JN External API

UCSC-CRL-97-17

Bruce R. Montagué
Computer Science Department
University of California, Santa Cruz
brucem@cse.ucsc.edu

6 August 1997

Abstract

The Application Program Interfaces (APIs) developed fer tHCSC Java Nanokernel (JN) are described. These
APIs provide an interface to a small embedded operatingesyseveloped at UCSC which runs on a ‘single-chip’
PC and supports a web server and web camera. These APIséntieichAPls specified in the public JavaSoft JDK
host porting interfacésys_api.h). These APIs enable execution of version 1.0.1 of the JavaaliMachine (JVM).
The implementation of these APIs in 1996 was independeriioflava Green Threads API implementation. The
function, arguments, and return values of each API are detr
keywords: Java, JavaOsS, JN, API.

1 Introduction

This document describes the Java Nanokernel (JN) Apptied&®rogram Interface (API). The Java Nanokernel is a
small kernel implemented primarily to provide stand-alsapport for version 1.0.1 of the Java Virtual Machine
(JVM). The JVM is a multithreaded interpreter which exesufiee Java programming language. As originally
implemented, the JVM depended on a multithreading C-rumtialledGreen Threads. The functions described in
this document were developed by linking Java without thee@iEhreads library, and then guessing at the missing
routine’s functionality by inspecting the calls made to thissing routines in the JVM source. Since much of the
functionality is very conventional, this reverse engimegiprocess produced a system that almost worked. Thelinitia
implementation was done deliberately without inspectibthe Green Thread source so as not to be unduly biased by
its implementation approach; when bringing up the JVM onrdsailting system a few Green Threads routines were
later examined to resolve specific compatibility issuegulaly, the implementation of the JN API routines differs
from that of Green Threads due to the different target emvitents — JN runs stand-alone on bare hardware, while
Green Threads assumes it is running on top of Unix or anothet-lével virtual-memory operating system.

This API provides C ‘primitives’ that implement the concurt@rogramming mechanisms, low-level exception
handling mechanisms, and file handling mechanisms reghiréde JVM.

The routines documented here are intended to be called bp@tans, specifically, the IVM Java Interpreter
itself. However, these routines have no specific dependendava or the JVM, but are simply a particular interface
to a small embedded kernel.

tSupported in part by a gift from National Semiconductor.

The API functions are divided as follows:

e Thread support.

o Monitor support.

o File support.

o Exceptions (software interrupts, that $gnals).
e TCP/IP socket support.

¢ Miscellaneous ‘Standard’ Unix Routines.

o Time support.

o Debugging support.

These routines are listed in the following table. The sofkettions are ‘completely’ Unix compatible and are
not described in detail in this document. Routines in thiofeing table that are marked with an “*" are not necessary
in JN but are provided for compatibility with JVM on Unix, thig, in JN they exist but have no content.

Note well that a small number of routines that are realifliigzart of the required host porting interface (the
routines needed by the JVM) are not includedys api.h and references to such routines have been removed from
this document. However, most of these routines have to domé@naging Unix processes, Unix asynchronous /O,
and Unix signals. Many of these routines are simply not agppate in an embedded system and have simply been
stubbed in the JN implementation.

sysThr eadBoot strap *- Turn Unix process into first thread.
sysThreadlnitializeSystenThreads *- Start clock, idle, garbage thread.

sysThreadSi ngl e - Run exclusive (disable concurrency (the scheduler)).
sysThreadMul ti - Enabl e concurrency.
sysThreadCreate - Create a new thread.

sysThreadl ni t *- Must call at start of new thread.
sysThr eadExi t - Term nate thread.

sysThr eadSel f - Obtain caller’s thread ID.
sysThreadYi el d - Non-preenptive CPU yield.

sysThr eadSuspend - Suspend a given thread.

sysThr eadResune - Resume a suspended thread.
sysThreadSetPriority - Set thread s priority.
sysThreadGetPriority - Get thread s priority.

sysThr eadGet BackPt r - Get thread context’s ‘cookie’.
sysThr eadSet BackPt r - Set thread context’s ‘cookie’.

The cookie in a JN thread points to a high-1evel
interpreted thread context inside the JVM

sysThr eadCheckSt ack - Return 1 if stack has space.

sysThr eadPost Excepti on - Trigger an exception in a thread.

sysThreadSt ackBase - Return thread' s stack base.

sysThr eadSt ackPoi nt er - Get thread s current stack pointer.

sysThr eadEnuner at eOver - Iterate a function over all threads.

sysThr eadDunpl nf o - Thread dunp stub.

syshWbnitorlnit - Initialize a senaphore.

syshbni t or Ent er - P(). Enter a critical section.

sysMboni t or Exi t - V(). Leave a critical section.

sysMbni t or Dest r oy - V(). Leave a senmphore and deternine
if its still being used.

syshbni t or Ent er ed - True if caller owns the semaphore.

sysMboni t or Vi t - Internal wait for a notify or a given tine.

syshonitorNotify - Unbl ock head of internal wait queue.

syshoni torNotifyAll - Unblock all internal waiters.

syshbni t or Si zeof - Obtain sizeof (semaphore).

sysMoni t or Dunpl nf o - Dunp senmaphore and waiters.

syslnitFD
syshWbde_Li ne
syshWbde_Byt e
sysQpen
sysQpenFD
sysd ose
sysC oseFD
sysRead
sysReadFD
sysWite
sysWiteFD
sysLseek
sysLseekFD
sysAvai |l abl e
sysAvai | abl eFD

Initialize file descriptor.

