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AbstractWe study several schemes for improving the performance of two-way TCP tra�c over asymmetriclinks where the bandwidths in the two directions may di�er substantially, possibly by many orders ofmagnitude. The sharing of a common bu�er by data segments and acknowledgments in such an en-vironment produces the e�ect of ack compression, often causing dramatic reductions in throughput.We �rst demonstrate the signi�cance of the problem by means of measurements on an experimentalnetwork and then proceed to study approaches to improve the throughput of the connections. Theseapproaches reduce the e�ect of ack compression by carefully controlling the ow of data packets andacknowledgments. We �rst examine a scheme where acknowledgments are transmitted at a higherpriority than data. By analysis and simulation, we show that prioritizing acks can lead to starvationof the low-bandwidth connection.The second approach makes use of a connection-level backpressure mechanism to limit themaximum amount of data bu�ered in the outgoing IP queue of the source of the low-bandwidthconnection. This approach, while minimizing the queueing delay for acks, is shown to result in unfairbandwidth allocation on the slow link. In addition, the connection throughputs are highly sensitiveto parameters such as packet and ack sizes in either direction. Finally, our preferred solution makesuse of a connection-level bandwidth allocation mechanism. We show that this scheme overcomesthe limitations of the previous approaches, provides isolation, and enables precise control of theconnection throughputs. We present analytical models of the dynamic behavior of each of theseapproaches, derive closed-form expressions for the expected connection e�ciencies in each case, andvalidate them with simulation results.Keywords: TCP, two-way tra�c, asymmetric links, backpressure



1. Introduction 11 IntroductionThe Transmission Control Protocol (TCP) has become the most widely used transport-layerprotocol today, due largely to the explosive growth of the TCP/IP Internet in recent years. Animportant component of TCP is the collection of algorithms used to perform congestion control andrecovery [1, 2]. These algorithms give rise to a variety of interesting dynamics, some of which havebeen studied extensively [3, 4, 5, 6]. In this paper, our interest is in analyzing the dynamics of TCPconnections over asymmetric access links in the presence of two-way tra�c.We de�ne two-way or bidirectional tra�c as the tra�c pattern resulting from two or more TCPconnections transferring data in opposite directions between the same pair of end nodes over anetwork path. The TCP segments transmitted by the connections in one direction share the samephysical path with the acknowledgments (acks) of connections in the opposite direction. These datasegments and acknowledgments may share a common bu�er in the end systems as well as networkswitches/routers. This sharing has been shown to result in an e�ect called ack compression, whereacks of a connection arrive at the source bunched together [6, 7]. The result of ack-compression isa marked unfairness in the throughput received with competing connections, and reduced overallthroughput compared to what could be expected without this e�ect [7]. Ack compression may occureither at the end system or in a switch/router. In either case, the smooth ow of acknowledgmentsto the source is disturbed, potentially resulting in reduced overall throughput.While previous studies provide a qualitative treatment of the ack compression problem [6, 7], ourobjective in this paper is to analyze the dynamic behavior and quantify the throughput degradationof TCP connections in a two-way environment when the bandwidths of the links in the two directionsdi�er signi�cantly, possibly by several orders of magnitude.Some of the reduced throughput in datagram networks under two-way tra�c could be attributedto the bunching of acks at the bottleneck link, behind data packets. Since the acks typically takeless time to process in the routers as compared to data packets, the former tend to become bunchedas they travel through the network. However, even when routers and their links have adequatebandwidth, undesirable interaction between bidirectional connections can still occur in the endsystems, leading to ack compression and throughput loss [8]. This is due to the sharing of acommon queue by data packets and acknowledgments. With asymmetric link speeds, the e�ectof ack compression is more pronounced at the end system with the lower-speed upstream channel.With a non-preemptive scheduling policy in the end system, acknowledgments of the fast connectionmay be queued for a long time behind a data packet being transmitted on the slow link, causing alarge number of acknowledgments to be bunched.The genesis of ack compression can be traced to the slow-start phase of the TCP connection thatincreases the window progressively at startup [1]. The slow-start algorithm sets the initial windowsize to one and increases it by one with every acknowledgment received. This e�ectively doublesthe window every round-trip time. Thus, during slow start, the receipt of every ack causes the endsystem to add two segments to its outgoing queue. Since the outgoing queue is usually maintained inFIFO order, these two segments must be transmitted before an ack to the connection in the oppositedirection can be sent. In addition, when the acks to the two transmitted segments arrive after around-trip delay, with no data segments in between, four data segments are transmitted in response,which also appear back-to-back. Meanwhile, the acks of the reverse connection are queued behindthe data segments, causing them to be bunched. This behavior can persist in steady state when thewindows reach their �nal values [8].
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slow link (bandwidth = �i, prop. delay = Dij)fast link (bandwidth = �j , prop. delay = Dji)Figure 2.1: Network con�guration.This paper extends the analysis approach in [8] by considering the e�ect of asymmetric accesslinks on the performance of two-way TCP tra�c. Asymmetric link speeds are likely to be commonin the future, with the widespread deployment of cable and high-speed DSL (Digital SubscriberLine) [9] access networks to homes and businesses. These access networks have substantially higherspeed in one direction than the other. We demonstrate that the asymmetry in link bandwidthhas a dramatic e�ect on the performance of the connection going through the faster down-link.We consider several solutions to the problem and study their e�ects on TCP performance. Thesesolutions attempt to control the queueing delays of acks in the end system with the slow outgoinglink. For each of the solutions, we develop detailed analytical models that capture the dynamicsof the system and compute the expected throughput e�ciency for each connection. The solutionsinclude providing priority to acks over data packets queued at the end node; applying back-pressureto limit the number of data packets transmitted by an end node prior to transmitting an ack; and�nally, a policy that provides connection-level bandwidth allocation and exploits knowledge of theasymmetric link speeds.The remainder of the paper is organized as follows: In the next section we de�ne our modelsof the network and the end nodes, briey review the dynamics of two-way TCP connections in anasymmetric network, and quantify the resulting throughput degradation. To lend credence to ouranalytical results, in Section 3 we show evidence of the severe throughput degradation that can resultin the two-way