
Unloading Java Classes ThatContain Static FieldsC. E. McDowellE. A. Baldwin97-18August 25, 1997Baskin Center forComputer Engineering & Information SciencesUniversity of California, Santa CruzSanta Cruz, CA 95064 USAabstractIn Java the de�nition of a \program" is a bit fuzzy. A Java applet is essentially aJava application (i.e. program) that can be executed by a Java enabled Web browser(i.e. an OS). An applet running inside of a browser was intended to be analogousto a conventional application running under on OS, hence the netcentric \browser isyour OS" model. However, as currently implemented this analogy breaks down withregard to the system resources allocated for classes and in particular for static �eldsin classes (i.e. class variables) when the class was loaded as part of an applet.Without class unloading, a long running Java application such as a browser is likean OS that does not release memory resources allocated for application code spacewhen the application terminates. With class unloading, as currently implemented, thesemantics of static �elds in classes are broken. In this paper we detail the problem andprovide a solution. The solution combines restricting when classes can be unloaded,with a greater use of non-default class loaders.Keywords: Java, class unloading, garbage collection



1. Introduction 11 IntroductionTwo of the features of the Java programming language that have contributed to itspopularity are garbage collection of heap allocated data and dynamic linking and loadingof class libraries. A major target application for Java is in Web browsers with the networkplus Java and its APIs replacing the conventional operating system.In conventional operating systems today, there is generally a very clear distinction be-tween the long lived program or programs that are the OS, and an application that isexecuted by the OS. Some resources, such as �les, may have persistence across applicationexecutions but any main memory resources can be recovered when the application \exits."In Java the de�nition of a \program" is a bit fuzzy. A Java applet is essentially a Javaapplication (i.e. program) that can be executed by a Java enabled Web browser (i.e. anOS). An applet running inside of a browser was intended to be analogous to a conventionalapplication running under on OS, hence the netcentric \browser is your OS" model. How-ever, as currently implemented this analogy breaks down with regard to the system resourcesallocated for classes and in particular for static �elds in classes (i.e. class variables) whenthe class was loaded as part of an applet.The Java Language Speci�cation (JLS)[GJS96] allows for the unloading of classes. With-out class unloading, a Java Virtual Machine (JVM) is like an OS that never releases thememory allocated for the code space of an application, even after the application has com-pleted. In particular the JLS states that \This can be used, for example, to unload a groupof related types... Such a group might consist of all the classes implementing a single ap-plet." Class unloading is important for any long running Java program that continuouslyloads classes that are used for some time and then no longer used. This is exactly the typeof behavior that occurs with applets. Applets are Java classes that are intended to be loadedinto the Java Virtual Machine of a WWW browser when the browser encounters the appro-priate html tag. One of the features of Java that makes it attractive for many applicationsis the security model that makes this dynamic loading and execution of untrusted programfragments possible. In the \network is the computer" model where a browser or similarJava program is your operating system interface, it is essential that classes be unloadedperiodically. Otherwise the computer's memory will become cluttered with classes that areno longer being used. This is marginally tolerable in a system with virtual memory or onein which the JVM is frequently restarted. For long running or embedded systems withoutvirtual memory class unloading is necessary if there are any dynamically loaded classes.An undesirable (or at least potentially unexpected) result of class unloading as imple-mented in JDK1.1.2, the free Java system from JavaSoft, is that a static �eld in a classcan get reinitialized. This is in direct conict with section 8.3.1.1 of the Java LanguageSpeci�cation which states that for static �elds \there exists exactly one incarnation of the�eld, no matter how many instances (possibly zero) of the class may eventually be created."Unfortunately this is not simply an error in the JDK1.1.2 implementation of the JVM, infact JavaSoft may not even consider it a bug. It is certainly an ambiguity in the JLS and itraises the question of how you can provide class unloading in such a way as to preserve theexpected behavior for static �elds in classes.



