
JN External API

UCSC-CRL-97-17

Bruce R. Montaguey
Computer Science Department

University of California, Santa Cruz
brucem@cse.ucsc.edu

6 August 1997

Abstract

The Application Program Interfaces (APIs) developed for the UCSC Java Nanokernel (JN) are described. These
APIs provide an interface to a small embedded operating system developed at UCSC which runs on a ‘single-chip’
PC and supports a web server and web camera. These APIs include the APIs specified in the public JavaSoft JDK
host porting interface(sys api.h). These APIs enable execution of version 1.0.1 of the Java Virtual Machine (JVM).
The implementation of these APIs in 1996 was independent of the Java Green Threads API implementation. The
function, arguments, and return values of each API are described.
keywords: Java, JavaOS, JN, API.

1 Introduction

This document describes the Java Nanokernel (JN) Application Program Interface (API). The Java Nanokernel is a
small kernel implemented primarily to provide stand-alonesupport for version 1.0.1 of the Java Virtual Machine
(JVM). The JVM is a multithreaded interpreter which executes the Java programming language. As originally
implemented, the JVM depended on a multithreading C-runtime calledGreen Threads. The functions described in
this document were developed by linking Java without the Green Threads library, and then guessing at the missing
routine’s functionality by inspecting the calls made to themissing routines in the JVM source. Since much of the
functionality is very conventional, this reverse engineering process produced a system that almost worked. The initial
implementation was done deliberately without inspection of the Green Thread source so as not to be unduly biased by
its implementation approach; when bringing up the JVM on theresulting system a few Green Threads routines were
later examined to resolve specific compatibility issues. Naturally, the implementation of the JN API routines differs
from that of Green Threads due to the different target environments – JN runs stand-alone on bare hardware, while
Green Threads assumes it is running on top of Unix or another Unix-level virtual-memory operating system.

This API provides C ‘primitives’ that implement the concurrent programming mechanisms, low-level exception
handling mechanisms, and file handling mechanisms requiredby the JVM.

The routines documented here are intended to be called by C programs, specifically, the JVM Java Interpreter
itself. However, these routines have no specific dependencyon Java or the JVM, but are simply a particular interface
to a small embedded kernel.ySupported in part by a gift from National Semiconductor.

1

The API functions are divided as follows:� Thread support.� Monitor support.� File support.� Exceptions (software interrupts, that is,signals).� TCP/IP socket support.� Miscellaneous ‘Standard’ Unix Routines.� Time support.� Debugging support.

These routines are listed in the following table. The socketfunctions are ‘completely’ Unix compatible and are
not described in detail in this document. Routines in the following table that are marked with an ‘*’ are not necessary
in JN but are provided for compatibility with JVM on Unix, that is, in JN they exist but have no content.

Note well that a small number of routines that are realistically part of the required host porting interface (the
routines needed by the JVM) are not included insys api.h and references to such routines have been removed from
this document. However, most of these routines have to do with managing Unix processes, Unix asynchronous I/O,
and Unix signals. Many of these routines are simply not appropriate in an embedded system and have simply been
stubbed in the JN implementation.

2

sysThreadBootstrap *- Turn Unix process into first thread.
sysThreadInitializeSystemThreads *- Start clock, idle, garbage thread.

sysThreadSingle - Run exclusive (disable concurrency (the scheduler)).
sysThreadMulti - Enable concurrency.

sysThreadCreate - Create a new thread.
sysThreadInit *- Must call at start of new thread.
sysThreadExit - Terminate thread.
sysThreadSelf - Obtain caller’s thread ID.
sysThreadYield - Non-preemptive CPU yield.

sysThreadSuspend - Suspend a given thread.
sysThreadResume - Resume a suspended thread.

sysThreadSetPriority - Set thread’s priority.
sysThreadGetPriority - Get thread’s priority.

sysThreadGetBackPtr - Get thread context’s ‘cookie’.
sysThreadSetBackPtr - Set thread context’s ‘cookie’.

The cookie in a JN thread points to a high-level
interpreted thread context inside the JVM.

sysThreadCheckStack - Return 1 if stack has space.

sysThreadPostException - Trigger an exception in a thread.

sysThreadStackBase - Return thread’s stack base.

sysThreadStackPointer - Get thread’s current stack pointer.

sysThreadEnumerateOver - Iterate a function over all threads.

sysThreadDumpInfo - Thread dump stub.

sysMonitorInit - Initialize a semaphore.

sysMonitorEnter - P(). Enter a critical section.
sysMonitorExit - V(). Leave a critical section.
sysMonitorDestroy - V(). Leave a semaphore and determine

if its still being used.
sysMonitorEntered - True if caller owns the semaphore.

sysMonitorWait - Internal wait for a notify or a given time.
sysMonitorNotify - Unblock head of internal wait queue.
sysMonitorNotifyAll - Unblock all internal waiters.

sysMonitorSizeof - Obtain sizeof(semaphore).

sysMonitorDumpInfo - Dump semaphore and waiters.