asymmetric environment by providing measurement data from an experimental cableaccess network. The next three sections evaluate various solutions to the ack compression problemin the asymmetric environment. Section 4 analyzes the e�ect of prioritizing acks, and Section 5examines the backpressure scheme. In Section 6 we examine the bene�ts of the connection-levelbandwidth allocation scheme. Finally, we conclude in Section 7 with some observations.2 Network Models and E�ects of Two-Way TCP Tra�cIn this section, we describe our models of the network and the end nodes and review the resultspresented in [8] on the e�ects of two-way TCP tra�c.The basic con�guration we consider consists of two nodes i and j communicating over a net-work that guarantees in-order packet delivery and provides a �xed-bandwidth pipe for the TCPconnections between the end-nodes in each direction. Since our primary focus is on the perfor-mance of two-way TCP tra�c over asymmetric access links (especially lower speed uplinks), we canmodel the path connecting the end-nodes (consisting of links and routers) in each direction by singlepoint-to-point links.The data packets transmitted by the TCP connection in one direction share a common FIFOqueue with the acks of the opposite connection within the IP layer in the outbound direction. Werefer to the TCP connection transferring data from node i to j as connection i and the connectionin the opposite direction as connection j. We denote by Dij the constant delay seen by TCP datapackets transmitted from i to j, and by Dji the delay seen by packets from j to i. We assume that
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rs Figure 2.2: Model of an end-node used in the analysis.the data packets transmitted by each connection are of constant size. The bandwidth capacities ofthe links originating at nodes i and j will be denoted by �i and �j , respectively, in units of TCP datapackets per second. We assume that the link from j to i has larger capacity compared to that in theopposite direction, that is, �j > �i. For convenience, we often refer to connection i, transmittingdata on the slow link, as the slow connection and its originating node i as the slow node. Likewise,we call the opposite connection j the fast connection and its originating node j as the fast node.We use tdi and tai , respectively, to denote the transmission time of data packets and acks over theslow link; similarly, we use tdj and taj to denote the transmission time of data packets and acks,respectively, over the fast link. Let � denote tdi =tdj , the ratio between the packet transmission timesin the two directions. Similarly, let � denote the ratio of the packet transmission time to the acktransmission time on the slow link, that is, tdi =tai .The model of each end node is shown in Figure 2.2. A number of receiving and transmittingapplications may reside within each node; sending applications generate data for TCP connectionsoriginating at that node and receiving ones act as the sinks for data arriving from the opposite node.Transmitting applications are assumed to be greedy and receiving ones are considered to be able toabsorb all received data immediately.A common process handles all TCP processing within the node. The TCP process receivesdata segments from the network and delivers them to the receiving application. In addition, anacknowledgment is generated and added to the outgoing queue for each segment received. The sameTCP process also handles transmission of data to the opposite node by queueing one or more datasegments from the transmitting application into the outgoing queue each time an ack is receivedfrom the opposite node. Finally, the TCP process is responsible for controlling the window growthof the sending TCP during the slow-start phase by incrementing it each time an ack is received,until the window reaches its maximum size. Since our analysis pertains to steady-state operation ofthe connections over an interval where we can assume the network is loss-free, we can ignore some ofthe details of the congestion control functions at the TCP layer. Di�erences between the slow startand the congestion avoidance phase and recovery on packet losses are not expected to dramaticallychange the e�ect of ack compression and the basic insights we gain here. This is because the initiationof ack compression is the important phase, which occurs at the slow start phase. The subsequentcongestion avoidance phase does not break the ack compression phenomenon, once begun.Segments of the forward connection and acks to the backward connection share a common FIFO



2. Network Models and E�ects of Two-Way TCP Tra�c 4queue at the IP layer that is serviced at the transmission rate of the outgoing link. This commonqueue is key to the occurrence of ack compression where acks to the backward connection getbunched while waiting in the queue behind data packets of the forward connection (and vice versa),causing the TCP dynamics we study in this paper. We assume that the IP service rate is equal totransmission rate on the link. However, this is not critical if the acks of the backward connectionand data packets of the forward connection share common outgoing queues all the way down theprotocol stack. A higher service rate out of the IP queue reduces queueing at the IP layer, butthe same bunching e�ect will now occur at the device driver or at the FIFO queue residing in thetransmitter's data-link layer.For the purpose of our analysis, the action of the TCP process can be summarized as follows:The process is invoked each time an ack arrives at a node, say node i. Processing of the ack resultsin a new data packet to be added to the IP queue for transmission. In addition, if connection i isin its slow-start phase, its window is increased by one and an additional packet is queued in the IPqueue; this latter packet is queued immediately behind the �rst in the IP queue, resulting in the twopackets being transmitted without an intervening ack for the opposite connection, j. Furthermore,the data packets added to the IP queue in response to a burst of acks arriving from the oppositenode are transmitted as a bunch with no intervening acks. This behavior causes the entire windowof each connection to be transmitted always as a single bunch [8], giving rise to the e�ects we studyin this paper.The functionality assumed for the IP layer is simple. For incoming tra�c the IP layer isresponsible for forwarding data from the lower layer to the local TCP process. Since TCP processingtime is assumed to be small, no queueing is required for incoming tra�c at the IP layer. For theoutgoing tra�c, on the other hand, a queue may be built up at the IP layer awaiting transmissionon the link, as a result of ack bunching. Thus, in the worst case, an entire window's worth of packetsmay be added to the outgoing queue in quick succession due to a bunch of acks received from theopposite end. Therefore, to avoid packet losses at the source node, we assume that the IP queue hasa size equal to the maximum window size of the sending TCP. The interaction between TCP andIP described above is consistent with the 4.4 BSD-Lite Unix Release [10].The analytical models in this paper ignore the TCP processing time in end systems. In [8] we haveshown how the TCP processing time, denoted as tpr , may be incorporated into the analytical models.We also demonstrated that in con�gurations where this processing time is signi�cantly smallerthan the transmission time of a data packet over the physical link, the e�ect of TCP processingtime on connection throughput is negligible. This is particularly true for the asymmetric case weconsider in this paper: the transmission time of a data packet over the slow link typically dominatesdelays in any other system component. For example, the transmission time of a 1500 byte packetover a 100 Kbits/sec link is about 120 msecs, while the TCP protocol processing time in modernworkstations does not exceed a few hundred microseconds [6, 11, 12]. Thus, we can safely assumethat tpr is zero.We now review the analytical results on connection throughputs from [8] for the asymmetriccase. First, we note that the sum of the windows of the two connections must be large enough to�ll the round-trip pipe for ack compression to occur. If this condition is not satis�ed, it is easy tosee that no persistent queueing will occur at the IP queues at both nodes in steady state. Thus, ifWi and Wj are the window sizes of the two connections in packets, we must haveWi�i + Wj�j > Dij +Dji; (2.1)



