
Scattered Data Techniques for SurfacesSuresh K. LodhaComputer ScienceUniversity of CaliforniaSanta Cruz, CA 95064lodha@cse.ucsc.eduRichard FrankeDepartment of MathematicsNaval Postgraduate ScoolMonterey, CA 93943-5216rfranke@nps.navy.milAbstractThis survey presents several techniques for solving variants of the following scattered datainterpolation problem: given a �nite set of N points in R3, �nd a surface that interpolatesthe given set of points. Problems of this variety arise in numerous areas of applications suchas geometric modeling and scienti�c visualization. A large class of solutions exists for theseproblems and many excellent surveys exist as well. The focus of this survey is on presentingtechniques that are relatively recent. Some discussion of two popular variants of the scattereddata interpolation problem { trivariate (or volumetric) case and surface-on-surface { is also in-cluded. Solutions are classi�ed into one of the �ve categories: piecewise polynomial or rationalparametric solutions, algebraic solutions, radial basis function methods, Shepard's methods andsubdivision surfaces. Discussion on parametric solutions includes global interpolation by a sin-gle polynomial, interpolants based on data dependent triangulations, piecewise linear solutionssuch as alpha-shapes, and interpolants on irregular mesh. Algebraic interpolants based on cubicA-patches are described. Interpolants based on radial basis functions include Hardy's multi-quadrics, inverse multiquadrics and thin plate splines. Techniques for blending local solutionsand natural neighbor interpolants are described as variations of Shepard's methods. Subdivisiontechniques include Catmull-Clark subdivision technique and its variants and extensions. A briefdiscussion on surface interrogation techniques and visualization techniques is also included.Keywords: algebraic, alpha shape, interpolation, interrogation, parametric, polynomial,radial, rational, scattered, splines, subdivision, surfaces, triangulation, visualization.1 IntroductionThis survey addresses the problem of interpolation of scattered data for surfaces. The basic problemis to �nd a surface that interpolates a �nite set of N points (x1; y1; z1); � � � ; (xN ; yN ; zN ) in R3. Weshall refer to this problem as the surface reconstruction problem. There are numerous variants of thisproblem. We distinguish between at least three di�erent basic variants of this problem. Besides thesurface reconstruction problem described above, there is a simpler and more classical version of thisproblem when the data is prescribed over R2; more precisely, one seeks a bivariate function F (x; y),1



which takes on certain prescribed values, that is, F (xk; yk) = zk for k = 1; � � � ; N . In other words,(xi; yi) 6= (xj ; yj) if i 6= j. We shall refer to this problem as the function reconstruction problem. Inmost cases, techniques for solving the surface reconstruction problem can be reduced to solving thefunction reconstruction problem but the converse is not true in general. A third variation of thescattered data interpolation problem is in fact an extension of the surface reconstruction problem.In this problem, often referred to as the surface-on-surface problem, the data is prescribed on somesurface in R3. More formally, the basic problem is to construct both a surface S that interpolates a�nite set of N points (xi; yi; zi), i = 1; � � � ; N in R3 and another surface that interpolates measureddata values wi on the surface points (xi; yi; zi) 2 S. This problem can be viewed as a problem ofinterpolating scattered data (xi; yi; zi; wi) 2 R4, where (xi; yi; zi) are restricted to lie on a surface inR3. Although this problem is referred to as the surface-on-surface problem, most of the research hasinvestigated only the function-on-surface problem, where wi is a scalar. The more general surface-on-surface problem occurs when wi is a multi-valued function. Another popular special case ofsurface-on-surface problem arises when the scattered data points (xi; yi; zi) belong to a volume inR3; in other words, these data points are not restricted to lie on a surface. This case often arises inmany scienti�c visualization applications and is referred to as the trivariate or volumetric scattereddata problem.Some important variations of all these three basic versions of the problem include (i) whenthe data is prescribed along with a triangulation or a mesh, (ii) when the data is prescribed on aregular or structured grid, typically a rectangular grid, (iii) when derivative or normal values arespeci�ed in addition to the data values, and (iv) when the given data is to be approximated ratherthan interpolated. These are very important problems as well; however to keep the contents ofthis survey manageable, the focus of this survey is to present interpolation techniques that workfor truly scattered data when only data values are prescribed. Many techniques presented in thiswork will however assume that some kind of triangulation or connectivity information on the datais provided in the form of a mesh. We also make an attempt to provide a somewhat comprehensivebibliography within the scope of this survey particularly for more recent work on scattered datatechniques. Detailed references to older works can then be found in the bibliography of severalgood surveys included in the bibliography at the end of this survey.Clearly, without any additional restrictions, there are numerous solutions to the scattered datainterpolation problem. For example, when the data is prescribed with a triangulation, the piecewiselinear surface associated with the triangulation is a solution. Thus, di�erent triangulations leadto di�erent solutions. When a triangulation is provided, the focus of the majority of the solutionsis to construct smooth solutions that are tangent or curvature continuous. Such solutions areaesthetically more pleasing and are compact representations of the original data. In addition, thecoe�cients of the smooth representations provide more intuitive handles for further handling orbetter understanding of the data. Smooth solutions are also often more faithful to the underlyingphenomena of interest, and therefore, are in general more desirable. Often however the datais prescribed without any triangulation or connectivity information between the scattered datapoints. In such cases, one can either attempt to triangulate the given data set and construct atriangulation-based interpolant or simply use a point-based interpolant that does not require anytriangulation of the data.There are several ways to classify the solutions to scattered data interpolation problems, asis evident in the past surveys on this topic [Sch76, Fra82a, Alf89]. In this work, the class ofsolutions to the scattered data problem is classi�ed into �ve categories based primarily on theform of the solution. The �rst category is the polynomial or piecewise continuous polynomialparametric solutions. Many well-known scattered data techniques including �nite element methods2



and multivariate splines fall in this category. In some applications, however, polynomial or piecewisepolynomial solutions are not adequate. For example, polynomial or piecewise polynomial solutionscannot represent part of a sphere or a torus exactly, a desirable feature to have in some geometricmodeling applications. Therefore, one considers a more generalized class of solutions, namelyrational or piecewise continuous rational solutions, that is solutions which are ratios of polynomials.The second category consists of algebraic solutions, that can be expressed as a zero contour of sometrivariate polynomial, that is as F (x; y; z) = 0, where F (x; y; z) is a polynomial. More generally,piecewise tangent or curvature continuous algebraic solutions are constructed. The third categoryis the radial basis function methods, where the solutions are formed as linear combinations offunctions that are radially symmetric. Hardy's multiquadrics, inverse multiquadrics and thin platesplines are important examples of this class of solutions. The fourth category of solutions includeShepard's methods and its variants. Depending upon the exact choices made, the interpolant canbe radially symmetric, piecewise polynomial or a mixture of both. Therefore, based on the form ofthe solutions, this technique cuts across the classi�cation of solutions into polynomial and radialcategories. However, the key distinguishing feature of this technique is to construct interpolantsby blending local solutions by using weight functions. We shall comment on this later again inSection 5. Finally, the �fth category of solutions use a procedure called subdivision to constructthe interpolants. These techniques depend upon an underlying mesh that is prescribed along withthe data. In general the solutions do not have closed form analytic expressions. However when theunderlying mesh has some special structure, for example a rectilinear structure, then the solutionsreduce to some well-known spline interpolants, for example tensor product B-splines.The literature on scattered data interpolation is too vast to be covered in a single book, letalone a survey in a book. Several excellent surveys exist on selected subsets of solutions to scattereddata interpolation problems. We refer the reader to [Pow90, Buh93, Har90] for radial basis functionmethods, to [Dyn92] for subdivision techniques, to [Baj92] for algebraic solutions, to [MLL+92] forpiecewise polynomial or rational parametric solutions to triangulated data and to [Sch76, Fra82a,BN84, Alf89, Nie93d, NF94, FH94] for polynomial and rational solutions as well as Shepard'smethods and radial basis techniques. Nevertheless, we are not aware of any survey on scattereddata interpolation techniques that attempts to cover all the �ve categories of solutions described inthe previous paragraph. By bringing all these techniques together in one place, it is hoped that thispresentation will expose the practitioners in the �eld of geometric modeling, computer graphics andscienti�c visualization to a wide variety of options available for scattered data interpolation andhelp facilitate a critical evaluation of merits and demerits of employing one method over the other.We also refer the reader to [Nie93a, Nie94] for some research issues in scattered data modeling andanalysis.In order to attempt this ambitious task of presenting such a large class of solutions in a limitedspace, we have made several compromises. First, discussion of scattered data interpolation tech-niques in one dimension or for curves is mostly omitted. However one must take note of the fact thatevery univariate technique for scattered data interpolation extends in a straightforward manner totensor product data. However the straightforward extension is not always useful. For example, thetensor product nu-splines tightens up all along the parameter curves undesirably. In such cases,additional techniques need to be invented in order to tackle these problems [Nie86]. Nevertheless,many techniques for scattered data interpolation derive their motivation from similar schemes forcurves and therefore, we will mention them wherever appropriate. Second, the focus of this pre-sentation is on scattered data interpolation for surfaces, although many techniques do extend tohigher dimensions, in particular to volumetric data and function-on-surface problems. A brief dis-cussion on these two popular variations of the scattered data interpolation problem is included for3



the sake of completeness. We refer the reader to [Alf89, Nie93d, ND91, NT94a, NT94b, Tve91] forscattered volumetric data modeling. Third, an attempt has been made to focus on relatively recenttechniques of scattered data interpolation, although for the sake of completeness, brief descriptionsor appropriate references for older techniques are presented. Finally, mathematical details of in-terpolation techniques are kept to a minimum level for which the reader is referred to the originalwork. Rather a broad overview with intuitive understanding of the interpolation techniques isemphasized.This survey is organized as follows: Section 2 surveys piecewise polynomial and piecewise ra-tional parametric solutions. Section 3 describes algebraic solutions. Section 4 gives an overview ofradial basis function methods. Section 5 deals with Shepard's methods. Section 6 discusses subdi-vision techniques. Section 7 presents a discussion on surface visualization and surface interrogationtechniques. Finally Section 8 concludes with some �nal remarks and future directions.2 Polynomial and Rational Parametric SolutionsPerhaps the most popular representation in both academics and industry for solving scattered datainterpolation problems is the piecewise continuous polynomial or rational parametric solutions. Thepolynomial solutions are represented as x = x(u; v), y = y(u; v) and z = z(u; v), where x(u; v),y(u; v) and z(u; v) are bivariate polynomial functions in the parameters u and v. The degree of thesepolynomials is then referred to as the parametric degree of the solutions. A slight generalization isto consider rational solutions that can be expressed in the form x = x(u;v)w(u;v) , y = y(u;v)w(u;v) , z = z(u;v)w(u;v) ,where w(u; v) is also a polynomial function. The tensor product B-splines and NURBS are examplesof solutions that belong to this category.2.1 Function ReconstructionThe literature on solutions to function reconstruction problem by piecewise polynomial and ratio-nal parametric functions is rich and many good surveys exist [Sch76, Fra82a, FN91, FHN93, Alf89,Far86, BFK84, Nie93d, Bar83]. In the category of polynomial and rational interpolants, most ofthese surveys emphasize construction of smooth interpolants. The presentation here is intendedto be somewhat complementary to these surveys. In particular, global interpolation by a singlepolynomial and the dependency of piecewise linear solutions on underlying triangulations are em-phasized. Both these methods are speci�c to solving the function reconstruction problem. Thatis, there is no straightforward extension of these techniques for solving the surface reconstructionproblem. Nevertheless these techniques are important because the global interpolation by a sin-gle polynomial highlights the inherent di�culties in solving scattered data interpolation problemfor more than one variable, while piecewise linear solutions highlight the dependency of all �niteelement spline-based solutions on the underlying triangulations.Polynomial Interpolation Method: Polynomial interpolation in one variable is a very basictool in numerical analysis. A detailed account is easily available in many standard numerical anal-ysis textbooks. Many di�erent forms of interpolating polynomial have been studied by Lagrange,Cauchy, Hermite, Newton and Chebyshev. It is well-known that univariate interpolation usingpolynomials such as Lagrange interpolation can be badly behaved. Nevertheless the existence anduniqueness of a univariate polynomial of degree n for scattered data speci�ed at n + 1 pointsalong the real line is a very satisfying result. It is therefore natural to attempt to formulate someanalogous result for surfaces or higher dimensions.4



However, major di�culties arise for bivariate or multivariate data. We now discuss the bivariatecase. The dimension of the space of bivariate polynomials of total degree n is �n+22 �. Therefore,to guarantee existence and uniqueness of a polynomial interpolant of total degree n in 2 variables,a necessary condition is to have the number of scattered data points to be exactly �n+22 �, not avery natural restriction. Even if there are exactly �n+22 � points, there may not exist a polynomialof degree n that interpolates all the points, as is clear by considering the example of all the pointslying on a straight line. Therefore, in general, for arbitrary number of scattered data points thereis the problem of choosing the right polynomial subspace from which to pick the interpolant. Inparticular, this choice of the polynomial subspace depends upon the geometric con�guration ofpoints. For example, given �n+22 � points on a straight line, one must choose a polynomial of degree�n+22 � � 1, while if the points are in general position, a bivariate polynomial of degree n wouldsu�ce.Given a set of scattered data points, de Boor and Ron [dBR92] have proposed a scheme forchoosing a polynomial subspace S of the same dimension as the the number of scattered data pointsin such a way that the existence and the uniqueness of the interpolant is guaranteed. Moreover, theelements of this polynomial subspace and therefore the resulting interpolant has as small degreeas possible, a property referred to as minimal degree. These interpolants have several other niceproperties including translation invariance, scale invariance and coordinate system independence,although these interpolants are not a�ne-invariant in general.We present a brief intuitive description of the construction of the polynomial subspace S. Theconstruction proceeds incrementally as follows. To begin with, S consists of constants only. At thek-th step (starting from k = 1), consider the space Pk of all the bivariate homogeneous polynomialsof degree k. The dimension of the space of these polynomials is k+1. Find if any of the polynomialsfrom Pk + S and not completely in S vanish at all the given scattered data points. Let l be thedimension of the space Qk of these polynomials of degree k. Note that since these polynomialsvanish at all the scattered data points, addition of these polynomials to any interpolant will stillbe an interpolant. Therefore, one should stay away from these polynomials. This is achieved byconsidering the orthogonal complement Rk of Qk in Pk + S. The inner product chosen for �ndingthis orthogonal complement is < f; g >= 1�!P�D�f(0)D�g(0), where D� = @�1+�2@x�1@y�2 . This choiceof inner product helps achieve the many nice properties of the interpolant mentioned above. Thesubspace Rk with dimension k+1� l is then added to the polynomial subspace S. If the dimensionof the resulting polynomial subspace equals the number of scattered data points, then the processterminates, otherwise k is incremented by 1 and the process is repeated. A proof that this methodalways works is provided in [dBR90]. A constructive procedure for building these interpolants usingGaussian elimination as well as a description of a MATLAB-like program is also presented [dBR92].We discuss the following example when the data is prescribed over the 6 points on a regularhexagon. First, the constant function is added to the polynomial subspace S. Since no three pointsare collinear, there is no linear polynomial that vanishes at all the data points and therefore, alllinear polynomials are added. Thus far the dimension of the polynomial subspace is 3. Next, allbivariate polynomials of degree 2 are considered. Of these, exactly one, namely the circle vanishesat all the points. The dimension of the orthogonal complement of the circle is 2, which is thenadded to S. The dimension of S is still short by 1. Therefore, one considers all the bivariatepolynomials of degree 3 now. To determine the polynomials that vanish at the scattered datapoints, let us label the vertices of the hexagon from P1 to P6. Consider the cubic polynomial M1obtained by forming the product of linear polynomials that vanish at the opposite pair of verticesof the hexagon, that is the product of the lines P1P4, P2P5 and P3P6. M1 clearly vanishes atall the six points. Similarly consider the cubic polynomial M2 formed by taking the product of5