3

sysInitFD - Initialize file descriptor.
sysMode_Line - Read and write lines.
sysMode_Byte - Read and write single ‘raw’ bytes.
sysOpen - Open or Create a file.
sysOpenFD - "
sysClose - Close a file.
sysCloseFD - "
sysRead - Read a file.
sysReadFD - "
sysWrite - Write a file.
sysWriteFD - "
sysLseek - Set current file position.
sysLseekFD - "
sysAvailable - Determine bytes till end of file.
sysAvailableFD - "

sys_set_exception - Specify a software interrupt handler.

sysInterruptsPending - Returns True if pending software interrupts
exist for a thread.

intrLock - Disable software interrupts within the
thread.

intrUnlock - Enable software interrupts within the
thread.

htonl - Host to network endian conversion of 32-bit long.
ntohl - Network to host endian conversion of 32-bit long.

accept - Server-side passive socket connect, i.e., open.
bind - Bind a port to a socket.
close_s - Close a socket.
connect - Client-side active socket connect, i.e., open.

getpeername - Get information about other side of connection.
getsockname - Get socket information.
listen - Specify supported number of simultaneous passive connects.

sock_shutdown - A number of ways to close a socket, including abort.
socket - Create a socket.

sockkick - Force a retransmission over a connection.
socklen - Get send or receive queue length associated with a socket.
socketpair - Create 2 connected sockets on the same machine.

recv - Receive data over a connected socket (usually TCP).
recvfrom - Receive a datagram (usually UDP).

send - Send data over a connected socket (usually TCP).
sendto - Send a datagram (usually UDP).

4

jn_malloc - Allocate memory.
sysMalloc - "

jn_free - Free allocated memory.
sysFree - "

jn_realloc - Change size of allocated memory.
sysRealloc - "

sysCalloc - Allocate and zero memory.

perror - Print an error and halt.

printf - Formated output.
fprintf - Formated output to a file.

fstat - Get file statistics (length).
sysStat - "

sysMkdir - Create a directory.

sysUnlink - Delete a file.

strdup - Duplicate a string.

sysPutenv - Create an environmental variable.
sysGetenv - Get the contents of an environmental variable.

gettimeofday - Get the time, in seconds and milliseconds.

jn_gmt_tm_to_time_t - Convert ‘calendar time’ to Unix ‘epoch’ time.
jn_gmt_dmyhms_to_epoch_UTC - " without the need for an intermediate structure.
jn_julian_day_to_gregorian_dmy - Convert Julian day to ‘calendar time’.
jn_gregorian_dmy_to_julian_day - Convert a ‘calendar day’ to a Julian day.

sysCollectChecksum - Checksum all the code in the system.

5

2 Thread Calls

This section describes Thread APIs. These APIs are rather conventional light-weight multithreading primitives.

int sysThreadBootstrap(Thrd **thrd);

This routine turns the executing Unix process into the initial thread, returning the thread ID of the new thread.
Under JN, this call simply returns the ID of the executing thread.

returns: return code, setsthrd to the thread ID of the new thread.
return val: SYS OK – Completed normally.

void sysThreadInitializeSystemThreads();

The internal threads used by the threading package are initialized. A clock thread, idle thread, ‘finalization’
thread, and garbage collection thread are created. Under JN, this call is not needed for correct execution. It is
included only to satisfy the reference of the Java Interpreter.

returns: none.

int sysThreadSingle();

Threads can run exclusive by starting a critical section withsysThreadSingle() and ending the critical
section withsysThreadMulti(), that is, this routine disables active multithreading. Code that calls this routine
should always terminate the resulting critical section with asysThreadMulti() call.

This routine works by disabling the scheduler. Interrupts are still enabled. No thread other than the invoking
thread will be run, not even the null thread. The invoking thread can continue to issue all JN API calls. If there are no
runnable tasks, the kernel waits for an event to ready the invoking thread.

returns: This call always returnsSYS OK.

void sysThreadMulti();

Threads can run exclusive by starting a critical section withsysThreadSingle() and ending the critical
section withsysThreadMulti(), that is, this routine resumes active multithreading.

returns: There are no return values. It is a system error if this call does not match a preceding
sysThreadSingle() call.

int sysThreadCreate(long stack_size,
unsigned int flags,
void *(*start)(void *),
Thrd **thrd,
void *argument);

Creates a suspended new thread with a stack of the indicated size. The thread ID is returned via argumentthrd.
Thread execution will begin at addressstart, which should be the address of a C subroutine. A
sysThreadCreate() call should be followed by asysThreadResume()when the caller wishes to activate
the newly created thread.

The singleargument is passed on the new thread’s call stack to the routine at addressstart.
All thread’s contain acookie. Thecookie is an arbitrary pointer stored in the thread’s context. It can be set and

obtained bysysThreadSetBackPtr() andsysThreadGetBackPtr().