2. Network Models and E�ects of Two-Way TCP Tra�c 5for ack compression to occur. We will therefore assume that this condition always holds.Under this condition the dynamics of two-way tra�c may be summarized as follows: as thecongestion window for a TCP connection increases, so does the number of data packets thatare transmitted back-to-back as a batch. Acks for a window worth of data transmitted fromthe connection owing in the opposite direction are queued in the end node's queue behind awindow worth of data sent by the forward connection. The increased queueing delay for acks at thedestination node increases the round-trip delay for that connection. As a result the window sizefor connection is never large enough to �ll the e�ective round-trip pipe. Consequently, the networklinks remain idle while the TCP connection at the source node awaits acks that are queued behinda large amount of data at the destination node.We call the ratio of the throughput of a connection to the corresponding link capacity as itsthroughput e�ciency, or simply e�ciency. The following results from [8] estimate the connectione�ciencies and maximum queue sizes for two-way TCP tra�c under ack compression. Detailedderivations of these results can be found in [8, 13].Theorem 1: The throughput e�ciency Fi of connection i in a two-way tra�c con�guration withasymmetric link rates is given byFi = 8>>>>><>>>>>: 1; if Wi=�i > Wj=�j + (Dij +Dji);2(Wi=�i)(Wi=�i +Wj=�j) + (Dij +Dji) ; if Wj=�j � (Dij +Dji) � Wi=�i � Wj=�j + (Dij +Dji);(Wi=�i)(Wj=�j) ; otherwise. (2.2)Theorem 2: In steady state, the maximum occupancy Qi;max of the IP queue of node i undertwo-way tra�c with asymmetric link rates is given byQi;max � 8<:Wi � (Dij +Dji)�i; if Wi=�i > Wj=�j + (Dij +Dji);�Wi�i + Wj�j �Dij �Dji� �i; if Wj=�j � (Dij +Dji) � Wi=�i � Wj=�j + (Dij +Dji);Wi; otherwise. (2.3)Figure 2.3 illustrates the e�ect of asymmetric link capacities on the e�ciencies of the TCPconnections. These results were obtained from simulation of two TCP connections, one in eachdirection, over asymmetric point-to-point links. The e�ciencies were measured in intervals of3 seconds. The following parameter values were used in the simulation: The maximum windowsize for both TCP connections was set to 64 Kbytes. The capacities of the fast and slow links weretaken as 5 Mbits/sec and 100 Kbits/sec, respectively. A �xed packet size of 1500 bytes was usedfor TCP data on each connection, and the ack size was taken as 28 bytes. The link propagationdelays were assumed as zero. As predicted by Theorem 1, the slow connection achieved almost100% utilization. However, the e�ciency of the fast connection was under 2% (throughput of 100Kbits/sec.). This outcome can be explained as follows: the slow connection takes 5.1 seconds totransmit a maximum window of packets (64 Kbytes) at 100 Kbits/sec. Due to ack compression,all the acks of the fast connection queue up for access to the slow link at node i, behind this fullwindow of packets, encountering a queueing delay of 5.1 seconds. When these acks arrive at node j,the fast connection transmits a full window of packets in response. These packets are transmitted in
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Figure 2.3: Connection e�ciencies from simulation of two TCP connections in an asym-metric network (Maximum window size = 64 Kbytes, packet size = 1500 bytes, ack size =28 bytes).about 90 milliseconds down the fast link. Thus, the fast connection is able to transmit only for 90milliseconds within an e�ective round-trip delay of 5.1 seconds, an e�ciency of approximately 2%.3 Measurements Demonstrating E�ect of Ack Compression overAsymmetric LinksTo verify the e�ect of ack compression in real networks with asymmetric links, we performedmeasurements on an experimental network with cable modems. The experimental setup consists ofa Silicon Graphics Indy workstation on an isolated Ethernet connected through a router and a cablemodem to a remote workstation, as illustrated in Figure 3.1. The downstream channel through thecable network has a nominal speed of 10 Mbits/sec, while the upstream link is via a 28.8 Kbits/secmodem connected to a telephone line. With link-layer data compression, the e�ective bandwidth ofthe upstream channel was found to be approximately 50 Kbits/sec. With IP header compression [14]enabled, we observed an ack size of 9 bytes on the serial link. We used \ttcp" to measure throughputof TCP connections between the workstations. Through separate measurements, we ensured thatthe workstations were not a bottleneck. Each measurement point in Figure 3.2 involved transmitting10,000 user messages to ensure reasonable measurement accuracy.Figure 3.2 shows the throughput of the TCP connection transferring data through the high-bandwidth path in both one-way and two-way TCP-tra�c scenarios. In the one-way case, the socketbu�er size was set to 16 KBytes and the observed throughput was approximately 1.2 Mbits/sec. Thisthroughput is in fact what should be expected for the 16 KBytes window, since the e�ective round-trip delay in this case was about 80 msecs. We then initiated connections in both directions. Thesocket bu�er size (maximum window size) for the upstream connection with respect to workstationB was �xed at 4 KBytes to avoid packet losses due to bu�er overow in the modem. The throughputfor the slow upstream connection in all the experiments with two-way tra�c was found to beapproximately 50 Kbits/sec. The throughput for the fast connection, however, dropped dramaticallyunder two-way tra�c. For 4 KByte socket bu�er size, the fast connection achieves a throughput ofonly about 50 Kbits/sec. This is consistent with that predicted by Eq. (2.2). It is important to notethat increasing the socket bu�er size of both connections by the same amount does not alter theresults considerably, assuming that no packet losses occur in the network. With large socket bu�er