three linear polynomials P1P2, P3P4 and P5P6 and the cubic polynomial M3 formed by takingthe product of three linear polynomials P1P2, P3P6 and P4P5. It is clear that these three cubicpolynomialsM1, M2 and M3 vanish at all the six points. It is also not too di�cult to observe thatthese three polynomials are linearly independent. The dimension of the orthogonal complement ofthese polynomials is 1. This subspace is then added to S to complete the construction of S. Thedimension of S is now equal to 6, same as the number of data points. A symmetry argument ispresented in [dBR92] to conclude that a cubic generator of S is x3 � 3x2y. This completes theconstruction of S. Existence and uniqueness of the interpolant to any speci�ed values over the sixpoints on a regular hexagon is now guaranteed when the interpolant is chosen from the subspaceS constructed above.Triangulation-Based Methods: The construction of a unique global polynomial interpolantto scattered data is satisfying. However these multivariate Lagrange interpolants will have highdegree for large data sets and will su�er from similar defects as in the univariate Lagrange case.Therefore, piecewise polynomial or rational interpolants of low degree are needed for scattereddata interpolation in general. Tensor product bicubic B-splines and NURBS are very popularand successful interpolants for data on a rectilinear grid. For general scattered data points, atypical method is to triangulate the domain data points in the plane and then construct piecewisecontinuous interpolants on each triangle. These methods are referred to as triangulation-basedmethods. Either a triangulation is assumed to be given or is constructed before �tting polynomialor rational patches to the data sets.A collection � = fTigMi=1 of triangles in the plane is called a triangulation of a region 
 providedthat (i) any pair of triangles from � intersect at most at one common vertex or along a commonedge, and (ii) the union of the triangles fTig is 
. Note that the set 
 need not be convex in generaland may have holes. A simple solution to the scattered data interpolation problem is to construct apiecewise linear interpolant, on the triangulation of the given data set. More sophisticated solutionsthen attempt to construct smoother interpolants.Piecewise Linear Solutions: A popular solution is to construct a Delaunay triangulation of thescattered data points in R2 and construct the piecewise linear interpolant on this triangulation.Delaunay triangulation is a triangulation with many nice properties and a good source of referenceis [PS85]. Delaunay triangulation can be computed in O(N logN) time. Recent studies havehowever shown that depending upon the nature of the data, even though the triangulation mayexhibit nice properties, the corresponding interpolant may not. To remedy the situation, piecewiselinear interpolants have been suggested that are built on triangulations that depend upon data[DLR90, Bro91, QS90].Di�erent kinds of triangulations have been studied that use di�erent optimality criteria [Sch93b]:(i) Max-min Angle Criterion: A triangulation � is said to be optimal with respect to the max-min angle criterion provided that the maximum of the minimum angle of any triangle in � is themaximum over all possible triangulations of the same region 
 with the same vertices. This trian-gulation is also referred to as the Delaunay triangulation. There is another well-known equivalentcriterion to characterize a Delaunay triangulation. This criterion is known as the circle criterion.A triangulation is said to satisfy the circle criterion if a circle circumscribing any triangle of thetriangulation does not contain any other vertices of the triangulation in its interior. If the scattereddata points are in the general position, that is no four points are co-circular, then the Delaunaytriangulation is unique. (ii) Min-max Angle Criterion: A triangulation � is said to be optimalwith respect to the min-max angle criterion provided that the minimum of the maximum angle ofany triangle in � is the minimum over all possible triangulations of the same region 
 with thesame vertices. (iii) Other criteria include maximization of minimum height of the triangles, min-6



imization of the maximum slope of the triangles, maximization of minimum area of the triangles,maximization of minimum radius of the inscribed circles, minimization of maximum radius of thecircumscribed circles.The standard approach to �nding best triangulations is to apply an appropriate edge swappingalgorithm as described below. Given an interior edge e of a triangulation, there is a naturalassociated quadrilateral Qe formed from the two triangles of � which share the edge e. Such anedge is swappable provided that Qe is convex and no three of its vertices are collinear. If an edgee is swappable, then we can create a new triangulation by actually swapping the edge. An edgeswapping algorithm swaps an edge if swapping improved the triangulation with respect to theoptimal criterion. However, except for Delaunay triangulation, this local edge swapping criterialeads to only locally optimal and not to globally optimal triangulation. Schumaker proposed asimulated annealing technique to search for globally optimal triangulations for a wide class ofoptimality criteria [Sch93a]. Although this technique is not guaranteed to �nd the globally optimaltriangulation, the overall probability of �nding the globally optimal triangulation is increased.Each step of the algorithm selects a random edge for a local swap. If it improves the triangulationwith respect to the optimality criterion, then the algorithm swaps the edge. Depending uponan annealing schedule, the algorithm swaps the edge sometimes even if the swap deteriorates thetriangulation. This exibility allows the algorithm to get out of locally optimized triangulationsthat are not globally optimum. Each stage of the algorithm thus takes only a constant amountof time after an initial triangulation is found. The top diagram of Figure 1 shows the wireframedrawing of a steep hill, that is de�ned analytically. This function is sampled at some scattereddata points and then an interpolant is constructed and compared with the original function. Theupper left diagram of Figure 1 shows the Delaunay triangulation of the data points. The upper rightdiagram of Figure 1 shows the piecewise linear interpolant built on the Delaunay triangulation. Themiddle left diagram of Figure 1 shows a locally optimized triangulation of the data points using edgeswapping algorithm and starting with the Delaunay triangulation. The optimality criterion used forthese �gures is to minimize the sum of the angle between the normals of the adjacent linear patches.The middle right diagram of Figure 1 shows the piecewise linear interpolant built on the locallyoptimized triangulation on the left. The lower left diagram of Figure 1 shows a triangulation of thedata points obtained after 60 iterations of using the simulated annealing technique to construct aglobally optimized triangulation. The lower right diagram of Figure 1 shows the piecewise linearinterpolant built on this triangulation. Even though this globally optimized triangulation hasthin and skinny triangles, the interpolant based on this triangulation has smaller error than theinterpolant based on the Delaunay triangulation or the locally optimized triangulation.An algorithm for computing the globally optimum triangulation for the minimization of themaximum angle problem is derived in [ETW92] with computational complexity O(N2 logN). Al-gorithms for computing the globally optimum triangulation for the maximization of the minimumheight problem and the minimization of the maximum slope problem are derived in [BEE+93] withcomputational complexity O(N2 logN) and O(N3) respectively. These algorithms are examples ofa general paradigm described in [BEE+93].Spline Solutions: As stated in the introduction, piecewise linear solutions are not adequate formany applications that demand smoother interpolants. The focus of spline methods is to constructpiecewise C1 or C2 continuous interpolants over triangulated scattered data using as few patchesas possible of low degree. The classical results include (i) �tting piecewise C1 continuous quadraticpolynomial patches by splitting each triangle into six or twelve subtriangles, known as Powell-Sabin split [PS77], (ii) �tting piecewise C1 continuous cubic polynomial patches by splitting eachtriangle into three triangles, known as Clough-Tocher split [CT65], and (iii) �tting piecewise C17



Figure 1: Simulated annealing: (a) wireframe drawing of a steep hill, (b) left: Delaunay triangu-lation of scattered data points; right: piecewise linear interpolant on this triangulation, (c) left:locally optimized triangulation; right: piecewise linear interpolant on this triangulation, (d) left:triangulation obtained by simulated annealing technique; right: piecewise linear interpolant on thistriangulation. 8



continuous quintic polynomial patches without splitting the triangle, that is one patch per triangle[Far86]. Some early C1 continuous interpolants were proposed by Akima [Aki78b, Aki78a], Lawson[Law86, Law77], and Renka and Cline [RC84, Ren84a]. These interpolants are local in the sensethat any change in a data value a�ects the interpolant only in a neighborhood of that data point.These and similar solutions have been used in �nite element methods and are known as �niteelement solutions. Most of these interpolants have additional degrees of freedom. The qualityof interpolants as measured by simple characteristics such as wiggles in Gaussian curvature candepend heavily on how these degrees of freedom are chosen. In some cases, default values forthese additional degrees of freedom are chosen according to some simple heuristics and the user isallowed to manipulate these \shape" parameters interactively. In other applications, these degreesof freedom are chosen as solutions of some variational principles, which minimize certain energyfunctionals globally.Minimum-Norm Network Method [Nie80, Nie83] is an example of a global interpolant based ona variational principle. This method was found to be of one of the most e�ective triangulation-based interpolant tested by Franke [Fra82a]. First, the convex hull of the data points (xi; yi) inthe plane is triangulated. Each edge of the triangulation is then replaced by an interpolating cubicpolynomial curve such that the network of piecewise cubic polynomials minimizes the integral ofthe square of the second derivative over all edges in the triangulation. The curve network is then�lled in by piecewise C1 continuous rational surface patches. This technique has been widely usedin constructing a large class of scattered data interpolants with variations in all the three stepsabove: in constructing the triangulation, in choosing the interpolating curve network and in �llingin by smooth surface patches. Variations of these three generic steps have also been used in solvingthe surface reconstruction problem described in Section 2.2 as well as in constructing algebraicsolutions described in Section 3. Other types of piecewise continuous polynomial and rationalsolutions based on constraints and based on the discretization of a trans�nite interpolant have alsobeen used [Nie74, Bar83, Nie79, NF84, Alf89].The �nite element spline solutions can also be viewed as solving the scattered data interpolationproblem from the space of piecewise polynomials of a given degree with certain smoothness de�nedover the original triangulation or a re�ned triangulation. Elements of these piecewise polynomialspaces are referred to as multivariate splines. A good source of references for studies related tothe dimension of these multivariate splines and their applications to scattered data interpolationproblem can be found in the survey article by Alfeld [Alf89]. Finite element solutions are examplesof multivariate splines, where the splines have minimally supported basis functions. The propertyof minimal support in turn makes the interpolants local and of relatively higher degree than ispossible by global interpolants in general. An intermediate set of subspaces between �nite elementsolutions and the full space of piecewise polynomials is vertex splines. These splines are minimallysupported as well, but in contrast to �nite elements, they have speci�ed smoothness property at thevertices of the triangulation. Use of vertex splines in solving scattered data interpolation problemsis presented in [Chu88].Multivariate B-splines are splines obtained by projections of simplices and are also referred toas simplex splines [DM83]. When these splines are obtained as projections of a cube, they arereferred to as box splines. Box splines have been used to solve scattered data interpolation on athree-direction mesh. An excellent description and further references can be found in [DL91]. Morerecently, a multivariate B-spline scheme that uses a combination of B-patches and simplex splineshas also been used to solve the scattered data interpolation problem over arbitrary triangulations[FS93]. The piecewise interpolant is de�ned on a re�ned triangulation that depends upon the choiceof knots needed to de�ne the interpolants. All these multivariate spline schemes and �nite element9



schemes are restricted to solving the function reconstruction problem and cannot handle the moredi�cult surface reconstruction problem.2.2 Surface ReconstructionIn analogy to the function reconstruction problem, a �rst step or the simplest solution to the surfacereconstruction problem for scattered data may seem a piecewise linear solution to the problem.However ' to �nd a triangulation of scattered data in R3 that respects the underlying topology ofthe data is a much more di�cult problem. To observe the inherent di�culty of the problem, notethat same set of scattered data points can correspond to several topologically di�erent surfaces.Therefore, if the intent is to reconstruct a surface with a particular topology, some additionalinformation about the topology of the surface must be provided. If this additional information isprovided in the form of a triangulation, then of course, the piecewise linear interpolant is triviallyconstructed. On the other hand it is not clear what is a good or appropriate way of specifyingthe underlying topology of the data other than an underlying mesh. However, important advanceshave been made in constructing a piecewise linear approximation to scattered data sets in R3[HDD+92, HDD+93, HDD+94, BBX95]. The closest to a piecewise linear interpolant to scattereddata sets is the concept of alpha-shape, which we discuss next.Alpha-Shapes: Alpha-shapes are a generalization of the convex hull of the scattered data points[EM94]. They are based on Delaunay tetrahedralization of the scattered data points in R3. Oneof the major strengths of this method is that in contrast to most other methods for scattered datainterpolation for surface reconstruction, this method does not assume any underlying triangulationof the given data set.Given a set of points S in R3, one can build a tetrahedralization of the convex hull of S, thatis a partition of the convex hull of S into tetrahedra, in such a way that the circumscribing sphereof each tetrahedron T does not contain any point of S in its interior. Such a tetrahedralization iscalled a 3D Delaunay tetrahedralization of the given set of points. Under certain non-degeneracyassumptions on the data set such as no more than four points are co-spherical, the Delaunaytetrahedralization is unique. The expected running time of the algorithm for computing Delaunaytetrahedralization is roughly logN times the number of tetrahedra using a randomized incrementalipping-based algorithm [ES92]. In the worst case, the number of tetrahedra can be about O(N2).In practice, however, most point sets have many fewer Delaunay tetrahedra and therefore, therunning time of the algorithm is much better than this theoretic bound.For � =1, the alpha-shape is identical to the the 3D Delaunay tetrahedralization of the convexhull of the scattered data points. This tetrahedralization consists of tetrahedra, the triangular facesof these tetrahedra, the edges of these triangular faces and the vertices which are same as the givenscattered data points. For � = 0, the alpha-shape is identical to the given scattered data points.Intermediate alpha-shapes for 0 < � < 1 are obtained by shrinking the convex hull as follows.Consider a spherical eraser of radius � that passes through the convex hull erasing any tetrahedra,triangles or edges such that the eraser can pass through them without touching any of the verticesthat bound these elements. In other words, the minimum radius of the circumscribing sphere ofthe elements that are erased is strictly greater than �. This procedure can erase triangular faces ofsome tetrahedra that are not erased or erase some edges of triangular faces that are not erased. Insuch a situation, retain all the lower components of an element that was not erased. For example,if a tetrahedron is not erased, keep all its edges and triangles. Notice that the original verticesare always kept throughout this procedure. The space covered by the resulting set of tetrahedra,triangles, edges and vertices is referred to as the alpha-shape of the given scattered data set. Of10



Figure 2: Alpha-Shapes of a human �gure for decreasing values of alpha; the value of alpha isshown as the radius of the sphere next to the alpha-shapes11



course, it is possible to have cavities and holes in the alpha-shape.This intuitive description of the concept of alpha-shape is described very elegantly using thenotion of alpha complexes and nerves of the Voronoi decomposition. An algorithm for computingand displaying the alpha shapes has been presented and implemented [EM94]. Figure 2 represents8 alpha-shapes obtained from the scattered data points sampled from a person's bust by graduallyreducing the value of � from 1 to close to zero.It is tempting to adopt the alpha-shape approach to create piecewise linear triangulation of thegiven scattered data set. This would be possible if an alpha could be found when all the tetrahedraare erased and exactly the triangles de�ning the triangulation are left. It is easy to see that thisis not possible to achieve if the density of scattered data points is sparse so that the points acrossthe surface are equally close or closer than the points on the surface. For example, this would bea problem for a poorly sampled thick torus where the di�erence between inner and outer radius issmall. Even with additional assumptions on the density of the scattered data points it is not clearwhether this approach can be adapted to produce piecewise linear triangulation of the scattereddata points that respects the underlying topology of the data set that is prescribed by the userin some form. Due to these di�culties, the rest of this section will assume that the underlyingtopology of the data set is speci�ed by a triangulation or a mesh. The focus now is on constructingsmooth interpolants.Interpolants on Triangulated Data: A large number of piecewise polynomial and rationalinterpolants have been suggested for surface reconstruction to �t a triangulated scattered data.Fortunately, there is an excellent survey of these interpolants [MLL+92]. Some more interpolantsof this type are presented in [Pet90]. The overall idea for constructing these interpolants consistsof two key steps: �rst, edges of the triangulation are replaced by an interpolating curve networkusually with cross-boundary derivatives. Farin [Far82] and Piper [Pip87] give su�cient conditionsfor two polynomial patches to meet with tangent plane continuity. Computation of cross-boundaryderivatives along the interpolating curve network is described in [CK83, Her85, Nie87b, Jen87].In the second and the �nal step, each triangular hole bounded by three curves is �lled in by oneor more polynomial or rational surface patches in such a way that the overall surface is tangent orcurvature continuous. The challenge in these schemes is to construct a smooth interpolant of lowdegree with few pieces. There are two major approaches to �lling in these triangular holes: splitdomain schemes and convex combination schemes. In split domain schemes, the triangular domainof each hole is split into several subdomains and then a patch is �tted into each subdomain. Oneof the most popular splitting technique employs Clough-Tocher split, where a triangle is split intothree triangles by inserting a point in the interior of the triangle and connecting it to the threevertices of the original triangle. This splitting technique therefore �ts three patches per triangularhole. Splitting allows the data along each boundary to be matched independently of the data on theother two boundaries. The remaining degrees of freedom are used to make the internal boundariesof the patches to meet with tangent plane continuity. This technique has been used to constructthree polynomial patches of degree four per hole [SS87, Jen87, Pip87]. Convex combination schemescreate one single patch per hole. First, three patches are constructed, each of which interpolatespart of the boundary data. Then a convex combination of the three patches is formed in such away that the resulting patch interpolates all of the data. The convex combination typically utilizesrational weight functions and therefore produces rational interpolants. This technique has beenused to create piecewise tangent and curvature continuous rational scattered data interpolants[Nie88, Nie87b, Her85, HP89, Hag86].An early survey on surface construction based upon triangulations is available in [NF83]. One ofthe major �ndings of the more recent survey [MLL+92] is that most of the local interpolants su�er12