Read and wite |ines.

Read and wite single ‘raw bytes.
Open or Create a file.

Close a file.

Read a file.
Wite a file.

Set current file position.

Determine bytes till end of file.

sys_set _exception

sysl nt err upt sPendi ng

i ntrLock

i ntrUnl ock

Specify a software interrupt handl er.

Returns True if pending software interrupts
exi st for a thread.

Di sabl e software interrupts within the
t hr ead.

Enabl e software interrupts within the
t hr ead.

ht onl
nt ohl

accept
bi nd

cl ose_s
connect

get peer nane
get socknane
listen

sock_shut down
socket

sockki ck
sockl en
socket pair

recv
recvfrom

send
sendt o

Host to network endi an conversion of 32-bit |ong.
Network to host endian conversion of 32-bit |ong.

Server - si de passive socket connect, i.e., open.
Bind a port to a socket.

Cl ose a socket.

Client-side active socket connect, i.e., open.

Get information about other side of connection.
Get socket infornmation.

Speci fy supported nunber of sinultaneous passive connects.

A nunber of ways to close a socket, including abort.

Create a socket.

Force a retransm ssion over a connection.

Get send or receive queue |length associated with a socket.

Create 2 connected sockets on the sane nachi ne.

Recei ve data over a connected socket (usually TCP).

Recei ve a datagram (usual |y UDP).

Send data over a connected socket (usually TCP).
Send a datagram (usual |y UDP).

jn_mall oc
sysMal | oc

jn_free
sysFree

jn_realloc
sysReal | oc

sysCal | oc
perror

printf
fprintf

fstat
sysSt at

syshkdir
sysUnl i nk
st rdup

sysPut env
sysCet env

Al l ocate nenory.

Free allocated nenory.

Change size of allocated nmenory.

Al'l ocate and zero nenory.
Print an error and halt.

For mat ed out put.
Formated output to a file.

Get file statistics (length).

Create a directory.
Delete a file.
Duplicate a string.

Create an environnental variable.
Get the contents of an environnmental variable.

getti meof day

jn_gnm _tmto_time_t

jn_gnt _dnmyhns_t o_epoch_UTC
jn_julian_day_to_gregorian_dmny
jn_gregorian_dmy_to_julian_day

Get the time, in seconds and mlliseconds.

Convert ‘calendar tine’ to Unix ‘epoch’ tine.

" wi t hout the need for an internmediate structure.
Convert Julian day to ‘cal endar tine'.

Convert a ‘cal endar day’ to a Julian day.

sysCol | ect Checksum

Checksum all the code in the system

2 Thread Calls

This section describes Thread APIs. These APIs are ratheentional light-weight multithreading primitives.

int sysThreadBootstrap(Thrd **thrd);

This routine turns the executing Unix process into the ahttiread, returning the thread ID of the new thread.
Under JN, this call simply returns the ID of the executing=td.

returns; return code, setshr d to the thread ID of the new thread.

return val: SYS_OK— Completed normally.

void sysThreadlnitializeSystenrhreads();

The internal threads used by the threading package aralin@d. A clock thread, idle thread, ‘finalization’
thread, and garbage collection thread are created. Undehi¥\all is not needed for correct execution. Itis
included only to satisfy the reference of the Java Integoret

returns: none.

int sysThreadSi ngl e();

Threads can run exclusive by starting a critical sectiomwits Thr eadSi ngl e() and ending the critical
section withsysThr eadMul ti (), that is, this routine disables active multithreading. €duht calls this routine
should always terminate the resulting critical sectiortveisys Thr eadMul ti () call.

This routine works by disabling the scheduler. Interrupésstill enabled. No thread other than the invoking
thread will be run, not even the null thread. The invokinget can continue to issue all IN API calls. If there are no
runnable tasks, the kernel waits for an event to ready theking thread.

returns; This call always returnSYS_OK.

void sysThreadMul ti();

Threads can run exclusive by starting a critical sectiomwits Thr eadSi ngl e() and ending the critical
section withsysThreadMul ti (), that is, this routine resumes active multithreading.

returns. There are no return values. Itis a system error if this calsdioot match a preceding
sysThr eadSi ngl e() call.

int sysThreadCreate(|ong st ack_si ze,
unsi gned int flags,
voi d *(*start)(void *),
Thrd **thrd,
voi d *argunent);

Creates a suspended new thread with a stack of the indidaedi$ie thread ID is returned via argumeitir d.
Thread execution will begin at addressar t , which should be the address of a C subroutine. A
sysThr eadCreat e() call should be followed by aysThr eadResune() when the caller wishes to activate
the newly created thread.

The singlear gunrent is passed on the new thread’s call stack to the routine aeasslirart .

