART serial port, an
enhanced bidirectional parallel port, an LCD display controller, infrared serial control, a real-time clock/calendar, a
watchdog timer, programmable interval timers, two peripheral interrupt controllers, a serial high-speed synchronous
interface (Microwire), a degree of power management, a DMA controller, a DRAM controller, and a bus interface unit.
The bus interface unit can control the standard PC ISA bus or the PC/104 embedded system variant of ISA. We have
currently implemented device drivers for the clock/calendar, the serial UART, the parallel port, and the PCMCIA. In
addition we have implemented a driver for an Atlantic Ethernet card. The CR32 configuration is similar.

The JN Nanokernel consists of approximately 2000 lines of C.This does not include the KA9Q TCP/IP stack
which has been ported to work with JN.
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3 Porting JVM

We originally ported the JVM from Sun’s JDK1.0.1 to JN running on the NS486SXF. This port includes all Java
language features and all of the core Java packages exceptjava.awt. The JVM, as implemented in JDK1.0.1 and
modified to run on JN, requires about 183Kbytes of memory, notincluding any dynamic data structures.

Most of the OS support required by the JVM in JDK1.0.1 is listed in a file,sys_api.h, that is part of the standard
JDK1.0.1 distribution. There were a few direct calls to Unixroutines that were not listed insys_api.h. In a port
to a traditional operating system, it would be necessary to write some interface glue to map the calls that the JVM
code was making into the actual calls supported by the OS. Because JN did not have a fixed API, we simply modified
the JN API to exactly match that needed by the JVM code. We determined what the JVM needed by removing the
interface files from the Unix version of JDK1.0.1 and trying to link. The missing routines were the ones we needed to
implement. It was only somewhat later that we discovered that the public filesys_api.h included most of what we
needed. We would still have had to do the exercise, becausesys_api.h is not complete.

The support required by the JVM code falls into six categories - thread routines, monitor routines, file routines,
exception handling routines, socket routines, and variousmiscellaneous routines which are largely standard Unix
routines such asmalloc() andfree(). The thread routines are such things assysThreadCreate() and
sysThreadResume(). The monitor routines includesysMonitorEnter() andsysMonitorExit(). File
routines are the usual read, write, open, close, etc.. The others are equally predictable. The details of the JN API are
available in a technical report[Mon97a].

JN does not support the dynamic loading and running of programs. Instead, JN is linked with the application as a
single image, that is, we link JN with the JVM. The JVM is run bycalling the main routine of the Java interpreter.

A similar restriction applies to native methods used by Javaclasses. Because JN does not support dynamic linking,
the standard Java methodSystem.loadLibrary() is not supported. All required native methods must be linked
into JN at build time along with the JVM. Native methods are still supported, they are just not linked dynamically.
The other major change we made to get the JVM code, as written by Sun, to work with JN was to eliminate all code
with virtual memory dependencies. We also made some changesin the handling of garbage collection and added class
unloading as discussed below.

4 JavaCam

Our first significant application was a network camera [All97]. We wanted an example sensor that would be accessible
via the Internet and that would demonstrate Java’s built in support for dynamically updating code running in the
embedded system. Applications for such a device include security and traffic monitoring.

JavaCam is an example of such a remote network sensor, controlled by Java, that is fully programmable over the
network without ever shutting down the sensor.

The camera we choose to use is the Connectix QuickCam, a commercially available product costing around $250.
It uses a charged coupled device (CCD) to take a digital picture. The QuickCam receives control parameters and
delivers image data using a standard bidirectional PC parallel port. The Connectix QuickCam camera always acquires
an image 340 pixels wide (columns) and 250 pixels high (rows). A subset rectangle from this image may be returned
from the camera on request. The camera can control the levelsof hue, saturation, contrast, black-level, white-level,
and exposure time. The camera delivers pixels in 24-bit color, that is, a byte of red, green, and blue is returned for each
pixel. The camera operates in one of three decimation modes,indicating whether the camera is to deliver all rows and
columns, every other row and column, or every fourth row and column. The JavaCam user can specify these settings
via the Java camera control applet inside a Web browser or viaa CameraControl servlet as described below.

