
Explicit Window Adaptation:A Method to Enhance TCP PerformanceLampros Kalampoukas�, Anujan Varma�andK. K. RamakrishnanyUCSC-CRL-97-21August 21, 1997� Board of Studies in Computer EngineeringUniversity of California, Santa CruzSanta Cruz, CA 95064 yAT&T Labs-ResearchFlorham Park, NJ 07932abstractWe study the performance of TCP in an internetwork consisting of both rate-controlledand non-rate-controlled segments. A common example of such an environment occurs whenthe end systems are part of IP datagram networks interconnected by a rate-controlledsegment, such as an ATM network using the ABR service. In the absence of congestive lossesin either segment, TCP keeps increasing its window to its maximumsize. Mismatch betweenthe TCP window and the bandwidth-delay product of the network will result in accumulationof large queues and possibly bu�er overows in the devices at the edges of the rate-controlledsegment, causing degraded throughput and unfairness. We develop an explicit feedbackscheme, called Explicit Window Adaptation based on modifying the receiver's advertisedwindow in TCP acknowledgments returning to the source. The window size indicated toTCP is a function of the free bu�er in the edge device. Results from simulations with a widerange of tra�c scenarios show that this explicit window adaptation scheme can control thebu�er occupancy e�ciently at the edge device, and results in signi�cant improvements inpacket loss rate, fairness, and throughput over a packet discard policy such as Drop-from-Front or Random Early Detection.Keywords: TCP, congestion control, bu�er management, explicit window adaptationThis research is supported by the Advanced Research Projects Agency (ARPA) under Contract No. F19628-96-C-0038 and by the NSF Young Investigator Award No. MIP-9257103. The OPNET modeling tool used for simulationswas donated to us by MIL-3, Inc.

1. Introduction 11 IntroductionCongestion control in the current Internet is primarily a function of the Transmission ControlProtocol (TCP). TCP congestion control is based on controlling the end-to-end window as a functionof the congestion state of the network. The TCP congestion control mechanisms continue to evolveas more insight is gained on their behavior, and as new requirements emerge.An important attribute of TCP congestion control mechanisms is that they do not assume anysupport from the network for explicit signaling of congestion state. TCP infers the congestion stateof the network from implicit signals | arrival of acknowledgements (acks), timeouts, and receiptof the duplicate acks. The evolution of the congestion window in a TCP source consists of twophases: the slow start phase and the congestion avoidance phase. The slow-start phase occursduring startup, as well as when a packet loss is detected by way of a timeout at the source. Duringthe slow-start phase, the congestion window essentially doubles during each round-trip time (RTT),until a threshold window size known as slow-start threshold (ssthresh) is reached. At this pointthe host enters the congestion avoidance phase where TCP is probing for additional bandwidth byincreasing the window more slowly, at the rate of one segment per RTT. 1In the original \Tahoe" version of TCP, the only means of detecting a packet loss was by a timerexpiration at the source, causing the slow-start to be triggered upon every such loss [1]. This canlead to severe oscillations in bu�er occupancy at the routers, as well as in the connection throughput,when losses are random. This de�ciency was corrected in the later \Reno" version by adding theFast Retransmit and Fast Recovery mechanisms [2, 3]. The Fast Retransmit mechanism retransmitsa packet when three duplicate acks are received at the source, without waiting for the timer to expire.The Fast Recovery mechanism avoids slow-start in such cases by setting the congestion window toapproximately half its current value and keeping the connection in the congestion avoidance phase.This avoids severe uctuations in throughput and bu�er occupancy when the congestion is not severeenough to warrant a large reduction in o�ered load.An important consequence of using the Fast Retransmit and Fast Recovery mechanisms atthe TCP source is that it becomes advantageous for routers to signal congestion to the sourceby discarding a packet early at the onset of congestion, without waiting for its bu�ers to becomefull, when the router may be forced to discard multiple packets. This avoids the source entering slow-start, and the resulting oscillations in throughput. The Random Early Detection (RED) scheme [4]for routers is based on this idea. Multiple losses within the same TCP window, however, can stillcause timeouts at the source, causing slow-start to be invoked.In this paper, our interest is on the behavior of TCP congestion control algorithms in aninternetwork consisting of both rate-controlled and non-rate-controlled segments. The most commonexample of such an environment occurs when the end systems are part of IP datagram networksthat are interconnected by a rate-controlled ATM virtual circuit over a wide area. In the absenceof congestive losses, the TCP congestion window grows up to the maximum window size permittedby the destination system. However, the use of rate control in the ATM segment enables thequeue lengths to be maintained small in the ATM switches. The result is that most of the TCPwindow is now bu�ered in the routers at the edges of the rate-controlled channel, causing severecongestion, degraded throughput, and unfairness. Our objective in this paper is to develop a scheme1The TCP window is actually maintained in terms of bytes. For simplicity, however, we assume that the TCPsegments are of �xed size so that the window size can be maintained in segments.

1. Introduction 2for controlling congestion in the edge routers in such an environment. Note that this problem isnot limited to internetworks employing rate-controlled ATM segments, but applies in general tointernetworks where the edge routers employ some form of rate-based scheduling at the entry pointto a wide-area network.One approach to control congestion in the edge router is to employ an intelligent packet-discardpolicy such as Random Early Detection (RED), so that congestion can be signaled to the TCPsources early. However, when the delay in the wide-area segment is large, this policy may still causetimeouts, forcing connections to enter slow start. Another discard policy that has been shown towork well with TCP is Drop-from-Front, which drops the packets at the head of the FIFO queue inthe router when the bu�er becomes full [5]. This approach, however, may still cause back-to-backlosses and unfairness. Both RED and Drop-from-Front are generic solutions with the potential ofimproving the e�ciency and fairness of networks with TCP-controlled tra�c, without being tied to aspeci�c network technology. Being general does not allow them to take full advantage of informationthat is available at the entry point of a rate-controlled network segment.The objective of our scheme is to match the sum of the windows of active TCP connections sharingthe bu�er in the edge router to the e�ective network bandwidth-delay product, thus avoiding packetlosses whenever possible. This is achieved by explicitly controlling the window size of the connectionsas a function of the available space in the bu�er at the edge router. The window size informationis communicated by the edge router to the TCP sources by modifying the window advertisement�eld in the acks owing back to them. Our scheme, which we call Explicit Window Adaptation,does not require modi�cations to the TCP implementations in the end systems, and does not needto maintain per-ow state in the router. Results from extensive simulations with a wide rangeof network con�gurations show that our scheme is able to provide almost perfect throughput andfairness when the delays in the local segments are small compared to that in the rate-controlled wide-area network. Even when the latter is small compared to the former, Explicit Window Adaptationresulted in close-to-ideal throughput and fairness.The performance of TCP when operating exclusively over IP datagram networks has been thesubject of extensive research in the past [6, 7, 8, 9, 10, 11, 12, 13, 14, 5]. Similarly, TCP performanceover ATM networks using the Available Bit-Rate (ABR) service has also been studied [15, 16,17]. These studies provide valuable insights into TCP dynamics and how TCP congestion controlmechanisms interact with ABR congestion control algorithms. Several modi�cations to TCP havealso been proposed with the objective of improving both network utilization and fairness. Floyd [18]proposed to modify TCP to include Explicit Congestion Noti�cation (ECN) from routers to thesource. By combining explicit noti�cation with RED, the performance of both delay-sensitive (telnet-like) and delay-insensitive (ftp-like) tra�c can be improved [18]. Other approaches such as Tri-S [19]and TCP-Vegas [20] attempt to estimate the bandwidth-delay product for each TCP connection andadjust the window size based on this estimate. However, these schemes introduce complexity in theend-system and require extensive modi�cations to current TCP implementations.This paper is organized as follows: In the next section, we provide the motivation for this workby discussing simulation results from an example network con�guration. We introduce the ExplicitWindow Adaptation scheme in Section 3 and discuss its implementation. In Section 4, we presentresults from extensive simulations of the scheme with a wide range of network parameters and tra�cscenarios. We conclude the paper in Section 5 with a summary of the results.

2. Motivation 32 MotivationWindow-based protocols control the amount of outstanding data in the network. Even thoughseveral extensions to TCP have been proposed with the objective of adapting the window size to theactual bandwidth-delay product of the underlying network [19, 20], current implementations requirea packet loss to reduce the congestion window size. In the absence of such losses the congestionwindow increases up to the maximum socket bu�er advertised by the receiver.When TCP tra�c is carried over an ATM network, the window-based congestion control mecha-nisms of TCP can interact with the rate-based control mechanisms in the ATM network in undesir-able ways. These interactions are a result of the mismatch in the dynamics introduced by rate-basedand window-based control [21]. TCP controls the total amount of data injected into the network,but does not control its burstiness. However, the service rate the connection receives at the edge ofthe ATM network is constant. Thus, segments transmitted by the TCP connection arrive typicallyas a burst at the edge router, and are drained at the available rate on the ATM network. As a result,assuming no losses elsewhere in the network, the TCP window size grows to eventually cause a bu�eroverow at the access point into the rate-controlled part of the network. This behavior tends to beperiodic, and may result in loss of throughout and overall performance degradation. The e�ect ofsuch periodic losses on TCP performance was analyzed by Lakshman, et. al. [7].Although the above problem could occur in more general environments, we focus our attentionin this paper on TCP/IP internetworks where the end systems are connected to legacy LANs (suchas Ethernet or Token Ring), with the LANs interconnected through a rate-controlled ATM virtualcircuit. Figure 2.1, shows the example network con�guration that will be used in our study. We willrefer to the routers at the boundary between the two networks as ATM Access Points (AAPs) andto the LAN segments as IP networks. For IP over ATM we assume the framework described in [22].According to this framework, a single VC is set up for carrying ABR tra�c between a source and adestination system. TCP connections destined to di�erent IP networks will be carried over separateVCs. Multiple TCP connections set up between the same pair of source and destination IP networkswill be multiplexed into a single ATM virtual circuit. In Figure 2.1, we identify each IP-to-ATMrouter with the label of the IP network it is connected to, i.e., we will refer to IP-to-ATM Router 1as AAP-1.Unless stated otherwise, we assume that the AAPs use Drop-Tail packet discard policy. WithDrop-Tail, the packet that arrives at a full bu�er is dropped. This scheme is widely used today inswitches and routers, due mostly to its simplicity. This simplicity, however, comes at the cost ofdegraded performance: when the bu�er becomes full it is likely that many connections will face aloss at the same time. These synchronized losses result in a corresponding synchronized reactionby multiple connections simultaneously reducing their windows. The potential over-correction mayeventually lead to reduced throughput [14]. Furthermore, if multiple losses occur from a singleconnection within one RTT, the connection may be forced into the slow-start phase.We will now consider two scenarios to illustrate the e�ects of packet losses occurring at the AAPson TCP performance. Both scenarios use the network con�guration shown in Figure 2.1. However,a di�erent set of connections is activated in each of these scenarios.In the �rst scenario, sources 1, 2b, and 3b are activated and their tra�c is destined to IP networks2, 3, and 4, respectively. The tra�c for each of the three connections will be carried by di�erent VCsin the ATM network. We assume the use of per-VC queueing and scheduling in the AAPs to provideisolation between the di�erent ATM virtual circuits. We also assume the use of an e�cient rate

