
Ray-based Data LevelComparisons ofDirect Volume RenderingAlgorithmsKwansik Kim and Alex PangUCSC-CRL-97-15Baskin Center forComputer Engineering & Information SciencesUniversity of California, Santa CruzSanta Cruz, CA 95064 USAabstractThis paper describes and demonstrates the e�ectiveness of several metrics for data levelcomparison of direct volume rendering (DVR) algorithms. The focus is not on speedups from approximations or implementations with parallel or specialized hardware, butrather on means for comparing resulting images. However, unlike image level comparisons,where the starting point is 2D images, the main distinction of data level comparison isthe use of intermediate 3D information to produce the individual pixel values during therendering process. In addition to identifying the location and extent of di�erences in DVRimages, these data level comparisons allow us to explain why these di�erences arise fromdi�erent DVR algorithms. Because of the rich variety of DVR algorithms, �nding a commonframework for developing data level comparison metrics is one of the main challenges andcontribution of this paper. In this paper, we report on how ray tracing can be used as acommon framework for comparing a class of DVR algorithms. While this paper focuseson comparing di�erent DVR algorithms, we believe that similar metrics and comparisontechniques are also useful for volumetric data comparisons. For example, comparison ofexperimental versus simulated data sets, or forecasted versus observed data sets, etc.



2. PREVIOUS WORK 1Key Words and Phrases: Scienti�c visual-ization, uncertainty, error, di�erence, similarity,metrics.1 INTRODUCTIONDirect volume rendering (DVR) is one of themost popular methods for visualizing 3D scalardata sets. It generates images directly from thedata values without creating intermediate geo-metric representations. The basic idea behindDVR is the simulation of light interaction withmatter [1, 4, 7]. DVR is also a view-dependentapproach requiring recalculation each time theview point is changed. Because of the view-dependent nature and the calculations involvedwith reasonably sized 3D data sets, DVR is arelatively expensive approach. This has in turnspurned numerous research with the general goalof speeding up the process without sacri�cing theimage quality.A sampling of the variations for DVR includeschemes like di�erent transfer functions and op-tical models, ray casting with sampling at cellfaces, ray casting with regular sampling, pro-jection splatting, coherent projection, Fouriervolume rendering, use of 3D textures, dedi-cated volume hardware, taking advantage of spa-tial coherency with octree, binary space par-titioning, etc. parallelization with shear-warp,permutation-warp, multi-pass forwards, forwardswavefront, forwards splatting, backwards, etc.,extensions to curvilinear grids, and combinationsof the above [3, 13, 16, 8, 18, 6, 19, 21, 10, 5, 2,11, 17].Unfortunately, this plethora of DVR meth-ods produce images that are di�erent from eachother. In critical applications such as clinicalmedical imaging where DVR is the method ofchoice, this can be very disconcerting. Fortu-nately, more and more DVR papers address theissue of image quality. But in those that do,the norm is to use image level comparisons, andsometimes at the image summary level at best.There are inherent limitations to image levelcomparisons. For example, while image levelcomparisons can provide information as to thelocation and degree by which two images di�er,they do not provide any information as to whythe two images di�er. This paper addresses thisshortcoming by proposing the use of data levelcomparison techniques. The goal is that if two