All thread’s contain aookie. Thecookieis an arbitrary pointer stored in the thread’s context. it ba set and
obtained bysysThr eadSet BackPt r () andsysThr eadGet BackPtr () .

New threads always start executingNRM PRI ORI TY, that is, priority 5. The child’s priority can be altered
bysysThr eadSet Pri ority() . Note that the parent of a thread can alter the priority ohalyereated child
before the child ever executes, s Thr eadCr eat e() does not block the parent. If the parent sets the priority of
a child higher than the parent itself, the child is eligietn before thesysThr eadSet Pri ori ty() inthe
parent returns.

The only supporteéll ags value isTHR USER,which indicates that this is not a system thread.

return values:

e SYS_ERR- Couldn'tdo it.

e SYS_OK - Normal completion.

void sysThreadExit();

This thread is called automatically when the initial thréadction returns (i.e., the routine specified in the
sysThreadCreat e() ‘returns’ to a call of this function. This function frees #firead resources and terminates
the thread. There are no return values and no errors returned

Monitors that are owned by the thread are not automaticegigd. Routinsyshbni t or Dest r oy() can be
called to force a given thread to release a given monitor.

This routine can be called directly, although the recommeenaeans of terminating from a thread is to return
from the top level, that is, from the routine specified in fyss Thr eadCr eat e() .

There is no way to force termination of an arbitrary threaalthie API.

returns: none.

Thrd *sysThreadSel f();

Returns thehread 1D of the executing thread. JN thread IDs are simply pointeteeédanternal thread data
structure, which is a potential security risk.
returns. The thread ID is the only return value.

void sysThreadYield();

This call simply yields the processor. The running thread thakes this call goes ‘to the end of the line’ behind
other threads at the same priority level that are ready towgge if any exist. If there are no other runnable threads,
the current thread continues executing.

This call implements non-preemptive ‘round-robin’ schiaayt

The thread is only rotated to the ‘end-of-the-line’ withpest to threads at its current priority level.

returns; There are no return values from this call.

int sysThreadSuspend(Thrd *thrd);

This call suspends the indicated thread, which may be th#ieodaller. If the indicated thread exists, it is placed
in a SUSPENDED state where it is never eligible for execution.

A sysThr eadResune() call must be made to resume execution of the suspended thfé¢lae target thread
is the caller itself, the return fromys Thr eadSuspend() will not occur until after assysThr eadResune()
has reactivated the thread.

return values:

¢ SYS_ERR- It couldn’t be done.
e SYS_OK - Success.

int sysThreadResune(Thrd *thrd);

The indicated thread, which should BESPENDED, is resumed, that is, it is made eligible for execution. It is
not an error if the thread is not suspended - the call is sirgyigred.

A thread is suspended by callisys Thr eadSuspend() .

return values: SYS_OK — Success.

int sysThreadSetPriority(Thrd *thrd,
int priority);

The priority of the indicated thread is changed. The targetdd need not be the caller. If the target thread is the
caller, the effect of the priority change occurs immedigtehich may result in the caller losing control of the
processor.

To be compatible with Jav&] N.PRI ORI TY is defined as IMAX_ PRI ORI TY is defined as 10, and
NORMPRI CRI TY is defined as 5. The highest priority thread is selected fecatton. New threads are created
initially at NORMPRI ORI TY, that is, at priority 5.

Errors are considered fatal.

return values: SYS_OK — Success.

int sysThreadGetPriority(Thrd *thrd,
int *priority);

The priority of the indicated thread is returned via fixd or i t y argument.
Errors are considered fatal.

return values:

SYS_OK — Success.

voi d *sysThr eadGet BackPtr(Thrd *thrd);

Thecookie argument stored in the indicated thread’s context ByaThr eadSet BackPt r () call is
returned.
returns; The cookie value. There are no status return values.

voi d sysThreadSet BackPtr(Thrd *thrd,
voi d *new_cookie);

Thecookie field in the indicated thread’s context is set to ttev.cooki e argument.
returns; There is no return status. A bad thread pointer is considefathl error.

int sysThr eadCheckSt ack() ;

This function returns a 1 if the amount of free space in thkecalstack is greater than JN sysgen manifest
constaniSTACK_REDZONE, otherwise it returns a 0. The default BYACK_REDZONE is 4K.
returns:

¢ 0 - No stack space left.

¢ 1 - Stackspace is left.

voi d sysThreadPost Exception(Thrd *thrd,
voi d *exception);

This call posts an exception to a thread, that is, it trigg@rexception handler to run in thread’s context. It is
not clear that Java has defined a standard portable methdddting with this yet....
returns: none.

void *sysThreadStackBase(Thrd *thrd);

This call returns the base address of the stack for the itetidhread, that is, the address from which the stack
growsdown.

returns; The top stack address. There are no status return valuesd fhienad address is considered a fatal
error.

voi d *sysThreadStackPointer(Thrd *thrd);

This call returns the current stack pointer of the indicatedad, which can be that of the caller.
returns; The stack pointer. There are no status return values. A baddhaddress is considered a fatal error.

int sysThreadEnunerateQver(int (*func)(Thrd *, void *),
void *arg);

This routine provides an iterator that applies a functioaltdéhreads. For each existing thread, the
application-supplied user function indicated by arguniamc is called. The user function is supplied 2 arguments,
the address of the thread and the pass-through arguanent

The address of the thread is the thread ID, so the user fun&aeives a different thread ID every time it is
called.