2. Motivation 4
5 msecs

155 Mbits/sec

Source

nodes

IP Network 1

1, 6

2, 7

3, 8

4, 9

5,10

Destination

 nodes

IP Network 2

2b

IP-ATM

Router 1

3b

ATM Switch

IP-ATM

Router 2

Destination

 node

IP-ATM

Router 3

IP Network 3

IP Network 4

Destination

 node

IP-ATM

Router 4

1, 6

2, 7

3, 8

4, 9

5, 10

2b
3b

L1

L2

L4
L3

Figure 2.1: Generic network topology with IP and ATM subnetworks.allocation algorithm in the ATM network for support of ABR service, providing the three VCs witha fair and loss-free environment [23]. We consider this as a best case scenario. Each of the links inthis con�guration has a capacity of 155 Mbits/sec. The one-way propagation delays of connections 1and 2b in IP Network 1 are set to 3 milliseconds and that of connection 3b to 0.8 �sec. The delays inIP Networks 2, 3, and 4 as well as the link delays L1, L2, L3, and L4 are assumed to be insigni�cant.The TCP segment size is set to 1500 bytes. The bu�er size for each ATM connection at the ATMlayer in AAP-1 was set to 64 KBytes and the maximum socket bu�er size at the receivers for allthree connections was set to 200 KBytes.Figures 2.2 and 2.3 show the sequence number growth and the congestion windows for all threeactive connections. Observe that all three connections periodically go through slow-start becauseof bu�er overows in AAP-1. As a result, the performance is poor even though there is per-VCqueueing and scheduling at the ATM layer. The average throughput for each connection is shownin Figure 2.4, where the long connections can be seen to receive signi�cantly lower throughput ascompared to the short connection. This can be attributed to the long connections losing multipleback-to-back packets and recovering slower from these losses.The problem becomes even more pronounced when tra�c from multiple TCP connections ismultiplexed into a single ATM virtual circuit. To study such a con�guration, we multiplexed thetra�c from ten TCP connections into a single VC. The network con�guration for this simulationremains as shown in Figure 2.1, but the propagation delay of link L1 was set to 5 milliseconds andthat of each link in the IP Network to 0.5 milliseconds. A single VC was established between IPNetworks 1 and 2, carrying multiplexed tra�c from the ten TCP connections (1 { 10). The segmentsize for TCP was set to 1500 bytes. All ten connections were opened at time t = 0. We studied theway TCP adapts to changing network conditions by varying the number of active TCP connections:At time t = 10 secs we closed �ve of the ten active connections (6{10) and at time t = 15 secs weclosed another three (3{5). The bu�er size at AAP-1 was set to 200 Kbytes which is approximatelyequal to the bandwidth-delay product of the network. The destination bu�er, which e�ectively setsthe maximum TCP window size, was also set to 200 Kbytes. Thus, a single TCP connection may

2. Motivation 5
0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

0 1 2 3 4 5

T
C

P
 S

eq
ue

nc
e

N
um

be
rs

Time (secs)

Drop-Tail

Connection 1
Connection 2b
Connection 3bFigure 2.2: TCP sequence numbers forthe three connections (64 Kbytes IPbu�er size in the host, packet size =1500 bytes). 0

50

100

150

200

250

0 0.5 1 1.5 2 2.5 3

C
on

ge
st

io
n

W
in

do
w

 (
K

B
yt

es
)

Time (secs)

Drop-Tail

Connection 1
Connection 2b
Connection 3bFigure 2.3: TCP Congestion Windowsfor one long and one short connec-tion (64 Kbytes IP bu�er size in theIP-ATM router, 200 Kbytes maximumsocket bu�er at receiver, packet size =1500 bytes).

0

10

20

30

40

50

60

0 1 2 3 4 5

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
bi

ts
/s

ec
)

Time (secs)

Drop-Tail

Connection 1
Connection 2b
Connection 3bFigure 2.4: Average e�ective throughput per TCP connection (64 Kbytes IP bu�er size inthe host, 200 Kbytes maximum socket bu�er at receiver, packet size = 1500 bytes).potentially operate at the maximum available link capacity if necessary.Figure 2.5 illustrates the sequence number growth of the active TCP connections. We observethat once steady state is reached, all connections make fair progress during the �rst 10 seconds.The utilization of link L1, measured in intervals of 250 milliseconds, is shown in Figure 2.6. Duringthe �rst 10 secs the utilization is approximately 70%. The throughput loss is mainly due to thesynchronization of the losses for the connections and their simultaneous recovery. This results inidling the link substantially.At time t = 10 secs, when �ve of the ten connections close, we would expect the slope ofthe sequence number growth to almost double since the available bandwidth per connection alsodoubles. However, we observe that it remains almost unchanged, limiting the utilization of linkL1 to approximately 50%. This is because of the synchronization between the connections duringperiods following a bu�er overow. Finally, during the last 5 seconds of the simulation, when onlytwo TCP connections are active, we observe that the link utilization improves to approximately80%. This, however, occurs at the cost of degraded fairness. This is because, on retransmitting alost packet and recovering from the loss, one of the connections (the connection that had the largerwindow prior to the loss) will increase its window much faster, thus obtaining a larger portion ofthe available bandwidth.

2. Motivation 6
0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

4.5e+07

5e+07

0 2 4 6 8 10 12 14 16 18

T
C

P
 S

eq
ue

nc
e

N
um

be
rs

Time (secs)

Drop-Tail

Connection 1
Connection 2
Connection 3
Connection 4
Connection 5
Connection 6
Connection 7
Connection 8
Connection 9

Connection 10Figure 2.5: Sequence number growthfor TCP connections with Drop-Tailbu�er management (IP Network delays= 0.5 msecs, ATM backbone delay =5 msecs, ssthresh = 64 KBytes initially). 0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

Li
nk

 U
til

iz
at

io
n

Time (secs)

Drop-Tail

Figure 2.6: E�ective utilization of theATM link at IP-ATM Router 1 withDrop-Tail bu�er management measuredevery 250 msecs (IP Network delays= 0.5 msecs, ATM backbone delay =5 msecs, initial value of ssthresh =64 KBytes).2.1 TCP Performance with Drop-from-Front AAPsTo reduce the tendency of Drop-Tail routers to synchronize losses of multiple connections, andthe possibility of multiple losses to a connection in a round-trip, two alternative policies have beensuggested: Drop-from-Front [5] and Random Early Detection [4]. With Drop-from-Front, when apacket arrives at a full queue, the packet stored at the head of the queue is dropped. If service forthe packet at the head of the queue has already started, the following packet in the queue is droppedinstead. The arriving packet is always accepted, using the space freed by the dropped packet.The Drop-from-Front strategy has the potential to (i) provide faster feedback to tra�c sourcesregarding congestion, and (ii) break synchronization between competing connections, thus improvingfairness. Drop-from-Front provides an indication of congestion about one bu�er drain time earlier.This early feedback to TCP sources results in shortening the congestion episode and signi�cantlyreduces the subsequent over-correction. Looking at the head of the queue is similar to observing thesystem state as far in the past as possible. Consequently, the distribution of connections that occupythe head of the queue position is expected to be closer to the actual bandwidth distribution whenthe congestion epoch started (or as close as possible to that time). Hence, the dropping probabilityis more likely to be proportional to the inherent bandwidth distribution among the connections.We investigate now how Drop-from-Front a�ects TCP performance when applied to AAPs. Weuse again the network topology of Figure 2.1 and the tra�c scenario described in the previoussimulation experiment: during the interval (0; 10) seconds, ten TCP connections are active; at timet = 10 seconds �ve of the ten connections close; and at t = 15 seconds three more connections close,leaving only two active. The sequence number growths for the active TCP connections are presentedin Figure 2.7, and the utilization of link L1 in Figure 2.8.During the �rst 10 seconds all the connections make fair progress, with better overall throughputthan that with Drop-Tail. From Figure 2.8, we observe that the link utilization during the �rst10 seconds is approximately 90% compared to 70% with Drop-Tail AAPs. Even when only �ve TCPconnections are active we can again see that the throughput is signi�cantly better, approximately75% compared to 50% for Drop-Tail. While better than Drop-Tail, this loss in throughput indicates

2. Motivation 7
0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

4.5e+07

5e+07

0 2 4 6 8 10 12 14 16 18

T
C

P
 S

eq
ue

nc
e

N
um

be
rs

Time (secs)

Drop-from-Front

Connection 1
Connection 2
Connection 3
Connection 4
Connection 5
Connection 6
Connection 7
Connection 8
Connection 9

Connection 10Figure 2.7: Sequence number growthfor TCP connections with Drop-Frontbu�er management (IP Network delays= 0.5 msecs, ATM backbone delay =5 msecs, ssthresh = 64 KBytes initially). 0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

Li
nk

 U
til

iz
at

io
n

Time (secs)