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Figure 3.2: Measured throughput of the fast connection with varying socket bu�er sizes.Socket bu�er for the slow connection is �xed at 4 Kbytes.sizes, however, there is a potential for packet loss in the cable modem. This, in turn, changes thedynamics of the connections and reduces the severity of ack compression.Theorem 1 asserts that increasing the ratio of the socket bu�er size of the fast connection tothat of the slow connection improves the throughput of the former by a factor proportional to thisratio. This behavior is validated by the measurement data in Figure 3.2. Doubling the socket bu�ersize for the fast connection to 8 Kbytes improved its throughput by a factor of two. However, afurther doubling of the bu�er size to 16 Kbytes improved the throughput by more than a factor offour. This disproportionate increase is likely due to packet losses. A loss of acks on the fast linkwould force the slow connection to back o� for signi�cant amounts of time during which the fastconnection is able to operate at full bandwidth. However, even in this last case the throughput ofthe fast connection is less than 25% of that observed under one-way tra�c.Finally, we must note in closing that the measurements were carried out in a controlled envi-ronment, and therefore the results should not be construed as representative of the performance ofproduction networks.4 Reducing Ack Compression by Prioritizing AcknowledgmentsIn the previous section, we showed that the throughput of the fast connection in an asymmetricenvironment can be degraded signi�cantly under two-way tra�c. This is mainly due to the queueingof acknowledgments of an entire window of packets of the fast connection behind data packets in theslow node. An obvious solution to reduce this e�ect is to service data and ack packets selectively



4. Reducing Ack Compression by Prioritizing Acknowledgments 8from the IP queue. Perhaps the simplest means of achieving this is to assign strict priority toacknowledgments over data packets while servicing the outgoing IP queue. When service is non-preemptive, this results in the lowest queueing delay for the acknowledgments. In this section, weanalyze this solution and determine the connection e�ciencies under such a scheme.It is easy to show that prioritizing acks over data packets for transmission maximizes thethroughput of the fast connection. The waiting time for a group of acks of the fast connectionin the slow node is now within the transmission time of a single data packet on the slow link, ascompared to an entire window of packets in the original system. This improvement, however, isachieved at the expense of degrading the slow connection's throughput. With priority queueing,the slow connection will be able to use only the portion of the upstream link that is not used fortransporting acks of the fast connection. Thus, while the fast connection is free to increase itsthroughput until its acks use the entire available bandwidth on the slow link, the slow connectionis made to adjust its throughput to the capacity left over on the slow link after transporting acksof the fast connection. In the extreme case, the slow link may be used exclusively for transportingacks, starving the slow connection completely.In Section 4.1 we develop a simple analytical model to analyze the expected throughput of thefast and slow connections when acks. are transmitted with higher priority over data. In Section 4.2we validate the analytical results with simulations.4.1 AnalysisWe assume that the window sizes of the two connections satisfy the necessary condition (2.1)for ack compression. As before, let � denote tdi =tdj , the ratio between the packet transmission timesin the two directions. Similarly, let � denote the ratio of the packet transmission time to the acktransmission time on the slow link, that is, tdi =tai . The portion of the slow link's bandwidth thatwill be used for transporting acks of the fast connection will be approximately tai =tdj . The rest willbe available to the slow connection for transmitting data. Therefore, the throughput of the slowconnection under the priority queueing scheme is given byFi = 1� taitdj = 1� �� ; when tai < tdj . (4.1)Note that the throughput is zero if tai � tdj .More careful analysis is needed to determine the throughput of the fast connection. Let us �rstcalculate the number of acks bunched behind a data packet being transmitted by the slow node.Since the fast node is transmitting data packets at the rate of 1=tdj , the maximum number of acksthat can be generated by node i during the transmission time of an outgoing data packet is tdi =tdj .In addition, this number can never exceed a full window of packets of the fast connection. Thus,the number of acks bunched behind a data packet on the slow link is given byNa = min(nj ; tdi =tdj ); (4.2)where nj is the window size of the fast connection in number of packets. Immediately aftertransmitting the data packet, the slow node will begin clearing the bunched acknowledgments at therate of 1=tai . While this clearing is in progress, new acks continue to join the outgoing queue at therate of 1=tdj . Thus, the number of acknowledgments transmitted by the slow node before startingtransmission of the next data packet is given by



4. Reducing Ack Compression by Prioritizing Acknowledgments 9Na  1 + ( taitdj ) + ( taitdj )2 + � � �! = Na 11� tai =tdj = Na 11� �=� ; (4.3)and the total transmission time of the acks is given byTa = Na tai1� �=� : (4.4)The elapsed time between transmission of two consecutive data packets of the slow connectionwill be equal to tdi + Ta. Meanwhile, the fast connection is able to maintain a steady ow of dataas long as acks are owing back and its congestion window is not exhausted. The maximum timethe fast connection will be able to sustain a continuous ow of data will be njtdj + Ta. Thus, thee�ciency for the fast connection will beFj = min(njtdj ; tdi ) + Tatdi + Ta = min�1; nj(�=�)� � �+ nj� : (4.5)When tai � tdj , the slow link is used exclusively for transporting acks of the opposite connection,and therefore the e�ciency of the slow connection will be zero. The e�ciency of the fast connectionin this case reduces to the ratio of the data packet transmission time on the fast link to the acktransmission time on the slow link, that is Fj = tdj=tai = �=�.In the following section we verify these analytical results with simulations.4.2 Simulation Model and ResultsWe used the OPNET modeling tool for performing detailed TCP simulations. The model ofTCP used in the simulations is based on the TCP-Reno version. It supports the congestion controlmechanism described by Jacobson [1], exponential back-o�, enhanced round-trip (RTT) estimationbased on both the mean and the variance of the measured RTT, and the fast retransmit and fastrecovery mechanisms. However, some adjustments had to be made to the TCP timers; since theRTT values in some of our simulations are of the order of just a few milliseconds, the coarse-graintimers used in Unix TCP implementations (typically with a granularity of 500 ms) would make thecomparison of the schemes di�cult. To avoid the masking of the performance di�erences of TCP(which we believe will eventually be the case when we have �ner-grained timers) due to coarse-grain timers, we used double-precision oating-point arithmetic in the RTT estimation algorithm.Therefore, both the RTT measurements and the timeout delays are represented by double-precisionoating-point numbers. For each data segment received, an ack is generated immediately.The service rate at the IP layer is set to be equal to the transmission rate of the physical link.This will cause all the interactions between data packets and acks to be con�ned to the IP queue,with no queueing at lower layers. Such an assumption will allow us to focus on a single queue andmodel its dynamics. In case the bottleneck is at a di�erent layer, the same analysis applies to thequeue built up at that layer.We performed simulations to verify the analysis presented in Section 4.1, using the network con-�guration shown in Figure 4.1. In our simulation models all links are full duplex. The transmissionrates in the two directions can be set independently. The capacity of the fast link (Fast node !Switch-2 ! Switch-1 ! Slow node) was set to �j = 5 Mbits/sec and that of the slow link (Slownode ! Switch-1 ! Switch-2 ! Fast node) to �i = 100 Kbits/sec. The packet size for both TCPsessions was set to 1500 bytes and the maximumwindow size to 64 Kbytes.