In addition to the application-level context, taeg argument can be used to specify arbitrary arguments to the
user-level routine. This pointer can be used to point to eve&tdata, data structures, or command blocks that the
user desires.

returns:

If the application-supplied function (that is, the functisupplied by the caller) does not rett8¥S_CK, the
enumeration stops. If this occussys Thr eadEnuner at eOver () returns the return code generated by the user
function. If all calls to the user function retuB¥S_CK, sysThr eadEnuner at eQOver () returnsSYS_COK.

void sysThreadDunpl nfo(Thrd *thrd);

In JN this routine produces a dump of the thread control tdock

10

3 Monitor Calls

Althoughmonitorsare perhaps the most ubiquitous modern concurrent prognagnconstruct, monitor details often
vary. In this section, aonitor can be considered a critical section associated with tw@phores. One semaphore
guardsexternal entrance into the critical section, and the other, whichtstaith a value of 0 (unavailable), is used to
guardinternal access. To enter a critical section, a thread must use temeksemaphore and

syshMbni t or Ent er () . Only one thread can be inside a critical section at a timeceGmside the critical section,

if the active thread must wait for some occurrence (an I/Opetion or a change in the content of a data structure,
etc.), it usesyshMboni t or Wi t () to put itself on thenternal semaphore queue, while releasing its hold,
atomically, on the external semaphore. Thus an externahththat was forced to wait can enter the critical section.
Whenever a thread ussgshMoni t or Exi t () to leave the critical section, as with any semaphore omerati
another thread waiting on the external semaphore procegalthie critical section.

Threads waiting on the internal semaphore are only redetivay an explicisysNot i fy() or
sysNoti fyAl | () operation. Essentially this is a semaphd(g operation on the internal semaphore. An active
routine that completes an activity upon which some threag lbesinternally waiting issues these calls. These calls
simply move the thread waiting internally to the end of theeaxal wait queue. When each waiting thread moves to
the head of the external wait queue, its execution resuntée @ioint inside the critical section where it waited for
the needed resource or event.

AsysNotify() orsysNoti fyAl I () can only be performed by a thread that is inside the critieation.
Race conditions in whichysNot i f y() is called before what should be the correspondiggMoni t or Wi t ()
can thus be avoided by correct programming. However, a naetiyated thread that has become unblocked should
always recheck the condition on which it was waiting. Suchradad cannot tell if 3ysNot i fy() or
sysNoti fyAl' | () activated it, and in the case 8fsNot i f yAl | () the resource may not be available by the
time the thread actually resumes running in the criticatieac

int syshWonitorlnit(Mnitor *sem
bool _t in_cache);

If thei n_cache flag is non-zero, the semaphore flags are mafRé8.MONLI N_.CACHE, indicating that this is
a dynamic monitor that will be deleted when no longer needed. $amargument points to a JSemstructure that
is to be initialized. This structure is allocated by the &gion. The application should be careful not to allocais t
structure as an automatic on the C stack and then continwsetit after returning from the function that allocated it.
This routine does not invoke the JN kernel; it simply perferdata structure initialization.
returns; This function always returnSYS_CK;

int syshbnitorEnter(Mnitor *sem);

If the critical section guarded by the semaphore indicatesldmis not in use, this call lets the calling thread
enter the critical section. Otherwise, the caller is blatkad queued on the external waiting queue of the indicated
semaphore. This call must always be followed tsyas Moni t or Exi t () at the end of the critical section protected
by the semaphore.

A badsemaddress is considered a fatal error.

returns; This function always returnSYS_CK. This function only returns when the caller is allowed togaed
within the critical section.

int sysWonitorExit(Mnitor *sem);

This routine is called to exit a critical section controlleglithe indicated semaphore. The caller must have
previously acquired the semaphore siasMoni t or Ent er () . If any threads are blocked on the external wait
gueue of the semaphore, one will be selected to proceed Wwakaralier leaves the critical section. Any threads
waiting on the internal wait queue of the semaphore are aotst.

11

If no threads are waiting on the semaphore, and the semaphmekedSYS_MON_I N_.CACHE, this call returns
with SYS_DESTROY, indicating to higher-level routines that the semaphota daucture can be deallocated if need
be. To safely use monitors in such a fashion, either a safgrgnaming convention can be used which assures there
can be no race condition (the monitor is only deleted whenas$tgthread using it receivesS¥'S_DESTROY), or a
static monitor can guard entrance, exit, allocation, and deationaf the code guarded by one or more dynamic
monitors.

returns:

e SYS_ERR- The caller does not own the indicated semaphore.

e SYS_DESTROY — The caller successfully exited the critical section,ithecache flag was non-zero on the
originalsysMoni t or | ni t () call, and no other thread was unblocked to enter the crisieetion.

e SYS_OK - The caller successfully exited the critical section anotlaer thread was unblocked to enter the
critical section.

int syshboni tor Destroy(Mnitor *sem
Thrd *thrd);

This routine is used when deleting a thread. This call do¢sl@allocate the semaphore. Rather, it can be
considered a forceslysMoni t or Exi t () on a thread with respect to a given semaphore.