6

New threads always start executing atNORM PRIORITY, that is, priority 5. The child’s priority can be altered
by sysThreadSetPriority(). Note that the parent of a thread can alter the priority of a newly created child
before the child ever executes, assysThreadCreate() does not block the parent. If the parent sets the priority of
a child higher than the parent itself, the child is eligible to run before thesysThreadSetPriority() in the
parent returns.

The only supportedflags value isTHR USER,which indicates that this is not a system thread.
return values:� SYS ERR – Couldn’t do it.� SYS OK – Normal completion.

void sysThreadExit();

This thread is called automatically when the initial threadfunction returns (i.e., the routine specified in the
sysThreadCreate() ‘returns’ to a call of this function. This function frees allthread resources and terminates
the thread. There are no return values and no errors returned).

Monitors that are owned by the thread are not automatically freed. RoutinesysMonitorDestroy() can be
called to force a given thread to release a given monitor.

This routine can be called directly, although the recommended means of terminating from a thread is to return
from the top level, that is, from the routine specified in thesysThreadCreate().

There is no way to force termination of an arbitrary thread via the API.
returns: none.

Thrd *sysThreadSelf();

Returns thethread ID of the executing thread. JN thread IDs are simply pointers tothe internal thread data
structure, which is a potential security risk.

returns: The thread ID is the only return value.

void sysThreadYield();

This call simply yields the processor. The running thread that makes this call goes ‘to the end of the line’ behind
other threads at the same priority level that are ready to execute, if any exist. If there are no other runnable threads,
the current thread continues executing.

This call implements non-preemptive ‘round-robin’ scheduling.
The thread is only rotated to the ‘end-of-the-line’ with respect to threads at its current priority level.
returns: There are no return values from this call.

7

int sysThreadSuspend(Thrd *thrd);

This call suspends the indicated thread, which may be that ofthe caller. If the indicated thread exists, it is placed
in aSUSPENDED state where it is never eligible for execution.

A sysThreadResume() call must be made to resume execution of the suspended thread. If the target thread
is the caller itself, the return fromsysThreadSuspend()will not occur until after asysThreadResume()
has reactivated the thread.

return values:� SYS ERR – It couldn’t be done.� SYS OK – Success.

int sysThreadResume(Thrd *thrd);

The indicated thread, which should beSUSPENDED, is resumed, that is, it is made eligible for execution. It is
not an error if the thread is not suspended - the call is simplyignored.

A thread is suspended by callingsysThreadSuspend().
return values: SYS OK – Success.

int sysThreadSetPriority(Thrd *thrd,
int priority);

The priority of the indicated thread is changed. The target thread need not be the caller. If the target thread is the
caller, the effect of the priority change occurs immediately, which may result in the caller losing control of the
processor.

To be compatible with Java,MIN PRIORITY is defined as 1,MAX PRIORITY is defined as 10, and
NORM PRIORITY is defined as 5. The highest priority thread is selected for execution. New threads are created
initially at NORM PRIORITY, that is, at priority 5.

Errors are considered fatal.
return values: SYS OK – Success.

int sysThreadGetPriority(Thrd *thrd,
int *priority);

The priority of the indicated thread is returned via thepriority argument.
Errors are considered fatal.
return values:
SYS OK – Success.

void *sysThreadGetBackPtr(Thrd *thrd);

Thecookie argument stored in the indicated thread’s context by asysThreadSetBackPtr() call is
returned.

returns: The cookie value. There are no status return values.

8

void sysThreadSetBackPtr(Thrd *thrd,
void *new_cookie);

Thecookie field in the indicated thread’s context is set to thenew cookie argument.
returns: There is no return status. A bad thread pointer is considereda fatal error.

int sysThreadCheckStack();

This function returns a 1 if the amount of free space in the caller’s stack is greater than JN sysgen manifest
constantSTACK REDZONE, otherwise it returns a 0. The default JNSTACK REDZONE is 4K.

returns:� 0 - No stack space left.� 1 - Stackspace is left.

void sysThreadPostException(Thrd *thrd,
void *exception);

This call posts an exception to a thread, that is, it triggersan exception handler to run in thread’s context. It is
not clear that Java has defined a standard portable method fordealing with this yet....

returns: none.

void *sysThreadStackBase(Thrd *thrd);

This call returns the base address of the stack for the indicated thread, that is, the address from which the stack
growsdown.

returns: The top stack address. There are no status return values. A bad thread address is considered a fatal
error.

void *sysThreadStackPointer(Thrd *thrd);

This call returns the current stack pointer of the indicatedthread, which can be that of the caller.
returns: The stack pointer. There are no status return values. A bad thread address is considered a fatal error.

int sysThreadEnumerateOver(int (*func)(Thrd *, void *),
void *arg);

This routine provides an iterator that applies a function toall threads. For each existing thread, the
application-supplied user function indicated by argumentfunc is called. The user function is supplied 2 arguments,
the address of the thread and the pass-through argumentarg.