2 2. When does the problem arise?2 When does the problem arise?There are two general ways a class can get loaded. The most common way is for theclass name, call it ClassB, to actually appear in some other class, call it ClassA. The classwon't actually get loaded until the program performs some action that requires ClassB tobe loaded1, e.g. creates an instance or references a static member or �eld of ClassB. Theother way for a class to be loaded is some form of loading where the class name only appearsas a String such as with the method forname in class java.lang.Class (see JLS section20.3.8[GJS96]), or the use of method loadClass from a custom class loader extending classClassLoader.According to the JLS section 12.8, the only restrictions on class unloading are:1. \A class may not be unloaded while any instance of it is still reachable."2. \A class or interface may not be unloaded while the Class object that represents it isstill reachable."There appears to be some ambiguity as to when a Class object is reachable. One way fora Class object to be reachable is if there is a normal Java reference to the Class object(e.g. a variable of type Class that references the class in question). But a class may alsobe considered reachable when there are no explicit Class type variables referencing theClass object. In our implementation of class unloading which we added to JDK1.0.1[Bal97,Mon97], ClassB is directly reachable from ClassA if the source for ClassA contains a referenceto ClassB as a class. This is not a variable of type Class but the actual use of the classname, for example in a declaration. Speci�cally we look for an occurrence of ClassB as aclass value in the constant pool for ClassA. The constant pool is the part of the class �leformat that stores references to other classes. For unresolved classes the constant pool willcontain a string that is the actual class name associated with a tag indicating this is a classname. For resolved classes the constant pool will contain a direct reference to the Classobject.If a class was loaded using the forname method from class Class or loadClass fromClassLoader, then in JDK1.1.2 the Class object is no longer reachable when all referencesto the object returned by the call to forname have been removed. In contrast, if the classwas loaded by explicit reference to the class name as a type, then the class will continue tobe reachable as long as the class containing the explicit reference is reachable. The classwill be reachable even when all instances of the class have been made unreachable and nouser visible variables of type Class reference the class. This is actually consistent withour own implementation of class unloading. We consider a class to be reachable (i.e. notunloadable) if there are instances of the class or if there are reachable classes that containresolved or unresolved references to the class. Including unresolved references as reachableclasses is di�erent from the behavior we observed in JDK1.1.2. Unfortunately, even usingour de�nition or reachable, it is possible to have a class become unreachable, and thenlater become reachable again. The class that becomes unreachable and then later reachabledoes not need to have been loaded using forname, although it would appear that the class1The actual loading of ClassA could happen anytime but if there is a problem with the loading of ClassAthen that error cannot be reported until the action in ClassB occurs that would require ClassA.



3. An example 3must have been loaded indirectly as the result of a call to forname (see the example in thefollowing section). A solution we will describe below is to add an additional requirementfor class unloading - do not unload a class if the class loader that loaded the class is stillreachable and the class contains static �elds. An unfortunate result of this restriction is thatno classes loaded by the default class loader will ever be unloaded.The Java language semantics require that errors related to class loading not be reporteduntil some program activity that required the class to be loaded occurs (JLS 12.2.1). Thismeans it is not possible to analyze a complete program at load time to determine whichclasses might appear to be unloadable but then get reloaded later on.3 An exampleIn JDK1.1.2, class unloading is done at the same time as garbage collection, although thismay not be the best policy [Bal97]. The following example demonstrates how both a classthat is loaded by a call to forname (ClassOne in the example) and a class that is loaded byan explicit use of the class as a type (ClassTwo in the example) are unloaded. In additionthere is an explicit use of ClassOne as a type in main yet the class still gets unloaded byJDK1.1.2. ClassOne would not be unloaded using our de�nition of reachable because theconstant pool for the class Example contains a reference to ClassOne.A strict interpretation of the JLS concerning static �elds would prevent any unloading ofa class with static variables if the class was loaded by the default class loader. We believe thatthe loader that loaded a class must also be unreachable before a class can be unloaded. Thefollowing code example demonstrates that Sun does not make a strict interpretation of thisin JDK1.1.2. In this example, the creation of the object �rst assigned to class_one_object(actually an instance of ClassOne) also creates an instance of ClassTwo which contains astatic �eld. Once the references to the ClassOne object and the Class object are set tonull, a call to the garbage collector results in both ClassOne and ClassTwo being unloaded.This can be seen because when the �nal assignment to class_one_object occurs, creatinga new instance of ClassOne and a new instance of ClassTwo, the program will print out thevalue of counter in ClassTwo as 1 indicating it was reinitialized to 0, clearly contradictingthe language speci�cation with regard to static �elds. We believe the program should notunload ClassTwo in this example. If the class is not unloaded then the program will printout 1 and then 2, which it does if the call to the garbage collector, and hence class unloading,is removed. Another disturbing aspect of this program is that it is clearly non-deterministicwith respect to when garbage collection occurs.One might be tempted to simply dismiss this as a bug in JDK1.1.2, which it may well be,however, this example clearly illustrates a problem with class unloading. What is the rightthing to do? Can you ever unload a class with a static �eld? If not, this might very well stopthe unloading of most classes that we would like to unload. The class unloading we addedto JDK1.0.1 in our experimental system exhibits similar problems, although it would notunload any classes in this example. In our system, if the last line in the example is replacedwith a call to Class.forName and the instance is created with a call to newInstance as wasdone earlier in the example, then both ClassOne and ClassTwo would be unloaded. Thischange removes the reference to ClassOne from the constant pool of the class Example.