If the specified thread owns the indicated semaphore, thiatiisside the critical section and not waiting, the
effect of this call is as ifysMoni t or Exi t () had been called by the specified thread. The thread releastslic
of the semaphore. If no other threads exist on any of the seanajs wait queuesSYS_DESTROY is returned,
potentially indicating that semaphore usage is completigtaat the application can deallocate the semaphore. If
other threads exist on the semaphore’s wait queb¥éS, OK is returned, and the head of the external wait queue is
unblocked to enter the critical section.

If the specified thread does not own the indicated semaptioss;all has no effect. Presumably, this is because
a thread never is terminated while in a wait state.

returns:

e SYS_OK - If the caller does not own the indicated semaphore, thisealno effect. If the caller owns the
semaphore, theysMoni t or Dest r oy () failed in the sense that the semaphore cannot be deleted — it
performed asysMoni t or Exi t () function instead, releasing another thread to enter thiearsection.

e SYS_DESTROY — No threads are waiting on the semaphore, it can be removed.

bool _t sysMnitorEntered(Mnitor *sem);

This function returns True (1) if the caller owns the semaph(@ currently in the critical section). The return
type is defined as an integer flag.
returns:

¢ 1 —in the critical section controlled lsem

¢ 0—notin the critical section controlled lsem

int syshWonitorWait(Monitor *sem
int mllis);

12

A thread inside a critical section uses this call to block amit either an event or the specified number of
milliseconds. The caller waits on the semaphore’s intenzdi queue. After theysMoni t or Wai t () call, the
event is triggered by aysNot i fy() orsysNoti fyAl | () call. Such acall is issued by some other active
thread, which owns the semaphore at the time it performsakié/n

When activated by either a notification event or the passageandicated time interval, the thread is placed on
the semaphore’sxternal wait queue. This queue contains threads waiting to run, badime, in the critical section.

ThesysMoni t or Wai t () call places the calling thread on an the internal wait quese@ated witlsem
The thread must have already entered the critical sectmayws Moni t or Ent er () . Typical reasons to use wait
include awaiting 1/0O completion, waiting for data to be @edn an input buffer, and so on.

Ifthem I | i s argument is specified &YS_TI MEQUT_I NFI NI TY, there is no timeout associated with the
wait.

The internal wait queue is not a counted semaphore, teysalot i f y() call or event completion that
precedes theysMboni t or Wi t () has no effect. For this reason, and also becawusesdNot i f yAl | () unblocks
all threads waiting on the semaphore’s internal queue, tieatgperforms @y sMoni t or Wai t () should not
assume that it has been correctly unblocked. Rather, itdlabways explicitly check that the condition on which it
has waited has actually occured, and if it has not, it sheeikbue thesysMoni t or Wai t () call.

returns:

¢ SYS_ERR- The caller must own the indicated semaphore.

e SYS_(K - Normal completion, which indicates that the wait has caeteal. Either the event has occured or the
specified time interval has passed.

int syshWonitorNotify(Mnitor *sem);

The thread at the head of the semaphore’s internal wait ggque on the semaphore’s external wait queue.
Each semaphore has both an external and internal wait qliaeeexternal queue contains threads waiting to run in
the critical section controlled by the semaphore. The imdkequeue is used by threads which, while they were inside
the critical section, needed to block awaiting either amewee passage of a particular time interval.

syshMboni t or Noti fy() must be called by code that is inside the critical sectiois ¢dbmmon, for instance,
for code that entered the critical section and wrote some idéd a data structure, to callysMoni t or Noti fy()
before it callssysMoni t or Exi t () . Thus, a thread that entered the critical section to reaal fiatn the data
structure, but found none and thus caltgds Moni t or Wi t () , will be unblocked and can proceed.

returns:

e SYS_OK— Normal completion.

¢ SYS_ERR- The caller does not own the semaphore.

13

int syshWonitorNoti fyAl |l (Mnitor *sem);

All threads waiting on a semaphore’s internal wait queuenaoged to the semaphore’s external wait queue. See
syshMboni tor Noti fy(). Thiscall isidentical taysMoni t or Not i f y() except that all threads on the internal
wait queue are unblocked. Each unblocked thread, as it ‘esiakithin the critical section, must recheck conditions
to see if it can proceed or if it should issue anothgsMoni t or Vi t () .

returns:

e SYS_OK - Normal completion.

¢ SYS_ERR- The caller does not own the semaphore.

int sysMonitorSizeof();

This routine is simply a cover function fei zeof (Moni t or) . Since semaphore data structures are allocated
at the user level, this call is used so that high-level ragican determine the size of the data structure they must
allocate.

voi d sysMonitorDunplnfo(Mnitor *sem);

This is a debug routine that dumps the owner of a semaphortharttireads on the semaphore’s wait queues.