Drop-from-Front

Figure 2.8: E�ective utilization of theATM link at IP-ATM Router 1 withDrop-Front bu�er management mea-sured every 250 msecs (IP Network de-lays = 0.5 msecs, ATM backbone delay= 5 msecs, ssthresh = 64 KBytes ini-tially).that the mechanism is still unable to overcome the fundamental problem: there is throughputdegradation when packet loss is used as the sole indicator of congestion.Finally, during the last 5 seconds when only two TCP connections are active, the throughputis again quite high, approximately 90%. In contrast to the Drop-Tail case, the progress of the twoactive TCP connections is fair.2.2 TCP performance with Random Early Detection (RED) AAPsThe Random Early Detection (RED) scheme also has the same objective of improving TCPthroughput and fairness [4]. Congestion is determined by comparing the average queue size to apredetermined threshold. Congestion can be detected even before the bu�er is full, thus controllingthe average queue size. In periods of congestion RED marks incoming packets in order to indicatecongestion to TCP sources. Marking can be performed by setting a bit in the packet header. Thecurrent version of TCP protocol, however, does not support such explicit congestion noti�cation.Therefore, congestion must be signaled to the source through a packet loss. RED applies random-ization in selecting the connections to notify, with the objective of avoiding global synchronizationand to achieve a dropping probability that is proportional to the inherent bandwidth distributionamong the connections.RED maintains two bu�er occupancy thresholds in the router: a low threshold minth and a highthreshold maxth. No packets are dropped when the average queue size is below minth. When theaverage queue size exceeds maxth, all incoming packets are dropped with probability one. When theaverage queue length is between minth andmaxth, the incoming packet is dropped with a probabilitythat is a linear function of the average queue length, varying linearly from zero to a pre-determinedmaximum value maxp.Using the con�guration of Figure 2.1 and the same tra�c scenario used in the previous experi-ments, we studied the performance when RED was used. We ran two sets of simulationswith di�erentsets of parameters for RED. First, we set minth to 15 packets, maxth to 30 packets and maxp to0.02. The total bu�er size in AAP-1 was set to 110 packets, equivalent to the bandwidth-delay

3. Explicit Window Adaptation 8
0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

4.5e+07

5e+07

0 2 4 6 8 10 12 14 16 18

T
C

P
 S

eq
ue

nc
e

N
um

be
rs

Time (secs)

Random Early Detection (RED)

Connection 1
Connection 2
Connection 3
Connection 4
Connection 5
Connection 6
Connection 7
Connection 8
Connection 9

Connection 10Figure 2.9: Sequence number growthfor TCP connections with RED bu�ermanagement (maxp = 0:02, minth =15, maxth = 30, IP Network delays= 0.5 msecs, ATM backbone delay =5 msecs, ssthresh = 64 KBytes initially). 0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

Li
nk

 U
til

iz
at

io
n

Time (secs)

Random Early Detection (RED)

Figure 2.10: E�ective utilization of theATM link at IP-ATM Router 1 withRED bu�er management measured ev-ery 250 msecs (maxp = 0:02, minth =15, maxth = 30, IP Network delays= 0.5 msecs, ATM backbone delay =5 msecs, ssthresh = 64 KBytes initially).product of a single TCP connection. The sequence number growth plots for this �rst experimentare shown in Figure 2.9 and the utilization is shown in Figure 2.10. During the �rst 10 secondsall connections progress in a fair manner and the overall e�ciency is high. When the number ofactive connections drops from ten to �ve at t = 10 seconds, and subsequently from �ve to two att = 15 seconds, the active connections manage to claim most of the leftover bandwidth. However,as can be seen in Figure 2.10, the link utilization is still not ideal, reecting the penalty of lostthroughput in response to packet loss. However, RED succeeds in achieving fairness.To study the sensitivity of the scheme to the maximummarking probability, we increased maxpfrom 0.02 to 0.05, while keeping the rest of the parameters the same. This value is within therange suggested for RED [4]. The sequence number plots for this case are given in Figure 2.11, andthe measured link utilization in Figure 2.12. We observe that the connection progress is again fairbut the overall performance is further degraded, and the results are now comparable to those fromDrop-from-Front.The simulation results presented in this section suggest that RED has the potential of improvingperformance beyond that achieved by Drop-Tail and Drop-from-Front. However, the sensitivity toparameters suggests that further understanding is needed on how to tune the parameters.3 Explicit Window AdaptationThe packet discard algorithms discussed in the previous section attempt to control the TCPwindows implicitly by forcing the connections to respond to packet losses. An alternative approachis to control the window sizes explicitly from the bottleneck point in the network as a function ofthe e�ective bandwidth-delay product of the network. Such a scheme requires two key components:(i) A mechanism to signal window updates from the network to the source, and (ii) a scheme atthe bottleneck point to estimate the window size based on the congestion state of the network. Theformer can be accomplished without modi�cations to the TCP protocol by allowing the networkelements to modify the receiver's advertised window �eld carried by TCP acknowledgements fromthe destination to the source. The latter problem, however, is signi�cantly more di�cult: First, when

3. Explicit Window Adaptation 9
0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

4.5e+07

5e+07

0 2 4 6 8 10 12 14 16 18

T
C

P
 S

eq
ue

nc
e

N
um

be
rs

Time (secs)

Random Early Detection (RED)

Connection 1
Connection 2
Connection 3
Connection 4
Connection 5
Connection 6
Connection 7
Connection 8
Connection 9

Connection 10Figure 2.11: Sequence number growthfor TCP connections with RED bu�ermanagement (maxp = 0:05, minth =15, maxth = 30, IP Network delays= 0.5 msecs, ATM backbone delay =5 msecs, ssthresh = 64 KBytes initially). 0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

Li
nk

 U
til

iz
at

io
n

Time (secs)

Random Early Detection (RED)

Figure 2.12: E�ective utilization of theATM link at IP-ATM Router 1 withRED bu�er management measured ev-ery 250 msecs (maxp = 0:05, minth =15, maxth = 30, IP Network delays= 0.5 msecs, ATM backbone delay =5 msecs, ssthresh = 64 KBytes initially).there are multiple bottlenecks on the path of a TCP connection, the window estimation algorithmsat these bottlenecks may interact in undesirable ways. Second, estimating the bandwidth-delayproduct of the link from the bottleneck element is often as di�cult as estimating it at the source.Finally, the advantages of the scheme must be compared against those of implicit (packet discard)schemes of comparable complexity. For example, if the scheme requires maintaining per-connectionstate at the routers, its performance needs to be compared against alternative packet discard schemesthat could be designed when the routers provide per-ow queueing and scheduling.For the speci�c network environment we consider in this paper, however, the problem is muchsimpler. First, we assume that the only bottleneck in the path of the TCP connections occursat the AAP. Second, both the bandwidth available in the ATM segment, and the delay throughit, remain relatively steady over short timescales, independent of the number of TCP connectionstransported over it. This makes it easier for the AAP to estimate the available bandwidth-delayproduct for each TCP connection sharing the outgoing ATM virtual circuit. Finally, the per-VCqueueing and bu�ering at the ATM layer isolates the TCP connections sharing a single virtualcircuit from other tra�c. In this section we outline a scheme that takes advantage of these facts,for explicitly controlling the TCP congestion windows from the AAP.The Explicit Window Adaptation (EWA) scheme provides TCP with explicit feedback on thestate of the AAP bu�er. The objective is to allow TCP connections to grow their window to �ll thenetwork pipe (i.e., bandwidth-delay product). Any further increase of the window size contributesonly to increased queueing delay, not improved throughput. Optimal setting of the window size,however, requires knowledge of the RTT and the bandwidth-delay product of the network [24].Such information is usually not available at network elements. Instead, EWA determines when thenetwork pipe is full by monitoring the occupancy of the bu�er serving the outgoing ATM virtualcircuit at the AAP: non-empty bu�er is either an indication of a full pipe or bursty tra�c. At thattime EWA \marks down" slowly the window size fed back to the TCP source so that the steady-statebu�er occupancy can be maintained well below the bu�er capacity, still keeping the network pipefull. Furthermore, controlling the bu�er occupancy allows the network elements to accommodateshort-term bursts while avoiding bu�er overows or underows most of the time. When multiple

3. Explicit Window Adaptation 10TCP connections share a commonVC, the approach matches the aggregate window sizes of all activeTCP ows to the bandwidth-delay product of the network while at the same time providing all theconnections with similar feedback to achieve fairness.EWA sends explicit feedback to TCP sources to adjust their window sizes. The feedback is carriedby returning TCP acknowledgments in the receiver's advertised window �eld. If the current valuein the receiver's advertised window, which is set by the destination system, exceeds the feedbackvalue computed in the AAP, the receiver's advertised window is marked down to the feedback value.The computed feedback is a function of the free bu�er space at the AAP. In that sense it is similarto the idea proposed by Choudhury and Hahne [25] for controlling dynamic bu�er thresholds in ashared-memory switch. In our case, however, the feedback computed is used to adapt the TCPwindow maintained at the sources in order to limit packet losses in the AAP's bu�er.Let us denote with Be(t) = B � Q(t) the empty bu�er space at time t when a returning ackarrives at an AAP, where B is the total bu�er space and Q(t) is the total bu�er occupancy attime t. Let Wr(t) denote the value in the receiver's advertised window �eld seen in the ack. Thealgorithm computes a target window size for the TCP connection as a function of the available bu�er,that is f(Be(t)). This computed value is then used to mark down the receiver's advertised window�eld in the acknowledgement. Since setting the window size smaller than the maximum segment size(MSS) negotiated during connection establishment can lead to starvation and deadlocks, a minimumwindow size of MSS is enforced. Thus, the feedback value,W 0r(t), used to set the receiver's advertisedwindow �eld, is computed at the AAP asW 0r(t) = max(min(Wr(t); f(Be(t)));MSS): (3.1)The window size computed by Eq.(3.1) is used to modify the returning acknowledgements,regardless of the connections they belong to. That is, all TCP connections are treated equallyand receive the same feedback for the same bu�er occupancy. This avoids the need to maintainthe number of active TCP connections or their states in the AAP. In the case of a connection notmaking use of its allocated window, the bu�er occupancy will start to go down in the AAP, causingan increase in the window size signaled to all connections: This results in the active connectionsincreasing their throughput, sharing the available bandwidth equally.The di�cult task in such an algorithm is to design the feedback function f(Be(t)). The dynamicsof the system depend heavily on this feedback function. The goal of the function is to provide allTCP connections with similar feedback, and as a result have them operate with equal windows. Wenow discuss the requirements and tradeo�s in the choice of the feedback function and describe afunction that satis�es these requirements.3.1 Choosing the feedback functionThe window feedback is based solely on the amount of free bu�er at the AAPs. This makesthe system self-adaptive to the tra�c load and the number of active connections. All connectionsreceive similar feedback and as a result the bu�er occupancy will reach an equilibrium state. Forexample, assuming that a known number of N connections are active and that all the connectionshave equal round-trip times, the system converges to a state that satis�es the following equationQi(t) = f(B � NQi(t)); (3.2)