from similar shape defects. The primary cause of the shape defect seems to be in the construction ofboundary curves. The shape defects in the boundary curves, such as atness seems to be propagatedinward resulting in the at spots of the surfaces. One way to overcome these defects could be touse some form of global optimization on the boundary curves as in the minimum norm networkmethod described in Section 2.1.Interpolants on Irregular Mesh: The techniques described above are applicable when the un-derlying data has been triangulated. However, there are a number of important practical situationswhen the topology of the underlying data is prescribed not in terms of triangles, but with someconnectivity information between the data points in terms of edges and faces, that need not betriangles. In fact, the faces need not be planar. We shall refer to a mesh of vertices, edges and(possibly non-planar) faces as an irregular mesh if there are no restrictions on the number of edgesa face can have or on the number of edges that meet at a vertex. This section describes some ofthe recent techniques to build interpolants on irregular meshes.Although attempts have been made to �ll n-sided holes for more than a decade, S-patches [LD89]are perhaps one of the most promising representation for �lling n-sided holes because they are multi-sided generalization of Bernstein-B�ezier surface patches, and thus have much better potential ofintegration with existing geometric modeling systems than previously proposed systems. S-patchesare generalizations of both tensor product Bernstein-B�ezier patches and triangular Bernstein-B�ezierpatches. S-patches build on the theory of B�ezier simplexes and generalized barycentric coordinates.An S-patch with n sides admits a rational representation with degree d(n� 2), where d is referredto as the depth of the S-patch. Thus a 5-sided patch of depth 3 will have a rational representationof degree 9. This can result in somewhat excessive storage and slow algorithms for computing withS-patches.We now describe a scheme for interpolating scattered data points over an irregular mesh, thatconsists of piecewise tangent continuous triangular quadratic and cubic polynomial patches [Pet93,Pet95]. The algorithm consists of a corner-cutting type procedure that is often used in subdivisionsurfaces (Section 6). In the �rst step of the mesh re�nement, every s-sided face is subdivided intos quadrilaterals by inserting the centroid of the surface and connecting it to the midpoints of allthe edges. Now let us say, an original vertex V1 is surrounded by m quadrilaterals. In the secondstep of the mesh re�nement, a preliminary quadrilateral center Ĉi is introduced for each of the mquadrilaterals for i = 1; � � � ;m. If V1, Vi2, Vi3 and Vi4 are the four vertices of the i-th quadrilateraland ai1, ai2 are arbitrary blend ratios, where 0 < ai1; ai2 < 1, thenĈi = (1� ai1)(1� ai2)V1 + (1� ai1)ai2V2 + ai1(1� ai2)V3 + ai1ai2V4:By default, the blend ratios can be chosen to be half so that the preliminary cell centers arethe centroids of the quadrilaterals. These preliminary centers Ĉi are then perturbed a little to newpositions Ci in order to satisfy a planarity condition. The planarity condition requires that allpoints Ai, i = 1; � � � ;m, lie in the same plane, where Ai = Ci+Ci+12 and (i + 1) is taken modulo m.This condition is trivially satis�ed by Ĉi if m = 3. In fact, this condition is also satis�ed by Ĉi ifm = 4 since A1 +A3 = A2 +A4. Therefore for m = 3; 4, Ci = Ĉi. For m � 5,Ci = V1 + 2!mm mXj=1 cos�2�m j� Ĉi+jwhere 0 < !m < 1 with default values !�1m = 1 + cos 2�m if m is even and !�1m = 2 cos �m if mis odd. The proof that these new Ci's satisfy the planarity condition is given in [Pet95, Loo94].This process of computing the cell centers Ci is repeated for all the quadrilaterals surrounding any13



Vi

C i

A i

Figure 3: Mesh re�nement procedure for irregular meshesvertex of the original mesh. The cell centers Ci of the adjacent cells are now connected to eachother. If the vertices of the input mesh are to be interpolated, then the cell centers Ci; i = 1; � � � ;m;of the re�ned mesh constructed around V are moved by V �Pmi=1 Cim . This process makes V thecentroid of Ci, i = 1; � � � ;m and will be interpolated by the construction to be described further.This �rst step of the algorithm is illustrated in the left diagram of Figure 3. The user starts witha cube. A cube has six faces and each face has four edges. Therefore each face of the cube issubdivided into four rectangles or cells. These four rectangles or cells are shown as dotted lines inthe left diagram of Figure 3. In the next step, the cell centers Ci are computed for each of theserectangles. In this case, the cell centers are simply the centroids of each cell. These centroids arenow connected to the centroids of the adjacent cells. Part of the the new con�guration is shown indark in the left diagram of Figure 3. The interpolation step where these cell centers are now movedto V �Pmi=1 Cim is not shown in the �gure. In the third step of the mesh re�nement, the originalvertices (which are the centroids of Ci) are introduced back into the mesh to ensure interpolationand they are connected with Ai. This process subdivides each s-sided face into s quadrilateralsas shown in the right diagram of Figure 3. Moreover, the output of this step is a re�ned meshsuch that three points are associated with each cell edge. These vertices of the re�ned mesh canbe construed as the control points of a quadratic box spline. The resulting box-spline surface willthen be the solution to the scattered data interpolation problem. Alternative solutions consistingof quadratic and cubic triangular patches or biquadratic rectangular patches or a combination ofthese have also been described [Pet95]. For example, each of the quadrilateral subcells is coveredwith four triangular quadratic or cubic patches by inserting a control point S near the centroidof the quadrilateral subcell and connecting S with the vertices of the quadrilateral. In the rightdiagram of Figure 3, four such quadrilateral cells are shown in dark. Each of these cells are thenfurther subdivided into four cubic patches (not shown in the diagram). The exact formula for Sand the coe�cients that de�ne the cubic triangular patches are based on continuity conditions anddescribed in [Pet95]. Figure 4 shows a twisted cubic consisting of quadratic and cubic polynomialpatches. A similar approach is taken in constructing approximation to scattered data by using are�nement step and a patch-�lling step using polynomial patches of degree 4 [Loo94].14



Figure 4: Scattered data interpolation over an irregular mesh2.3 Surfaces on SurfacesTrivariate Scattered Data: The triangle-based methods generalize to the trivariate case byconsidering tetrahedra instead of triangles, although additional complexity is possibly a problem.Assume the data points are given and a Delaunay tetrahedralization of the convex hull (or otherconvenient region) is computed. For smooth interpolation it is then necessary to have a functionde�ned on each tetrahedron (a patch) that matches value and �rst derivatives across boundariesto adjacent tetrahedra. This can be achieved by various methods. Rescorla [Res87] uses a ninthdegree patch due to �Zen�i�sek[Zen73], with 220 degrees of freedom and requiring derivatives as high asfourth order to be estimated. Clearly a simpler patch is required, and there are several alternatives.The Clough- Tocher patch can be extended to tetrahedra [Alf84] using piecewise polynomials ofdegree �ve, with four tetrahedra in the split. There is an extension of the Clough-Tocher patch ton-dimensions, by Worsey and Farin [WF87]. There is also a generalization of the Powell-Sabin split[PS77] using piecewise quadratic polynomials, by Worsey and Piper [WP88], and while this o�erseasy exact contouring, the patch subdivides the tetrahedron into 24 subtetrahedra. Nielson andOpitz [NO92] generalized the side-vertex scheme [Nie79] to a face-vertex scheme for tetrahedra.This method yields a rational patch. Because the face data is not known from derivative estimates,it is necessary to estimate the value and normal derivative for each face. Nielson and Tvedt [NT94b]discuss more of the details of the required scheme. Several methods for estimating derivatives arepossible. Based on experience with the bivariate case, this is a crucial step in the process and thequality of the approximation depends heavily on reasonable estimates. Most likely to give goodresults is a generalization of the minimum norm network method [Nie83, Pot92], generalized totetrahedra by Nielson and Tvedt [NT94b], or generalizations of methods used by Renka and Cline[RC84] and Franke and Nielson [FN80] using local least squares quadratic approximations.Function-on-Surface Problem: Several good surveys exist on constructing scattered data in-terpolants over surfaces [BF91, FN91, Nie93c, HL93]. These surveys include polynomial, rational,radial and shepard-type interpolants as well. There are two major approaches to solving thesurface-on-surface problem: (i) trivariate approach, and (ii) bivariate approach.15



Trivariate Approach: In this approach, the problem of constructing interpolants on surfaces isconstrued as a trivariate scattered data interpolation problem, that is, the problem of interpolatingscattered data points (xi; yi; zi; wi) 2 R4. Although, the domain points (xi; yi; zi) are restricted tolie on a surface F in R3, one can simply ignore this fact and build an interpolant on a volumetricdomain that contains the surface by using any method for solving the trivariate or volumetricproblem as discussed above. This approach was adopted in [Bar85]. This approach may yieldacceptable results for surfaces where the geometry of the surface and the geometry of the Euclideanspace R3 is not too di�erent. However, this approach does poorly on surfaces where the data pointsthat are close in R3 are far apart on the surface, for example in case of an airplane wing [HL93].Bivariate Approach: The bivariate approach involves �nding a bivariate function f(x; y; z)(where (x; y; z) are restricted to lie on a surface f 2 R3) that interpolates the given data, that is,f(xi; yi; zi) = wi. To construct the interpolant, one usually has to take into account the geometryand topology of the surface F . This approach is typically much more complicated than the trivariateapproach.In addition to these two approaches, there are other hybrid approaches as well. For example, aninterpolant can be constructed inside a volumetric tube surrounding the surface [BOP92]. Moreover,one can use a domain mapping method to extend trivariate or bivariate approaches to a much largerclass of surfaces as explained below. Typically, one can solve the surface-on-surface problem ona speci�c surface such as a sphere using either trivariate or bivariate approach. In the domainmapping method [FLN+90b], the idea is to map the surface F to a new surface G, say a sphere,using a mapping � in such a way that the geodesic distances on F are not too badly distorted sothat the intrinsic geometry is more or less preserved. The new surface G is chosen in such a waythat one can apply a direct trivariate or bivariate interpolation method to construct an interpolantÎ which interpolates the values wi on the scattered data points �(xi; yi; zi) 2 G. The desiredinterpolant is then given by I(xi; yi; zi) = Î(�(xi; yi; zi)). Thus the domain mapping method canbe used to solve the surface-on-surface problem for surfaces that are topologically equivalent tosphere, but need not be convex.All these approaches have been applied to construct scattered data interpolants on surfaces.Algebraic, radial and Shepard-type interpolants on surfaces are described in Sections 3, 4, and 5respectively. Here we discuss polynomial and rational interpolants on surfaces, that are based ontriangulations (described in Sections 2.1 and 2.2) and those that have been extended from the pla-nar case to spheres and convex surfaces. The �rst step is to construct a triangulation of scattereddata points over spheres. As in the planar case, di�erent criteria can be used to generate di�erenttriangulations. It is important to generate triangulations that cover the surface uniformly. Thespherical circumscribed circle criterion ensures that any given data point lies outside the spher-ical circle that passes through three points de�ning a triangle [Law84, Ren84b]. The sphericalmax-min angle criterion ensures that for every quadrilateral in a triangulation de�ned by two ad-jacent triangles, the minimum of the six angles associated with the quadrilateral is greater thanthe minimum of the six angles associated with the quadrilateral obtained by swapping the diagonal[NR87]. These triangulation methods have been extended to convex surfaces using one-sided prop-erty criterion [BO90]. A triangle has the one-sided property provided that all other scattered datapoints lie on the same side of the plane passing through the three points de�ning the triangle. Atriangulation possesses the one-sided property provided every triangle in the triangulation has thisproperty. To build such a triangulation, one can start with some initial triangle and then add onepoint at a time ensuring that this property remains satis�ed [BO90]. This algorithm leads to thecircumscribed-circle criterion triangulation on a sphere. In the second step of the algorithm, thegradient of the function is estimated at every vertex essentially in the same way as in the planar16



case by constructing a local least squares quadratic approximation. In the third and �nal step ofthe algorithm, every triangle is replaced by a polynomial or a rational surface patch that meets theadjacent patch with tangent plane continuity using the minimum norm network method [NR87].This technique has been further extended to the case of closed surfaces that are topologically equiv-alent to a sphere by using domain mapping method [FLN+90b]. Minimum norm network methodhas also been extended to surfaces that are at least C2 di�erentiable [Pot92].Recently, scattered data interpolants have been suggested on spheres and sphere-like surfacesbased on spherical Bernstein-B�ezier polynomials and their generalizations to spherical triangularB-splines [ANS96, PS95].3 Algebraic SolutionsAn alternative to the parametric solutions discussed in the previous section is to construct functionsor surfaces in implicit form, that is, the function or the surface can be represented as the zero setof some function in R3. More formally, the solution is represented as some suitable subset off(x; y; z) = 0. Moreover, the de�ning function f is often chosen to be a polynomial. The solutionsare then referred to as algebraic solutions. The degree of the polynomial f is then referred to asthe algebraic degree of the solution. Observe that an implicit form can be achieved trivially forfunctions de�ned as z = g(x; y) by rewriting them as f(x; y; z) = z � g(x; y) = 0. Therefore, mostof this section focuses on the problem of surface reconstruction.Relationship between Parametric and Algebraic Surfaces: The relationship between para-metric and algebraic solutions is very interesting and rich. A rational parametric surface of para-metric degree n can always be represented as an algebraic surface of algebraic degree at most n2[SAG84]. This process of converting from rational parametric surfaces to algebraic surfaces, referredto as implicitization, remains computationally very expensive in general. In practice, therefore, thisconversion is rarely attempted. In this section, therefore, an algebraic surface refers to a surfacethat has been de�ned using an implicit form, that is, as f(x; y; z) = 0.One interesting situation, when implicitization becomes a little more tractable and thereforepractical, arises when there are base points in the rational parametric representation. A base pointof a rational parametric representation is a point (u; v) for which x(u; v) = y(u; v) = z(u; v) =w(u; v) = 0, that is both the numerator and the denominator vanishes and therefore, the surfaceis unde�ned at those points in the rational parametric form. It has been proved that presence of kbase points (counted with appropriate multiplicities) in the rational parametric representation of asurface with parametric degree n reduces its algebraic degree from n2 in general to n2 � k [Chi90].Therefore, presence of base points is advantageous in constructing algebraic surfaces of low degree.Tensor product surfaces of parametric degreem�n always have at least 2mn base points. S-patches(which have base points) and another rational multisided generalization of Bernstein-B�ezier surfaceswith base points have been used to �ll holes [LD90, War92].In the reverse direction, the procedure for converting algebraic surfaces into rational parametricform is known as parametrization. For n > 3, there always exists an algebraic surface of degree nthat does not have a rational parametric representation of any degree at all [SAG84]. Fortunately,the scenario for low degree algebraic surfaces is rather promising. An algebraic surface of degree1 is simply a plane, and therefore can easily be represented as a polynomial parametric surface ofdegree 1 and vice-versa. An algebraic surface of degree 2 referred to as quadrics include such well-known shapes as spheres, cylinders, cones, ellipsoids etc. It is also well-known that any quadric canbe represented as a rational parametric surface of degree 2. Algebraic surfaces of degree 3 referred17