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Slow connectionFigure 4.3: Throughput e�ciencies ofthe two connections with priority queue-ing in end systems (Window size =64 Kbytes, packet size = 1500 bytes,and ack size = 28 bytes).In the �rst experiment, we consider the case where the acks have a size of 15 bytes. Withthis set of parameters, the packet transmission time on the fast link will be 2.4 msecs and the acktransmission time on the slow link 1.2 msecs. This suggests that the slow link will be used 50% ofthe time for transporting acks from the fast connection and the remaining capacity is available fordata packets sent by the slow connection. The calculated e�ciency from Eq. (4.5) is close to 92%.The simulation results for this case are shown in Figure 4.2. It is easy to verify that the measuredthroughputs closely follow the analytical estimates.The important conclusion of this �rst experiment is that the e�ciency of the fast connectionis increased to almost the maximum achievable. Giving priority to acks has some impact on theperformance of the slow connection which now has to share the slow upstream link with the acks fromthe fast connection. In this example, the slow connection operates acceptably, since it achieves morethan 50% e�ciency. In this �rst scenario, giving acks priority improved the system performance asa whole compared to the situation illustrated in Figure 2.3 where no provisions for reducing the ackdelays are made.The e�ciency of the slow connection is highly sensitive to the ratio of the data packet transmissiontime on the fast link to the ack transmission time on the slow link. To demonstrate this, we performeda second experiment after increasing the ack size to 28 bytes, keeping the data packet size the same.This caused the transmission time of acks on the slow link to be only slightly lower than that of datapackets on the fast link. This has no signi�cant e�ect on the fast connection, but the throughput ofthe slow connection is severely degraded, as shown in Figure 4.3. If we further increase the ack sizeto 40 bytes, the ack transmission time on the slow link will now exceed the packet transmission timeon the fast link, and the slow connection will be completely starved (Figure 4.4). Note that 40 bytesis close to the actual ack size when the IP header compression is turned o� and no compression takes
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Figure 4.4: Throughput e�ciencies of the two connections with priority queueing in endsystems (Window size = 64 Kbytes, packet size = 1500 bytes, and ack size = 40 bytes).place at the data-link layer. The e�ciency of the fast connection in this case (approximately 75%)is determined by the ack transmission time and not by the capacity of the fast link.Thus, in summary, priority queueing of acks can improve the throughput of the fast connection,but may make the performance of the slow connection considerably worse. Thus, to �nd a generalsolution to the problem, we must look beyond simple priority queueing to a scheme that providessome exibility in controlling the throughput of both connections. We continue this investigation inthe next section by evaluating the use of backpressure in the outgoing IP queue.5 Use of Backpressure in Controlling Ack CompressionA more general solution to controlling the queueing delay of outgoing acknowledgments is tolimit the number of data packets in the outgoing IP queue by applying backpressure to the TCPlayer. This has the potential to allow control of the throughput e�ciencies of the connections inboth directions by varying the maximumallowable number of data packets in the outgoing IP queue.In this section we analyze the behavior of the TCP connections under such a scheme, derive theirthroughput e�ciencies, and validate the results by simulation. We show that applying backpressureto data packets a�ords greater exibility than the simple priority scheme of the last section, butstill makes the throughput of the slow connection highly sensitive to the network and connectionparameters.The backpressure scheme we consider operates as follows: The transmitting TCP process in eachnode is allowed to send data packets to the IP layer as long as the backpressure threshold is notexceeded. When the backpressure threshold is reached, the transmitting TCP is suspended untilspace is available in the IP queue. The backpressure threshold can be set taking into account thetarget throughput e�ciencies of the fast and slow connections.We will now analyze this backpressure scheme with respect to the asymmetric network modelof Figure 2.1 with two connections. We will derive simple analytical expressions for the throughpute�ciencies of the fast and slow connections as a function of the link capacities in each directionand the parameters of the two connections. We will �rst ignore the link propagation delays in ouranalysis, but will later extend the analysis to cover non-zero propagation delays.
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3 (d)Figure 5.1: State of node i's IP queue for a threshold equal to one packet.5.1 Analysis for Single-Packet Backpressure ThresholdWe will �rst consider the simple case when the backpressure threshold is set to one data packet,and will then extend the results to the general case in Section 5.2 for multiple packets. To derivethe throughput e�ciencies of the connections, we need to determine the queueing delay seen bya data packet in the outgoing IP queue. We will assume that the transmission time of the entirewindow of the slow connection is more than the transmission time of a single data packet of the fastconnection, that is, Wi=�i < tdj . Otherwise it is easy to see that the backpressure scheme has noe�ect within node i. Figure 5.1 illustrates the evolution of the outgoing IP queue in node i, the slownode. The data packets are numbered sequentially from 0. Assume, for simplicity, that the slowand fast connections open simultaneously.When the backpressure threshold is set to one packet, the queueing delay seen by any data packetis the time required to transmit acknowledgments accumulated in front of it. Thus, to calculate thequeueing delay, we must determine the number of bunched acks in front of it. This can be calculatediteratively as follows: Let us denote by Qki the queueing delay of the kth data packet added to theoutgoing IP queue of node i. Obviously, Q0i = 0, as shown in Figure 5.1(a). While packet 0 is underservice, node i keeps receiving data packets of connection j at the rate of 1=tdj and an acknowledgmentis added to the outgoing IP queue for every packet received. Thus, the number of acks aggregatedbehind packet 0 is given by tdi =tdj = �. The state of the IP queue just when packet 0 completestransmission is shown in Figure 5.1(b). Transmission of packet 1 can begin only after all these acksare cleared from the queue. Therefore, the queueing delay of packet 1 is given by the transmissiontime of acks accumulated in behind packet 0, and is given byQ1i = tditdj tai = ���� tdi :Acknowledgments entering the outgoing IP queue after packet 1 will be delayed not only by thetransmission time of packet 1, but also by the transmission time of the acks accumulated in front ofit. Therefore, the queueing delay of the �rst ack accumulated behind packet 2 will be Q1i + tdi , andthe number of acks that will be bunched together behind packet 1 will beQ1i + tditdj :Consequently, the queueing delay of packet 2 is given by