3. Explicit Window Adaptation 11where Qi(t) is the amount of bu�er occupied by connection i, which is also equal to the feedbackgiven to that connection. In steady state and under the assumptions made, every connection willoccupy the same amount of bu�er. It should be noted that the assumption of equal round-trip delaysis not necessary for the system to reach an equilibrium state.In order for such a feedback control system to be able to bring the bu�er occupancy in AAPsto equilibrium, it is required that the sources react to feedback messages and increase their currentwindows rather slowly. TCP already uses such mechanisms to control window increases, imposinga window increase of one packet for every acknowledgement received or for every RTT, dependingon whether the connection is in the slow-start or congestion avoidance phase. When a connec-tion receives an advertised window size less than its current window size, the former takes e�ectimmediately.Note that if all the connections are in the congestion avoidance phase, they increase their windowby approximately one segment every round-trip time and therefore, the bu�er occupancy can beexpected to grow rather slowly. However, it is possible that the window sizes for some of theconnections sharing the bu�er are below the slow-start threshold ssthresh, and are therefore growingexponentially in time. Since the connections in slow-start phase cannot be identi�ed at the AAPwithout maintaining per-connection state, we must design a feedback function that does not penalizeconnections in the congestion-avoidance phase over those in slow-start.One approach is to estimate the target window size as a linear function of the instantaneous freespace at the AAP bu�er. That is, the window for each connection is set to the available bu�er spacemultiplied by a fraction �. f(Be(t)) = �Be(t) = �(B � Q(t)): (3.3)The fraction � determines the the bu�er occupancy in steady state. From simulations, weobserved that such a function performs well and is able to reach a stable state when the TCPsources are physically close to the AAP, that is when the delays in the control loop are small.With larger feedback delays, however, especially when all the connections are in the congestionavoidance phase, such a function may cause substantial over-correction. To illustrate this, consideran example where N TCP sessions with equal round-trip times are active, with all of them in thecongestion avoidance phase. Let the parameter � be 1. The behavior of bu�er occupancy at theAAP is graphically illustrated in Figure 3.1. As long as the total bu�er occupancy is below a targetsetpoint, all the connections are allowed to increase their windows by one segment. Thus, the overallbu�er occupancy increases by N segments every RTT. In Figure 3.1 this is the case for intervals(t0; t1), (t1; t2), and (t2; t3). Notice that because of the feedback delay, the new window feedbackbecomes e�ective one round-trip time later. At time t2 the bu�er occupancy exceeds the theoreticalsetpoint and all the connections are requested to decrease their window. The amount of decreasedepends on the exact time that the ack from an individual connection is processed at the AAP. Inthe worst case, each TCP connection will be asked to reduce its window by N segments, since at timet3 the overall bu�er occupancy exceeds the target setpoint by N . In the next RTT, that is duringthe interval (t3; t4), all N connections will decrease their windows by N segments, and the bu�eroccupancy at the AAP may go down by as many as O(N2) segments. These large oscillations in thewindows can cause frequent underows in the AAP, resulting in under-utilization of the availablecapacity in the ATM pipe.

3. Explicit Window Adaptation 12
O(N)

time

qu
eu

e
le

ng
th

target setpoint

O(N2)
Bb

0 t0 t1 t2 t3 t4RTT RTT RTT RTTFigure 3.1: Potential queue behavior when computing feedback using a linear function.A method of managing the bu�er allocation dynamicallywithout resulting in large over-correctionis needed. The computed feedback should change rather slowly compared to the actual amount ofempty bu�er in order to the system to reach a steady state in the general case. We use a logarithmicfunction to compute the feedback sent to individual TCP sessions. That is,f(Be(t)) = � log2Be(t) = � log2(B � Q(t)): (3.4)The total bu�er size B and the bu�er occupancy Q(t) are expressed in terms of number of packetsrather than bytes.The motivation for a logarithmic function for estimation of the target window size is based onan understanding of the di�erence in behavior of TCP when it is in congestion avoidance phase andin slow start phase. We would like a fair allocation of the bu�er to all connections sharing the bu�erand, subsequently, the bandwidth in the ATM network. A TCP connection in slow-start phasedoubles its window every round-trip time in contrast to a connection in congestion avoidance phase,where it increases only by one every RTT. The slow-start phase is to allow a TCP connection torapidly ramp up to the point where the round-trip pipe is �lled. Any further increases in the windowwould result in a gradual build-up of the queue at the bottleneck. Once the round-trip pipe is full,we would like the queue occupancy to increase at most linearly with time so that large oscillationsin window size can be avoided. By using a logarithmic function to compute the explicit windowfeedback, we force all TCP connections to behave as if they are in the congestion avoidance phase.To illustrate this point, consider the case where all TCP connections are in the slow-start phase.The bu�er occupancy can be expected to increase exponentially in this case, causing the free bu�eralso to decrease exponentially. The feedback values signaled to each connection will now decreaselinearly, since they are the logarithm of an exponentially varying signal. The behavior when thebu�er occupancy drops will be similar. Notice that if some of the active TCP connections are incongestion avoidance phase, their window increase process will be una�ected as long as their currentwindow size is smaller than that indicated in the most recently received ack.This logarithmic feedback function allows us to allocate the free bu�er among the TCP con-nections, incrementally, on encountering an ack from each connection. This does not require main-

3. Explicit Window Adaptation 13taining any connection-level state. Although this scheme has similarities with bu�er allocation incredit-based ow control [26, 27], our goal is not to achieve loss-free operation, but to reduce lossesdramatically, while achieving fairness. Gross over-allocation is avoided because of the incrementalallocation of the bu�er upon each ack received, so that the feedback returned is a function of thecurrent free bu�er.Using this function, rapid changes in the bu�er occupancy will cause relatively small changes tothe actual feedback sent to the TCP connections and therefore, the bu�er occupancy manages toreach the steady state independent of the phase that TCP connections operate in. In Section 4 weevaluate extensively with simulations the system performance when the feedback is computed usingthe logarithmic function given by Eq. (3.4).The feedback computed for each TCP connection when using the logarithmic function can besigni�cantly smaller than that computed with the linear function. This may cause under-utilizationwhen only a small number of TCP connections is active: the sum of the windows of the TCPconnections may not be able to �ll the network round-trip pipe. In the following section we describea simple adaptive method that adjusts parameter � to the o�ered load so that performance ismaximized even when a single TCP connection is active.3.2 Adapting � to the bandwidth-delay product and bu�er sizeWe would like the feedback computed by EWA to a�ect the source windows only after the round-trip pipe becomes full. However, when � is small, it is possible that the feedback computed by thelogarithmic function is small. As a result, if only a small number of TCP connections are active,the bottleneck link will be under-utilized. Also, a side-e�ect of using the free bu�er to computethe feedback is that the bu�er occupancy in steady state increases with an increasing number ofconnections. To be able to bring the bu�er occupancy to the desired setpoint, we make the scalingparameter � adaptive to the bu�er state.We use a simple method to adapt �. The method attempts to correct � only over long timescales,so that it will not a�ect the robustness and stability of the feedback computation process itself. Theobjective of EWA is to have the average queue length operate within a prede�ned range. Theadaptive method that we propose keeps track of the average queue length. In our experiments theaverage queue size is computed using a �rst order low-pass �lter. At a sampling point t, if Q(t�)is the average queue length and Q(t) the the current queue length sample, then the average queuelength is updated as Q(t) = (1� g)Q(t�) + gQ(t);where in our experiments the gain g is set to 1/128.Two thresholds are de�ned for Q(t), with the goal of maintaining the bu�er occupancy betweenthese thresholds. If the average bu�er occupancy is below the low threshold, then, � is increased bya small constant quantity wup every T seconds, that is� �+ wup:If the average bu�er occupancy exceeds the high threshold, then � is reduced multiplicativelyevery T seconds as follows:

4. Performance Evaluation 14� � �wdown:The additive increases allow the system to slowly increase the computed feedback so thateventually the bu�er occupancy will be within the desired operating range. On the other hand,in the event of sudden queue build up (possibly due to a reduction in the available bandwidth in theATM segment) the multiplicative decreases will enable the bu�er occupancy to be brought downrapidly. Thus, the combination of additive increases and multiplicative decreases allows the systemto search for a value that will bring the bu�er occupancy within the desired range. It is importantto note here that, because of the hysteresis introduced by the two bu�er thresholds, there is a rangeof values for � that can bring the bu�er occupancy within the speci�ed region. As a result, therobustness and stability of the system can be expected to show little sensitivity to the setting of theparameters used for adapting �.The high bu�er threshold is used to control the maximum bu�er occupancy in steady state.Therefore, the setting of this threshold determines the ability of the system to accommodate burstytra�c without causing an overow. Similarly, the low threshold allows the the system to tolerateshort breaks in incoming tra�c without causing an underow. In our experiments we set the high andthe low thresholds to 60% and 20%, respectively, which we found to be good choices to achieve thesegoals. Notice that the dynamic behavior of EWA will be fundamentally the same for other choicesas well. We set the parameters wup and wdown used to correct � to 1/8 and (1-1/32), respectively.The update interval T was chosen as 10 milliseconds. These choices make the adaptation processsu�ciently slow so that the system behavior will be determined mostly by the EWA feedback ratherthan by the method used to adapt �. In all our simulation experiments, we used an initial value of1 for �,Adapting the value of � based on the bu�er occupancy solves the problem of under-utilizationwhen only a small number of connections is active and the round-trip delay is long: if the value of� is quite small so that the sum of the feedback sent to the connections sharing the bu�er is lessthan the bandwidth-delay product, the average occupancy will drop below the low threshold. Asa result, � will increase until the bu�er occupancy is within the desired range. Similarly, when alarge number of TCP connections becomes active, the bu�er occupancy may increase beyond thehigh threshold and consequently the value of � will drop, bringing the steady state bu�er occupancywithin the desired range.In the following section we use results from extensive simulation experiments to show that thecombination of the logarithmic feedback function and adaptive algorithm for adjusting � brings thebu�er occupancy within the desired range and achieves high network utilization and fairness.4 Performance EvaluationHaving described the details of the Explicit Window Adaptation scheme, we now turn to evalu-ating its performance using simulation. The topology used in all our simulations is the one shownin Figure 2.1, where all the network links are assigned a bandwidth capacity of 155 Mbits/sec. Wetest the performance of the scheme for a large range of RTTs | from 11 to 100 milliseconds. Wetested the scheme not only for the simple case of constant available rate in the ATM segment, butalso when the available rate changes over a wide range. In addition to persistent TCP sources, we