images di�er in a signi�cant manner (e.g. pres-ence or absence of a tumor from 2 DVR images),we want to provide an explanation of the causefor such di�erence.The paper is organized into the following sec-tions: a summary of image level comparisons;what we mean by data level comparison; onespeci�c basis for comparing di�erent DVR algo-rithms; di�erent data level comparison metrics;and several examples illustrating the utility ofthese metrics.2 PREVIOUS WORKMost work in comparing DVR images are per-formed at the image level. The most popularmethod in this category is probably side-by-sidecomparison. Other methods include di�erenceimages, frequency domain analysis strategies, im-age processing based methods such as contraststretching, vision based methods such as auto-correlation and optical ow �elds, and summaryimage statistics which provide an aggregate mea-sure such as root mean square (RMS) calcula-tions. All these methods use images as theirstarting point for comparison.In the context of comparing DVR images, themain advantage of image level methods is theirexibility. For example, it is just as easy to com-pare a ray-based against another ray-based DVRimage as it is to compare images from ray-basedagainst a projection-based or transform-space al-gorithm. (See Figure 2.1). Its main drawback isthat it is operating at the image level and hencehas lost all the 3 dimensional information fromintermediate calculations. Furthermore, imagesmay need additional processing to register themor to reduce image distortions prior to performingimage level comparison. Finally, if the di�erencesare very small, image level comparisons are not ase�ective. One should also be aware of the limita-tions of summary statistics derived from images.It is possible to produce cases where the sum-mary statistics are the same, but the images areobviously di�erent [20].3 DATA LEVEL COMPARISONThe name data level comparison was inspiredby the work of Trapp and Pagendarm [15] wherethey used it in CFD applications. Data levelmethods incorporate intermediate and auxiliaryinformation in the rendering process and use this
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Figure 2.1: Example of image level comparisons side-by-side (top row) and di�erence images(bottom row). The top row shows results from three di�erent DVR algorithms: projection,ray casting with regular tri-linear sampling, and ray casting with bi-linear sampling at cellfaces. The bottom row shows di�erence images between the projection and regular samplingmethods, and between the regular ray samplings and the cell face intersection samplings.Intensity indicates amount of di�erence, while hues are determined by the signed di�erencein each color bank. The images does not provide any explanation for the horizontal andvertical striping artifacts.information to generate a data level comparisonimage. For example, [12] used surface radiosityvalues obtained from di�erent form factor calcu-lation methods as intermediate values availablefor a variety of visual mappings.In DVR, the intermediate information may in-clude items related to the data values or to thevolume rendering algorithm. For example, dis-tribution of cumulative opacities, feature or sim-ilarity vector of values that contributed to a ren-dered pixel, and maximal or minimal values alonga ray are examples of information related to datavalues. On the other hand, transfer functions,ray sampling locations and frequency, opacitythreshold, and projection �lters are examples ofinformation related to the volume rendering al-gorithm. It should be noted that in some casesthis distinction is blurred. In either case, theseinformation and others can be used in metrics for
generating data level comparisons which shouldprovide more in depth analysis than is possiblewith image level comparisons.The main motivation for data level compar-isons is to provide more in-depth comparison ofdi�erent DVR algorithms particularly in caseswhere the di�erences makes a di�erence. A casein point is the potential mis-diagnosis of the pres-ence or absence of a tumor. Using image levelcomparisons, it is impossible to determine thereasons for discrepancies among di�erent DVRalgorithms. On the other hand, a data level ap-proach might reveal the reason as the rays notpenetrating far enough into the volume, or per-haps the sampling step is too large and the tu-mor was completely stepped over by the lattermethod.The key point of data level comparison is theuse of intermediate information available and/or



4. BASES FOR COMPARING DIRECT VOLUME RENDERING ALGORITHMS 3that might have contributed to the resulting im-age. It does not preclude the use of of tradi-tional methods such as side-by-side presentationsfor showing the results of the data level compar-ison (see Figure 3.1). In addition, since the com-parative information are usually being collectedin 3D, other methods such as those presented in[12] may also be used.4 BASES FOR COMPARINGDIRECT VOLUMERENDERING ALGORITHMSUnlike data level comparison of radiosity al-gorithms [12], there are no geometric primitivesupon which to compare DVR data values. Fur-thermore, because of the view-dependent natureof DVR, and the wide variety of DVR algorithms,it is necessary to �rst de�ne the basis for com-paring these algorithms. In particular, in ad-dition to the rigorous speci�cation of key DVRparameters such as viewing parameters, opticalmodels, transfer functions, etc. recommended byWilliams and Uselton [20], we must �rst trans-form DVR algorithms to a common base. Forthis paper, we use ray tracing as the commonbase. By this we mean that projection based al-gorithms are transformed and represented as raybased algorithms. Representing di�erent DVRalgorithms using a common base allows us to de-rive the data level comparison metrics using thecommon base. It should be noted that ray trac-ing does not exhaustively represent all existingand future DVR algorithms { for example, it isvery di�cult to represent Fourier volume render-ing using ray tracing. On the other hand, we seethe process as being invertible. That is, if a pro-jection based algorithm can be represented usinga ray tracing based approach, then a ray based al-gorithm can be represented as a projection basedapproach. Therefore, it is possible to use othercomparison base aside from ray tracing. Doingso will also result in a di�erent set of data levelcomparison metrics.Table 4.1 shows our strategy for mapping asubset of DVR algorithms using ray based ap-proach. Three criteria are used to classify di�er-ent algorithms. These are: data model { whetherdata is de�ned at voxel centers or at vertices, andtheir associated interpolation or distance func-tions; value { whether data, color, polygonal ap-proximation values are being interpolated; andsampling strategy { either regularly along the ray