5. Use of Backpressure in Controlling Ack Compression 13Q2i = Q1i + tditdj tai :This is illustrated in Figure 5.1(c). The behavior for subsequent packets is similar. Thus, thequeueing delay for the kth data packet is given byQki = Qk�1i + tditdj tai= ����Qk�1i + �tai : (5.1)Expanding Eq. (5.1) as a series, Qki = tdi kXm=1����m : (5.2)If �=� < 1, the queueing delay will converge to a steady-state value given byQSi = tdi  1Xm=0����m � 1!= tdi �� � �: (5.3)On the other hand, if �=� � 1, then acknowledgments for an entire window of connection jwill be accumulated behind each data packet in the outgoing IP queue of node i. The steady-statequeueing delay of a data packet in node i's queue is then given byQSi = njtai ; (5.4)where nj is the size of connection j's window in number of packets.Knowing the steady-state queueing delay of outgoing data packets in node i, we can computethe throughput e�ciencies of both connections:Theorem 3: The throughput e�ciencies of connections i and j under the single-packet backpressurescheme are given by Fi = ( 1� �� ; if �=� < 1;�nj+� ; otherwise. (5.5)Fj = 8<:min�1; nj( 1� � 1� )� ; if �=� < 1;min�1; nj�(nj+�)�� ; otherwise. (5.6)Proof: The e�ciency of each connection is simply the fraction of time during which theoriginating node transmits its data packets. Since each data packet of the slow connection, insteady state, experiences a queueing delay of QSi , the e�ciency of the slow connection will beFi = tdiQSi + tdi :Substituting for QSi from equations (5.3) and (5.4) for the cases of �=� < 1 and �=� � 1, respectively,this becomes Fi = ( 1� �� ; if �=� < 1;�nj+� ; otherwise. (5.7)



5. Use of Backpressure in Controlling Ack Compression 14The e�ciency of the fast connection can be computed by calculating the maximumdelay seen by itsacknowledgments in the outgoing IP queue of the slow node. It is easy to observe that this maximumdelay is the queueing delay of a data packet plus its transmission time, that is, QSi + tdi . The fastconnection may transmit its entire window before receiving an ack. Thus, the e�ciency of the fastconnection will be Fj = min 1; njtdjQSi + tdi ! :Again, substituting for QSi from equations (5.3) and (5.4) for the cases of �=� < 1 and �=� � 1,respectively, this becomes Fj =8<:min�1; nj( 1� � 1� )� ; if �=� < 1;min�1; nj�(nj+�)�� ; otherwise. (5.8)This concludes the proof of Theorem 3.5.2 Analysis for Multiple-Packet Backpressure ThresholdWe can now generalize Theorem 3 for the case when the backpressure threshold is set to morethan one data packet. Let bi and bj denote the backpressure thresholds in the outgoing IP queuesof nodes i and j, respectively. As before, we need to calculate the queueing delay of data packetsin the outgoing queue by computing the number of acks transmitted between data packets. To aidthis computation, we can group the data packets transmitted out of node i into batches, with thenumber of packets in each batch equal to the backpressure threshold bi. Figure 5.2 illustrates theevolution of the outgoing IP queue in node i, for bi = 2. The �rst batch of data packets, batch 0,consists of packets 0 and 1. Since the queue is initially empty, these packets will be transmittedback-to-back with no intervening acks (Figure 5.2(a)). During the next batch, packets 2 and 3 aretransmitted. However, during the transmission time of packet 0, a number of acks equal to tdi =tdj = �will be added to the IP queue and will be queued between packets 1 and 2 (Figure 5.2(b)). Thus,packet 2 will undergo an additional queueing delay of �tai because of these acks. Similarly, duringthe transmission time of packet 1, � acks will be queued behind packet 2. Thus, it can be seen thatevery data packet in batch 1 will have a bunch of � acks queued ahead of it.When the �rst packet of the next batch, packet 4, arrives into the queue, the number of acksaccumulated in front of it is determined not only by the transmission time of packet 2, but also bythe time needed to clear the acks in front of packet 2. This is evident from Figures 5.2(c) and (d).Let T ki denote the total transmission time of the acks in front of a packet in the kth batch in node i'sIP queue. Then, the number of acks accumulated in front of packet 4 will be (T 1i + tdi )=tdj , where T 1iis the total transmission time of the acks accumulated in front of any packet in the previous batch.Therefore, the total transmission time of the acks in front of packet 4 is given byT 2i = (T 1i + tdi )tdj tai :Proceeding similarly, we can express T ki in terms of T k�1i by the recurrenceT ki = T k�1i + tditdj tai= ����T k�1i + �tai : (5.9)
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T 3i T 3i(g)Figure 5.2: Example evolution of node i's outgoing IP queue when the backpressurethreshold is two packets.Note that this is the same recurrence as in Eq. (5.1). Therefore, the steady-state value of T ki is isgiven by TSi = � tdi ���� ; if �=� < 1;njtai ; otherwise. (5.10)In order to compute the maximum queueing delay of a data packet in node i's outgoing queue,we need to consider the transmission times of both data packets and acks ahead of them. At most(bi � 1) data packets can be in the IP queue when a new packet arrives, contributing to a delay of(bi � 1)tdi . An additional delay of biTSi is incurred in clearing the acks. Thus, using Eq. (5.10), themaximum queueing delay of a data packet in node i's queue in steady state is given byQSi = � tdi �bi��� + (bi � 1)tdi ; if �=� < 1;njtai + (bi � 1)tdi ; otherwise. (5.11)Knowing the queueing delay, the throughput e�ciencies of the connections can be determinedby proceeding as in the single-packet backpressure case.Theorem 4: When the backpressure thresholds in the nodes i and j are bi and bj, respectively, thethroughput e�ciencies of connections i and j are given by



5. Use of Backpressure in Controlling Ack Compression 16Fi = ( 1� �� ; if �=� < 1;�nj+� ; otherwise. (5.12)Fj = 8<:min�1; njbi ( 1� � 1� )� ; if �=� < 1;min�1; nj�(nj+�bi)�� ; otherwise. (5.13)The proof of this theorem is similar to that of Theorem 3 and is therefore omitted. We canmake some important observations from this theorem. The e�ciency of the fast connection can becontrolled by adjusting the backpressure threshold in the slow node's IP queue. A higher threshold,in general, increases its throughput. More important, however, is the fact that the e�ciency ofthe slow connection is insensitive to the backpressure thresholds bi and bj. This establishes theimportant result that the backpressure scheme cannot overcome the basic weakness of the priorityscheme in the last section, namely its inability to control the throughput of the slow connection. Wewill provide further evidence of this behavior in Section 5.3 using simulation.5.3 E�ect of Link Propagation DelaySo far we ignored link delays in our analysis. In this section we show that non-zero linkpropagation delays do not change the fundamental behavior of the connections when backpressureis used to limit the number of data packets queued in the nodes' outgoing IP queues. For simplicity,we consider only the single-packet backpressure threshold; extension to the multiple-packet case isstraightforward and is omitted because of space constraints.With non-zero link delays, the e�ciency of the fast connection depends on its window size andthe round-trip delay, among others. We need to consider two distinct cases: In the �rst case, thewindow size of the fast connection exceeds the bandwidth-delay product of the round-trip pipe plusthe transmission time of a single packet from the slow connection. In this case, the maximumnumber of packets and acks of the fast connection that can be in transit at any time is given byLj = (Dij +Dji+ tdi )=max(tdj ; tai ). Consequently, at most �j = nj �Lj acks may be queued behinda data packet in the slow node's outgoing IP queue. The e�ciency of the fast connection can thusbe determined by replacing nj with �j in Eq. (5.6) derived for the zero-delay case.The second case occurs when the window size of the fast connection is not able to �ll the round-trip pipe. Since the data packets from the slow connection are subject to backpressure, the e�ciencyof the fast connection in this case is simply (njtdj )=(Lj max(tdj ; tai )).The e�ciency for the slow connection can be derived directly from that of the fast connectionby computing the percentage of time the slow link will be transmitting acks of the fast connection.The connection e�ciencies calculated taking into account the link delays are summarized below:Fi = ( 1� �� ; if �=� < 1 and nj > Lj ;1� nj�Lj� min�1; ��� ; otherwise. (5.14)Fj = 8<:min�1; �j( 1� � 1� )� ; if �=� < 1 and nj > Lj ;njLj min�1; ��� ; otherwise. (5.15)We have veri�ed these analytical results with simulations. However, since the basic behavior ofthe connections was found to have little sensitivity to link delays, we show results only for the caseof zero propagation delays in the next section.