4. Performance Evaluation 15also investigated the performance of the scheme under on-o� sources where feedback is often lesse�ective. The total bu�er size in the AAPs is a parameter in the simulations, but was always setnot to exceed the bandwidth-delay product of the network.Since the feedback loop in our scheme extends only from the AAP to the sources of the TCPconnections, the response of the algorithm is determined by the delay in the local IP networkrather than the total RTT of the connections. Fortunately, we can expect the delay in the ATMsegment to dominate the RTT of the connection in an environment where IP-based local networks areinterconnected through a wide-area ATM network segment. The di�cult case for EWA, however,occurs when the delay in the IP part dominates the total RTT of the connection. To test theperformance of the scheme in such a con�guration, we also designed simulation experiments wherethe IP delay is as large as 49 milliseconds and the delay in the ATM segment is only 1 millisecond.Although such a combination is unlikely in the environment we consider, it serves as a worst-casescenario for testing the e�ectiveness of the scheme.We used the OPNET modeling tool for all the simulations. The TCP model is based on the Renoversion. It supports the congestion control mechanism described by Jacobson [1], exponential back-o�, enhanced round-trip time (RTT) estimation based on both the mean and the variance of themeasured RTT, and the fast retransmit and fast recovery mechanisms. However, some adjustmentshad to be made to the TCP timers; since the RTT values in some of our simulations are of theorder of just a few milliseconds, we set the granularity of the timers to 20 milliseconds. We useda constant TCP segment size of 1500 bytes in all the simulations. Unless stated otherwise, thethroughput measurements are performed in intervals of 250 milliseconds.The metrics we use to evaluate the scheme are the link utilization, fairness, and bu�er occupancyat AAP-1. In the speci�c network con�guration considered, the utilization of the ATM link L1(which is the bottleneck link) serves as an indication of the overall network performance. In mostof our simulation experiments, the entire capacity of this link is available to the TCP connectionsunder observations, thus simulating a steady rate in the ATM segment. However, we also conductedexperiments where the capacity of the link L1 was shared by other on-o� tra�c during the courseof the simulation, forcing the available rate to vary. We demonstrate the ability of the scheme toachieve fairness by plotting the growth of sequence numbers for each simulated TCP connection.Finally, the bu�er occupancy plots serve to demonstrate the convergence dynamics of the algorithm.4.1 Performance with small IP delaysWe begin the evaluation of the scheme by �rst using the tra�c scenario used in Section 2. Inthis scenario, a total of ten connections open simultaneously at time t = 0 and remain active for10 seconds. At time t = 10 seconds �ve of the connections (6{10) close. The remaining connectionsstay active for another 5 seconds, when three more connections (3{5) close. The last two connectionsremain active until the end of the simulation at time t=20 seconds.The one-way network delay in the IP datagram network is set to 0.5 millisecond, and the one-way delay of the ATM backbone to 5 milliseconds, giving rise to 11 milliseconds of round-tripdelay. The feedback delay for the EWA scheme is 1 millisecond. The bu�er size at AAP-1 is set to200 Kbytes which is approximately the bandwidth-delay product of the network. Note that thesenetwork parameters are identical to those used for comparing the Drop-Tail, Drop-from-Front, andthe RED approaches in Section 2. The maximum window size is set to 200 Kbytes, so that a

4. Performance Evaluation 16
0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

4.5e+07

5e+07

0 5 10 15 20

T
C

P
 S

eq
ue

nc
e

N
um

be
rs

Time (secs)

Explicit Window Adaptation

Connection 1
Connection 2
Connection 3
Connection 4
Connection 5
Connection 6
Connection 7
Connection 8
Connection 9

Connection 10Figure 4.1: Sequence number growth forTCP connections with EWA (IP Net-work 1 delays = 0.5 msecs, ATM back-bone delay = 5 msecs). 0

50000

100000

150000

200000

0 5 10 15 20

B
uf

fe
r

oc
cu

pa
nc

y
(b

yt
es

)

Time (secs)

Explicit Window Adaptation

Figure 4.2: Bu�er size at IP-ATMRouter 1 with EWA (IP Network 1 de-lays = 0.5 msecs, ATM backbone delay= 5 msecs).
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

U
til

iz
at

io
n

Time (secs)

Explicit Window Adaptation

Connection 1
Connection 2
Connection 3
Connection 4
Connection 5
Connection 6
Connection 7
Connection 8
Connection 9

Connection 10Figure 4.3: Utilization for each individ-ual connection at link L1 with EWAmeasured in intervals of 250 msecs (IPNetwork 1 delays = 0.5 msecs, ATMbackbone delay = 5 msecs). 0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

Li
nk

 U
til

iz
at

io
n

Time (secs)

Explicit Window Adaptation

Figure 4.4: E�ective utilization of theATM link at IP-ATM Router 1 withEWA measured in intervals of 250 msecs(IP Network 1 delays = 0.5 msecs, ATMbackbone delay = 5 msecs).single connection will be able to utilize the available bandwidth. The ssthresh variable of TCP isinitialized to 64 Kbytes.The sequence number growths of the TCP connections are plotted in Figure 4.1. Observe thatthe progress of all TCP connections is fair. When the number of active connections decreases at timet = 10 and 15 seconds, the remaining active connections detect and recover the unused bandwidthrapidly while maintaining fairness. Observe in Figure 4.1 how the slope of the sequence numberlines changes at times t = 10 and 15 seconds as a result of extra bandwidth becoming available forthe active connections.The amount of bandwidth utilized by each TCP connection is shown in Figure 4.3, normalizedto the maximum throughput that can be achieved (for a 155 Mbits/sec link this is approximately135 Mbits/sec because of the overhead of cell headers, RM cells, TCP/IP headers, etc.). In this�gure, the throughput for each TCP connection is measured in intervals of 250 milliseconds. Observethat the throughput allocation is perfectly fair among the active connections. During the �rst10 seconds, when ten TCP connections are active, each of them receives 1/10th of the availablebandwidth. From time t=10 secs to t=15 secs, when �ve TCP connections are active, each receives1/5th of the available bandwidth. Finally, when only two connections are active, each gets half of

4. Performance Evaluation 17the available bandwidth.Figure 4.2 illustrates the bu�er occupancy at AAP-1. As can be seen in this �gure, the bu�ernever underows in steady state, leading to perfect link utilization. This is veri�ed by Figure 4.4where the measured link utilization is shown. Except for brief periods when the number of activeconnections changes, the utilization of link L1 remains 100%. The reason for the underows at time10 and 15 seconds can be explained as follows: When the number of active connections decreases,more bandwidth becomes available to each of the remaining active connections. However, the sumof the windows of the active TCP connections is not large enough to �ll the round-trip network pipe.As a result, it will take a few RTTs before the windows of the remaining active TCP connectionsgrow to a size that can �ll the network links. Note that the rate at which the window of a given TCPconnection grows decreases signi�cantly if the connection is operating in the congestion avoidancephase (window size above the ssthresh value). This is indeed the case in this simulation experimentat time t = 15 when only two connections remain. The window size for the two active connectionsmust increase from approximately 40 Kbytes up to 85 Kbytes to achieve full utilization of the networkbandwidth. At the rate of one segment per RTT, this takes approximately 150 milliseconds, as canbe veri�ed from Figure 4.2. Thus, the interval over which the under-utilization occurs in this caseis determined by the TCP window increase process rather than by the dynamics of our windowadaptation scheme.4.2 Performance with long IP delaysIn this section we test the sensitivity of the explicit window adaptation method to the IP networkdelays. We study the behavior of the proposed method in the case where most of the network delaysare in the IP part. This kind of con�gurations is the hardest for our scheme since the delays of thefeedback loop are determined by the IP delays (assuming that the network pipe in the ATM part isfull).We test the performance of the proposed scheme in the extreme case where the one-way IPnetwork delay is 49 milliseconds and the total round-trip network delay is 100 milliseconds. Theone-way delay in the ATM network is only 1 millisecond. The bu�er size in AAP-1 is set to be equalto bandwidth-delay product of the network which is approximately 2 Mbytes. Because of the size ofthe network and in order to isolate the e�ects of slow window increases, due to the TCP congestionavoidance phase, on the system performance, we have set ssthresh to 1 Mbyte, so that all TCPconnections will be able to increase rapidly their windows in the absence of packet losses. Therefore,the dynamics of the network will depend mostly on the explicit window adaptation scheme andmore speci�cally on how fast the parameter �, which is used to compute the feedback sent to TCPsources, adapts to network changes rather than on the TCP window growth rate.Figure 4.5 shows the sequence number growth for the active TCP connections. Observe thatthe progress is perfectly fair, even though the round-trip delay of the network is 100 milliseconds.Figure 4.7 illustrates exactly what portion of the available bandwidth is used by each TCP connec-tion. The bu�er occupancy at AAP-1 is shown in Figure 4.6. Observe that even in this extremecase where the total delay in the IP network is almost 100 milliseconds, and even though all activeTCP connections increase their window exponentially, the explicit window adaptation scheme isable to bring the bu�er occupancy to equilibrium very fast. When the number of active connectionsdecreases, at times t = 10 secs and t = 15 secs, the bu�er underows which unavoidably leads tosome link underutilization. Two factors a�ect the duration of the bu�er underow: the TCP window

4. Performance Evaluation 18
0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

4.5e+07

5e+07

0 5 10 15 20

T
C

P
 S

eq
ue

nc
e

N
um

be
rs

Time (secs)

Explicit Window Adaptation

Connection 1
Connection 2
Connection 3
Connection 4
Connection 5
Connection 6
Connection 7
Connection 8
Connection 9

Connection 10Figure 4.5: Sequence number growth forTCP connections with EWA (IP Net-work 1 delays = 49 msecs, ATM back-bone delay = 1 msecs). 0

500000

1e+06

1.5e+06

2e+06

0 5 10 15 20

B
uf

fe
r

si
ze

 (
by

te
s)

Time (secs)

Explicit Window Adaptation

Figure 4.6: Bu�er size at IP-ATMRouter 1 with EWA (IP Network 1 de-lays = 49 msecs, ATM backbone delay= 1 msecs).
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

U
til

iz
at

io
n

Time (secs)

Explicit Window Adaptation

Connection 1
Connection 2
Connection 3
Connection 4
Connection 5
Connection 6
Connection 7
Connection 8
Connection 9

Connection 10Figure 4.7: Utilization for each individ-ual connection at link L1 with EWAmeasured in intervals of 250 msecs (IPNetwork 1 delays = 49 msecs, ATMbackbone delay = 1 msecs). 0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

Li
nk

 U
til

iz
at

io
n

Time (secs)

Explicit Window Adaptation

Figure 4.8: E�ective utilization of theATM link at IP-ATM Router 1 withEWA measured in intervals of 250 msecs(IP Network 1 delays = 49 msecs, ATMbackbone delay = 1 msecs).increase time and the time required for parameter � to bring the system in a state with non-zerobu�er occupancy. Faster increase rate for � would help reduce the duration of link underutilizationby increasing the risk of packet losses. The observed underutilization, however, is not expected tobe a problem in actual networks mainly for two reasons: (i) the number of active connections will bemuch larger than two, and (ii), the ssthresh variable in TCP will not be set to something even closeto 1 Mbyte. In current TCP implementations the initial ssthresh value is in the range of 16 Kbytes-64 Kbytes. Therefore, the duration of link underutilization will be dominated by the time neededby individual TCP connections to increase their windows. For example, in the scenario considered,if the ssthresh variable was set to 512 Kbytes instead of 1 Mbyte (which is again unrealisticallylarge), TCP would need approximately 20-30 seconds before it was able to achieve 100% utilizationafter time t = 15 seconds when only two TCP sessions remain active compared to approximately2 seconds needed with the proposed method. In any case, even during the period of underow andunderutilization, the performance of the active connections constantly improves and the progress isfair. Figure 4.8 shows for the test case considered, that the total link utilization never drops below60%.