14

4 FileCalls

Thesys_api.h porting interface describes a set of file management funstibat map almost directly into standard
Unix file APIs. There are 2 sets of routines that are identixe¢pt that in one case the name is followed viAiD
that is,sysOpen() becomesysQOpenFD() . Additionally,sysOpenFD() has an additional first argument,
which is the address of a 32-bitint that is to receive the firdie.

JN files are simply in-memory queues (RAM files). These qushase Unix file semantics. EaslysQpen()
returns a unique file handle that has a unique position witterfile. Files are simply byte-streams. Arbitrary byte
substrings can be read from and written to the file.

JN files need not be contiguous, that is, Unix sparse file seosaare supported.

JN files are implemented as queuesajments. A segment is a buffer descriptor. Although most segment
buffers are allocated from a fixed array, buffer segmentsbeavariable length and can thus be used to describe
prel oaded files that are linked into a single buffer in the system image.

Allfile 1/O is currently synchronous — it is just a buffer copyor from the appropriate location in the queue.

voi d syslnit FD(int *fdptr,
int descr);

This call provides a way for a thread to support Unix stytedi n, st dout , andst der r file handles.
Normally JN generates an arbitrary non-zero 32-bit file hantowever, these 8t d handles, by Unix convention,
always have the values of 0, 1, and 2.

A JN thread can call this function 3 times, witlescr arguments of 0, 1, and 2, and get back file handles that
correspond to standard input, output, and error.

returns. File descriptorf dpt r is set. There are no status return values.

int sysMde_Line(int *fdptr);

The specified handle is setlime mode. This is only useful for the serial (uart) driver. The driweitl read and
accumulate characters until a carriage return\(iG 0x0D) is encountered. A read request can thus read areenti
line of characters. Likewise, and entire buffer can be wmitin a single write request.

In line mode, a terminating carriage return is convertedlto@feed (C \n’, Ox0A).

returns; Zero is returned on success.

int sysMdde_Byte(int *fdptr);

The specified handle is setlgte mode. This is only useful for the serial (uart) driver. In byte negdeads
complete when a single character is available, and therdiives character processing - input characters are returned
to the application exactly as received, including XON-XCffelw control characters. Likewise, application output
characters are not altered in any way by the driver.

returns; Zero is returned on success.

int sysOpen(char *f name,
int flags,
int node);

int sysOpenFD(i nt *fdptr,
char *f name,
int flags,
int node);

15

Open the file identified by nane using the specifiefil ags andnode. The file handle for the new file is
returned. In the case sfysOpenFD() the file handle is also returned in the 32-bit location spediby the first
argument. This returned file handle will never be null.

JN file descriptor structures consist only of a single integich contains the file handle.

The only flag currently supported @ CREAT, which causes a new file to be created.

Note this call can create and overwrite files.

returns:

¢ Upon success the file handle is returned. The file handle istager greater or equal to 0.

e -1 —This is the value 08YS_ERR, and is returned on error.

int sysd ose(int *fdptr);
int sysC oseFD(int *fdptr);

The specified file is closed.

Note that if real async 1/O is supported, multiple readery br@in the process of reading, so the file is simply
marked as closing, and the file is actually closed when thederiptor usage count falls to zero at the end of an 1/O.

returns:

¢ SYS_ERRoON error.

e SYS_CK on success.

int sysRead(int *fdptr,
char *buf,
int nbytes);
int sysReadFD(i nt *fdptr,
char *buf,
int nbytes);

The given number of bytespyt es, are read from the file designated by the handliedpt r into user buffer
buf . The bytes are read starting at the location at which the &ifedle is initially located. The current file position of
the handle is set to the location one byte past the last bgite re

returns:

e The number of bytes read are returned on success.

o SYS_ERR- (-1) is returned on failure.

int sysWite(int *fdptr,
char *puf,
int nbytes);
int sysWiteFD(int *fdptr,
char *buf,
int nbytes);

The given number of bytesbyt es, are written from the user bufféruf to the file designated biydpt r . The
bytes are written to the location at which the file handle igafly located. At the end of the write, the handle’s
current file position is set to the location one byte past dselbyte written.

16

returns:

¢ The number of bytes written are returned on success.

o SYS_ERR- (-1) is returned on failure.

int sysLseek(int *fdptr,

| ong of f set,

| ong whence);
int sysLseekFD(int *fdptr,

| ong of f set,

| ong whence);

The current file position in the indicated file is set to thedliban specified by thef f set argument. The
whence argument indicates the interpretation of the offset:

o SEEKSET - The offset is absolute, that is, the exact file address.
¢ SEEK CUR - The offset is relative to the current file position.
o SEEKEND - The offset is relative to the end of the file.

ThesysLseek() call can set the file position to beyond the current end ofdite] to a negative file location.
This is not considered an error.

returns:

The new file location. ASYS_ERR (-1) is returned if the file descriptor is not valid.

int sysAvai | abl e(int *fdptr,
long *pbytes);

int sysAvai | abl eFD(i nt *fdptr,
long *pbytes);

The number of bytes which remain in the file between the ctifiierposition and the end of the file are returned
via argumenpbyt es.

returns:

A O is returned on any failure. A 1 is returned on success.