4 3. An exampleIn the remainder of this paper we will explore some possible solutions that may bepreferable to disallowing unloading of a class with static �elds.



3. An example 5class Example{ public static void main(String[] args)throws java.io.IOException, ClassNotFoundException,IllegalAccessException, InstantiationException{ int count = 0;SomeInterface class_one_object;/* load the class ClassOne and instantiate an instance of it *//* ClassOne uses ClassTwo which will thus get loaded also */Class theClass = Class.forName("ClassOne");class_one_object = (SomeInterface)theClass.newInstance();/* remove all references to the class and the instance */class_one_object = null;theClass = null;System.gc(); /* force garbage collection which also unloads classes *//*loads and instantiates ClassOne again. ClassTwo also gets reloaded*/class_one_object = (SomeInterface)new ClassOne();}}public class ClassOne implements SomeInterface{public ClassOne(){new ClassTwo();}}public interface SomeInterface {}public class ClassTwo {static int counter=0;public ClassTwo(){counter++;System.out.println("ClassTwo has counter = " + counter);}}



6 4. Options for class unloading4 Options for class unloadingIn this section we describe four alternatives for providing class unloading. All but the�rst option described below operate under the added restriction that a class will never betruly unloaded if the class loader that loaded the class is still reachable and the class containsstatic �elds.The �rst option provides a mechanism for the programmer to indicate when a classshould not be unloaded. Because it is under programmer control there is the possibility ofsubtle errors. The next two alternatives provide for a strict interpretation of the currentde�nition of static �eld, i.e. a static member will not be re-initialized during the entire life ofa JVM instance. They do this by maintaining some classes, or portions of classes in memory,that would be unloaded using current mechanisms. The last solution uses the class loadermechanism of Java to draw a clear boundary around a \program" that is expected to beunloaded upon completion. For this we will de�ne a program to be something less than onecomplete execution of a JVM.4.1 A \don't unload" interfaceLet us assume that it is a relatively rare program that loads a class in a manner that itmight get unloaded (e.g. via Class.forname) and also at the same time would be a�ectedby unloading of the same class following the rules used today. In this situation it is theexception rather than the rule that anything special needs to be done to avoid unexpectedbehavior of static �elds. In this case the programmer could be required to add an interfaceto the class that should not be unloaded. The interface would have no actual members andwould simply be a ag to the JVM that this class cannot be unloaded.Of course the problem with this approach is it could result in subtle, undetected errors.Another problem with this approach is that a programmer may wish to prevent the unloadingof a class over which they do not have control or do not wish to modify. This could be solvedby extending the class and adding the interface to the extended class. Even this would fail ifthe original class was marked �nal. Consequently we do not view this as a viable alternative.4.2 Save static �eldsA simple solution that only partially alleviates the problem is to save the static �elds froma class when the class gets unloaded. These values must be saved as long as the class loaderthat loaded the class is still reachable. These values could be stored in a compressed formator even written to disk, but the JVM would be required to restore them if the class wasever reloaded. While providing for a strict interpretation of the \exactly one incarnationof the �eld" requirement of the JLS, this approach does require a potentially unboundedamount of storage for any JVM that is expected to operate continuously. In addition to thestorage required for the compressed �eld values, there would also be a small, but technicallyunbounded, amount of storage required to keep track of all unloaded classes with saved static�elds. This storage would most likely reside in main memory to avoid an additional diskaccess every time a class was loaded.