4. Performance Evaluation 194.3 Performance with small bu�ers and unequal IP delaysWe now show that Explicit Window Adaptation can be equally e�cient and stable even whenthe available bu�er in AAP-1 is much smaller than the bandwidth-delay product of the network andwhen not all TCP connections have equal delays in the local IP network segment.The fairness and e�ciency of packet discard schemes such as Drop-Tail, Drop-from-Front, andRED degrade dramatically when the amount of bu�er at the AAP is less than the round-tripbandwidth-delay product. Lakshman and Madhow [7] showed that the amount of bu�er in Drop-Tail switches should be at least two to three times the bandwidth-delay product of the network inorder for TCP to achieve decent performance and to avoid losses when operating in the slow-startphase. Also, Lakshman, et. al. [5] demonstrated that the bu�ering needed by the Drop-from-Front scheme must be of the order of the bandwidth-delay product for the network to achieve goodperformance.For this experiment we use the same network topology and tra�c scenario from the previousexperiment. The one-way delay in the ATM backbone is set to 5 milliseconds. The delays in theIP network vary from 1 to 5 milliseconds for the individual connections. The one-way IP delayis 1 millisecond for connections 1 and 6, 2 milliseconds for 2 and 7, and increasing so on to 5milliseconds for connections 5 and 10. According to this setup the total round-trip delays variesfrom 12 to 20 milliseconds for the individual connections. The bandwidth-delay product for thelongest connection is approximately 390 Kbytes. To test the ability of our scheme to work withsmall bu�ers, we set the bu�er capacity to 200 Kbytes, approximately half of this bandwidth-delayproduct.The sequence number growth for the TCP connections is shown in Figure 4.9. The progressfor all the active connections is steady and fair. Fairness is achieved in terms of having all TCPconnections operate with equal transmission windows, since AAP-1 computes similar feedback foreach connection. The throughput achieved by each connection is shown in Figure 4.11. Note thesmall variations in the utilization of individual connections because of the di�erences in round-tripdelays. This is because of the well-known e�ect of TCP favoring connections with smaller round-triptimes [28]. Achieving equal throughputs under asymmetric RTTs requires bandwidth allocation andscheduling at the level of individual TCP ows.The bu�er occupancy in AAP-1 is shown in Figure 4.10. The bu�er occupancy is able to reachits equilibrium state rapidly, even though its total capacity is limited to half the bandwidth-delayproduct of the network and the active TCP sessions have unequal round-trip delays. The duration ofthe bu�er underow and the resulting link underutilization when the number of active connectionsdecreases are both small to be of concern.4.4 Performance with increasing number of TCP connectionsIn the results presented so far, the number of active TCP connections was made to decrease overthe course of the simulation, and consequently the available bandwidth for the remaining connectionsincreases. In this section we consider the case where new TCP connections join already active onesduring the simulation. An e�ective bu�er management scheme must be able to cause the existingTCP connections to withdraw part of their bu�er and bandwidth allocations quickly in order toaccommodate tra�c sent by the new connections.

4. Performance Evaluation 20
0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

4.5e+07

5e+07

0 5 10 15 20

T
C

P
 S

eq
ue

nc
e

N
um

be
rs

Time (secs)

Explicit Window Adaptation

Connection 1
Connection 2
Connection 3
Connection 4
Connection 5
Connection 6
Connection 7
Connection 8
Connection 9

Connection 10Figure 4.9: Sequence number growth forTCP connections with EWA (IP Net-work 1 delays vary from 1 to 5 msecs,ATM backbone delay = 5 msecs). 0

50000

100000

150000

200000

0 5 10 15 20

B
uf

fe
r

oc
cu

pa
nc

y
(b

yt
es

)

Time (secs)

Explicit Window Adaptation

Figure 4.10: Bu�er size at IP-ATMRouter 1 with EWA (IP Network 1 de-lays vary from 1 to 5 msecs, ATM back-bone delay = 5 msecs).
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

U
til

iz
at

io
n

Time (secs)

Explicit Window Adaptation

Connection 1
Connection 2
Connection 3
Connection 4
Connection 5
Connection 6
Connection 7
Connection 8
Connection 9

Connection 10Figure 4.11: Utilization for each indi-vidual connection at link L1 with EWAmeasured in intervals of 250 msecs (IPNetwork 1 delays vary from 1 to 5 msecs,ATM backbone delay = 5 msecs). 0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

Li
nk

 U
til

iz
at

io
n

Time (secs)

Explicit Window Adaptation

Figure 4.12: E�ective utilization of theATM link at IP-ATM Router 1 withEWA measured in intervals of 250 msecs(IP Network 1 delays vary from 1to 5 msecs, ATM backbone delay =5 msecs).We have modi�ed slightly the tra�c scenario we used in the preceding sections in order toillustrate the ability of the scheme to accommodate new connections. At time t = 0 we activate �veTCP sessions (1{5). At time t = 10 seconds, we open �ve more TCP sessions (6{10), thus, changingthe total number of active TCP connection from �ve to ten. Finally, at time t = 15 seconds weclose eight of the ten active connections (3{10). All connections have equal round-trip delays. Boththe IP and the ATM network delays are set to 5 milliseconds, resulting in a total round-trip delayof 20 milliseconds. The bu�er size at AAP-1 is set equal to the bandwidth-delay product, which isapproximately 390 Kbytes.The simulation results for this experiment are shown in Figures 4.13, 4.14, 4.15, and 4.16.The sequence number growth for the TCP connections is shown in Figure 4.13. During the �rst10 seconds, when there are �ve connections active, the progress for all of them is fair and steady. Asshown in Figure 4.15 each connection acquires exactly 20% of the available bandwidth. Figure 4.14shows that the bu�er occupancy reaches its steady state quickly and remains at that level as longas the number of TCP connections remains the same.When the �ve new connections open at time t = 10 seconds, the existing connections release

4. Performance Evaluation 21
0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

4.5e+07

5e+07

0 5 10 15 20

T
C

P
 S

eq
ue

nc
e

N
um

be
rs

Time (secs)

Explicit Window Adaptation

Connection 1
Connection 2
Connection 3
Connection 4
Connection 5
Connection 6
Connection 7
Connection 8
Connection 9

Connection 10Figure 4.13: Sequence number growthfor TCP connections with EWA (IPNetwork 1 delays = 5 msecs, ATM back-bone delay = 5 msecs). 0

50000

100000

150000

200000

250000

300000

350000

0 5 10 15 20

B
uf

fe
r

oc
cu

pa
nc

y
(b

yt
es

)

Time (secs)

Explicit Window Adaptation

Figure 4.14: Bu�er size at IP-ATMRouter 1 with EWA (IP Network 1 de-lays = 5 msecs, ATM backbone delay =5 msecs).
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

U
til

iz
at

io
n

Time (secs)

Explicit Window Adaptation

Connection 1
Connection 2
Connection 3
Connection 4
Connection 5
Connection 6
Connection 7
Connection 8
Connection 9

Connection 10Figure 4.15: Utilization for each indi-vidual connection at link L1 with EWAmeasured in intervals of 250 msecs (IPNetwork 1 delays = 5 msecs, ATM back-bone delay = 5 msecs). 0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

Li
nk

 U
til

iz
at

io
n

Time (secs)

Explicit Window Adaptation

Figure 4.16: E�ective utilization of theATM link at IP-ATM Router 1 withEWA measured in intervals of 250 msecs(IP Network 1 delays = 5 msecs, ATMbackbone delay = 5 msecs).quickly some of the available bandwidth. This is evident from Figure 4.13 by the change in theslope of the sequence number growth lines. Notice that the initial sequence number for the newTCP connections is 2,780,000. The newly opened TCP connections manage to utilize quickly a fairportion of the available bandwidth. This fact is more clearly illustrated in Figures 4.15 where wecan see that right after time t = 10 secs, the explicit window adaptation scheme quickly revokes partof the bandwidth, currently in use by the pre-existing TCP connections, to accommodate the newones. Within approximately half a second all ten connection have reached their steady state andachieved equal thoughputs. It is interesting also to observe in Figure 4.14 that, after the numberof active TCP connections increases from �ve to ten, the bu�er reaches it new equilibrium statewithout dropping any packets. The behavior of the scheme when the number of active connectionsdecreases is fundamentally identical to that observed and analyzed in the previous experiments.The results presented in this section suggest that the EWA scheme is capable of accommodatingincreasing number TCP connection while achieving fairness, high utilization and stable behavior:the existing connections withdraw part of their allocations to allow a quick ramp-up for the newones. Furthermore, during the transient time the scheme does not show any bias for either theexisting or the new TCP connections.