5. Use of Backpressure in Controlling Ack Compression 175.4 Simulation ResultsTo validate the results from our analysis of the backpressure scheme, we performed simulationsusing the simple asymmetric con�guration of Figure 2.1 with the same parameters as used previously.The size of acknowledgments was set as 28 bytes after IP header compression [14], and includinglink layer overhead. The backpressure threshold is set to one data packet.For the �rst experiment, the size of data packets for both connections was set to 1500 bytes.Thus, nj = 43 packets, � = 54, and � = 50. Using Theorem 3, the expected e�ciency of theslow connection i should be approximately 56% and the e�ciency of the fast connection j about48%. Figure 5.4 shows the e�ciency for the two active TCP connections from simulation, matchingour analysis. In this speci�c example, the transmission time of a window's worth of data from thefast connection is approximately the same as the transmission time of one data packet for the slowconnection. Therefore, all the acks for data packets transmitted from the fast node j will be queuedbehind a single data packet in the slow node i, as in Figure 5.1. The transmission time for all the acksis about the time to transmit a single data packet on the slow link, resulting in approximately 50%e�ciency for the slow connection. The e�ciency of the fast connection j is signi�cantly improvedbecause of the backpressure mechanism. Note that the slow link is 100% utilized.The exact e�ciency of the slow connection depends on the amount of data transmitted from theslow connection for a window's worth of acks from the fast connection. Thus, reducing the size ofdata packets for the slow connection will have an even more signi�cant impact on its performanceThe e�ciency of the two TCP connections, when the size of data packets for the slow connectionis reduced to 256 bytes is shown in Figure 5.4. The e�ciency of the fast connection improvesfurther, but that of the slow connection plummets. This is because a large portion of the slow link'sbandwidth is used to carry acks for the fast connection. The analytically derived e�ciencies wouldhave been 17.2% and 87%, matching the simulation results quite well.Notice that the dynamics of the backpressure mechanism are independent of the number ofconnections that have been setup in each direction and also independent of their relative timing.That is, the exact time when a new connection opens does not a�ect the fundamental systemdynamics. To illustrate this point we simulated a situation where three connections were startedin each direction in a staggered fashion, with a delay of 1 second between successive connections.Each connection is backpressured independently. The rest of the system parameters are the same asfor the results shown in Figure 5.4: the data packet size is 1500 bytes and the ack size is 28 bytes.Figure 5.5(a) shows the e�ciency achieved by each individual connection when three connections areset up in each direction. Observe that, in a given direction each connection gets a fair portion of thebandwidth available for data packets. The total e�ciencies for the fast and slow connections (thesum of the e�ciencies for connections transmitting in a given direction) are shown in Figure 5.5(b).The aggregate behavior is similar to the case where there is a single TCP session operating in eachdirection, shown in Figure 5.4.To demonstrate the sensitivity of the performance of the slow connection to the number of acksgenerated for a window of the fast connection, we reduced the size of the data packets sent by thefast connection to 512 bytes. This caused the number of acks for a window worth of data sentby the fast connection to triple. Observe in Figure 5.6 that the e�ciency of the slow connection iis now only about 6%. That is, only about 6 Kbits/sec out of the 100 Kbits/sec link capacity isavailable to the slow connection for transporting data packets. The remaining capacity is used forcarrying acks for the fast connection. More importantly, the e�ciency of the fast connection is also
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Figure 5.6: E�ciency for the two connections computed in 3 second intervals for 64 Kbytesmaximum window size, 512 bytes packet size for the fast connection, 256 byte packets forthe slow one, and 28 bytes ACK size (data packets are backpressured).slow link even though acks and new data packets have equal priority, without undue dependence onvariables that we cannot control, such as the packet size.6 Connection-Level Bandwidth AllocationBoth priority queueing of acknowledgments and the use of backpressure are able to mitigate thee�ects of ack compression, but are inherently unfair to the slow connection. Both schemes make thethroughput of the slow connection highly sensitive to parameters of the fast connection, such as itspacket size and window size. An ideal solution to the ack compression problem should allow controlof the throughput e�ciencies of both the slow and fast connections. That is, such a scheme shouldmaintain the slow link always fully utilized but allow control of the fraction of the data packets toacks transmitted on it. None of the previous schemes allow this exibility. In this section, we proposeand evaluate a simple connection-level bandwidth allocation scheme that achieves this objective.The basic goal of our scheme is to provide a guaranteed minimume�ciency to the slow connectionwhile providing the maximum possible throughput for the fast connection under this constraint.This is achieved by limiting the maximum number of acks a node is allowed to transmit beforetransmitting a data packet when one or more data packets are queued. This controls the fraction oftime the slow link is used for transmitting acks when data packets are waiting, and vice-versa. Sucha scheme can be implemented using two queues | one for data packets and the other for acks |and using a scheduler to make the choice between the two queues for transmission. A fair-queueingscheduler can be used to perform this task, but we can avoid the complexity of the scheduler byresorting to a simple counter-based implementation: This implementation simply counts the totalnumber of bytes transmitted in a sequence of acks, and will force the transmission of a data packetif that number exceeds a preset threshold. Similarly, after the transmission of a data packet, waitingacks are given priority over data until the threshold on acks is again reached.The pseudocode presented in Figure 6.1 illustrates how such a mechanism can be implementedwith two counters data bytes tx and ack bytes tx, that keep track of the discrepancy between thenumber of data and ack bytes transmitted, and two ags indicating the presence of data or acksin the two outgoing queues (data present and ack present). The pseudocode shown is executedwhenever the transmission of a data packet or ack is completed. The implementation shown in



6. Connection-Level Bandwidth Allocation 20if (system empty) thenwait for next arrival;if (data present) and (! ack present) then fack bytes tx  0;data bytes tx  data pkt size; /* in bytes */send( data packet ); gif (ack present) and (! data present) then fdata bytes tx  0;ack bytes tx  ack size; /* also in bytes */send (ack); gif (data present) and (ack present) then fif (ack bytes tx � data bytes tx) then f /* more acks transmitted than data */send (data packet);data bytes tx += data pkt size;if (data bytes tx > ack bytes tx) then fdata bytes tx � = ack bytes tx;ack bytes tx = 0; g gelse f /* more data transmitted than acks */send (ack);ack bytes tx += ack size;if (ack bytes tx > data bytes tx) then fack bytes tx � = data bytes tx;data bytes tx = 0; g g gFigure 6.1: Example pseudocode of the bandwidth allocation mechanism to guarantee amininum of 50% allocation to data packets sent from the slow connection.Figure 6.1 assumes that available bandwidth on the slow link will be shared equally among datapackets and acks. If data and acks are to be allocated a di�erent fraction, then the ack byte tx counterneeds to be scaled appropriately. For example if we want to guarantee 80% of the bandwidth to datafrom the slow connection then the ack byte tx counter must be multiplied by a factor of four. Theobjective of the mechanism is to minimize the di�erence between the two counters, data bytes txand ack bytes tx. After sending a data packet, the counter data bytes tx is increased by the lengthof the packet. If the updated count crosses the value in ack bytes tx, both counters are decreased byack bytes tx so as to bound their range. The operations after sending an ack are symmetric.It can be shown easily that the above mechanism is able to provide a throughput guarantee tothe slow connection. Let f denote the fraction of the capacity of the slow link that is to be allocatedto the slow connection's data. The remaining fraction 1 � f is then available for transporting theacks of the fast connection. Given f , we can compute the threshold on the number of acks, , whichtriggers the transmission of the next data packet, from the following equality:tditdi + tai = f;which gives