or only at ray intersections with cell faces. Basedon this three level classi�cation, we can identifyseveral DVR algorithms that can be mapped toray based approach. This classi�cation is notmeant to be exhaustive but rather illustrative ofhow di�erent DVR algorithms can be viewed interms of their variants. Used in this manner, Ta-ble 4.1 shows that most algorithms can be sim-ulated by ray casting as a reference algorithmwith variations in data modeling, interpolationand sampling pattern. Therefore the compar-isons of algorithms can be viewed as comparisonsbetween these variations. The same principle canbe used for irregular data sets as well as other ref-erence algorithm.The data model in column (1) comes with ei-ther an interpolation function or distance func-tion. Tri-linear interpolation seem to be the mostpopular interpolation method in most DVR im-plementations. However, other possibilities in-clude higher order interpolations or adaptive re-construction [9]. We can also easily incorporatesimpler voxel modeling using nearest neighborsor other distance functions into our general raytracing for comparisons.Both data values and color values may be usedwhile integrating along the ray. The samplingalong the ray can be done at regular �xed step in-tervals or only at the intersection points betweenthe ray and cell faces. Algorithms like shear-warp[5] and volume texture techniques[17] use color in-terpolation at the sample point to improve speed.Shear-warp can be considered as a ray tracingbased DVR followed by a two dimensional imagelevel warping step.Our polygonal approximation uses a simplebut general polygon intersections of cell faces ofregular and irregular volume cells. In general,cell faces project into polygons in screen space.Based on the observation that a ray always passesthrough two faces of a cell, we simply intersectbetween all possible pairs of cell faces after wetransform all cell vertices into screen space. Notethat in degenerate cases, a cell face may projectinto a line in screen space. Each ray marchesthrough cell by cell along the viewing directionand intersects with one of these non-degenerateprojected polygons. The integrated color at theintersection point can be obtained using the fol-lowing strategy. Since each vertex of the pro-jected polygon is the intersection of two edges ofthe cell, there is a front and back point corre-sponding to these two edges. Data at the inter-section points along these edges are interpolated,
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Figure 3.1: Data level comparison of ray tracing with cell face intersection algorithm onthe top row and regular ray sampling on the bottom row. Left column shows images fromthe two algorithms. The middle column shows colormapped images of the distance fromthe eyes to a point along the ray where a certain opacity threshold (0.11) has been reached.The right column shows the number of samples visited by the rays in each method. Redindicates higher values, while blue shows lower values.the color at those points evaluated, and then in-tegrated. Gouraud shading is used to obtain thesample color of the point intersected by the rayand the projected polygon. For simplicity, welimited the projection to orthographic since allthe cells can be represented by simple transla-tions of a single cell. This allows us to pre-compute the parameter values in terms of thefour vertices of each cell face during projection.Then, during rendering, actual color intensitiesfor both front and back intersections are com-puted in order to sample a point along the givenray.Projection algorithms, like coherent projection[14, 19], usually use color interpolation for thepoints within the projected polygons and datainterpolation at the vertices of the polygons.They can be simulated with ray tracing usingthe polygonal approximations of the cell as de-scribed above. We use sampling locations as datato be collected for our metrics. The sampling lo-
cations are assumed to be the intersection pointswith the cell (or at cell faces) and we further as-sume the sample color is interpolated with thepolygon approximations. This is consistent withour other ray sampling algorithms that uses av-erage color of two sample colors and the distancebetween two sample points in order to calculatethe integrated colors for compositing. Therefore,if we have n sample points along the given ray,we have n� 1 sample colors to be composited inall of our ray casting algorithm variations. Thischoice of sampling colors is one of the variationsin volume renderings. Here, we chose the averagecolor between two samples so as to maintain theconsistency of data collected for our metrics.Splatting [6] uses voxel data modeling and afunction that describes the inuences of the givenvoxel in terms of the distance from the voxellocation. The ray sampling patterns of splattingalgorithms can be considered irregular along theviewing direction since the viewing ray may or