NOTE!! — These return values are not consistent with otheerrecode usageSYS_OK is defined as 0, and
SYS_TI MEQUT as 1. Note that O is returned afailure._.

17

5 Exception/Signal Calls

JN supports software interrupts. As with a real hardwarermpt, a software interrupt is a routine that is to be run
whenever some condition occurs. Each thread can estatdistvn set of software interrupt handlers.

When the system detects an exception, that is, a softwameupt condition such as a divide-by-zero, if the
corresponding thread has a handler for the exception, JNeague software interrupt notification to the thread. The
handler will execute as soon as the thread becomes the higiadty executable thread.

As with real interrupts, software interrupt handlers rurtba stack below the normal thread stack pointer. A
handler can execute all JN APIs. A handler is simply a normall@autine, externally indistinguishable from any
other subroutine used by the thread, that is, handler cadergical to ‘normal’ code. The programmer should keep
in mind, however, that the handler may run at any point in tteeetion of the thread, unless exception handling is
explicitly disabled as described in the following section.

int sys_set _exception(int excepti on_nunber,
void (*handler)(void))

A routine in the calling thread, specified by argumeand| er , will be called when the exception indicated by
excepti on_nunber occurs. The exception handler remains in effect for all o@mces of the specified exception
with respect to the calling thread, undiys_set _except i on() is called with thehandl er argument set to 0.

JN exception numbers are arbitrary integers. Currentlg ismpredefined ifnn. h, EXP_DVZ (divide by zero).

int syslnterruptsPending();

Returns True (1) if the invoking thread has pending softviaterrupts. A thread may have pending software
interrupts since software interrupts are delivered ona-fine to the thread and execute to completion. In addition
the thread can disable delivery of software interrupts Biynzpi nt r Lock() , for instance, if it is updating a
memory resident data structure that an exception handleals® update.

voi d intrLock(void);

This routine disables all software interrupt delivery te thvoking thread. Software interrupts are still queued to
the thread, however, their delivery is postponed until abhr Unl ock() call occurs. Ani ntr Lock() call should
always be followed by annt r Unl ock() call.

Thei ntr Lock() call is typically used when a thread is going to perform anrapen, such as executing a
critical section, in which delivering a software interrugaiuld cause some concurrency problem. In this case,

i ntrLock() is used to defer software interrupts until thet r Unl ock() issued after exiting the critical section.

voi d i ntrUnl ock(void);

Enable all software interrupts. This routine is called ifteferring software interrupt delivery by a call to
i ntrLock() . Any pending software interrupts will be delivered to thestld that issues this call before the call
returns. Since software interrupts can queue to the theegiden thread’s software interrupt handler may execute
more than once. For instanceShG ALARMhandler may have a number Af ARMinterrupts to handle.

returns: None, however, if any pending software interrupts exiss tiall will not return until all software
interrupts have been handled, that is, after the threadidlraroutines have run and processed all pending software
interrupts.

18

6 Standard Unix Socket Programming Functions

The following routines provide a standard C socket programyinterface. These routines are the API to the KA9Q
networking code. These routines have been made as equit@tie corresponding Unix calls as possible. You
should be able to use Uniman to obtain descriptions of all the following routines.

| ong htonl (long input)
unsigned int ntohl(wunsigned int i_val)

int accept (int s,struct sockaddr *peernane,int *peernanelen);
int bi nd(int s,struct sockaddr *nane,int namelen);
int cl ose_s(int s);
int connect (int s,struct sockaddr *peernane,int peernanelen);
int get peer nane(int s,struct sockaddr *peernane,int *peernanelen);
int get socknane(int s,struct sockaddr *name,int *nanelen);
int listen(int s,int backlog);
int sock_shutdown(int s,int how);
int socket (int af,int type,int protocol);
int sockki ck(int s);
int sockl en(int s;int rtx);
int socket pai r (int af,int type,int protocol,int sv[]);
int recv(int s,void *buf,int len,int flags);
int recvfrom int s,void *buf,int len,int flags,
struct sockaddr *fromint *fromen);
int send(int s,void *buf,int len,int flags);
int sendt o(int s,void *buf,int len,int flags,

struct sockaddr *to,int tolen);

19

7 Miscellaneous‘ Standard’ Unix Routines

The following routines are simple equivalents of the cquoerding Unix functions:

char *in_malloc(int num byt es_needed)
char *sysMal l oc(int num byt es_needed)
voi d jn_free(char *p)
voi d sysFree(char *p)

char *in_reall oc(char *p,

int num bytes)
voi d *sysReal | oc(void *p,

size_t numbytes)

char *sysCal loc(int num el ement s,
int num bytes)
voi d perror (char *msg)
voi d printf(const char *fnmt, ...)
voi d fprintf(int handl e,
const char *fnmt, ...)
int fstat(int handl e,
struct stat* st)
int sysStat (char *pat h,
struct stat *s)
int syshWkdir(char *pat h,
int node)
int sysUnlink(char *path)
char *strdup(char *p)
int sysPutenv(char *env_string)

char *sysGet env(char *name_string)

These routines are all intended to work exactly as their @dnixnterparts, that is, you can determine their
functionality by doing a Uniboran for the equivalent Unix routine. In some cases, suchtasdup() , JN provides
the routine simply because it was not included in one of theezfded development environments that we were using.