The address of the thread is the thread ID, so the user function receives a different thread ID every time it is
called.

In addition to the application-level context, thearg argument can be used to specify arbitrary arguments to the
user-level routine. This pointer can be used to point to whatever data, data structures, or command blocks that the
user desires.

returns:

9

If the application-supplied function (that is, the function supplied by the caller) does not returnSYS OK, the
enumeration stops. If this occurs,sysThreadEnumerateOver() returns the return code generated by the user
function. If all calls to the user function returnSYS OK, sysThreadEnumerateOver() returnsSYS OK.

void sysThreadDumpInfo(Thrd *thrd);

In JN this routine produces a dump of the thread control blocks.

10

3 Monitor Calls

Althoughmonitors are perhaps the most ubiquitous modern concurrent programming construct, monitor details often
vary. In this section, amonitor can be considered a critical section associated with two semaphores. One semaphore
guardsexternal entrance into the critical section, and the other, which starts with a value of 0 (unavailable), is used to
guardinternal access. To enter a critical section, a thread must use the external semaphore and
sysMonitorEnter(). Only one thread can be inside a critical section at a time. Once inside the critical section,
if the active thread must wait for some occurrence (an I/O completion or a change in the content of a data structure,
etc.), it usessysMonitorWait() to put itself on theinternal semaphore queue, while releasing its hold,
atomically, on the external semaphore. Thus an external thread that was forced to wait can enter the critical section.
Whenever a thread usessysMonitorExit() to leave the critical section, as with any semaphore operation,
another thread waiting on the external semaphore proceeds into the critical section.

Threads waiting on the internal semaphore are only reactivated by an explicitsysNotify() or
sysNotifyAll() operation. Essentially this is a semaphoreV() operation on the internal semaphore. An active
routine that completes an activity upon which some thread may be internally waiting issues these calls. These calls
simply move the thread waiting internally to the end of the external wait queue. When each waiting thread moves to
the head of the external wait queue, its execution resumes atthe point inside the critical section where it waited for
the needed resource or event.

A sysNotify() or sysNotifyAll() can only be performed by a thread that is inside the critical section.
Race conditions in whichsysNotify() is called before what should be the correspondingsysMonitorWait()
can thus be avoided by correct programming. However, a newlyactivated thread that has become unblocked should
always recheck the condition on which it was waiting. Such a thread cannot tell if asysNotify() or
sysNotifyAll() activated it, and in the case ofsysNotifyAll() the resource may not be available by the
time the thread actually resumes running in the critical section.

int sysMonitorInit(Monitor *sem,
bool_t in_cache);

If thein cache flag is non-zero, the semaphore flags are markedSYS MON IN CACHE, indicating that this is
a dynamic monitor that will be deleted when no longer needed. Thesem argument points to a JNSem structure that
is to be initialized. This structure is allocated by the application. The application should be careful not to allocate this
structure as an automatic on the C stack and then continue to use it after returning from the function that allocated it.

This routine does not invoke the JN kernel; it simply performs data structure initialization.
returns: This function always returnsSYS OK;

int sysMonitorEnter(Monitor *sem);

If the critical section guarded by the semaphore indicated by sem is not in use, this call lets the calling thread
enter the critical section. Otherwise, the caller is blocked and queued on the external waiting queue of the indicated
semaphore. This call must always be followed by asysMonitorExit() at the end of the critical section protected
by the semaphore.

A badsem address is considered a fatal error.
returns: This function always returnsSYS OK. This function only returns when the caller is allowed to proceed

within the critical section.

int sysMonitorExit(Monitor *sem);

This routine is called to exit a critical section controlledby the indicated semaphore. The caller must have
previously acquired the semaphore viasysMonitorEnter(). If any threads are blocked on the external wait
queue of the semaphore, one will be selected to proceed when the caller leaves the critical section. Any threads
waiting on the internal wait queue of the semaphore are unaffected.

11

If no threads are waiting on the semaphore, and the semaphoreis markedSYS MON IN CACHE, this call returns
with SYS DESTROY, indicating to higher-level routines that the semaphore data structure can be deallocated if need
be. To safely use monitors in such a fashion, either a safe programming convention can be used which assures there
can be no race condition (the monitor is only deleted when thelast thread using it receives aSYS DESTROY), or a
static monitor can guard entrance, exit, allocation, and deallocation of the code guarded by one or more dynamic
monitors.

returns:� SYS ERR – The caller does not own the indicated semaphore.� SYS DESTROY – The caller successfully exited the critical section, thein cache flag was non-zero on the
originalsysMonitorInit() call, and no other thread was unblocked to enter the criticalsection.� SYS OK – The caller successfully exited the critical section and another thread was unblocked to enter the
critical section.

int sysMonitorDestroy(Monitor *sem,
Thrd *thrd);

This routine is used when deleting a thread. This call does not deallocate the semaphore. Rather, it can be
considered a forcedsysMonitorExit() on a thread with respect to a given semaphore.