6. Connection-Level Bandwidth Allocation 21 = (1� f)�f : (6.1)We will now derive closed-form expressions for the throughput e�ciencies of the two connectionsunder this scheme. The maximum time Tmax between successive transmissions of data packets fromthe slow connection will be Tmax = min(njtai ; tai ): (6.2)Therefore, the e�ciency of the slow connection i will beFi = tdiTmax + tdi ;= 1min(nj; ) taitdi + 1 ;= max� �nj + � ; f� : (6.3)Notice from Eq. (6.3) that the e�ciency of the slow connection is guaranteed to be at least f .The e�ciency of the fast connection j can be computed by observing that at most min(nj ; )packets may be acknowledged within in an interval of time min(nj; )tai +tdi . Therefore, the e�ciencywill be Fj = min 1; min(nj ; )tdjmin(nj ; )tai + tdi ! ; (6.4)= min 1; njtdjnjtai + tdi ; tdjtai + tdi ! ;After some manipulation, this reduces toFj = min�1; �nj�(nj + �) ; (1� f)�� � : (6.5)We now discuss the results from a series of simulations we performed to validate the aboveanalysis. In all of the simulation experiments discussed below the parameter f is set to 50%, unlessotherwise speci�ed. This allows the slow connection to reach a minimum e�ciency of 50%.Figure 6.2 considers the case where the size of data packets in each direction is set to 1500 bytes.The link capacities are the same as those considered in the previous section, that is, 5 Mbits/sec and100 kbits/sec. The window size for both connections is set to 64 Kbytes, so that nj = 43, � = 50,and � = 50. Therefore, the expected e�ciency for connection i from analysis is approximately 54%,and that of connection j is approximately 46%. The simulation results in Figure 6.2 are in closeagreement with these estimates. In this case both connections achieve acceptable performance. Notethat the throughput of the fast connection is limited only by the bandwidth available for transportingits acks over the slow link.To test the sensitvity of the throughput on the parameters of the opposite connection, wedecreased the packet size of the slow connection to 256 bytes, maintaining the same 1500-bytepackets for the fast connection. The results are shown in Figure 6.3. Note that the e�ciencies ofboth connection remains almost una�ected because the bandwidth needed for the additional ack
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Slow connectionFigure 6.3: E�ciencies for the twoconnections with connection-level band-width allocation with 1500-byte packetsize for the fast connection and 256-bytepackets for the slow connection (Maxwindow size = 64 Kbytes, ack size =28 bytes).tra�c on the fast link is easily available. The slight discrepancy between the observed e�ciency ofthe slow connection and its ideal value (50%) is due to the rounding error resulting from the size ofdata packets not being an exact multiple of the size of acknowledgments. On the other hand, use ofthe backpressure scheme in this case reduces the e�ciency of the slow connection to about 20%.In Figure 6.4 we consider the case where the size of connection j's data packets is also reducedto 512 bytes. With these parameters, the slow connection was able to get only about 7% of the linkcapacity when the backpressure scheme was used. On the other hand, with the bandwidth allocationmechanism, the throughput of the slow connection remains almost una�ected (Figure 6.4). Thesmaller packet size of the fast connection, however, causes a reduction in its own e�ciency. Thisis because the smaller packet size causes an increase in ack tra�c for the same amount of datatransmitted; since the bandwidth available to ack tra�c on the slow link is �xed, this results ina reduction in the fast connection's throughput. This is in fact the desired behavior, since thethroughput of a connection is now sensitive to only its own parameters.The ability to control the parameter f allows a great deal of exibility in achieving the desiredperformance objectives. For example consider the case where the packets of the fast connectionare 1500 bytes long and those of the slow connection 256 bytes. When 50% of the slow link'sbandwidth is allocated for transporting data packets, each of the connections achieves approximately50% e�ciency (Figure 6.3). However, for the same parameters settings, the use of the backpressureresults in the fast connection achieving about 85% e�ciency and the slow connection 18%. By settingthe percentage of the bandwidth that is guaranteed for data packets to 18%, we can produce thesame behavior with connection-level bandwidth allocation. This is demonstrated in the simulationresults of Figure 6.5, which were obtained by changing the parameter f from 50% to 18%.7 ConclusionAsymmetric link speeds are likely to be common in data communication networks in the future,particularly with the deployment of cable and high-speed Digital Subscriber Line (DSL) technologies.With the increasing use of powerful PCs and workstations at homes and small businesses, it is not
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Slow connectionFigure 6.5: E�ciencies for the twoconnections with connection-level band-width allocation with 1500-byte packetsize for the fast connection and 256-bytepackets for the slow connection (Maxwindow size = 64 Kbytes, ack size =28 bytes). The bandwidth allocationparameter f is set to 18%.unrealistic to imagine users running multiple applications simultaneously (download �les, transferdata on the uplink) that result in two-way TCP tra�c. In such an environment, TCP has beenknown to su�er a reduction in the overall throughput of one or both connections due to the well-known e�ect of ack compression. This e�ect is exacerbated in an environment where the link speedsin the two directions are widely di�erent.In this paper, we quantitatively analyzed the degradation in the throughput of TCP connectionsin the two-way environment. We �rst presented measurement results from a network using cablemodems, where the degradation in throughput of the TCP connection on the faster downlink becauseof the second TCP connection on the slow uplink was dramatic. The measurement results matchedwell with the results from our quantitative analysis, lending credence to the use of a relativelysimple network model for studying the problem. Further, through simulations, we showed that thethroughput of the fast connection can become a small fraction of the link capacity due to the e�ectof ack compression.We then examined several schemes for improving the performance of bi-directional TCP con-nections, by carefully controlling the ow of packets and acknowledgments, particularly on the slowlink. We �rst examined the scheme that provides higher priority to acks waiting for transmissionon the slow link, so as to minimize the degradation in throughput for the fast connection. Throughboth analysis and simulation, we showed that the throughput for the fast connection consistentlyimproves, in one case going from 2% when there was no control to 92% with priority queueing ofacks. Unfortunately, this is achieved at the expense of the slow connection. In addition, as the totalbandwidth consumed by acks on the slow link becomes a signi�cant portion of its capacity, the slowTCP connection in this direction may become completely starved. This is clearly an unacceptablebehavior.As a logical extension of the mechanism to provide priority to acks, we then examined a schemethat limits the number of data packets in the outbound queue for the slow link. This form ofbackpressure modulates the priority given to acks. by allowing the slow connection to place no morethan a set number of data packets in the outbound queue. Our analysis technique accurately predicts
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