The camera driver provides the basic interface to the camera. It allows higher-level programs to send commands
to the camera and provides a simple interface to receive images. The driver communicates with the camera over the
parallel port. The driver provides a basic API of three functions:

void qc_initialize();
int qc_send_command( unsigned char command, unsigned char parameter );
int qc_take_picture( char *array, char mode, int length );

These functions are implemented in C and called by Java native methods.

3



Functionqc_initalize() resets the camera to a known state with all settings set to default values. It also
terminates any camera operation already in progress.

The qc_send_command() function sends a command and argument to the camera. Each command to the
QuickCam consists of two bytes - a command and an argument to the command. The camera echos the command and
argument back to the driver, in order to verify command reception.

The functionqc_take_picture() obtains an image frame from the camera. It has 3 arguments: a buffer in
which to place the image pixels; a bitmask representing the camera mode (specifying color scheme and decimation
level); and the length of the expected image in bytes. Presumably, the program has already sent any other parameters
to the camera viaqc_send_command().

4.1 JavaCam Internet Systems

JavaCam provides two distinct ways to access the camera overthe Internet at the Java level: theappletmethod and the
servletmethod.

The applet approach works as shown in Figure 1. In this approach there isan HTTP server running on the
JavaCam system. When a WWW browser issues an appropriateGET command to the HTTP server, it hands back
a page containing a Java applet. This Java applet, called theQuickCamApplet, communicates back across the
network and contacts another server running on the JavaCam system, theQuickCamServer.

Applet
QuickCam

N

486

JN
Device drv

JVM

HTTP
QuickCam

Server

QC

Figure 1: JavaCam being controlled by an applet.

TheQuickCamApplet sends parameters to theQuickCamServer, and then makes a request for an image.
TheQuickCamServer contains aQuickCam object which contains native methods that call the JN cameradriver
routines. The native methods fill in the image buffer and handthe buffer back to theQuickCam. The server then
sends the data over the network back to theQuickCamApplet, to be displayed inside the user’s browser.

Theservletapproach works as shown in Figure 2. Inservletmode, aClassLoaderServermust be running on
the JavaCam system. This class listens on a particular Internet port for requests to load servlets to control the camera.
A servlet is akin to an applet; it is a Java class which implements a specific Javainterface. Like an applet, a servlet is
not an entire program. It requires another program to instantiate and fill out the missing parts of its expected run-time
environment. An applet is downloaded from a server to a localapplication in order to extend the functionality of that
application. A servlet is sent from a local application to a server in order to extend the functionality of that server.

In order to control the QuickCam on a JavaCam system, a class must implement theCameraControl interface.
A CameraControl servlet, if authorized, is instantiated and given a reference to aCamera object, which provides
access to the QuickCam JN device driver. The instantiated servlet is also given a socket providing a connection back
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Figure 2: JavaCam being controlled by a servlet.

to the client which provided the servlet. Once instantiatedand started, theCameraControl servlet can perform
any desired processing of camera data before sending data back to the client. Like an applet, the servlet runs within a
SecurityManager class. TheSecurityMangager checks all servlet operations to make sure that no unautho-
rized operations are performed. For example, in JavaCam, servlets are not permitted to access the file system or open
arbitrary network connections.

5 Fine tuning memory requirements

In a system with a tight memory budget, it is important not to waste memory. We identified two primary areas where
it was possible to reduce memory requirements. First, our embedded application does not use all the core Java classes,
therefore storing them is wasted memory. Second, prior to JDK1.1, the memory used for the system data structures
associated with dynamically loaded classes could never be recovered, even when the class was no longer needed
or even accessible. The Java Language Specification provides for class unloading, but it was not implemented in
JDK1.0.1. We have implemented both class unloading and a tool that allows us to identify and load just those classes
needed by our application.