Figure 5: Triangulated scattered datapoints Figure 6: C1 interpolation using cubic al-gebraic A-patchesto as cubics do admit a rational parametric representation of degree 3 at most with the exceptionof cones and cylinders generated by non-rational cubic curves [Sed90a]. Sederberg has carried outa detailed study of cubic algebraic surfaces in the context of computer aided geometric design[Sed90a, Sed90b]; still an automatic method of constructing a rational parametrization for a cubicalgebraic surface needs to be explored. Algebraic surfaces of degree 4 referred to as quartics includesurfaces such as the torus and cyclides. Quartic surfaces have been studied by classical geometersand classi�ed into several categories [Sal14]; still a constructive algorithm for parametrization ofthose quartics that are parametrizable has not yet been developed. We shall soon see that mostscattered data interpolation problems can now be solved using low degree algebraic surfaces, inmost cases by surfaces with algebraic degree up to 3.Algebraic Interpolants: Algebraic surfaces have been used to solve both the surface recon-struction as well as surfaces-on-surfaces problem. Sederberg [Sed85] pioneered the use of algebraicsurfaces in computer aided geometric design. Patrikalakis and Kreizis [PK89] considered algebraicsurfaces in a tensor product B-spline form for regular grids. Algebraic surfaces have been usedto interpolate a given set of points, normals and algebraic space curves by choosing the degree ofthe algebraic surface su�ciently high in order to contain the given data [BI92a]. This approachtypically constructs one algebraic surface to �t the given data and works well for surface blendingapplications, such as the smooth join of four cylinders with a quartic surface.Bajaj and Ihm [BI92b] constructed a piecewise C1 continuous smooth algebraic interpolant toa triangulated set of scattered data by adopting an approach that is quite similar to the approachadopted in �tting piecewise polynomial interpolants to the scattered data. The three steps in thisapproach are: (i) Each edge of the triangulation is replaced by a quadric or cubic algebraic spacecurve; (ii) A set of normals are prescribed along these curves; (iii) Each triangular facet is replacedby one algebraic surface of degree at most seven that interpolates the constructed curves and thenormals.More recently, the construction of piecewise smooth algebraic interpolants to scattered data18



utilizes the following steps: (i) The triangulated set of scattered data points is surrounded by anetwork of tetrahedra, within which the algebraic interpolant is built. In order to make the inter-polant continuous across the tetrahedra, the tetrahedra is sometimes split into several tetrahedra;(ii) Within each tetrahedron, the interpolant is expressed in terms of Bernstein-B�ezier form, andthe degree of the interpolant is chosen su�ciently high to ensure the desired continuity across thetetrahedra. Continuity conditions impose certain restrictions on a subset of control points. Re-maining control points are chosen by user or by some default procedure in order to manipulate theshape of the interpolant.This approach was followed by Dahmen [Dah89] to construct C1 piecewise smooth quadricinterpolants using 6 patches per triangle. Dahmen [DTS93] and Guo [Guo91] constructed C1piecewise continuous cubic algebraic surfaces using 3 patches per triangle. However there arethree major di�culties in these solutions. First, it is a non-trivial task to construct a surroundingnetwork of tetrahedron within which the trivariate polynomial is built. In particular, this networkof tetrahedra can run into the problem of self-intersections. The second di�culty is that thesesolutions can have multiple sheets within the bounding tetrahedron. To determine which of thesesheets are extraneous and which sheet represents the solution is a non-trivial task. The thirddi�culty is that the solutions can be singular, for example, the solution may intersect itself withinthe bounding tetrahedron. In addition, the added challenge is to construct an interpolant with lowdegree and with as few patches as possible.To overcome these di�culties several heuristics were suggested in the solutions proposed byDahmen and Guo. More recently Bajaj and Xu [BCX94] have constructed algebraic surface patchesreferred to as A-patches that are guaranteed to be non-singular and single sheeted within eachtetrahedron [BCX95]. Moreover they enumerate the exceptional situations encountered in buildingthe network of tetrahedra surrounding the triangulation in R3 and provide strategies for rectifyingthem. Moreover, they use one cubic A-patch per face of the triangulation, except for two specialcases where 3 patches per triangle are used. Therefore the solution consists of much fewer numberof patches than in earlier approaches. This technique has also been extended to provide solutionsby C2 smooth mesh of A-patches of degree 5. Figure 5 shows the triangulated scattered data set.Figure 6 shows the interpolatory cubic A-patches to �t the scattered data. More recently, variousapproaches for constructing functions on surfaces described in Section 2.3 have been extended toconstruct algebraic surfaces [BX94]. These algebraic models use C2 quintic A-patches withoutsplits, and construct approximate solutions to the the problem of surfaces-on-surfaces.4 Radial Basis Function MethodsOne of the main advantages of radial basis function techniques is that unlike most other methodsthis approach does not require any information about the connectivity of the scattered data points.In addition, the radial interpolants are translation and rotation invariant. Moreover, some of theradial basis functions, in particular multiquadrics and thin plate splines have performed very wellin practical applications [Fra82a, Har90]. Radial basis function techniques have mostly been usedto solve the function reconstruction problem. Variations of these techniques have also been used tosolve the surface-on-surface problem.A function �(rk), where rk = p(x� xk)2 + (y � yk)2 is referred to as a radial function, becauseit depends only upon the Euclidean distance between the points (x; y) and (xk; yk). The points(xk; yk) are referred to as centers or knots. In particular, the function �(rk) is radially symmetricaround the center (xk; yk). The solution to the scattered data interpolation problem is obtainedby considering a linear combination of the translates of a suitably chosen radial basis function.19



Sometimes a polynomial term is added to the solution when �k is conditionally positive de�nite(de�ned later in this section), or in order to achieve polynomial precision. More formally, thesolution to the interpolation problem is sought in the following form:F (x; y) = NXk=1Ak�(rk) + MXl=1Blql(x; y); (1)where ql(x; y); l = 1; � � � ;M is any basis for the space Pm of bivariate polynomials of degree lessthan m, and therefore M = m(m+1)2 . Notice that m = 0; 1; 2 corresponds to the case when nopolynomial, constant function or a linear polynomial is added to the interpolant respectively. Inorder to satisfy the interpolation conditions, one poses the following system of N linear equationsin N unknowns Ak, k = 1; � � � ; N , when m = 0:NXk=1Ak�(rik) = fi; i = 1 � � � ; N; (2)where rik = p(xi � xk)2 + (yi � yk)2 is the Euclidean distance between the points (xi; yi) and(xk; yk). When m 6= 0, a slightly modi�ed system of N +M linear equations in N +M unknownsAk; k = 1; � � � ; N and Bl; l = 1; � � � ;M is formulated as follows:NXk=1Ak�(rik) + MXl=1Blql(xi; yi) = fi; i = 1; � � � ; N;NXk=1Akql(xk; yk) = 0; l = 1; � � � ;M: (3)In addition, throughout this section we shall assume the following mild geometric condition on thelocation of scattered data points:p(x; y) 2 Pm; p(xi; yi) = 0; i = 1; � � � ; N ) p � 0: (4)Notice that this geometric condition is vacuous for m = 0; 1. For m = 2, this condition states thatall the scattered data points do not lie on a straight line. Assuming that a solution to the systemof equations (2) or (3) exist, the radial basis interpolant is then given by Equation (1).One of the most popular radial basis functions was introduced by Hardy more than 25 yearsago [Har71]. These basis functions are referred to as Hardy's multiquadrics. Multiquadrics arede�ned as �(rk) = qr2k + h2, where h is a suitably chosen parameter. Observe that the multi-quadrics grow as the distance from the centers increase. This appears as a counter-intuitive choiceof radial basis functions to many, and therefore inverse multiquadrics was invented and was alsoapplied very successfully [Har90]. Inverse multiquadrics are de�ned as the inverse of multiquadrics,that is, �(rk) = 1pr2k+h2 . Inverse multiquadrics decay as the distance from the centers increase. Itis amazing that it was not until 1985 that it was established that the linear system of equations(2) and (3) is solvable for multiquadrics as well as inverse multiquadrics [Mic86]. This howeverdid not distract the early practitioners of this method and the evidence of the success of Hardy'smultiquadrics mounted over several years [Har90]. At the time when Hardy's multiquadrics andinverse multiquadrics were being applied very successfully to several applications without much the-oretical justi�cation, thin plate splines were introduced by Harder and Desmarais [HD72]. Duchon[Duc76] developed a complete theory of thin plate splines with theoretical justi�cation based on20



variational principles. Thin plate splines were further studied by Meinguet, Madych and Nelson[Mei79, MN88]. Thin plate spline basis functions are de�ned as: �(rk) = r2k log rk. Observe thatthe thin plate splines also grow as the distance from the centers increase. These basis functionswere also found to be successful by Franke [Fra82a]. For the thin plate splines, although the systemof equations (2) may become singular for certain locations of data points, the system of equations(3) is always solvable for m � 2. In other words, addition of at least a linear polynomial is requiredto guarantee the existence of solution in the case of thin plate splines.In addition to the three radial basis functions, multiquadrics, inverse multiquadrics and thinplate splines, there are a number of other radial basis functions that have been considered by variousresearchers including odd powers of distance function, that is, the linear distance function �(rk) =rk, and the cubic distance function �(rk) = r3k, the Gaussian radial basis function �(rk) = e�h2r2k ,and the shifted thin plate splines �(rk) = (r2k+h2) log(r2k+h2) 12 . There are several good surveys ontheoretical developments of radial basis functions [Dyn87, Dyn89] including recent in-depth surveysby Powell [Pow90], Light [Lig92], Buhmann [Buh93], and Schaback [Sch95a] that address these andother radial basis functions. These mathematical surveys describe the results in great generality.These surveys also contain an extensive bibliography on radial basis functions for the interestedreader. Also, a variety of radial basis functions based on trigonometric and exponential functionshave been extensively used in mining, geology and meteorology from a statistical point of view tostudy kriging [Cre91, FBG88, Fra86]. In particular, Franke [Fra86] lists 24 explicit formulas forthese radial basis functions and is an excellent starting point for those interested in this literature.Here we describe the conditions that guarantee the existence of radial basis interpolants. Then,in order to make this presentation more accessible to the practitioners of this �eld, we report onsome practical and useful properties of speci�c radial basis functions such as multiquadrics, inversemultiquadrics and thin plate splines.Existence: To describe the existence of radial basis interpolants, we begin with a few de�nitions.Given a radial function �(rk) and N scattered data points, consider the N �N square symmetricmatrix A = (aij), where aij = �(rij). The radial function �(rk) is said to be positive de�nite i�vtAv � 0 for all v 2 Rn. The radial function �(rk) is said to be strictly positive de�nite if inaddition, vtAv > 0 whenever v 6= 0. If a radial basis function is strictly positive de�nite, thenthe matrix A is invertible. This is exactly what is needed in order to solve the system of linearequations (2) and guarantee the existence of an interpolant.However, as mentioned before, for some radial basis functions such as thin plate splines, thematrix A is not always invertible and addition of at least a linear polynomial term to the interpolantis required. To describe these existence results in somewhat greater generality, the notion of condi-tionally positive de�niteness is introduced. Let Pm denote the space of polynomials of degree lessthan m. Consider the collection V of vectors v = (v1; � � � ; vN ) in RN that satisfy PNi=1 viq(xi) = 0for any q 2 Pm. The radial function �(r) is said to be conditionally positive de�nite (cpd) of orderm i� vtAv � 0 for all v 2 V . The radial function �(r) is said to be conditionally strictly positivede�nite (cspd) of order m if in addition, vtAv > 0 whenever v 6= 0. It can be proved with a littlee�ort that the the system of equations 3 is uniquely solvable if the radial basis function is con-ditionally strictly positive de�nite of order m and the scattered data points satisfy the geometriccondition (4).Micchelli provided the following characterization for conditionally positive de�nite functionsand derived the following important result:Theorem [Mic86]: A function f(t) is conditionally positive de�nite of order m in Rd for d � 1,if and only if (�1)j djdtj f(pt) � 0, t > 0, j � m. If in addition dmdtm f(pt) 6= constant, then f(t) is21



conditionally strictly positive de�nite of order m.It is now easy to verify that multiquadrics (m � 1), inverse multiquadrics (m � 0), thin platesplines (m � 2), linear distance function (m � 1), cubic power of the distance function (m � 2),shifted thin plate splines (m � 2), and Gaussians (m � 0) are cspd of order m up to a constantmultiple, that is, either these functions or their negatives are cspd of order m. Some of theseresults derived from the theorem above can be strengthened further. In particular, the scattereddata interpolation problem is solvable with m = 0 and f(t) cspd of order 1, whenever f(t) < 0for t > 0. This result guarantees the solvability of interpolation problem for multiquadrics withoutany addition of a constant or a polynomial term. Since so many choices of m are available, what isan appropriate m to choose while using these interpolants? We address this question later in thissection under the discussion on the reproduction of polynomials.Cardinal Interpolation: We �rst include a brief discussion on cardinal interpolation because itprovides some insights why radial basis functions that grow with distances may work well.A cardinal interpolant is obtained by considering the following scattered data interpolationproblem: choose exactly one of the data values to be 1 and all the rest of the data values tobe 0. Let us denote such an interpolant to be  i(x; y) where i denotes the location of the datapoint, where the data value is 1. The importance of the cardinal interpolation arises from thehope that the general solution to any scattered data interpolation problem can be obtained as alinear combination of cardinal interpolants, namely, PNi=1 fi i(x; y). This certainly would be true,if  i were �nite combinations of radial basis functions. In general, however,  i are obtained byin�nite combinations of radial basis functions as  i(x; y) =P�k�(rk). The construction of the �nalsolution in terms of linear combinations of cardinal interpolants then depends upon the convergenceof certain in�nite series.Unfortunately, cardinal interpolation by radial basis functions for scattered data locations is inits infancy [BDL95, DR95]. However cardinal interpolation by radial basis functions when the datais prescribed on an in�nite regular integer lattice is well understood. For this in�nite gridded datait can be proved that the the coe�cients �k decay so rapidly that the cardinal interpolant  i existsfor linear, cubic, thin plate splines, multiquadrics, inverse multiquadrics and Gaussian radial basisfunctions [Pow90]. Intuitively, appropriate cancellation takes place for fast growing radial basisfunctions at locations far away from the data center where it achieves the value 1.Choice of Parameters: Some of the radial basis functions such as multiquadrics, inverse mul-tiquadrics, Gaussians and shifted thin plate splines depend upon a parameter h. Currently thereis little theory to guide a user towards an appropriate choice of this parameter. Apart from a fewisolated theoretical results, most of the results are experimental. These results indicate that theperformance of the radial interpolants depends critically on the choice of this parameter [CF91]. Inthe initial experiments, this parameter was chosen as the average distance between data points andperformed quite well [Fra82a, Har90]. However this choice of the parameter did not perform verywell on track data. Track data is obtained when the data points are close together along a path ora track, but the distance between the tracks is one or more orders of magnitude higher. This typeof data arises in important practical applications, for example, oceanographic and meteorologicaldata collected on a ship. The accuracy of the multiquadric and inverse multiquadric interpolanton track data was improved by using di�erent choices of this parameter [CF91]. Subsequently theaccuracy of multiquadric and inverse multiquadric interpolants were further improved by choosinga parameter that minimized the di�erence between multiquadric and inverse multiquadric inter-polants [Fol94]. Di�erent parameter values at di�erent data points have also been used to improvethe accuracy of these interpolants [KC92]. However, note that it is easy to construct data sets for22



which the matrix for Equation 3 is singular when di�erent parameter values are used at di�erentpoints. Improvements of multiquadric interpolant by using a linear combination of basis functionscentered at the same point but with di�erent values of the parameter have also been achieved[BM92]. Floater and Iske have also also constructed interpolants for track data in several stepsusing compactly supported radial basis functions that we discuss later in this section [FI96a].Selection of Centers: So far we have considered only the case when the centers for radial basisinterpolant are located at the data points. However this need not be true. The question is whathappens if the centers are located elsewhere? There is a theoretical reason that the interpolation isoptimal if the centers are located at the data points [Sch95a]. Experiments with location of centershave mostly focused on approximating methods [MF92]. Although least squares approximation ismost popular, other objective functions have also been considered for minimization [Sal92, Gir92].The attraction is to achieve a good approximation with fewer centers. This can reduce the com-putation time in constructing and evaluating the interpolant or the approximant. Results indicatethat signi�cant savings can result at the cost of introducing very small errors [CN94]. However, thebehavior of the condition number and therefore the problems of the stability of the computation(depending on the spacing between the data points relative to the multiquadric parameter) forinterpolation by multiquadric functions carries over to least squares approximation. Sivakumarand Ward [SW93] have given upper bounds for the norms of the inverses of the normal equationsassociated with the least squares approximation problem.We now describe recent results on least squares approximation to scattered data using multi-quadric functions. Franke, Hagen, and Nielson [FHN94] described a greedy method for selection ofcenters (knots) for least squares approximation. Still better results were obtained by allowing boththe multiquadric parameter and the knot locations to be determined by a nonlinear least squaresprocess. A possible problem is the coalescence of knots, leading to poor conditioning of the leastsquares problem. In a subsequent paper [FHN95] the combined knots were replaced by a singlerepeated knot (the multiquadric basis function and its two partial derivatives as basis functions atthe knot). This generally has a favorable impact on the condition number of the problem. Re-cent work has used an idea suggested by Sampson and Guttorp [SG92] in the context of �ttingcovariance functions to empirical covariance data. The basic idea is to simultaneously determinea transformation of the domain region and the parameters of the �tting function which are calcu-lated in the transformed domain. The transformation used by Sampson and Guttorp included noguarantee of being one-to-one. However, if the transformation is one-to-one, then the importantproperty of positive de�niteness of covariance functions follows to the new domain. This idea hasbeen applied by Franke and Hagen [FH97] to construct a biquadratic transformation of the domainin terms of B�ezier control points that is one-to- one, and thus the property of conditional positivede�niteness of the multiquadrics is carried over to the new domain. We now briey explain howthis biquadratic transformation takes up degrees of freedom equivalent to 5 knots. A biquadratictransformation in two dimensions can be described by 9 control vertices and has 18 degrees offreedom in two dimensions to begin with. However, one control point is �xed at the origin, takingup two degrees of freedom. Another control point is constrained to lie on the (positive) x-axis,taking up another degree of freedom. Four control points are constrained to be on the straightline segments de�ned by the corners, taking up additional four degrees of freedom. The remainingeleven parameters determine the locations of the control points in such a way that the region isa convex quadrilateral in the upper half plane with the center control vertex inside the region.Because there is no constraint on the size of the transformed region, including the multiquadricparameter as a parameter would be redundant. Hence the value of the multiquadric parameter istaken to be one on the transformed domain, leaving ten additional parameters as compared to the23
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Figure 7: Original function
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Figure 8: Approximation [FHN94]
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\old" multiquadric approximation. Ten additional parameters is equivalent to �ve free knots intwo dimensions.The potential for improved �ts to scattered data with a few knots is shown by the followingsequence of �gures. The parent function from which the 200 data points were taken is shown inFigure 7. Figure 8 shows the approximation to the surface using the techniques of [FHN94] toobtain the knot locations and a nonlinear least squares method with 17 knots. Figure 9 shows theresults obtained by using the techniques of [FH97] combining the domain transformation with theapproximation being computed in the transformed domain, using 12 knots, since degrees of freedomequivalent to 5 knots are taken up by the biquadratic transformation as described in the previousparagraph. Figure 10 shows the transformed domain with the transformed equally spaced grid linesfrom the unit square, emphasizing the relatively benign behavior of the function near the x=0 edge(note that the grid lines are compressed there) compared to the x=1 edge. The root mean squareerror .0122 of Figure 9 compares favorably to the root mean square error .0210 of Figure 8.Reproduction of Polynomials: We now address the question of what is an appropriate m tochoose in Equation (3) while using a radial basis function. By adding a polynomial of degree m tothe interpolant, observe that if the values at the scattered data points are obtained by samplingany polynomial p(x; y) of degree m or less, then the system of equations (3) always has a solutionby choosing Ak � 0 so that the interpolant reduces to the polynomial p(x; y). This property of theinterpolant is referred to as the property of reproduction of polynomials or polynomial precision. Toreemphasize this point, consider addition of a constant or a linear polynomial to the multiquadricsor inverse multiquadrics. Such a modi�ed interpolant with the associated conditions (3) wouldreproduce the constant or the linear polynomial if the data values were constants or were obtainedby sampling a linear polynomial respectively. In practice, multiquadrics and inverse multiquadricsare implemented without any polynomial term at all or at most with addition of a constant [FHN94],while the thin plate splines require and are usually implemented with addition of a linear polynomialterm. More generally, the minimum value of m that guarantees the existence of the interpolantis often used. Experiments seem to indicate that addition of polynomial terms do not seem toimprove the accuracy of the interpolant for non-polynomial functions [CF91].There is another deeper reason for considering reproduction of polynomials. In numerical anal-ysis and approximation theory, the property of reproduction of polynomials is often crucial inestablishing good approximation properties of the interpolant. This belief originates in the workby Fix and Strang [FS69] and has been very inuential in constructing interpolants including con-struction of subdivision-based interpolants that we discuss later in Section 6. Fix and Strang linkedthe good convergence behavior of an interpolant (not necessarily a radial basis function) with itspolynomial reproduction properties by deriving certain necessary and su�cient conditions on theFourier transform of a �nite set of functions. Later Jia pointed out an error in the statement by Fixand Strang and provided a counterexample [Jia86]. However, de Boor and Jia were able to establishthis link again under slightly di�erent conditions for functions of compact support. This result wasslightly improved by Jackson [dBJ85]. A complete link between good convergence behavior andthe polynomial reproduction properties was however reestablished by Cheney and Light by againderiving necessary and su�cient conditions on the Fourier transform of a �nite set of functionswith rapid decay [CL94]. A most readable account of these results is available in [Lig92].One of the consequences of the Cheney-Light theory discussed in the previous paragraph is thatthe radial basis functions that have bounded integral (and therefore necessarily decay away fromthe centers) such as Gaussians or radial basis functions with compact support may not work well foran in�nite gridded data on an integer lattice when the parameter h or the support radius involvedin these radial basis functions scales inversely with the data density [Jac88, Pow90]. For example,25