4. Performance Evaluation 224.5 Performance with varying bandwidthIn all the experiments so far we assumed that the available bandwidth in the ATM segment wasconstant. We now explore how changes in the bandwidth available to the aggregate TCP tra�ca�ect the behavior and the performance of the TCP connections. We vary the bandwidth availableto TCP tra�c by opening and closing a high-priority ATM connection that shares the same link L1with the aggregate TCP tra�c. The amount of bandwidth reserved for this high-priority connectionis a simulation parameter. Although we have studied the behavior of the scheme for both low- andhigh-frequency changes in the TCP bandwidth, due to space limitations we will present results onlyfor the case where the available bandwidth changes with high frequency. For this experiment all tenTCP connections open at time t = 0 and remain open for the duration of the simulation, lasting20 seconds.We model these high-frequency changes in available bandwidth by opening and closing the highpriority connection using an ON/OFF model where the duration of the ON and OFF periods isexponentially distributed with a mean of 50 milliseconds. When in the ON state, the high priorityconnection is allocated 75 Mbits/sec. Therefore, the bandwidth variability is of the order of 50% ofthe link capacity. Both the IP and the ATM delays are set to 5 milliseconds and the bu�er size isset to 390 Kbytes, equal to the bandwidth-delay product of the network.The simulation results for this experiment are presented in Figures 4.17, 4.18, 4.19, and 4.20.The progress of all ten TCP connections is fair and the EWA mechanism successfully controls thebu�er occupancy: there are no bu�er overows or underows. However, careful examination ofthe simulation results revealed that the high variability in the queueing delays triggered packetretransmissions for some TCP connections. This is because the TCP timeout estimation algorithmwas not able to adapt to large variations in the round-trip delays fast enough.2 However, theseretransmissions have only a minor e�ect on the progress of the corresponding TCP connections, ascan be seen in Figures 4.17 and 4.19. Since the bu�er never underows, we conclude that the totallink utilization is 100%. Also, since the high-priority connection is active 50% of the time and theactive connections use approximately 48% of total link capacity, we can expect that, on the average,76% of the link bandwidth will be available for transporting TCP tra�c. This expectation is veri�edby the results in Figure 4.20.4.6 Performance with large number of connections and non-persistentsourcesSo far in our experiments, the TCP connections were allowed to transmit long enough to reachsteady state. Next, we consider the case of non-persistent TCP connections where the connectionsdo not have data to transmit at all times. In this experiment, we simulate a mix of greedy andnon-persistent connections to study their interaction and the resulting dynamics when the EWAscheme is used to control the TCP windows.We increase the total number of TCP connections to forty. Ten of them are driven by persistent(greedy) sources. The remaining thirty connections are driven by ON-OFF sources where the ONand OFF periods are exponentially distributed, each with an average of 200 milliseconds. Eightconnections originate from each of the �ve source nodes in Figure 2.1. Six of them carry tra�cfrom ON-OFF sessions and the remaining two carry tra�c from persistent sessions. The one-way2Larger granularities for the TCP timers would have prevented the retransmissions in this particular case.

4. Performance Evaluation 23
0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

4.5e+07

5e+07

0 5 10 15 20

T
C

P
 S

eq
ue

nc
e

N
um

be
rs

Time (secs)

Explicit Window Adaptation

Connection 1
Connection 2
Connection 3
Connection 4
Connection 5
Connection 6
Connection 7
Connection 8
Connection 9

Connection 10Figure 4.17: Sequence number growthfor TCP connections with EWA whenthe available bandwidth varies from80 Mbits/sec to 155 Mbits/sec (IP Net-work 1 delays = 5 msecs, ATM back-bone delay = 5 msecs). 0

50000

100000

150000

200000

250000

300000

350000

0 5 10 15 20

B
uf

fe
r

oc
cu

pa
nc

y
(b

yt
es

)

Time (secs)

Explicit Window Adaptation

Figure 4.18: Bu�er size at IP-ATMRouter 1 with EWA when the availablebandwidth varies from 80 Mbits/sec to155 Mbits/sec (IP Network 1 delays= 5 msecs, ATM backbone delay =5 msecs).
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

U
til

iz
at

io
n

Time (secs)

Explicit Window Adaptation

Connection 1
Connection 2
Connection 3
Connection 4
Connection 5
Connection 6
Connection 7
Connection 8
Connection 9

Connection 10Figure 4.19: Utilization for each indi-vidual connection at link L1 with EWAmeasured in intervals of 250 msecs whenthe available bandwidth varies from80 Mbits/sec to 155 Mbits/sec (IP Net-work 1 delays = 5 msecs, ATM back-bone delay = 5 msecs).
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

T
C

P
 L

in
k

U
sa

ge

Time (secs)

Explicit Window Adaptation

Figure 4.20: E�ective utilization of theATM link at IP-ATM Router 1 withEWA measured in intervals of 250 msecswhen the available bandwidth variesfrom 80 Mbits/sec to 155 Mbits/sec (IPNetwork 1 delays = 5 msecs, ATM back-bone delay = 5 msecs).delay in the IP is set to 49 milliseconds and that in the ATM backbone to 1 millisecond, givingrise to 100 milliseconds of round-trip delay for each connection. Thus, the ON and OFF periodsare on the average small multiples of the RTT. It is important to emphasize here that all the TCPconnections remain open for the entire duration of the simulation. It is the applications that feed thecorresponding TCP connections that follow the ON-OFF model. We set the bu�er size in AAP-1to be equal to the bandwidth-delay product of the network, which is approximately 2 Mbytes. Thestart time for each of the forty TCP connections is uniformly distributed from 0 to 5 milliseconds.TCP-controlled ON-OFF sources can introduce signi�cant amount of burstiness to the network:it is likely that during an OFF period of the connection, all of the outstanding data transmittedduring the last ON period have been acknowledged. As a result, in the subsequent ON period theconnection may transmit an entire window worth of data as a single burst. In addition, since theconnection may not have received any feedback for some time before entering the ON period, it may

4. Performance Evaluation 24
0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

0 5 10 15 20 25 30 35 40 45 50

T
C

P
 S

eq
ue

nc
e

N
um

be
rs

Time (secs)

Explicit Window Adaptation

Connection 1 (ON-OFF)
Connection 2 (ON-OFF)
Connection 3 (ON-OFF)
Connection 4 (ON-OFF)
Connection 5 (ON-OFF)

Connection 6 (persistent)Figure 4.21: Sequence number growthfor 5 ON-OFF TCP connections (onefrom each source node) and 1 persis-tent TCP connection with EWA (in to-tal there are 10 persistent TCP sources,30 ON-OFF TCP sources with meanON-time = mean OFF-time = 200 ms,IP Network 1 delays = 49 msecs, ATMbackbone delay = 1 msecs).
0

500000

1e+06

1.5e+06

2e+06

0 5 10 15 20 25 30 35 40 45 50

B
uf

fe
r

si
ze

 (
by

te
s)

Time (secs)

Explicit Window Adaptation

20% threshold

60% thresholdFigure 4.22: Bu�er size at IP-ATMRouter 1 with EWA (in total there are10 persistent TCP sources, 30 ON-OFFTCP sources with mean ON-time =mean OFF-time = 200 ms, IP Network1 delays = 49 msecs, ATM backbone de-lay = 1 msecs).
0

20

40

60

80

100

120

140

160

0 5 10 15 20 25 30 35 40 45 50

T
ra

ns
m

is
si

on
 W

in
do

w
 (

K
B

yt
es

)

Time (secs)

Explicit Window Adaptation

Connection 1 (ON-OFF)
Connection 6 (persistent)

70

75

80

85

90

95

100

35 35.5 36 36.5 37 37.5 38Figure 4.23: Congestion window size forone ON-OFF and one persistent TCPconnection with EWA. (in total thereare 10 persistent TCP sources, 30 ON-OFF TCP sources with mean ON-time= mean OFF-time = 200 ms, IP Net-work 1 delays = 49 msecs, ATM back-bone delay = 1 msecs).
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

Li
nk

 U
til

iz
at

io
n

Time (secs)

Explicit Window Adaptation

Figure 4.24: E�ective utilization ofthe ATM link at IP-ATM Router 1with EWA measured in intervals of250 msecs (in total there are 10 per-sistent TCP sources, 30 ON-OFF TCPsources with mean ON-time = meanOFF-time = 200 ms, IP Network 1 de-lays = 49 msecs, ATM backbone delay= 1 msecs).operate with a larger window size than the current value computed by the window adaptation scheme,until the �rst feedback arrives from the AAP after one RTT. These two e�ects pose di�culties forthe EWA scheme. Despite these problems, the results to be presented next reveal that EWA remainshighly e�cient and fair even in the presence of a large number of bursty connections.Figure 4.21 shows the sequence number growth for one representative TCP connection from each

4. Performance Evaluation 25
0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

0 5 10 15 20 25 30 35 40 45 50

T
C

P
 S

eq
ue

nc
e

N
um

be
rs

Time (secs)

Random Early Detection (RED)

Connection 1 (ON-OFF)
Connection 2 (ON-OFF)
Connection 3 (ON-OFF)
Connection 4 (ON-OFF)
Connection 5 (ON-OFF)

Connection 6 (persistent)Figure 4.25: Sequence number growthfor 5 ON-OFF TCP connections (onefrom each source node) and 1 persis-tent TCP connection with RED (in to-tal there are 10 persistent TCP sources,30 ON-OFF TCP sources with meanON-time = mean OFF-time = 200 ms,maxp = 0:05, minth = 150, maxth =400, IP Network 1 delays = 49 msecs,ATM backbone delay = 1 msecs).
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

Li
nk

 U
til

iz
at

io
n

Time (secs)

Random Early Detection (RED)

Figure 4.26: E�ective utilization of theATM link at IP-ATM Router 1 withRED measured in intervals of 250 msecs(in total there are 10 persistent TCPsources, 30 ON-OFF TCP sources withmean ON-time = mean OFF-time =200 ms, maxp = 0:05, minth = 150,maxth = 400, IP Network 1 delays= 49 msecs, ATM backbone delay =1 msecs).of the �ve source nodes carrying ON-OFF tra�c, and one TCP connection carrying tra�c from agreedy source. Since the ON-OFF sources have a 50% duty cycle, we would expect the sequencenumber growth rate for ON-OFF sources to be approximately half of that of persistent ones. This isindeed the case, as seen in Figure 4.21. Deviations from this expected value are due to the statisticalnature of the tra�c model and because the connections do not open in a synchronized manner. Itis important to note that the ON-OFF connections make fair progress and have nearly identicalbehavior.The bu�er occupancy at AAP-1 for this experiment is shown in Figure 4.22. Notice that EWAprotects the bu�er from overows. In addition, the bu�er underows are brief and do not signi�cantlya�ect the utilization of link L1. Therefore, we can conclude that EWA manages to control the bu�eroccupancy well in this experiment. The utilization of link L1, as can be seen in Figure 4.24, isperfect most of the time.The TCP transmission windows for one ON-OFF and one persistent connection are shown inFigure 4.23 where we can see that both connections operate with equivalent transmission windows.Notice that the ON-OFF connection is not penalized for being idle. Therefore, during the ON periodof the ON-OFF connection, the scheme is able to force the greedy source to withdraw rapidly thebandwidth and bu�er allocations in order to accommodate tra�c from the ON-OFF source.For comparison, we performed the same experiment with packet discard using the RED algorithmin place of EWA. Figures 4.25 and 4.26 summarize the simulation results. As we can see in thesequence number growth graph, the burstiness of the ON-OFF sources a�ect the performance of thepersistent ones. Moreover, the overall progress is not as fair and steady as in the EWA scheme. It canbe seen in Figure 4.25 that all the connections go through a large number of slow-starts, signi�cantlya�ecting the e�ciency and fairness of the network. As can be seen in Figure 4.26, depending solelyon packet losses to detect congestion has an impact on the congested link's utilization which issigni�cantly worse than that achieved by EWA.