5.1 Custom subsetting of the standard classes

In a traditional embedded system, all routines needed for the application are linked together into a single executable
image that is loaded onto the embedded system. This is exactly what we do with the C portion of our system, i.e., JN
and the JVM. In JavaCam, the real application is a Java program that is dynamically loaded into the running JVM.
Because of Java’s late binding semantics, it is not a normal part of Java development to identifyall of the classes
that will be needed by a particular Java program. The necessary classes are simply loaded on the fly as the program
executes. In non-embedded systems this is not an issue, because the nearly 1.5 Mbytes required for all the JDK1.0.1
core Java classes is not a significant amount of storage. For many embedded systems, this much storage is unavailable.
In JDK1.1 this requirement has shot up to nearly 10 Mbytes. Even after we eliminated the packagejava.awt,
which we do not support, we were still left with approximately 350 Kbytes for the class files, a significant portion of
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a 1 Mbyte budget.
We have developed a tool that examines the class files recursively starting from the main application class, iden-

tifying all classes that are used by the application. Using this tool we now only need approximately 250 Kbytes for
the class files for our JavaCam application, a savings of 10 percent of our 1 Mbyte budget. The only classes that
are missed by our tool are classes that are loaded by name, as is done with the methodClass.forName() in the
standard packagejava.lang.

For applications that do not use a custom class loader to loadclasses from a network or other source, our tool
will identify all classes loaded during the execution of theapplication. If classes can be loaded by a custom class
loader, as is done in JavaCam, then there is no way to know in advance what classes will be needed. Our solution is to
provide a tool that can be used to filter classes that are intended to be downloaded and notify the user if the classes do
not conform to the subset loaded on the embedded system. Thisis the same approach used in the subsets defined by
JavaSoft such as JavaCard and PersonalJava. Sending a JavaCam system a servlet that requires some standard class
that is not loaded on the JavaCam system will not crash JavaCam, it will simply result in a failure of the servlet.

Another solution that we have not yet implemented is to allowcertain standard classes that have not been preloaded
to be loaded from the same location as the servlet. This couldnot be done for all classes because of security reasons.

5.2 Class unloading

When a Java program uses a class the first time, the JVM loads the class and builds some internal data structures. The
Java Language Specification (JLS)[GJS96] allows for the unloading of classes, i.e., the reclaiming of these internal
data structures. Without class unloading, a Java Virtual Machine (JVM) is like an OS that never releases the memory
allocated for the code space of an application, even after the application has completed. In particular the JLS states
that “This can be used, for example, to unload a group of related types... Such a group might consist of all the classes
implementing a single applet.” Class unloading is important for any long running Java program that continuously
loads classes, uses them for some time, and then no longer uses them. This is exactly the type of behavior that occurs
with servlets sent to our JavaCam. The servlets are Java classes that are intended to be loaded into JavaCam, and used
only for the duration of a single connection. One of the features of Java that makes it attractive for many applications
is the security model that makes this dynamic loading and execution of untrusted program fragments possible. It is
essential that classes be unloaded periodically. Otherwise the computer’s memory will become cluttered with unused
classes. This is marginally tolerable in a system with virtual memory or one in which the JVM is frequently restarted.
For long running or embedded systems without virtual memory, such as JavaCam, class unloading is necessary.

We completed the addition of class unloading to our port of JDK1.0.1 about the same time the JDK1.1 was released
[Bal97]. JDK1.1 now includes class unloading. Our implementation of class unloading behaves similarly to that of
JDK1.1, however, we are a bit more conservative about unloading classes. We believe the JDK1.1 implementation
violates the requirement of the Java Language Specificationwhich states that for static fields “there exists exactly one
incarnation of the field, no matter how many instances (possibly zero) of the class may eventually be created.” This is
discussed in detail in another paper[MB97].

6 Conclusion

We have implemented an embedded Internet device in which executing Java programs can be dynamically updated,
that is, altered on-the-fly. We can build useful devices in this environment with as little as 1 Mbyte of memory.
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