Gaussians e�h2r3k do not make good interpolants on an in�nite integer grid when h is proportionalto the minimum distance between the data points. In such cases, Gaussians do not reproduce evenconstants or any polynomials in any dimension and are poor choice for interpolants. In contrast,for such gridded data, if the data values are sampled from a polynomial of degree m, and if cardinalinterpolation is used to construct an interpolant, then the radial interpolant actually reproduces thegiven polynomial in case of linear, cubic, thin plate splines, multiquadrics and inverse multiquadricswith m = d; d+ 2; d+ 1; d� 2 and d respectively where d is the dimension of the underlying spaceexcept for the case d = 1 for inverse multiquadrics [Pow90]. In particular, for bivariate polynomials,polynomials of degree up to 2, 4, 3, 0 and 2 are reproduced by linear, cubic, thin plate splines,multiquadrics and inverse multiquadrics. Another important observation is that this property ofreproduction of polynomials improves with increasing dimensions.Based on these observations on in�nite grids, Gaussians and other integrable radial basis func-tions were said to have \a severe disadvantage", because they are not exact on constant functions[Buh89]. The other choices, especially multiquadrics, were said to be \far superior". However, asstated above, this theory is applicable only to the setting where the parameter h scales inverselywith the data density. However, if the parameter h is �xed, it has been shown that Gaussianshave an even better convergence behavior than multiquadrics for scattered data [MN92]. In fact,in other circumstances as well, even when h is allowed to vary discreetly, so that Gaussians do notsatisfy the necessary and su�cient conditions linking good convergence behavior with polynomialreproduction property, Gaussians also have a good convergence behavior [BL92]. Therefore, themost recent research seems to break down the \classical wisdom" that the advantage of a particularradial basis function be tied to its polynomial reproduction properties. We shall comment aboutthis later again in this section when disussing radial basis functions with compact support.Computation and Evaluation of the Interpolant: Even though the theory guarantees theexistence of the radial basis interpolant, the work to compute and evaluate the interpolant stillremains. Direct or simple iterative methods for solving a system of N linear equations requiresO(N2) storage and O(N3) computations. This is very expensive for large data sets. To makematters worse, the entries in the matrix A grow away from the diagonal for radial basis functionsthat grow away from centers such as multiquadrics and thin plate splines. This leads to veryunstable computations while inverting the matrix A unless \preconditioning" is applied as describedin the next paragraph below. Narcowich and Ward have done extensive work on studying thestability of solving these equations [NW91, NW92]. Both lower and upper bounds on the norm ofthe inverse matrix are discussed in [Buh93].To overcome this di�culty, Dyn, Levin and Rippa proposed a scheme based on �nite di�erencesthat enhances the stability of the computation of radial basis interpolants based on thin platesplines and shifted thin plate splines for scattered data sets [DLR86]. This technique, referred to aspreconditioning, also enhances accuracy of multiquadric methods, but to a very limited extent. Theproposed technique works for all conditionally positive de�nite functions of positive order. More re-cently, another technique has been proposed for e�cient computation of multiquadric interpolants,although only for gridded data [Bax92].A direct technique for evaluating a radial basis interpolant at one point is O(N). Beatson,Newsam and Powell [BN92, Pow92a, Pow92b] have proposed techniques for fast evaluation of thinplate spline interpolants. The key idea is to lump many terms together for centers that are faraway from a center, and approximate the resulting partial sum by a single truncated Laurentexpansion. This technique has an initial set up cost of O(N logN) to identify a hierarchical set ofindices that de�ne the centers that are suitable for grouping. However, after this initial set up cost,this leads to an evaluation algorithm which is O(1) per evaluation. These techniques also enable26



the computation of the thin plate spline interpolants in O(N) storage and far fewer than O(N3)computations [BL97].4.1 Radial Basis Functions with Compact SupportInstability and computational cost associated with the computation of the radial interpolants thatgrow with distances away from the centers makes it unlikely that these radial basis functions canbe applied to large scattered data sets that consist of more than tens of thousands of points, thattypically arise in many scienti�c data sets. This limitation of growing radial basis functions hasprompted researchers to work with radial basis functions which decay with distances or even better,radial basis functions with compact support [Sch95a, GC98]. Observe that all the radial basisfunctions mentioned so far do not have compact support. The decaying radial basis functions, suchas Gaussians and inverse multiquadrics have often been employed in practice by truncating them.Another popular radial basis function with compact support is rotated cubic B-splines. HoweverWu has recently established that rotated B-splines of order 2m are not positive de�nite on anyRd for d > 1 [Wu94a]. Therefore, interpolants based on rotated B-splines could lead to a singularproblem. Schaback and Wendland [SW94] established that Euclidean hats and radialized tensor-product B-splines are positive de�nite radial basis functions with compact support and thereforeguarantees the solvability of the interpolation problem. Euclidean hats are polynomial functionsonly in odd dimensional spaces. Radialized tensor-product B-splines are not polynomials and aresomewhat di�cult to compute.Recently, Wu has constructed compactly supported positive de�nite radial basis functions thatare piecewise polynomials with breakpoints only at zero and at the boundary of the support[Wu94b]. The construction starts with functions fk(x) = (1 � x2)k+; x 2 R, l � 0. Univariateconvolutions of these functions are taken as follows: �k;0(x) = (fk � fk)(x). Univariate derivativesof these convolutions are formed as follows for 0 � k � l: �k;l = Dl�k;0, where D = � 1x ddx . Thesederivatives are positive de�nite of order 2l+1. Moreover, these functions are piecewise polynomialsof degree at most 4k � 2l + 1 with breakpoints only at zero and at the boundary. The order ofcontinuity is C2k�l at the boundary but C2k�2l at zero. Therefore, for l > 0, singularities at theboundary are less severe than the singularities at the zero. This property has a very positive e�ecton the visual appearance of the solutions. Explicit formulas for many of these radial basis functionsappear in [Wu94b], for example, up to constant multiples, �2;1 = (1 � r)4+(4 + 16r + 12r3 + 3r3)and �3;1 = (1� r)6+(6+36r+82r2+72r3+30r4+5r5). �3;1 is a C4 function at the zero, C5 at theboundary and is of degree 11. Initial results on using these radial basis functions for scattered datainterpolation seem to be promising [Sch95a]. Figure 11 shows the well-known Franke's analyticfunction with two hills, a valley and a saddle. Figure 12 shows the thin plate spline interpolantfor the Franke's function on a 5 � 5 grid. Figure 13 shows the function �2;1. Figure 14 showsWu's C0 interpolant to the Franke's function by using �1;1 with support radius of :499 on a 5� 5grid. This �gure highlights the pitfalls associated with interpolating by functions with compactsupport in general. Figure 15 shows Wu's C2 interpolant to the Franke's function by using �2;1with support radius of :499 on a 5� 5 grid. This means that there are only 9 interpolation pointsat most in each support, and even fewer points in supports near the boundary. This lack of pointsnear the boundary introduces wiggles near the boundary as shown in Figure 15. These wiggles areironed out by using a support radius of 1:5. Figure 16 shows the interpolant obtained by using�3;1 with support radius of 1:5 on a 5� 5 grid. The choice of the support radius is critical in theseapplications. Increasing the support radius improves the quality of the results at the cost of morecontributions in each support. 27
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Figure 11: Franke's function 0
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Figure 12: Thin plate spline interpolant

-1.5
-1

-0.5
0

0.5
1

1.5

-1.5
-1

-0.5
0

0.5
1

0

0.2

0.4

0.6

0.8

1

Figure 13: Wu's function �2;1 0
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Figure 14: Wu's C0 interpolant
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Figure 15: Wu's C2 interpolant 0
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Figure 16: Wu's C4 interpolant with support 1.5
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Wendland [Wen95] has constructed further instances of smooth compactly supported positivede�nite radial basis functions. Moreover, for a speci�c dimension d, these functions possess thelowest possible degree among all piecewise polynomial compactly supported radial functions, whichare positive de�nite on Rd and of a given degree of smoothness. These functions  k;l are of degreek+2l, and are positive de�nite of order d, where bd2c = k�l�1. These functions are C2l continuousat zero, and C l+k�1 continuous at the boundary. Examples include  3;1 = (1 � r)4+(4r + 1), 4;2 = (1�r)6+(35r2+18r+3), and  5;2 = (1�r)7+(16r2+7r+1).  3;1 is of degree 5 and is positivede�nite of order 3. Moreover, it is C2 continuous at the zero, and C3 continuous at the boundary.Similarly,  4;2 is of degree 8 and is positive de�nite of order 3. Moreover, it is C4 continuous atthe zero, and C5 continuous at the boundary.Floater and Iske [FI96b, FI96a] have used Wendland's radial basis functions with compactsupport described in the previous paragraph for modeling scattered data in two major steps {thinning algorithm [FI98] and hierarchical residual interpolation. The construction is of greatinterest and therefore, we describe it in somewhat greater detail. The �rst step, referred to as thethinning algorithm, creates a hierarchy from the given scattered data points by removing one pointat a time until there are only a small number K left. The points are removed in such a way thatthe points are distributed as evenly as possible. This step thus creates a hierarchyYK � YK+1 � � � � � YN�1 � YN = X;where N is the total number of given data points. The criteria for removal or thinning the dataset uses two metrics. The �rst metric is the separation distance of a set S de�ned as half of theminimum distance between any pair of distinct points belonging to the set, that is,q(S) = minxi;xj 2 Sxi 6= xj jjxi � xj jj2 :The second metric is the radius of the largest inner empty sphere, that isQ(S) = maxx 2 
 minxj 2 S jjx� xj jj;where 
 is the closed interior of some polygon surrounding the given scattered data set X. Unifor-mity of a set S is then de�ned as �(S) = q(S)Q(S) :Observe that 0 < �(S) � 1. An example of a data set with high uniformity is the set of nodes in atriangular grid made of equilateral triangles. In this case, � = p32 . During the thinning algorithm,the objective is to increase the uniformity of the reduced set at every successive removal of a point.Moreover, the boundary nodes are treated separately in order to prevent boundary erosion. Inpractice, the Delaunay triangulation is computed at each step, and q(S) and an approximation toQ(S) is computed. The computational complexity of this step of the algorithm in their currentimplementation is O(N2), and can be improved O(N logN) using known techniques [FI96a].The second step of the algorithm, to which I refer to as the hierarchical residual interpolation,chooses a suitable subsequence, say of lengthm, of the resulting hierarchy. For example, a geometricsequence Y31 � Y125 � Y500 � Y2000 of length 4 consisting of 31, 125, 500 and 2000 points are chosenin one example. The interpolation is achieved in m stages. At the �rst stage, all the points in Y3129



are interpolated using a radial basis function with compact support. Positive de�niteness of thisfunction guarantees a unique solution. In all the examples described in [FI96a, FI96b], Wendland's 3;1 function has been chosen. The support of this basis function is chosen based on a combinationof metrics q(Y31) and Q(Y31). At the second stage, the residual is interpolated at all the pointsin Y125 using a smaller support radius that is chosen based on a combination of metrics q(Y125)and Q(Y125). Support radii at each stage are chosen to obtain an appropriate trade-o� betweengood approximation behavior governed by Q(S) and the stability of computation governed byq(S). The interpolation of the successive residuals is obtained by using smaller and smaller radii ofthe compact radial basis functions. This hierarchical multi-stage interpolation technique has beenapplied to several data sets including track data, feature data, contour data and analytic data sets.The sparse linear system of equations needed to solve the interpolation problem is solved usingthe conjugate gradient method on sparse matrices. The computational complexity of this step isasymptotically only O(N), which is a signi�cant improvement over traditional radial basis functionswith growing support. The possibility that this technique can be applied to much larger data setsthan the traditional radial basis functions such as multiquadrics makes this technique extremelyattractive.Uncertainty Relationship: We now add certain remarks on the theoretical results on stabilityconcerning the use of radial basis functions. Numerical observations and theoretical results indicatethat there is an uncertainty relationship between the error and the stability of the computationwhile using radial basis functions with parameter h that is proportional to the minimum distancebetween data points [Sch95b]. Roughly speaking, in this situation, the product of the error and theinstability of the computation is always greater than some constant. Therefore, it is not possibleto achieve both small error and stability. This is one of the greatest disadvantages of radial basisapproach. However, again we emphasize that this situation is valid when the parameter h isproportional to the minimum distance between the data points.In order to understand how the uncertainty relationship can be used to improve both the errorand the stability while using radial basis functions of compact support, let us introduce somenotation. Given a Wendland's radial basis function  k;l that are +ve de�nite of order d, wherebd2c = k � l � 1, let � = d2 + l + 12 . Let, the bandwidths �1 and �2 be �1 = ( hQ)d and �2 = (hq )d.The results on error and stability can now be stated as follows: (i) the approximation error E isroughly equal to ���d1 ; (ii) the condition number S or the norm of the inverse matrix, that measuresthe stability of the computation, is roughly equal to � 2�d2 . Observe that the bandwidths are �xedwhen the parameter h varies in proportion to the minimum distance between data points. In sucha situation, since q and Q are roughly proportional, one can multiply the two results together toobtain the uncertainty relationship: E2S = constant:In cases where the bandwidths are �xed, the uncertainty relationship therefore implies that im-proving error necessarily degrades stability of computation and vice-versa. Even when h is �xedand data is dense so that the bandwidth B1 is large by including enough centers in and around thedomain, error may become smaller but at the cost of increasing unstable computation.One way to get around the uncertainty principal is to perhaps use the hierarchical approachas used by Floater and Iske described above [FI96a]. In this case, �rst, since the support radiiare growing smaller with increasing density, ther bandwidth B2 remains roughly �xed so that thestability of the computation remains about the same. In usual cases, since B1 remains the sameas well, the error does not improve. However, the error is perhaps made smaller by using residualsin each successive step. A theoretical justi�cation of this technique is still being investigated.30