5. Conclusion 265 ConclusionThe Explicit Window Adaptation scheme may be seen as an attempt to reconcile the inherentmismatch between window-based and rate-based congestion control approaches. This mismatch cancause large oscillations in bu�er occupancy at the edge device (switch or router) connecting the rate-controlled segment to the rest of the internetwork. The EWA scheme overcomes this problem byexplicitly controlling the end-to-end window size to correspond to the round-trip delay-bandwidthproduct. By careful design of the feedback function to set the window size, the scheme is able toachieve very low packet loss, a high degree of fairness, and almost perfect bandwidth utilization.An important advantage of the EWA scheme is its simplicity. The scheme is able to adapt auto-matically to the number of active connections, the tra�c load, the bu�er size, and the bandwidth-delay product of the network without maintaining any per-connection state. In addition, the TCPimplementations in the end systems do not need to be modi�ed, nor does it require modifying theTCP protocol itself. Updating the window size in returning acks is done in a manner transparent toTCP. The processing performed by the AAP on each TCP acknowledgement consists of updatingthe receiver's advertised window and the checksum �elds. Note that checksum can be updated fromknowing only the previous and new values of the advertised window �eld, as well as the old checksumvalue.Results from our simulation experiments demonstrate that the EWA scheme operates well undera wide range of tra�c scenarios. These experiments were not just \toy" simulations, but designed torepresent the tra�c scenarios in a real network. In addition, we have also compared the results fromour scheme with those from using intelligent packet discard policies such as Drop-from-Front andRED. Both the Drop-from-Front and RED policies have exhibited sensitivity to the speci�c tra�cscenario used. For example the dynamics of TCP change when the number of active connectionschange. The performance of RED can be tuned by adjusting its parameters but such a processrequires precise knowledge of the network topology and tra�c load. Adjusting RED's parameters tooptimize network performance is an open issue and requires further investigation. The EWA schemeachieves fairness in steady state by signaling the same window size to all the TCP connections.It can also operate with bu�er sizes smaller than the round-trip delay-bandwidth product of thenetwork. In addition, by adapting the parameter � to control the long-term bu�er occupancy, thescheme is able to work well with both small and large number of connections sharing the bu�er.Another important advantage of EWA is that it can accommodate non-responsive or ill-behavedtra�c. UDP tra�c is an example of such tra�c. Our scheme can be extended in ways to isolatethe TCP tra�c from UDP tra�c. One approach is to simply to keep track of the amount of bu�eroccupied by each UDP connection and drop incoming packets when the connection's share of thebu�er exceeds the target value computed by EWA. Although this approach o�ers fair usage of theavailable bu�er space it requires per-connection accounting for UDP ows. Furthermore, such anapproach may not be the best choice for NFS tra�c: NFS often uses UDP datagrams as largeas 64 Kbytes. If the allowed bu�er occupancy for a UDP connection carrying NFS tra�c is lessthan 64 Kbytes, the whole UDP packet will be dropped. A solution to this problem would be toreserve a minimum amount of the available bu�er space for the overall UDP tra�c. In case thefeedback computed by EWA for a UDP ow exceeds its bu�er usage, this additional space can beused accommodate large packets.When multiple ATM virtual circuits share the same bu�er at the AAP, the bu�er must bepartitioned across the VCs, and each partition must be controlled by a separate instance of EWA.

References 27A simple static method that partitions the bu�er proportionally to the bandwidth allocated to eachVC would be adequate. Such an approach is acceptable because the explicit window adaptationmethod is not sensitive to the exact amount of bu�ering available in a given partition. Clearly, thescheme can also be applied to the case when each TCP connection is carried over a separate VC.The operation of the proposed method is not signi�cantly a�ected by the TCP segment size.Even though it is known that TCP favors connections with large segments when the window isallowed to grow, fairness will be reached in steady state because all active connections will receivesimilar feedback independent of their current window or segment size.Although in this paper we studied EWA in the limited context of an edge device, we believe thatthe scheme is applicable to more general environments to control congestion and improve fairness.In the future, we plan to explore its applications in more general network environments.References[1] V. Jacobson, \Congestion avoidance and control," in Proc. of ACM SIGCOMM'88, pp. 314{329,1988.[2] V. Jacobson, \Modi�ed TCP congestion avoidance algorithm." message to end2end-interestmailing list, April 1990.[3] W. R. Stevens, TCP/IP Illustrated, vol. 1. Addison-Wesley Publishing Company, 1994.[4] S. Floyd and V. Jacobson, \Random Early Detection gateways for congestion avoidance,"IEEE/ACM Transactions on Networking, vol. 1, no. 4, pp. 397{413, August 1993.[5] T. V. Lakshman, A. Neidhardt, and T. J. Ott, \The drop from front strategy in TCP and inTCP over ATM," in Proc. of IEEE INFOCOM'96, vol. 3, pp. 1242{50, March 1996.[6] V. Jacobson, R. Braden, and D. Borman, \TCP extensions for high performance," Request forComments: 1323, May 1992.[7] T. V. Lakshman and U. Madhow, \Performance analysis of window-base ow control usingTCP/IP: The e�ect of high bandwidth-delay products and random loss," in Proc. of HighPerformance Networking, V. IFIP TC6/WG6.4 Fifth International Conference, vol. C, pp. 135{149, June 1994.[8] J. C. Mogul, \Observing TCP dynamics in real networks," in Proc. of ACM SIGCOMM'92,pp. 305{317, August 1992.[9] R.Wilder, K. K. Ramakrishnan, and A. Mankin, \Dynamics of congestion control and avoidanceof two-way tra�c in an OSI testbed," ACM Computer Communication Review, vol. 21, no. 2,pp. 43{58, April 1991.[10] L. Zhang and D. D. Clark, \Oscillating behavior of network tra�c: A case study simulation,"Intenetworking: Research and Experience, vol. 1, no. 2, pp. 101{112, December 1990.[11] L. Zhang, S. Shenker, and D. D. Clark, \Observations on the dynamics of a congestion con-trol algorithm: The e�ects of two-way tra�c," in Proc. of ACM SIGCOMM'91, pp. 133{147,September 1991.[12] A. Mankin, \Random drop congestion control," in Proc. of ACM SIGCOMM'90, pp. 1{7,September 1990.[13] A. Mankin and K. K. Ramakrishnan, \Gateway congestion control survey," Request for Com-ments: 1254, August 1991.

References 28[14] S.FloydandV.Jacobson, \Ontra�cphase e�ects inpacket-switchedgateways," Internetworking:Research and Experience, vol. 3, no. 3, pp. 115{156, September 1992.[15] A. Romanow and S. Floyd, \Dynamics of TCP tra�c over ATM networks," IEEE Journal onSelected Areas in Communications, vol. 633-41, no. 4, p. 13, May 1995.[16] L. Kalampoukas and A. Varma, \Performance of TCP over multi-hop ATM networks: Acomparative study of ATM layer congestion control schemes," in Proc. of ICC'95, pp. 1472{1477, June 1995.[17] B. J. Ewy, J. B. Evans, V. S. Frost, and G. J. Minden, \TCP/ATM experiences in the MAGICtestbed," in Proc. of the Fourth IEEE International Symposium on High Performance DistributedComputing, pp. 87{93, August 1995.[18] S. Floyd, \TCP and explicit congestion noti�cation,"Computer Communication Review, vol. 24,no. 5, pp. 8{23, October 1994.[19] Z. Wang and J. Crowcroft, \A new congestion control scheme: Slow start and search (Tri-S),"Computer Communication Review, vol. 21, no. 1, pp. 32{43, January 1991.[20] L. S. Brakmo and L. L. Peterson, \TCP Vegas: End to end congestion avoidance on a globalInternet," IEEE Journal on Selected Areas in Communications, vol. 13, no. 8, pp. 1465{80,October 1995.[21] R. Jain, \Myths about congestion management in high-speed networks," Internetworking: Re-search and Experience, vol. 3, no. 3, pp. 101{113, September 1992.[22] R. Cole, D. Shur, and C. Villamizar, \IP over ATM: A framework document," Request forComments (RFC): 1932, April 1996.[23] L. Kalampoukas, A. Varma, and K. K. Ramakrishnan, \Dynamics of an explicit rate allocationalgorithm for ATM networks," in Proc. of International Broadband Communications Confer-ence'96, IFIP-IEEE, April 1996.[24] D. Mitra, \Asymptotically optimal design of congestion control for high speed data networks,"IEEE Transactions on Communications, vol. 40, no. 2, pp. 301{311, February 1992.[25] A. K. Choudhury and E. L. Hahne, \Dynamic queue length thresholds in a shared memory ATMswitch," in Proc. of IEEE INFOCOM'96, vol. 2, pp. 679{87, March 1996.[26] H. T. Kung, T. Blackwell, and A. Chapman, \Credit-Based ow control for ATM networks:Credit update protocol, adaptive credit allocation, and statistical multiplexing," in Proc. ofACM SIGCOMM'94, pp. 101{114, September 1994.[27] C. M. Ozveren, R. Simcoe, and G. Varghese, \Reliable and e�cient hop-by-hop ow control,"IEEE Journal on Selected Areas in Communications, vol. 13, no. 4, pp. 642{650, May 1995.[28] S. Floyd, \Connections with multiple congested gateways in packet-switched networks, Part I:One-way tra�c," Computer Communication Review, vol. 21, no. 5, pp. 30{47, October 1991.