ThesysMkdi r () routine does nothing and always returns success. File nemd&scan be up to 128
characters long and can contain Unix style directory seépesdthat is, thé / "). Thus, there is no need in JN to
create a directory before populating it with files.

The environment string routines/sPut env() andsysGet env() work as in Unix. The string input to
sysPut env() has & nanme=val ue" format. AsysGet env() routine can later supply theane and will
retrieve the associatachl ue. There is only one global environmental string table.

Routined st at () andsysSt at () can be be used to obtain file sizes.

Routineper r or () prints a message and crashes the system.

20

8 TimeFunctions

Getting time routines correct is probably one of the hartiérgs in system software. Doing time really right can be
difficult because there are a number of special cases (dagsiyp not observe daylight savings time, even though
your state does?). Are leap years and leap seconds handle&E@ parsing and formating time and dates can be
interesting (sest rf ti me()). To see how complex this can become, examinethe command on OSF Unix
machines, which is basically an expert system compiler.

JN currently provides minimal time support. The gHt t i meof day() API routine is basically ‘Berkeley
compatible’. The time routines used in JN were originallyyd ago (years ago), based on an astronomy handbook
with code in Basic or a calculator language; | forget the itet@he code is almost a verbatim translation. | believe
the author was French or Belgian.

In the following, Unix time (seconds since 00:00 1-Jan-187Greenwich (GMT)) is calledpoch time. The
Julian day is the number of days since 12:00 (noon) 1-Jal-BClat Greenwich.

getti meof day(struct timeval *tv,
struct timezone *tz)

As in Unix, the current system time is returned in thiereval structure as 2 32-bit values, witlv _sec
containing the current Unix epoch seconds (seconds sin€d0A-Jan-1900 GMT), andv_usec containing the
number of milliseconds since the last epoch second.

WARNING: the values returned in thd nezone structure are currently hard-coded to UCSC, that is,

t v_m nut eswest is set to 8 (we are 8 hours west of Greenwich). The daylighhgaflag,t z_dst ti ne, is set
to 0.

time_t jn_gm _tmto_time_t(struct tm*tm)

The Gregorian date/time (normal wall calendar date/tirha) is stored in thé mstructure is converted into
Unix epoch seconds (seconds since 00:00 01-Jan-1900 GMIE)32-bitt i me_t value is returned.

long jn_gnt_dnyhns_to_epoch_UTC(int day,

int nonth,
int vyear,
int hour,

int mnute,
int second)

A Gregorian (wall calendar) date/time is input. Output is torresponding Unix epoch second (seconds since
00:00 01-Jan-1900 GMT).

This routine is the same as_gnt t mt o_ti me_t (), except that the input arguments do not have to be
marshaled into &t ruct tm

jn_julian_day_to_gregorian_dmy(

long jul_day, /* Convert julian day to equivalent */

int *day, /* 1 origin day of nmonth (1-31), */
int *nonth, /* 1 origin nmonth (1=jan), and */
int *year) /* integer year (e.g., 1996). */

A Julian day is input as the first argument. The correspon@iregorian (wall calendar) day, month, and year
are returned. Note this is the real Julian day, not the dakief/ear, which is sometimes confusingly called the Julian
day or date.

21

long jn_gregorian_dmy_to_julian_day(

int day, /* Gven the year (e.g., 1996) and */
int nonth, /* the 1 origin nmonth (jan==1), and */
int year) /* 1 origin day (1-31), calculate */

/* the julian day. */

A Gregorian (wall calendar) day, month, and year are sugg@&input. Output is the corresponding Julian day.

22

9 Debugging Support

There are a number of internal debugging routines that haea kxposed at various times to external applications.
CurrentlysysCol | ect Checksun) is the only such routine.

voi d sysCol | ect Checksum(int i,
char *who)

This routine checksums all the compiled code in JN. SincesIé@d on systems without memory management,
this is useful in detecting bugs that corrupt code. Thisirmuvill print a message if the code checksum changes. The
arguments are arbitrary and identify the caller; they wdldchoed on the display.

23

10 Unimplemented sys api.h Functions

File sys api.h specifies an external API. If this API exists, the JVM can runwieeer, there are sonsys api.h APIs
that simply do not make sense in an embedded environmernseTbeatines have not been implemented. In most
cases they have been stubbed, that is, there is an impleineritat simply crashes the system after printing an error
message.

The unimplemented routines are:

syslnitializeLinker()
sysAddDLSegnent ()
sysSavelLDPat h()
sysDynanmi cLi nk()
sysBui | dName()

sysivapMem()
sysUnmapMent()
sysConmmi t Mem()
sysUncommi t Men()

sysExit()
sysAtexit()
sysAbort ()

sysGetM I Ii Ti cks()
sysTi me()
sysTimeM I 1is()
sysLocal time()
sysGntime()
sysStrftine()
syshktime()

Dynamic linking and virtual memory operations are not supgabby JN (and many other embedded systems).
RoutinesysExi t () would correspond to an orderly system shutdown. JN has nadskwn’ functionality.

24