If the specified thread owns the indicated semaphore, that is, is inside the critical section and not waiting, the
effect of this call is as ifsysMonitorExit() had been called by the specified thread. The thread releases control
of the semaphore. If no other threads exist on any of the semaphore’s wait queues,SYS DESTROY is returned,
potentially indicating that semaphore usage is complete and that the application can deallocate the semaphore. If
other threads exist on the semaphore’s wait queues,SYS OK is returned, and the head of the external wait queue is
unblocked to enter the critical section.

If the specified thread does not own the indicated semaphore,this call has no effect. Presumably, this is because
a thread never is terminated while in a wait state.

returns:� SYS OK – If the caller does not own the indicated semaphore, this call has no effect. If the caller owns the
semaphore, thesysMonitorDestroy() failed in the sense that the semaphore cannot be deleted – it
performed asysMonitorExit() function instead, releasing another thread to enter the critical section.� SYS DESTROY – No threads are waiting on the semaphore, it can be removed.

bool_t sysMonitorEntered(Monitor *sem);

This function returns True (1) if the caller owns the semaphore (is currently in the critical section). The return
type is defined as an integer flag.

returns:� 1 – in the critical section controlled bysem.� 0 – not in the critical section controlled bysem.

int sysMonitorWait(Monitor *sem,
int millis);

12

A thread inside a critical section uses this call to block andawait either an event or the specified number of
milliseconds. The caller waits on the semaphore’s internalwait queue. After thesysMonitorWait() call, the
event is triggered by asysNotify() or sysNotifyAll() call. Such a call is issued by some other active
thread, which owns the semaphore at the time it performs the notify.

When activated by either a notification event or the passage of the indicated time interval, the thread is placed on
the semaphore’sexternal wait queue. This queue contains threads waiting to run, one at a time, in the critical section.

ThesysMonitorWait() call places the calling thread on an the internal wait queue associated withsem.
The thread must have already entered the critical section viasysMonitorEnter(). Typical reasons to use wait
include awaiting I/O completion, waiting for data to be placed in an input buffer, and so on.

If themillis argument is specified asSYS TIMEOUT INFINITY, there is no timeout associated with the
wait.

The internal wait queue is not a counted semaphore, thus asysNotify() call or event completion that
precedes thesysMonitorWait() has no effect. For this reason, and also because asysNotifyAll() unblocks
all threads waiting on the semaphore’s internal queue, codethat performs asysMonitorWait() should not
assume that it has been correctly unblocked. Rather, it should always explicitly check that the condition on which it
has waited has actually occured, and if it has not, it should reissue thesysMonitorWait() call.

returns:� SYS ERR – The caller must own the indicated semaphore.� SYS OK - Normal completion, which indicates that the wait has completed. Either the event has occured or the
specified time interval has passed.

int sysMonitorNotify(Monitor *sem);

The thread at the head of the semaphore’s internal wait queueis put on the semaphore’s external wait queue.
Each semaphore has both an external and internal wait queue.The external queue contains threads waiting to run in
the critical section controlled by the semaphore. The internal queue is used by threads which, while they were inside
the critical section, needed to block awaiting either an event or passage of a particular time interval.

sysMonitorNotify()must be called by code that is inside the critical section. Itis common, for instance,
for code that entered the critical section and wrote some data into a data structure, to callsysMonitorNotify()
before it callssysMonitorExit(). Thus, a thread that entered the critical section to read data from the data
structure, but found none and thus calledsysMonitorWait(), will be unblocked and can proceed.

returns:� SYS OK – Normal completion.� SYS ERR – The caller does not own the semaphore.

13

int sysMonitorNotifyAll(Monitor *sem);

All threads waiting on a semaphore’s internal wait queue aremoved to the semaphore’s external wait queue. See
sysMonitorNotify(). This call is identical tosysMonitorNotify() except that all threads on the internal
wait queue are unblocked. Each unblocked thread, as it ‘awakes’ within the critical section, must recheck conditions
to see if it can proceed or if it should issue anothersysMonitorWait().

returns:� SYS OK – Normal completion.� SYS ERR – The caller does not own the semaphore.

int sysMonitorSizeof();

This routine is simply a cover function forsizeof(Monitor). Since semaphore data structures are allocated
at the user level, this call is used so that high-level routines can determine the size of the data structure they must
allocate.

void sysMonitorDumpInfo(Monitor *sem);

This is a debug routine that dumps the owner of a semaphore andthe threads on the semaphore’s wait queues.

14

4 File Calls

Thesys api.h porting interface describes a set of file management functions that map almost directly into standard
Unix file APIs. There are 2 sets of routines that are identical except that in one case the name is followed withFD,
that is,sysOpen() becomessysOpenFD(). Additionally,sysOpenFD() has an additional first argument,
which is the address of a 32-bit int that is to receive the file handle.