Some promising theoretical results have been reported that indicate good convergence behaviorby using hierarchical residual interpolation technique, when the functions used in successive stepsare convolutions of functions used in the previous step [NSW97]. Therefore, good interpolation ispossible by using hat function, quadratic B-splines, quartic B-splines and so on in the successivesteps of a residual hierarchical interpolation scheme.4.2 Surfaces on SurfacesTrivariate Scattered Data: Radial basis function methods such as the multiquadric methodand thin plate splines are easily extendible to higher dimensions. Important results concerningthe theory of such methods was given by Micchelli [Mic86], and these results also have a bearingon whether the given method is proper, that is, whether the matrix of the system of equationsfor the coe�cients of the basis functions is (conditionally) positive de�nite and therefore, theexistence of a solution is guaranteed. In particular, the multiquadric method is a proper methodfor three dimensions. The analogue of thin plate splines in three dimensions is the basis function�(rk) = rk, although in various publications it has been assumed to be either �(rk) = r2k log rkor �(rk) = r3k. While these are both proper, neither minimizes the \thin volume functional",the integral of the sum of the squares of the second derivatives of the interpolating function.Interpolation functions in s-dimensions that minimize a functional that is the integral of sums ofsquares of mth order derivatives are detailed in Wahba and Wendelberger [WW80]. This referencediscusses a method including smoothing and the use of Generalized Cross Validation (GCV) tochoose the smoothing parameter. A related resource of importance for practical applications isRKPACK [Gu91]. RKPACK (for Reproducing Kernel Package) is a general purpose program forsolving interpolation and smoothing problems in s-dimensions using reproducing kernel methods(such as radial basis function methods) with a choice of GCV or Generalized Maximum Likelihood(GML) methods to choose the smoothing parameter. The principal problem with using radial basisfunction methods in higher dimensions is the large systems of equations that must be solved. Foreven moderate sized data sets consisting of more than 300 to 500 points, local methods such as theones discussed later in Section 5 are needed. For example, overlapping cubes with product Hermitecubic weight functions, as generalized from [Fra82b], could be used.Function-on-Surface Problem: We now briey describe how various approaches described inSection 2.3 have been extended to solve the problem of interpolating data on a surface usingradial basis functions. First using the trivariate approach as described above, one can simply usethe trivariate radial basis function methods. For example, one can use the trivariate multiquadricmethod by employing the basis functionsqr2k + h2, where rk is now the Euclidean distance betweenpoints in R3 instead of R2. This method has been used to solve the scattered data interpolationproblem on a sphere and a cylinder. Using the domain mapping approach described in Section 2.3,this method has also been extended to solve the scattered data interpolation problem on surfacesthat are topologically equivalent to spheres.The bivariate approach has also been applied to construct radial interpolants on surfaces. Thekey idea is to replace the Euclidean distance by geodesic distance on the surface. In general,however, it is not easy to compute the geodesic distance on an arbitrary surface. Fortunately,for a sphere, the geodesic distance sk(x) between points x and xk is given by cos�1(x � xk) andmeasures the great circle distance between the two points. However, this geodesic distance functionis singular both at xk and at the antipodal point xk. Therefore, the straightforward extension ofHardy's multiquadrics by choosing the functionsR(sk(x)) = (sk(x)2+h2) 12 runs into the undesirableproblem that R(sk(x)) has discontinuous derivatives. This di�culty can be overcome by considering31



spherical inverse multiquadrics by using the functionsRk(x) = (1+l2�2l cos(sk(x)))� 12 as suggestedin [HG75] or by considering spherical multiquadrics by using the functions Rk(x) = (1 + l2 �2l cos(sk(x))) 12 as suggested in [PE90].Interestingly, the trivariate multiquadric method turns out to be equivalent to the spherical mul-tiquadrics for spheres [PE96]. This fact has not appeared in the literature, and is not well-known.The proof is however straightforward and simple. First, observe that the trivariate multiquadricsqr2k + h2 can be rewritten for a sphere of radius 1 asq(x� xk)2 + h2 = q2 + h2 � 2x � xk:The spherical multiquadrics Rk(x) can be rewritten asRk(x) = plr1l + l � 2x � xk:Comparing the two equations above, one observes that the trivariate multiquadric and the sphericalmultiquadrics di�er only by a constant pl by choosing h = jl�1jpl . Since they di�er only by aconstant, they yield the same solution to the system of linear equations posed for the interpolationproblem.Analogous to the planar case, Foley also suggested the use of a C2 continuous modi�ed form ofthe multiquadrics [Fol90], where the basis functions are rounded o� in a small neighborhood of theantipodal point. All these radial basis function methods can however lead to a poorly conditionedsystem of equations for large data sets as in the planar case involving merely more than 200 points[PE90].For the case of sphere, pseudosplines proposed by Wahba [Wah81] seem very well behaved.We also refer the reader to a very nice survey on spherical splines that use zonal functions withsmall and scalable support [FSF97]. Zonal functions on spheres are of the type f(x � y) and arerotationally invariant.5 Shepard's Methods and VariantsA scattered data interpolant using Shepard's method or its variant can be purely radially symmetricor a purely polynomial or rational function or a mixture of both. This method of solving scattereddata interpolation problem depicts an approach rather then a prechosen form of the solution. Thisapproach has been used to solve both the function reconstruction problem and the surfaces-on-surfaces problem. The key idea is to de�ne the scattered data interpolant f(x; y) as a weightedmean of the values zi = fi by choosing some blending functions or weight functions. More precisely,f(x) = PNi=1wi(x; y)fi, where the weight functions wi(x; y) satisfy the following properties: (i)wi(xj ; yj) = �ij , and (ii) partition of unity property, that is PNi=1 wi(x; y) = 1. In addition, theweight functions wi(x; y) are at least C0 continuous and non-negative.Shepard suggested the weight functions wi(x; y) to be �i(x;y)PNi=1 �i(x;y) , where �i(x; y) = 1r�i . In otherwords, weight functions are obtained by normalizing inverse distance weight functions. These weightfunctions are radially symmetric, are positive and C0 continuous. In contrast to the radial basisfunction approach discussed in the previous section, observe that this approach does not requiresolving any system of equations.The original Shepard's method as outlined above exhibited several di�culties. First, the methodis global because the weight functions do not have compact support. The global nature of the32



Shepard's method can be made local by multiplying the �i(x; y) by positive damping functions�i(x; y) with �i(xi; yi) = 1, that vanish outside some suitable neighborhood of the point (xi; yi).One such damping function suggested by Franke-Little is for example �i(x; y) = (1� rihi )�+ [Bar77].The damping function therefore vanishes outside a disk of radius hi centered around the point xi.The interpolant can, however, be sensitive to the choice of the radius hi. One such choice for hi isD2qNwN , where D is the maximum distance between any two data points and Nw is an arbitrarilychosen constant [FN80].The other signi�cant problem with the original Shepard's method is that the the interpolat-ing function has cusps at the data points (xi; yi) for 0 < � < 1, corners at the data points for� = 1 and at spots at the data points for � > 1. To remove the discontinuities in the deriva-tives of the interpolant and the at spots, one can use other weight functions wi(x; y) built from�i(x; y) = e�hr2ir2i . This weight function is found to be extremely time consuming [Fra82a]. Analternative is to consider the interpolant f(x; y) = PNi=1wi(x; y)Li(x; y), where Li(x; y) is a localinterpolant or approximant to data values with the property Li(x; y) = fi. Observe that sincewi(xj ; yj) = �ij , the interpolant f(x; y) satis�es the interpolation property f(xj ; yj) = fj. A typicalLi(x; y) can be a linear function that interpolates the function values and its �rst partial deriva-tives that are given or estimated from the given data. Another choice for Li(x; y) is a quadraticpolynomial function that interpolates the given point and achieves good approximation propertiesin the neighborhood of the point. The modi�ed quadratic Shepard's method, introduced by Frankeand Nielson [FN80], is obtained by choosing (i) a quadratic Li(x; y), (ii) the inverse distance weightfunctions, as suggested originally by Shepard, along with (iii) the Franke-Little damping functionsdescribed in the previous paragraph. Although this version of Shepard's method performed betterthan other versions implemented and tested by Franke [Fra82a], it did not perform as well as thepurely radial basis function methods.In another generalization of Shepard's method, the weight functions wi(x; y) need not have theproperty wi(xj; yj) = �ij . The interpolant is still taken to be f(x; y) = PNi=1wi(x; y)Li(x; y). Inthis generalization, one can choose any local interpolant Li(x; y) and any local blending functionwi(xj ; yj) such that Li(x; y) interpolates all the points in the support of wi(x; y). Since the weightfunctions wi(x; y) still have the partition of unity property, the interpolation is achieved. Thesupport of the weight functions is usually selected in such a way that the number of data pointsin the support of each weight function is roughly equal. As an example, the weight functions arebuilt with �i(x; y) = 1� 3 r2ih2i +2 r3ih3i for ri � hi and 0 otherwise. The parameter hi, the radius of thedisk of support is chosen to be the distance between the point (xi; yi) and its �fth closest neighbor.To achieve interpolation, Li(x; y) is now chosen to be a quadratic polynomial that interpolates allthe six points in the support of wi(x; y). The reconstructed surface is a mixture of polynomialand radial functions (due to presence of r3i ). As another example, the weight functions wi(x; y)are formed from the tensor product polynomial Hermite functions and Li(x; y) is chosen to be apolynomial function that interpolates all the points in the support of wi(x; y). In this variation ofShepard's method, the overall interpolant is therefore piecewise polynomial. As a third example,one can choose local interpolants to be one of the radial basis functions such as thin plate splines,Hardy's multiquadrics or inverse multiquadrics and blend these local interpolants together usingradial blending functions such as the inverse distance weight functions (as suggested originally byShepard) modi�ed with Franke-little damping functions. Franke [Fra82b] implemented a methodthat blends local thin plate spline interpolants. The performance of this interpolant was poorerthan the interpolant using the modi�ed quadratic Shepard's method, but can be improved byusing local interpolants of larger support than suggested in that paper.. Foley [Fol87] used the33



exibility in constructing these interpolants to build a system for constructing several interpolantsfor noisy, rapidly varying or nonuniformly distributed data points using these and multistage ideasdescribed below. Extensive experimentation is required to control the enormous exibility in theseinterpolants to achieve the desired result.Multistage Methods: Global radial basis interpolants are extremely expensive to compute forvery large data sets. If interpolants are computed by truncating the global radial basis functions orby summing the contribution from a prechosen number of nearest points of interpolation, the inter-polant can be discontinuous. Although Franke and Salkauskas [FS95] have shown how to achievecontinuity by a convolution process for such methods, the proposed scheme is not computation-ally viable. Localized Shepard's interpolants or localized radial basis interpolants with appropriateblending functions can also be expensive due to the need for sorting the data points. Also, ren-dering a surface requires many evaluations and these evaluations are usually on rectangular grids.Multistage methods are invented to overcome these problems.The general idea of a multistage interpolant is to (i) use some local least square approximationor some local interpolant to estimate the values of the interpolant on a tensor product grid, (ii)use some interpolation scheme to generate a tensor product surface that interpolates the estimatedvalues at the grid points, and (iii) apply a correction based on Shepard-type method to obtain aglobal interpolant.Another type of multistage interpolant was proposed by Barnhill and Gregory [BG75]. Let Pand Q be two linear operators such that the composition PQ is de�ned. The Boolean sum P �Qis de�ned as P +Q�PQ. The Boolean sum interpolant has (at least) the interpolation propertiesof P and the precision properties of Q. A common application of this scheme has been to chooseP to be a Shepard-type interpolant and Q to be a polynomial (of chosen degree) least squareapproximation to the given data. Thus one can obtain an interpolation scheme with an arbitrarilyhigh degree of polynomial precision.Yet another type of multistage interpolant was proposed by Foley [Fol84] to overcome thedi�culty of the Boolean sum that it cannot be applied to tensor product based operators. Nielsonand Foley [NF80] proposed the delta sum of two operators, P�Q as P�QP , that is, QP+P�PQP .We refer the reader to [BS84, Fol87] for a discussion on these interpolants.Natural Neighbor Interpolants: Natural neighbor interpolants [Sib81] can also be viewed asa variant of Shepard's method. In this interpolant, the choice of the damping function �i(x; y)at a data point depends upon the neighboring geometry around that data point. A given set ofscattered data points (xi; yi) in the plane determines a collection of polygons known as Dirichlet,Voronoi or Thiessen tessellation [PS85]. This tessellation is dual to the Delaunay triangulation[PS85]. A Dirichlet tile �i for a point (xi; yi) is a region consisting of all those points which arecloser to (xi; yi) than any other given scattered data point. More precisely, �(xi; yi) = f(x; y) 2 R2 :ri � rj;8j = 1; 2; � � � ; Ng. Two existing points are called neighbors if their tiles share a commonedge. Now let (x; y) be an arbitrary point in the convex hull of the the given points. If this pointis inserted in the tessellation, it then acquires its own tile �(x; y), assembled from parts of tiles ofexisting points, called neighbors of (x; y). More precisely, �(x; y) = f(p; q) 2 R2 : jj(p; q)� (x; y)jj �jj(p; q) � (xj; yj)jj;8j = 1; 2; � � � ; Ng. This situation is illustrated in Figure 17. Assume that (x; y)has m neighbors (x1; y1); � � � ; (xm; ym). Now let u(x; y) be the area of the Dirichlet tile �(x; y).Moreover, let ui(x; y) be the area of that portion of the Dirichlet tile �(x; y) that intersects the tile�(xi; yi). The damping function �i(x; y) is then de�ned to be the ratio of these two areas, namelyui(x;y)u(x;y) for i = 1; � � � ;m.The simplest natural neighbor interpolant is then given by f(x; y) = Pmi=1 �i(x; y)fi. The34



Figure 17: Dirichlet tile of an inserted point is highlightednatural neighbor interpolant is local, has linear precision and is continuously di�erentiable. Theinterpolant is, in general, a piecewise rational quartic function [Far90]. As another example, �i(x; y)is chosen to be �i(x;y)ri(x;y) , and the weight functions are chosen to be �i(x;y)PNi=1 �i(x;y) . The natural neighborinterpolant is then given by f(x; y) =PNi=1wi(x; y)Li(x; y), where Li(x; y) are chosen to be linearpolynomials. Properties of natural neighbor interpolants and generalizations of Sibson's naturalneighbor interpolant are discussed in [Far90, Wat92, Wat94].5.1 Surfaces-on-SurfacesTrivariate Scattered Data:Shepard's Method: This method generalizes very readily to arbitrary dimensions, with the sameshortcomings it has in two dimensions. The same techniques to overcome some of them apply inhigher dimensions. In particular, modi�cation of the "inverse distance" function for �nite supportand local approximation by a polynomial greatly improves its behavior. A version of this methodis available as an ACM algorithm [Ren88].Multistage methods: Multistage methods, either with or without the third step to obtain in-terpolation, are readily applied in higher dimensions. Foley [Fol87] discusses the trivariate caseusing the multiquadric method and his program TRIHASH (trivariate Hermite interpolation andShepard). This is a very general program that uses a local interpolation or approximation method(multiquadric, or polynomials of various degrees) to estimate values for the function on a cubicalgrid. The derivative values may be estimated from this same function, or they may be estimatedfrom the cuberille data. The Hermite interpolant is then constructed for the gridded data, but thisin general does not interpolate the original data. It is then an option to add a (hopefully small)correction term based on a local Shepard's method to the tricubic Hermite function to achieveinterpolation.Function-on-Surface Problem: We now briey describe the extension of various approachesdescribed in Section 2.3 to Shepard-type techniques for solving the problem of scattered data35



interpolation on surfaces [BDL83, BPR87]. We present two di�erent solutions using the bivariateapproach described in Section 2.3.The �rst solution can be used to solve the problem on convex surfaces [BPR87]. The interpolantis de�ned as before by f(x) = PNi=1 wi(x)Li(x). The weight function wi(x) are de�ned in termsof �i(x) as before, where �i(x) = �i(x)gi(x)2 . The distance function gi(x) is now the geodesic distancebetween the points x and xi along the surface. If the surface is not given explicitly, gi(x) can befound approximately using the geodesics on the sphere that approximates the surface at the pointx. This means that one can only expect to get good results when the surface is convex. The �i(x)are damping functions that now take into account the geometry of the surface. The idea is tochoose �i(x) in a way that �i(xi) = 1, �i(xj) = 0 and that these functions gradually reduce to zeroin the neighborhood of xi. To determine the neighborhood of points on a surface, �rst a barrier iscreated that separates those points on the surface that are close together in R3 but far apart onthe surface. The barrier naturally depends on the shape of the surface. For example, in case of anaeroplane wing, a barrier could consist of a planar segment between the two sides of the wing. Oncethe barrier is created, scattered data points are projected (usually using some simple projectionsuch as a perpendicular projection) onto the barrier to create barrier points. The given data pointsalong with the barrier points are then tessellated using 3D Delaunay tetrahedralization. Given anydata point xi its neighbors can then be classi�ed into barrier points and non-barrier points. Bothbarrier and non-barrier points are used in constructing �i(x). More precisely, �i(x) = Qj lij(x),where j varies over all the neighbors of xi. lij(x) is a cubic Hermite function that takes the value1 at xi, 0 at xj and whose �rst derivative vanishes at both xi and xj . The local interpolants Li(x)are biquadratic functions that interpolate the �ve nearest non-barrier points in the neighborhoodof xi.The second solution uses localized versions of radial basis function methods and blends theseusing weight functions to build an interpolant on a sphere S [PE90]. The interpolant is de�nedas before by f(x) = PMi=1 wi(x)Li(x). Li(x) are now local interpolants de�ned on spherical capsKi = x 2 S : si(x) � �i with spherical midpoints at Mi and geodesic radii �i. Mi and �i can bechosen in a data dependent way so that the caps contain nearly the same (su�ciently large) numberof points. However, by default, one can choose a regular covering of the sphere by congruent caps sothatMi are vertices of a regular polyhedron, that is a tetrahedron (M=4), octahedron (M=6), cube(M=8), icosahedron (M=12) or dodecahedron (M=20) [PE90]. The radius �i has to be greater thanthe supremum of the radii of circumcircles of the triangles in the triangulation. The weight functionwi(x) are de�ned in terms of �i(x) as before, where �i(x) are now Franke-Little type weights. Moreprecisely, �i(x) = �1� si(x)�i ��+. The choices � = 2 and � = 3 usually lead to su�ciently smoothsurfaces.6 Subdivision MethodsSubdivision methods apply the process of cutting the corners of a polyhedron-like con�gurationor mesh of vertices, edges and faces. In addition to the scattered data points or vertices, theconnectivity relations between the vertices are assumed to be provided in terms of edges and faces.The faces need not be planar and the vertices do not have to lie on a topologically regular mesh.Therefore, subdivision techniques are generally well suited for solving the surface reconstructionproblem.Perhaps the best known subdivision technique was introduced by Chaikin in 1974 for curves[Cha74]. He generated a smooth curve from a polygon by successively re�ning the polygon by36