4. Options for class unloading 74.3 Don't unload classes with static �eldsDepending upon the application, it might be acceptable to disable class unloading for anyclass with a static �eld. However for an application such as a web browser, this would notbe acceptable because there are no restrictions on static �eld use in applets. This approachis particularly susceptible to attack by malicious or faulty applets that contain static �eldsreferencing large arrays or other large objects.A variation on this approach would be to restrict non-system classes (i.e. classes outsideof the trusted, installed packages) from using static �elds. This might be acceptable incertain applications. The restriction can be easily checked by the loader and an exceptionthrown if the class being loaded is in violation of the restriction.A second variation on this approach would be to restrict non-system classes to allow onlyreference type static �elds. Then class unloading would have the additional requirement thatall static �elds must be null. In this case, a well behaved applet could assign null to all static�elds when the applet �nished. This of course provides no protection against malicious orfaulty applets.4.4 Using class loaders to limit class lifetimesThe problem as described in the introduction is that there needs to be some clearboundary marking the beginning and the end of an \application" running on top of some\OS" running on top of a JVM. For applets there is the constructor that creates the appletto mark the beginning and a destroy method that gets called before the applet is eliminated.This delimits the applet and could be used to reclaim some resources. This is not so muchthe applet saying it is done as the OS telling the applet that it is done. The question againis, can you safely unload the classes used by the applet without violating the semantics ofstatic �elds? As described below, the answer is no for existing systems. The alternative wepropose in this section is to disallow any unloading of system classes (i.e. any classes loadedby the default class loader) and use a separate class loader for each \application" that mayload classes that will need to be unloaded.Java provides a mechanism for a Java program to load classes under the control ofa custom class loader. Two classes with the same name and identical class �les will beconsidered di�erent to a JVM if loaded using di�erent class loaders, even if the class loadersare simply two instances of the same class loader class. Once the class loader object is nolonger reachable, then the class unloading policy stated in the JLS can safely be applied (i.e.no instances of the class and the class object itself is not reachable). It would be impossiblefor the same class to be reloaded because \sameness" includes having been loaded by thesame class loader which is no longer accessible.This approach does have a cost. This solution precludes any sharing of non-system classesamong di�erent applets which could result in wasted resources due to duplication of classes.Furthermore, any functionality gained by the sharing of loaded classes would be lost. Currentapplet browsers use a single class loader for loading classes, which allows applets to shareclasses. Some web pages that utilize more than a single applet might be broken by a browserthat prevents sharing of classes, such as the one described here.



8 5. ConclusionThe other problem is that no system classes will be unloaded. This is not how JDK1.1.2operates. It is clearly possible to have \system" classes (i.e. those found in the CLASSPATH)unloaded, as demonstrated in the example earlier. For systems with large amounts of memoryor with support for virtual memory, having most or all system classes loaded during steadystate may not be a problem. This restriction might be undesirable for memory limitedembedded systems.If it was necessary to unload system classes, then the \OS" could split the true systemclasses from the other classes that would currently be loaded by the default class loader. Bytrue system class we mean one that must be loaded by the default class loader for securityreasons. These later classes could then be loaded by the class loader used to load the actualapplication (e.g. the applet).This use of class loaders would allow a programmer to write a Java program thatfunctioned as the user interface to the \OS" (i.e. the one running on top of the JVM)and allowed for unloading of all classes loaded by an application when the \OS" detectedthat the application had terminated.5 ConclusionIn this paper we have identi�ed a problem that has occurred with the blurring of the linebetween OS and application in Java systems. The problem is most evident in the failureto adhere to the Java Language Speci�cation for the semantics of static �elds in classes(i.e. class variables). We have provided an example that demonstrates how the currentimplementation of class unloading can result in a static �eld being reinitialized resulting ina program that changes its behavior depending upon when garbage collection occurs.We then describe several possible solutions. The last solution, the one we advocate, usesclass loaders to clear up the line separating the OS from the application.References[Bal97] E. A. Baldwin. Memory Management in Embedded Java. M.S. Thesis University ofCalifornia, Santa Cruz, 1997.[GJS96] J. Gosling, B. Joy, and G. Steele. The Java Language Speci�cation. Addison Wesley,1996.[Mon97] B. R. Montague. JN: OS for an embedded Java network computer. IEEE Micro,17(3):54{60, May/June 1997.