JN files are simply in-memory queues (RAM files). These queuesshare Unix file semantics. EachsysOpen()
returns a unique file handle that has a unique position withinthe file. Files are simply byte-streams. Arbitrary byte
substrings can be read from and written to the file.

JN files need not be contiguous, that is, Unix sparse file semantics are supported.
JN files are implemented as queues ofsegments. A segment is a buffer descriptor. Although most segment

buffers are allocated from a fixed array, buffer segments canbe variable length and can thus be used to describe
preloaded files that are linked into a single buffer in the system image.

All file I/O is currently synchronous – it is just a buffer copyto or from the appropriate location in the queue.

void sysInitFD(int *fdptr,
int descr);

This call provides a way for a thread to support Unix stylestdin, stdout, andstderr file handles.
Normally JN generates an arbitrary non-zero 32-bit file handle. However, these 3std handles, by Unix convention,
always have the values of 0, 1, and 2.

A JN thread can call this function 3 times, withdescr arguments of 0, 1, and 2, and get back file handles that
correspond to standard input, output, and error.

returns: File descriptorfdptr is set. There are no status return values.

int sysMode_Line(int *fdptr);

The specified handle is set toline mode. This is only useful for the serial (uart) driver. The driverwill read and
accumulate characters until a carriage return (C ’nr’, 0x0D) is encountered. A read request can thus read an entire
line of characters. Likewise, and entire buffer can be written in a single write request.

In line mode, a terminating carriage return is converted to aline feed (C ’nn’, 0x0A).
returns: Zero is returned on success.

int sysMode_Byte(int *fdptr);

The specified handle is set tobyte mode. This is only useful for the serial (uart) driver. In byte mode, reads
complete when a single character is available, and the driver does character processing - input characters are returned
to the application exactly as received, including XON-XOFFflow control characters. Likewise, application output
characters are not altered in any way by the driver.

returns: Zero is returned on success.

int sysOpen(char *fname,
int flags,
int mode);

int sysOpenFD(int *fdptr,
char *fname,
int flags,
int mode);

15

Open the file identified byfname using the specifiedflags andmode. The file handle for the new file is
returned. In the case ofsysOpenFD() the file handle is also returned in the 32-bit location specified by the first
argument. This returned file handle will never be null.

JN file descriptor structures consist only of a single integer which contains the file handle.
The only flag currently supported isO CREAT, which causes a new file to be created.
Note this call can create and overwrite files.
returns:� Upon success the file handle is returned. The file handle is an integer greater or equal to 0.� -1 – This is the value ofSYS ERR, and is returned on error.

int sysClose(int *fdptr);
int sysCloseFD(int *fdptr);

The specified file is closed.
Note that if real async I/O is supported, multiple readers may be in the process of reading, so the file is simply

marked as closing, and the file is actually closed when the filedescriptor usage count falls to zero at the end of an I/O.
returns:� SYS ERR on error.� SYS OK on success.

int sysRead(int *fdptr,
char *buf,
int nbytes);

int sysReadFD(int *fdptr,
char *buf,
int nbytes);

The given number of bytes,nbytes, are read from the file designated by the handle infdptr into user buffer
buf. The bytes are read starting at the location at which the file handle is initially located. The current file position of
the handle is set to the location one byte past the last byte read.

returns:� The number of bytes read are returned on success.� SYS ERR – (-1) is returned on failure.

int sysWrite(int *fdptr,
char *buf,
int nbytes);

int sysWriteFD(int *fdptr,
char *buf,
int nbytes);

The given number of bytes,nbytes, are written from the user bufferbuf to the file designated byfdptr. The
bytes are written to the location at which the file handle is initially located. At the end of the write, the handle’s
current file position is set to the location one byte past the last byte written.

16

returns:� The number of bytes written are returned on success.� SYS ERR – (-1) is returned on failure.

int sysLseek(int *fdptr,
long offset,
long whence);

int sysLseekFD(int *fdptr,
long offset,
long whence);

The current file position in the indicated file is set to the location specified by theoffset argument. The
whence argument indicates the interpretation of the offset:� SEEK SET - The offset is absolute, that is, the exact file address.� SEEK CUR - The offset is relative to the current file position.� SEEK END - The offset is relative to the end of the file.

ThesysLseek() call can set the file position to beyond the current end of file,and to a negative file location.
This is not considered an error.

returns:
The new file location. ASYS ERR (-1) is returned if the file descriptor is not valid.

int sysAvailable(int *fdptr,
long *pbytes);

int sysAvailableFD(int *fdptr,
long *pbytes);

The number of bytes which remain in the file between the current file position and the end of the file are returned
via argumentpbytes.

returns:
A 0 is returned on any failure. A 1 is returned on success.
NOTE!! — These return values are not consistent with other return code usage.SYS OK is defined as 0, and

SYS TIMEOUT as 1. Note that 0 is returned onfailure .