Figure 18: Chaikin's corner cutting algorithmcutting its corners. The smooth curve obtained by this scheme turns out to be a quadratic B-splinecurve obtained by treating the original vertices as control points. This idea was generalized tosurfaces by Catmull-Clark [CC78] and Doo and Sabin [DS78] in 1978. In these schemes, an initialcontrol mesh, that is, a polyhedron-like con�guration of vertices, edges and faces is given in 3D.Although faces of this con�guration need not be planar, popular special cases arise when each faceis a triangle or a rectangle. Corners of the polyhedron-like con�guration are \cut" or in otherwords, the polyhedron is re�ned or subdivided by adding new vertices, edges and faces by using adeterministic rule. In the limit as the number of subdivision steps goes to in�nity, the polyhedronconverges to a surface. With careful choice of the deterministic corner cutting rules, it is possibleto show that the limiting surface exists, is continuous and possesses a continuous tangent plane.Except for some special cases, the limiting surface does not have an explicit analytic expressionto represent the surface. If each face of the polyhedron is a rectangle, the Doo-Sabin subdivisionrules generate biquadratic tensor product B-splines [DS78] and the Catmull-Clark subdivision rulesgenerate bicubic tensor product B-splines [CC78]. Another subdivision technique by Loop generatestriangular box splines if each face of the polyhedron is a triangle [Loo87].All the subdivision techniques mentioned above are approximating schemes. There are two keyapproaches to constructing interpolating subdivision surfaces. One approach is to �rst computea new con�guration of vertices, edges and faces with the same topology such that the vertices ofthe new con�guration converge to the given vertices in the limit. The subdivision technique isthen applied to this new con�guration. This method was �rst suggested by Nasri [Nas87]. Thesecond approach is to modify the deterministic subdivision rules so that the limiting surface doesinterpolate the vertices. This method was �rst suggested by Dyn, Levin and Gregory as a 4-point [DLG87] scheme for curves and later extended to a buttery subdivision scheme for surfaces[DLG90]. An extension to a 6-point interpolatory scheme for curves is also presented in [Dyn92],which is also an excellent reference for an in-depth discussion of this approach.To appreciate interpolatory subdivision techniques, we �rst discuss the following approximat-ing schemes for constructing subdivision surfaces: (i) Chaikin's corner cutting algorithm for thequadratic B-spline curve, (ii) its generalization to the cubic B-spline curve, and (iii) the Catmull-Clark subdivision technique that generalizes the construction of tensor product bicubic B-splinesurfaces. We then present the interpolatory generalization of Catmull-Clark subdivision techniqueand the buttery subdivision scheme for surfaces.Chaikin's Algorithm:Suppose we are given vertices or control points ci, i = 0; � � � ; n, where ci 2 R3. Let us relabelthe given control points as c0i = ci. Chaikin's algorithm uses a binary subdivision process thatcomputes recursively from the given set of control points c0i , i = 0; � � � ; n new sets of control points37
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Figure 19: Catmull-Clark subdivision algorithmcki , i = 0; � � � ; 2kn� 2k+1 + 2 as follows: ck+1i as follows:ck+12i = 34cki + 14cki+1;ck+12i+1 = 14cki + 34cki+1:The control points at level k de�ne a new control polygon. This process is illustrated in Figure18. The initial control points are shown as black circles. The control points obtained after the �rstiteration are shown as cross-hatched circles. The control points obtained after two iterations ateshown as empty circles. The initial control polygon and the control polygon obtained after the �rstiteration are shown by straight lines. The control polygon obtained after the second subdivisionstep is obtained by joining all the empty circles. In the limit, this control polygon converges toa quadratic B-spline curve and is C1 continuous. Observe that at every step of this algorithm, acorner of the control polygon is chopped o�. Therefore this class of algorithms is referred to ascorner cutting algorithms. Moreover, at each step of the subdivision, the polygon is subdivided intoa new control polygon, which has roughly twice the number of original control points. Thereforethis class of algorithms is also referred to as subdivision algorithms.Cubic B-spline Subdivision Algorithm:Chaikin's subdivision algorithm for quadratic B-spline curves can be generalized to a subdivisionalgorithm for a B-spline curve of any degree n. The subdivision rules that generate cubic B-splinecurves are as follows: ck+12i = 12cki + 12cki+1;ck+12i+1 = 18cki + 34cki+1 + 18cki+2:In this case, the control polygon converges to a cubic B-spline curve and is C2 continuous.Catmull-Clark Subdivision Technique:Catmull and Clark generalized the subdivision scheme from curves to surfaces [CC78]. The schemestarts with an initial given mesh M0 and subdivides the mesh many times using the same set ofdeterministic rules at every step. Let M i be the mesh after i steps. To describe the subdivision38



Figure 20: Catmull-Clark subdivision surfacerules at the i + 1-th step, consider the neighborhood of a vertex ci surrounded by n edge pointsei1; � � � ; ein and n faces, as shown in Figure 19. Such a vertex is said to be of order n. At the nextsubdivision step,1. Create new face points f i+11 ; f i+12 ; � � � ; f i+1n at the centroid of each face of the mesh M i.2. Each new edge point ei+11 ; � � � ; ei+1n is computed by taking an average of surrounding points.Speci�cally, ei+1j = ci + eij + f i+1j�1 + f i+1j4 ;where subscripts are to be taken modulo n.3. A new vertex point ci+1 is computed as follows:ci+1 = n� 2n ci + 1n2 nXj=1 eij + 1n2 nXj=1 f i+1j :Notice that after �rst subdivision step, all faces are quadrilateral. For this scheme verticesof degree 4 are regular vertices. All other vertices, that is vertices of degree other than 4 are39



referred to as extraordinary points. It can be shown that except at extraordinary vertices, themesh converges to a tensor product bicubic B-spline surface and is therefore curvature continuouseverywhere except perhaps at the extraordinary points. Near an extraordinary point, the surfacedoes not possess a closed form parametrization. However the surface has a well-de�ned tangentplane at the limit point of an extraordinary point [BS88]. The upper left diagram of Figure 20shows the initial control mesh. The upper right diagram and the lower left diagrams of Figure 20show the mesh obtained after one and two iterations of the subdivision algorithm respectively. Thelower right diagram of Figure 20 shows the Catmull-Clark subdivision surface obtained in the limit.Interpolatory Catmull-Clark Subdivision Technique:Catmull-Clark subdivision technique presented above does not interpolate the given control points.To generate subdivision surfaces that interpolate the given vertices, one has to compute a newcon�guration of vertices, edges and faces with the same topology such that the vertices of the newcon�guration converge to the given vertices in the limit. Nasri [Nas87] suggested this approachby applying the Doo-Sabin scheme to a modi�ed set of control points with the same topology. Tocompute the new or modi�ed con�guration, a system of interpolation constraints that relate thenew set of vertices to the given set of vertices is developed. Halstead et al [HKD93] suggested aninterpolatory subdivision scheme by applying the Catmull-Clark subdivision scheme to a modi�edset of control points. They derived closed form expressions for the interpolation constraints eventhough the limiting surface may not have a closed form expression. This approach results in aglobal sparse system of linear equations. In general, the system may be singular. In such cases, onecan use a least square approximation to the solution. Alternatively, one can subdivide the originalcon�guration twice and then attempt to compute a modi�ed con�guration such that the vertices ofthe modi�ed con�guration converges to the given vertices in the limit. This approach guaranteesthe existence of an interpolating solution and introduces much more exibility in choosing theadditional points of the modi�ed con�guration, which can then be constrained by using someglobal variational principle to obtain even smoother surfaces [HKD93].We now discuss these interpolation conditions briey. For details the reader is referred to[HKD93]. Consider the column vector of vertices V in = (ci; ei1; � � � ; ein; f i1; � � � ; f in) in the neighbor-hood of the vertex ci. Let V i+1n be the corresponding column vector of vertices after the nextsubdivision step. Since the points in V i+1n are computed by the linear combination of the pointsin V in, the subdivision can be expressed as V i+1n = SnV in, where Sn is a square matrix of order(2n + 1) � (2n + 1). The properties of the limiting surface will be governed by the properties ofV i+1n as i approaches in�nity. Since V i+1n is the image of V 1n under Sin, the eigenstructure of Snplays a key role.Let �1 be the largest eigenvalue of Sn and let l1 be the corresponding left eigenvector. Itcan then be shown that a point c1 having a neighborhood V 1n converges to the point v1 wherev1 = l1V 1n . For Catmull-Clark surfaces it can be shown thatl1 = 1n(n+ 5)(n2; 4; � � � ; 4; 1; � � � ; 1);where 4 and 1 are repeated n times each. Therefore,v1 = n2c1 + 4Pnj=1 e1j +Pnj=1 f1jn(n+ 5) : (5)This equation can be used as an interpolation condition on the points of a new meshM1 by settingv1 to a point to be interpolated. This approach leads to a square linear system of equations of the40



Figure 21: Interpolatory Catmull-Clark subdivision surfaceform Ax = b, where x is the column vector of the unknown vertex coordinates of the modi�ed mesh,b is the corresponding column vector of vertex coordinates of the given mesh and the entries of thesquare matrix A is obtained from Equation 5 above. The upper left diagram of Figure 21 showsthe initial control mesh. The lower left diagram of Figure 21 shows the corresponding Catmull-Clark surface. This surface does not interpolate the original vertices. The upper middle diagramof Figure 21 shows the interpolating control mesh obtained by solving the system of equationsdiscussed above. The lower middle diagram of Figure 21 shows the corresponding Catmull-Clarksurface. This surface does interpolate the original vertices, but has some wiggles. The upper rightdiagram of Figure 21 shows the control mesh obtained by subdividing the original control meshtwice, and minimizing an objective function globally subject to the interpolation constraints. Thelower right diagram of Figure 21 shows the corresponding Catmull-Clark surface that interpolatesthe original vertices and is much smoother.Buttery Subdivision Technique:The second key technique for constructing subdivision interpolants is to modify the set of deter-ministic rules for subdivision. This approach was adopted by by Dyn, Levin and Gregory [DLG87]in extending the approximating subdivision techniques for curves to interpolatory subdivision tech-niques. In a four-point interpolatory scheme, given control points c0i 2 R3 , i = 0; � � � ; n, new set ofcontrol points cki , i = 0; � � � ; 2kn are computed as follows:ck+12i = cki ; 0 � i � 2k�1n;ck+12i+1 = (12 + w)(cki + cki+1)� w(cki�1 + cki+2); 0 � i � 2k�1n� 1:41
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Figure 22: Buttery interpolatory subdivision algorithmAt each stage all the old points are kept and new points are inserted in between. Therefore thisscheme is clearly interpolatory. It was established that for any jwj < 12 , the limiting curve iscontinuous. Moreover, for any 0 < w < (p5�1)8 , the limiting curve is C1 continuous. However, fora general set of control points, there is no w for which the limiting curve is C2 continuous.To obtain a C2 continuous curve, one can use a six-point interpolatory scheme, where the newcontrol points are de�ned as follows:ck+12i = cki ;�1 � i � 2kn+ 1;ck+12i+1 = ( 916 + 2�)(cki + cki+1)� ( 116 + 3�)(cki�1 + cki+2) + �(cki�2 + cki+3);�1 � i � 2kn:This scheme reduces to the four-point scheme with w = 116 for � = 0. The limiting curve producedby this scheme is however curvature continuous for 0 < � < 0:02.The 4-point interpolatory subdivision scheme for curves was generalized by Dyn, Levin andGregory to surfaces [DLG90]. This scheme however requires the initial control mesh to be a trian-gulation. The scheme subdivides the given triangulation into a re�ned triangulation by retainingthe old control points and introducing the new control points. The rules for inserting new controlpoints is an eight-point rule, as shown in Figure 22. The con�guration in Figure 22 justi�es theterminology \buttery" for this scheme. The new point qk+1 corresponding to the edge ck1ck2 isintroduced as follows:qk+1 = 12(ck1 + ck2) + 2w(ck3 + ck4)� w(ck5 + ck6 + ck7 + ck8):After inserting the new points, a re�ned triangulation is formed. The re�ned triangulation consistsof all the edges connecting each new point qk+1 with the old points ck1 and ck2 and the four newpoints corresponding to the edges (cki ; ckj ), i = 1; 2; j = 3; 4. Thus each old triangle is subdividedor re�ned into four triangles. Also observe that all the new vertices generated by this re�nementprocess have degree six, that is, there are exactly six edges meeting at the new vertices. For the42



purposes of this scheme, the vertices with degree six are regular vertices. If all vertices are regular,then this subdivision scheme generates a tangent continuous surface provided 0 < w < 116 . Evena stronger statement can be made. If the initial triangulation does not have any vertex of degreethree, then it can be proved that with 0 < w < w0, w0 > 116 , the limiting surface is C1.Remarks: One of the greatest challenges with the subdivision techniques is to establish the exactcriteria on the set of subdivision rules that yield nice properties for the limiting subdivision surface[Rei95, War95]. The proofs to establish that the limiting surface exists, and is continuous or tangentplane continuous are often very long, laborious and subtle. Systematic attempts have been madeby several researchers to both simplify and improve upon the existing results. It seems quite likelythat new set of rules can be designed that will guarantee higher order continuity for subdivisionsurfaces including curvature continuity. The other major disadvantage of the subdivision surfacesis the lack of a closed form expression for the �nal surface. This di�culty may also be overcomeby providing a large class of algorithms that support operations on subdivision surfaces.On the plus side, the concept of subdivision is fairly easy to understand and implement. Thelimiting subdivision surface is curvature continuous except at a �nite number of \extraordinarypoints" where the topology of the given control mesh deviates from the regular topology. Higherorder continuity is obtained with very few control points. Finally subdivision surfaces generalizetraditional B-splines and therefore are likely to be incorporated into the existing geometric modelingsystems with relative ease.7 Surface Visualization and InterrogationSo far we have focused mainly on the construction of scattered data interpolants without discussingthe quality of these interpolants. It is a non-trivial task to determine the quality of these inter-polants. We have discussed smoothness of these interpolants, that is, whether they are tangentcontinuous or curvature continuous. But what about other properties of these interpolants? Wenow discuss a few techniques for visualizing these interpolants and interrogating them.7.1 Surface VisualizationA common technique to understand the interpolants better is to render the surface and try toinspect the surface visually by rotating and zooming in and out of the surface. There are severalstandard techniques for rendering a surface [FvDFH90]. However rendering a surface-on-surface inorder to provide the viewer a convenient and unobstructed view of these surfaces is not an easytask. Therefore, we now discuss a few techniques for rendering surfaces-on-surfaces [FL91, FL90,FHN93, Nie93c], [PO94, PHD91, FLN90a, FLN+90b].Bivariate Function over Plane: This method can be used to visualize a function over a surfacewhen the surface can be parametrized by using some planar region as a domain. For example asphere can be parametrized using latitudes and longitudes on a rectangular domain [FLN90a]. Thefunction is then simply viewed over this rectangular domain. Clearly such a mapping is distortedbecause small regions near the poles are shown as large regions on the rectangular domain. Moreoverthe boundary curves on the left and right are equal and the boundary curves on the front and backdegenerate to one point each, namely the north and the south pole.Contour Plots: A contour plot for a function over a surface consists of contour lines on the surfacewhere the function assumes a given value. Since in most applications it is di�cult to determinethese curves exactly, the surface is typically subdivided into subdomains, the function is evaluatedat the corners of these subdomains and approximated inside the subdomains using some simple43



Figure 23: Hypersurface projection graphtechnique such as piecewise linear interpolation. Therefore it is important to subdivide the surfaceinto uniform regions. For example, a subdivision of the sphere using latitudes and longitudes ofequal di�erences yield a non-uniform partitioning of the sphere. A much better triangulation of thesphere consists of the decomposition of the sphere into a collection of spherical triangles [FLN90a].Using this triangulation, one can draw contour plots for a function de�ned on the sphere. There areseveral variations of this technique including color-blended contours that allow the user to observeboth the contour curves and the behavior of the function between the contour curves [FLN90a].Contour plots were also used extensively by Tvedt [Tve91] in his evaluation of trivariate schemesfor interpolation. His computer program (called Slice Viewer) gives the user a thumbnail display ofthe contours of 20 slices parallel to a chosen coordinate plane for each of the parent function, theinterpolation function, and the error. By clicking on one of the slices, the user can simultaneouslydisplay the three contours for that slice in much larger sizes. By cycling through the contours theuser can attempt to obtain some idea of the qualitative behavior of the functions. These techniquesalthough useful do not show the geometric shape or the smoothness of the functions.Transparent Surface Graphs: This method extends the idea of a surface graph over a plane.Given a point P on the surface let the value of the function on the surface be v. The value v is thenshown as a point which is at a distance v from the surface along the normal direction at the pointP . However there are several di�culties with this method. First, if the values are negative at somepoints and positive at others, the graph of surface-on-surface may intersect the domain surfacemaking the comprehension of the function very di�cult. To avoid this problem, the function canbe translated to be positive everywhere so that the minimum value is mapped onto zero, that is onthe domain surface itself. Second, such a graph of surface-over-surface will cover the domain surface44



itself. To overcome this di�culty, the graph of surface-on-surface is drawn as a transparent surfaceso that one can see the domain surface through this surface. Third, it is still di�cult to visualizethe correspondence between the points on the domain surface and the points on surface-on-surfacein three dimensions. This di�culty is overcome by connecting a suitably chosen subsample ofpoints on the domain surface and connecting them with the points on the surface-on-surface by linesegments. The upper left diagram of Figure 23 shows this technique where the data is sampled onan apple-core type domain. The surface-on-surface is shown as a transparent surface projected ina direction normal to the surface. However, this method may still be very di�cult to visualize onnon-convex domains due to occlusion and possibly self-intersections. An alternative is to plot thepoint not along the normal direction but along the radial direction from some suitably chosen point.The upper right diagram of Figure 23 shows this technique where the surface-on-surface is shownas a transparent surface projected in a radial direction. This may alleviate the problem on somenon-convex domains but not all. There are other variations of this approach including an approachthat combines the transparent surface with the color-blended contour approach [FLN90a, FL90].Hypersurface Projection Graph: The surface-on-surface consists of points (x; y; z; f(x; y; z)) in4D, where (x; y; z) are restricted to lie on some surface. To visualize this 4-dimensional graph, theidea is to use projections of this 4D graph in three dimensions. A simple approach is to use threeorthogonal projections, (x; y; f(x; y; z)), (x; f(x; y; z); z), and (f(x; y; z); y; z) to display the three3D surfaces in three windows simultaneously with the domain surface in the center. This techniqueis illustrated in Figure 23 [FHN93]. Several variants of this approach including parallel and centralprojections are discussed in [PHD91].7.2 Surface InterrogationAlthough surface visualization may succeed in detecting large unwanted undulations in the surfaceinterpolant, this approach may fail to detect many important characteristics of the interpolant orfail to distinguish between di�erent interpolants that may be di�erentiated using other techniquesfor interrogating them. A popular characteristic of the surface is its Gaussian curvature. Lounsberyet al [LMD92, MLL+92] assigned a color to every point on the surface according to the value ofthe Gaussian curvature at that point. This technique of pseudo-coloring can be used to color thesurface according to any characteristic of interest and helps to bring out the uneven distributionof the characteristic, particularly in the interpolants that are designed to �t smooth symmetricalshapes such as spheres or tori. There are numerous other characteristics of surfaces, such as normalsto the surface, principal or normal curvatures or mean curvature that can be examined to revealimportant information about the quality of these interpolants. We now discuss a few techniquesfor interrogating surfaces to determine the aesthetic quality, convexity, curvature and continuityproperties of the surfaces [HHS+92, HHS+93, HH92].Reection Line Method: A reection line is the projection on the surface of the reection ofa light line when viewed from some eye point. Reection lines are therefore dependent both uponthe viewing angle as well as the direction of the light line. In order to evaluate the surface oneuses a set of parallel light lines while maintaining the same view point. This procedure is thenrepeated from a di�erent viewing angle. Computation of reection lines require solving a systemof non-linear equations by numerical means. The existence and unambiguity of solutions has to beensured by an appropriate choice of the eye position [Kla80].This method determines unwanted dents by emphasizing irregularities in the reection linepattern of parallel straight lines. This method simulates the light cage used in automobile industryand is considered an e�ective tool to evaluate the aesthetic quality of a surface.45



Isophotes: Given a light source, isophotes are lines of equal intensity on the surface. Since intensityat any point is determined by the angle between the light source and the normal to the surface,isophotes are de�ned by < ~N(u; v); ~L >= constant, where ~N(u; v) is the normal vector to theparametrized surface and ~L is the direction of the light source. This equation is solved numericallyto compute the isophotes. Observe that the silhouettes are special isophotes (constant = 0) withrespect to the light source. If the surface is Gk continuous, the isophotes are Gk�1 continuous.Therefore, isophotes can be used to test geometric continuity between surface patches. However,this technique depends upon appropriate choice of lighting direction as well. Pottmann [Pot88]describes a generalized isophote method for automatic testing of continuity across the boundariesof a patchwork of surfaces.Orthotomics and Polarity Methods: Given a surface X(u; v) and a point P , which is neitheron the surface nor on any of the tangent planes of the surface, a k�orthotomic of the surface is anew surface obtained by reecting P across tangent planes of X and multiplying the lengths of thereection by a factor of k. More formally, the k� orthotomic of a surface X(u; v) with respect toa point P is Yk(u; v) = P + k < X(u; v) � P;N(u; v) > N(u; v):The k�orthotomic surface has a singularity at a point i� the Gaussian curvature of the surface atthe corresponding point vanishes or changes its sign at that point [Hos85]. Therefore orthotomicshelp in visualizing the convexity of surfaces.In polarity method with respect to a unit sphere the surface is mapped onto a new polaritysurface. The polarity surface is de�ned as the envelope of the planes obtained by mapping the pointsx(u0; v0), y(u0; v0), z(u0; v0) of the surface onto the planes de�ned by the equations x(u0; v0)x +y(u0; v0)y + z(u0; v0)z + 1 = 0. The equation of the polarity surface can be written down as:P (u; v) = ~N(u; v):det( ~N;Xu;Xv)det(X;Xu;Xv) :If the Gaussian curvature of the surface vanishes or changes its sign at a point, the polarity surfacehas a singularity at the corresponding point [Hos84]. Therefore polarity methods also help invisualizing the convexity of surfaces.Focal Surfaces: A focal surface is de�ned asFi(u; v) = X(u; v) + ��1i (u; v)N(u; v);where �i is one of the two principal curvatures. The two points F1(u; v) and F2(u; v) are calledthe focal points and de�ne the centers of curvature of two principal directions. A generalized focalsurface is de�ned as G(u; v) = X(u; v) + af(�1; �2)N(u; v);where the scalar function f now depends upon the principal curvatures. By choosing the functionf appropriately, it is possible to interrogate the surface e�ectively for curvature behavior anddiscontinuities. For example, by choosing f = �1�2 or f = �21 + �22, one can test for points ofvanishing curvature or for at points [HH92]. Thus focal surfaces can be used to detect regions ofunwanted curvature situations.7.3 A�ne InvarianceIn many applications in computer aided geometric design and scienti�c visualization, it is desirablethat the scattered data interpolant satis�es some invariance property such as translation invariance.46



A compelling example occurs in scienti�c disciplines, where the interpolant ought not to dependupon the unit of measurements for the data. In other words, the interpolant should not dependupon whether the data was measured in terms of inches and seconds or in terms of feet and minutes.Yet many interpolants fall short of desirable invariance properties [Nie87a, Nie93b, NF89].A scattered data interpolant S is said to be invariant with respect to a transformation T ofthe input data X if S � T (x) = T � S(x). A method S is said to be translation (respectivelyrotation, a�ne) invariant if the interpolant S satis�es the above property for any translation T(respectively rotation, a�ne transformation). Nielson and Foley [NF89] further distinguish betweenscale-invariant methods when the interpolant is invariant with respect to any scale transformationT and the scalar-invariant methods when the interpolant is invariant with respect to those scaletransformations, where the scaling is identical along all coordinate axes. This de�nition clearlyimplies that any scale-invariant interpolant is also scalar-invariant. However, the converse is notnecessarily true. In fact, this distinction is important because as we will soon see, many methodsare scalar-invariant but not scale-invariant.Most radial basis functions, that do not have free parameters, such as the thin plate splinesr2 log r, are translation, rotation and scalar invariant, but not scale-invariant. This is also true ofthe original Shepard method, that is purely based on the inverse distance weight function 1r� . In-terpolants based on other radial basis functions, that have free parameters h, such as multiquadricsqr2k + h2, are translation and rotation invariant but not scale-invariant. Scalar invariance propertyof these interpolants is slightly subtle. Given a �xed parameter, these interpolants are not scalarinvariant. However, if the parameter depends upon the distance between data points in such a wayso that it scales accordingly, then these interpolants are scale-invariant. An example of this occurs,when the parameter h is chosen as a constant times D, the maximum distance between any twodata points { a popular choice as described in Section 5.Nielson and Foley [Nie87a, Nie93b, NF89] have described a method for modifying many scattereddata methods in order to make them a�ne invariant by replacing Euclidean metric by an a�nelyinvariant metric. The metric is a weighted norm which e�ectively removes the cross covariancesfrom the data, resulting in equidistant curves in the metric. Polynomial and rational interpolantsbased on triangulations can also be made a�nely invariant by using an a�ne invariant triangulationif the interpolant itself is in an a�ne invariant form such as the Bernstein-B�ezier form. An a�neinvariant Delaunay triangulation can also be found by using an a�ne invariant metric.7.4 Visual InterrogationIn view of a large variety of characteristics that can be used to interrogate a surface interpolant,it seems worthwhile to create a exible system for visually comparing and contrasting the qualityof the interpolants. The quality of interpolants can mean any combination of di�erent charac-teristics that the user may consider important. An initial step was taken in this direction byby Tvedt [Tve91] who used contour plots in his evaluation of trivariate schemes for interpolation[NT94a, NT94b]. More recently, several new techniques for visual comparison of surface and volu-metric interpolants have been presented [LSPW96, LJZU97]. The viewer can control an interactivequery-driven toolbox to create a wide variety of graphics that allow probing of geometric informationin useful and convenient ways. These techniques combine the strengths of traditional techniquessuch as pseudo-coloring, di�erencing, overlay and transparency with new glyph-based probing tech-niques. We describe some of these techniques briey. In pseudo-coloring, the di�erence betweentwo interpolants is mapped to some color ramp. In di�erencing, pointwise di�erence between thetwo interpolants is computed and the di�erence surface thus obtained is rendered. In overlay the47



Figure 24: Comparison of geometric features of two interpolantstwo interpolants are shown superimposed over each other. In transparency, the di�erence betweenthe two interpolants is mapped to the transparency, thereby making the surface transparent inthe regions where the di�erences between the two interpolants are high. In glyphs, di�erences be-tween di�erent geometrical characteristics of the two interpolants are mapped to some propertiesof certain geometrical objects such as ellipsoids, triangular strips or cross-hairs. In probes, certainsubregions of the interpolants are selected where these characteristics or the di�erences betweenthese characteristics are viewed. Figure 24 shows an example of a glyph-based technique wheresome geometric features of the multiquadric and thin plate spline interpolants are compared onFranke's data set that is shown in Figure 11. The normals of two interpolants are joined witha triangular strip in Figure 24. These triangular strips thus indicate the deviation between thenormals of the two interpolants. The di�erences between the mean and Gaussian curvatures of thetwo interpolants are mapped to the widths of the cross-hairs and also shown in Figure 24.8 ConclusionsIn spite of a large number of techniques available for scattered data interpolation, there is a greatneed for developing new techniques for scattered data interpolation and gaining better understand-ing of existing techniques. This situation arises because there are serious gaps or shortcomings inmany existing techniques.Tensor product interpolants such as NURBS are examples of very successful techniques ongridded data, but they do not work on scattered data. Radial basis function methods such asHardy's multiquadrics, inverse multiquadrics and thin plate spline interpolants are very successfulin a large variety of applications, but cannot e�ectively handle typically data sets consisting ofmore than 300 data points. The generalized version of Shepard's method for constructing globalinterpolants by blending local interpolants using locally-supported weight functions can create alarge collection of solutions. However these solutions depend crucially on a number of parameterssuch as the support of weight functions, the choice of the weight functions and the choice of48



the local interpolant. Moreover the results indicate that these methods vary from being verypoor to good, although even the best methods in this category cannot produce results as goodas the global radial basis function methods. Interpolants for surface reconstruction problem alsosuggest that even the best local interpolant does not produce as e�ective shapes as the globaltechniques. The dependence of the triangulation-based methods such as �nite element solutionsor multivariate splines or minimum-norm network methods on the underlying grid is not wellunderstood. Subdivision techniques, particularly those using global variational principles, seem toproduce satisfactory results, but do not have any closed form analytic expressions.The scattered data interpolation and approximation of functions of three or more independentvariables is in its infancy. There is much that remains untested even for the two popular variationsof the surfaces-on-surfaces problems { trivariate (or volumetric) scattered data problem and thefunction-on-surface problem. For example, although the study conducted by Nielson and Tvedt[Tve91, NT94a, Nie93d] compares nine trivariate schemes (Shepard's method, modi�ed quadraticShepard method, volume splines, multiquadric method without linear precision, multiquadric withlinear precision, local volume splines, piecewise linear on tetrahedra, and a C1 method on tetrahe-dra) to 54 sets of data (6 con�gurations of points and 9 functions sampled at those points), thisexperimentation is con�ned to mostly analytic functions on very small data sets (less than thousandpoints). The surface-on-surface problem in its full generality has hardly been investigated.Finally, not enough research has gone into e�ective comparison of di�erent properties of in-terpolants. The criteria for judging the quality of an interpolant are not uniform. In computeraided geometric design applications, geometric properties of interpolants can perhaps be used asguidelines for comparing interpolants. Also in these applications, analytic test data are relativelyeasy to generate. In contrast, there are no clear criteria for evaluating the quality of an interpolantin scienti�c visualization applications. Depending upon the application, past experiences or judge-ments of experts are invariably used in evaluating the results. It is not clear whether these criteriacan be translated into objective measures. Often times, however, additional information about datapoints, such as the underlying topology of data points, data distribution, gradient information atthe data points, accuracy of the data can guide towards an appropriate choice of the interpolationor approximation method to be used.In conclusion, the research seems to suggest that global techniques (such as using variationalprinciples or solving a large system of equations), which are more expensive, often produce betterresults than local techniques. Second, there is a serious gap between theoretical and practical resultsfor several categories of interpolants. In spite of active research and recent advances on radial basisinterpolants and subdivision interpolants, they are not well understood. On the other hand, inspite of active experimentation of Shepard-type interpolants, theoretical properties and parametersthat can guarantee good solutions is not well understood either. There seems to be little doubt,however, that there is no one best method and that the appropriate choice of an interpolationmethod very much depends upon the practical problem at hand.Acknowledgments: The �rst author would like to thank Indranil Chakraborty for encouraginghim to write this survey. We are grateful to Janice Tarrant for implementing the simulated annealingprogram and helping us to create Figure 1; to Herbert Edelsbrunner for providing the bust data andthe alpha-shape generation program, that helped us to create Figure 2; to Bob Sheehan for creatingFigure 2; to J�org Peters for providing Figure 4; to Chandrajit Bajaj for providing Figures 5 and 6;to Robert Schaback for providing Figures 11, 12, 13, 14, 15 and 16; to Tony DeRose for providingFigures 20 and 21; to Greg Nielson for providing Figure 23; and to Clarke Steinback for helpingus to convert images between di�erent formats. We are also thankful to Indranil Chakraborty,Chandrajit Bajaj, Carl de Boor, Tony DeRose, Herbert Edelsbrunner, Hans Hagen, Will Light,49
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