17

5 Exception/Signal Calls

JN supports software interrupts. As with a real hardware interrupt, a software interrupt is a routine that is to be run
whenever some condition occurs. Each thread can establish its own set of software interrupt handlers.

When the system detects an exception, that is, a software interrupt condition such as a divide-by-zero, if the
corresponding thread has a handler for the exception, JN queues a software interrupt notification to the thread. The
handler will execute as soon as the thread becomes the highest priority executable thread.

As with real interrupts, software interrupt handlers run onthe stack below the normal thread stack pointer. A
handler can execute all JN APIs. A handler is simply a normal C subroutine, externally indistinguishable from any
other subroutine used by the thread, that is, handler code isidentical to ‘normal’ code. The programmer should keep
in mind, however, that the handler may run at any point in the execution of the thread, unless exception handling is
explicitly disabled as described in the following section.

int sys_set_exception(int exception_number,
void (*handler)(void))

A routine in the calling thread, specified by argumenthandler, will be called when the exception indicated by
exception number occurs. The exception handler remains in effect for all occurrences of the specified exception
with respect to the calling thread, untilsys set exception() is called with thehandler argument set to 0.

JN exception numbers are arbitrary integers. Currently, one is predefined injn.h, EXP DVZ (divide by zero).

int sysInterruptsPending();

Returns True (1) if the invoking thread has pending softwareinterrupts. A thread may have pending software
interrupts since software interrupts are delivered one-at-a-time to the thread and execute to completion. In addition,
the thread can disable delivery of software interrupts by calling intrLock(), for instance, if it is updating a
memory resident data structure that an exception handler will also update.

void intrLock(void);

This routine disables all software interrupt delivery to the invoking thread. Software interrupts are still queued to
the thread, however, their delivery is postponed until anintrUnlock() call occurs. AnintrLock() call should
always be followed by anintrUnlock() call.

TheintrLock() call is typically used when a thread is going to perform an operation, such as executing a
critical section, in which delivering a software interruptcould cause some concurrency problem. In this case,
intrLock() is used to defer software interrupts until theintrUnlock() issued after exiting the critical section.

void intrUnlock(void);

Enable all software interrupts. This routine is called after deferring software interrupt delivery by a call to
intrLock(). Any pending software interrupts will be delivered to the thread that issues this call before the call
returns. Since software interrupts can queue to the thread,a given thread’s software interrupt handler may execute
more than once. For instance, aSIG ALARM handler may have a number ofALARM interrupts to handle.

returns: None, however, if any pending software interrupts exist, this call will not return until all software
interrupts have been handled, that is, after the thread’s handler routines have run and processed all pending software
interrupts.

18

6 Standard Unix Socket Programming Functions

The following routines provide a standard C socket programming interface. These routines are the API to the KA9Q
networking code. These routines have been made as equivalent to the corresponding Unix calls as possible. You
should be able to use Unixman to obtain descriptions of all the following routines.

long htonl(long input)
unsigned int ntohl(unsigned int i_val)

int accept(int s,struct sockaddr *peername,int *peernamelen);
int bind(int s,struct sockaddr *name,int namelen);
int close_s(int s);
int connect(int s,struct sockaddr *peername,int peernamelen);

int getpeername(int s,struct sockaddr *peername,int *peernamelen);
int getsockname(int s,struct sockaddr *name,int *namelen);
int listen(int s,int backlog);

int sock_shutdown(int s,int how);
int socket(int af,int type,int protocol);

int sockkick(int s);
int socklen(int s,int rtx);

int socketpair(int af,int type,int protocol,int sv[]);

int recv(int s,void *buf,int len,int flags);
int recvfrom(int s,void *buf,int len,int flags,

struct sockaddr *from,int *fromlen);

int send(int s,void *buf,int len,int flags);
int sendto(int s,void *buf,int len,int flags,

struct sockaddr *to,int tolen);

19

7 Miscellaneous ‘Standard’ Unix Routines

The following routines are simple equivalents of the corresponding Unix functions:

char *jn_malloc(int num_bytes_needed)
char *sysMalloc(int num_bytes_needed)

void jn_free(char *p)
void sysFree(char *p)

char *jn_realloc(char *p,
int num_bytes)

void *sysRealloc(void *p,
size_t num_bytes)

char *sysCalloc(int num_elements,
int num_bytes)

void perror(char *msg)

void printf(const char *fmt, ...)
void fprintf(int handle,

const char *fmt, ...)

int fstat(int handle,
struct stat* st)

int sysStat(char *path,
struct stat *s)

int sysMkdir(char *path,
int mode)

int sysUnlink(char *path)

char *strdup(char *p)

int sysPutenv(char *env_string)
char *sysGetenv(char *name_string)

These routines are all intended to work exactly as their Unixcounterparts, that is, you can determine their
functionality by doing a Unixman for the equivalent Unix routine. In some cases, such asstrdup(), JN provides
the routine simply because it was not included in one of the embedded development environments that we were using.

ThesysMkdir() routine does nothing and always returns success. File namesin JN can be up to 128
characters long and can contain Unix style directory separators (that is, the"/"). Thus, there is no need in JN to
create a directory before populating it with files.

The environment string routinessysPutenv() andsysGetenv() work as in Unix. The string input to
sysPutenv() has a"name=value" format. AsysGetenv() routine can later supply thename and will
retrieve the associatedvalue. There is only one global environmental string table.

Routinesfstat() andsysStat() can be be used to obtain file sizes.
Routineperror() prints a message and crashes the system.

20

8 Time Functions

Getting time routines correct is probably one of the harder things in system software. Doing time really right can be
difficult because there are a number of special cases (does your city not observe daylight savings time, even though
your state does?). Are leap years and leap seconds handled OK? Even parsing and formating time and dates can be
interesting (seestrftime()). To see how complex this can become, examine thezic command on OSF Unix
machines, which is basically an expert system compiler.

JN currently provides minimal time support. The JNgettimeofday() API routine is basically ‘Berkeley
compatible’. The time routines used in JN were originally, long ago (years ago), based on an astronomy handbook
with code in Basic or a calculator language; I forget the details. The code is almost a verbatim translation. I believe
the author was French or Belgian.

In the following, Unix time (seconds since 00:00 1-Jan-1970at Greenwich (GMT)) is calledepoch time. The
Julian day is the number of days since 12:00 (noon) 1-Jan-4713 BC at Greenwich.

gettimeofday(struct timeval *tv,
struct timezone *tz)

As in Unix, the current system time is returned in thetimeval structure as 2 32-bit values, withtv sec
containing the current Unix epoch seconds (seconds since 00:00 01-Jan-1900 GMT), andtv usec containing the
number of milliseconds since the last epoch second.

WARNING: the values returned in thetimezone structure are currently hard-coded to UCSC, that is,
tv minuteswest is set to 8 (we are 8 hours west of Greenwich). The daylight savings flag,tz dsttime, is set
to 0.

time_t jn_gmt_tm_to_time_t(struct tm *tm)

The Gregorian date/time (normal wall calendar date/time) that is stored in thetm structure is converted into
Unix epoch seconds (seconds since 00:00 01-Jan-1900 GMT). This 32-bittime t value is returned.

long jn_gmt_dmyhms_to_epoch_UTC(int day,
int month,
int year,
int hour,
int minute,
int second)

A Gregorian (wall calendar) date/time is input. Output is the corresponding Unix epoch second (seconds since
00:00 01-Jan-1900 GMT).

This routine is the same asjn gmt tm to time t(), except that the input arguments do not have to be
marshaled into astruct tm.

jn_julian_day_to_gregorian_dmy(

long jul_day, /* Convert julian day to equivalent */
int *day, /* 1 origin day of month (1-31), */
int *month, /* 1 origin month (1=jan), and */
int *year) /* integer year (e.g., 1996). */

A Julian day is input as the first argument. The correspondingGregorian (wall calendar) day, month, and year
are returned. Note this is the real Julian day, not the day of the year, which is sometimes confusingly called the Julian
day or date.

21

long jn_gregorian_dmy_to_julian_day(

int day, /* Given the year (e.g., 1996) and */
int month, /* the 1 origin month (jan==1), and */
int year) /* 1 origin day (1-31), calculate */

/* the julian day. */

A Gregorian (wall calendar) day, month, and year are supplied as input. Output is the corresponding Julian day.

22

9 Debugging Support

There are a number of internal debugging routines that have been exposed at various times to external applications.
CurrentlysysCollectChecksum() is the only such routine.

void sysCollectChecksum(int i,
char *who)

This routine checksums all the compiled code in JN. Since JN is used on systems without memory management,
this is useful in detecting bugs that corrupt code. This routine will print a message if the code checksum changes. The
arguments are arbitrary and identify the caller; they will be echoed on the display.

23

10 Unimplemented sys api.h Functions

File sys api.h specifies an external API. If this API exists, the JVM can run. However, there are somesys api.h APIs
that simply do not make sense in an embedded environment. These routines have not been implemented. In most
cases they have been stubbed, that is, there is an implementation that simply crashes the system after printing an error
message.

The unimplemented routines are:

sysInitializeLinker()
sysAddDLSegment()
sysSaveLDPath()
sysDynamicLink()
sysBuildName()

sysMapMem()
sysUnmapMem()
sysCommitMem()
sysUncommitMem()

sysExit()
sysAtexit()
sysAbort()

sysGetMilliTicks()
sysTime()
sysTimeMillis()
sysLocaltime()
sysGmtime()
sysStrftime()
sysMktime()

Dynamic linking and virtual memory operations are not supported by JN (and many other embedded systems).
RoutinesysExit()would correspond to an orderly system shutdown. JN has no ‘shutdown’ functionality.

24