5. DATA LEVEL COMPARISON METRICS 5Data Model Value Sampling DVR AlgorithmCell model Data regular ray castingwith cell face ray castingTri-linear Color regular volume textureInterpolation cell face shear-warpPolygon cell face coherentApproximation projectionVoxel model Colorwith distance Distribution irregular splattingfunctionTable 4.1: Illustration of how di�erent DVR algorithms can be expressed in terms of raytracing by changing the data model, value being interpolated, and sampling pattern.may not pass through the inuencing voxels.Using ray tracing as the common base, vol-ume texture or volume slicing algorithms can berepresented as a ray tracing algorithm that usescolor interpolation and regular sampling. Like-wise, projection algorithms can be representedby ray tracing algorithms that samples rays atcell face intersections and uses color interpolationwithin the projected polygons of each cell.5 DATA LEVEL COMPARISONMETRICSIn this section, we present several data levelcomparison metrics that uses ray tracing as thecommonbase of di�erent DVR algorithms. Thesemetrics reveal informationabout the volume dataas well as the DVR algorithms.1. Number of samples to reach a certain color(or opacity) value in back to front or frontto back direction. Di�erent parts of the dataaccumulate opacities at di�erent rates. Us-ing this metric, one can gain a better under-standing of how many samples along eachray contributed to the �nal pixel value (seeright column of Figure 3.1). Di�erent algo-rithms use di�erent sampling patterns (e.g.di�erent step size, either regular step sizealong ray or at cell face intersections only,etc.) and thus a di�erent number of samplesalong the viewing direction. Artifacts aris-ing from this (e.g. see Figure 2.1) can beexplained by using this metric.2. Distance from the user's eye and distancefrom the bounding box of the data volume(in viewing direction) to the location in thevolume data where the ray reached the givencolor (or opacity) value in back to front or

front to back direction. We refer to thesemetrics as eye distance (see middle column ofFigure 3.1) and volume distance respectively.These metrics provide the viewer with someidea of how far the ray penetrated the vol-ume independent of how many samples wereused along each ray. A possible use of thismetric is to determine if rays were able topenetrate deep enough into the volume sothat data values of interest (e.g. location oftumors) were able to contribute to the re-sulting image.3. Di�erences of above the metrics between twodi�erent algorithms.4. Another metric is the dot product of thesample vector along the viewing directionfrom two DVR algorithms. Larger dot prod-ucts indicate a higher degree of similaritybetween the two sample vectors. Since dif-ferent sample values are used for each ray,the sample values are �rst normalized beforethe dot product is calculated. This way, dotproducts are constrained to range from 0 to1, allowing us to compare neighboring raysand making pseudo-coloring much easier.There are several variations possible withdot products because (a) there may be a dif-ferent number of samples on each ray and(b) the samples may be distributed at dif-ferent locations along the ray. For example,one may take the dot product of the sam-ple vector independent of the sample loca-tion on the ray; only use the �rst N sam-ples (where N is the smaller of the two);�nd the ray with the smaller volume distancethen resample the other ray to this distancebefore taking the dot product; use the raywith the larger distance and extrapolate theother; etc. The illustration below shows two



6. APPLICABILITY OF METRICS 6more variations. The choice of which vari-ation to use would depend on what we arelooking for in the data or between the algo-rithms.
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variation  1Figure 5.1: Two variations of dot prod-uct metric when number of samplesand spacing along rays are di�erent.The �rst variation resamples the raywith more samples to the ray with thesmaller volume distance. The secondvariation extrapolates the ray with thesmaller volume distance and resamplesthe ray with the larger volume distance.5. Another way of measuring the similarity be-tween two sample vectors is their statisticalcorrelation. This is useful for analyzing thecolor intensity signals along the sample vec-tor when comparing data versus color inter-polation. Let l1 and l2 be two normalizedsample vectors along a ray from two di�er-ent algorithms. Then the statistical correla-tion corr between these two sample vectorsis de�ned by:corr(l1; l2) = cov(l1; l2)�l1�l2where cov(l1; l2) is the covariance of the twovariables and � denotes standard deviations.6 APPLICABILITY OFMETRICSWe illustrate the utility of some of the metricsdescribed in the previous section by a number of

examples.6.1 Number of SamplesThe cross hatching artifact that is obvious inthe di�erence image between ray casting withregular sampling versus ray casting with cell faceintersection (see Figure 2.1) can be explained bythe data level comparison on the right column inFigure 3.1. Figure 6.1 shows the same metric ap-plied to the same pair of algorithm above. Thedata set in this case is a 4x4x4 cube. The imageon the left clearly shows the discrete boundariesamong the regions with di�erent number of raysamples corresponding to the cell face intersec-tions. This pattern leads to the cross hatchingpattern observed in ray casting with cell face in-tersection.
Figure 6.1: Example of data levelcomparison showing number of samplesalong each ray. The left image is froma ray tracing algorithm which only vis-its cell faces, while the right image isfrom sampling the ray at regular inter-vals. Red indicates more samples, whileblue shows less samples.Aside from showing the behavior of an algo-rithm, the number of samples metric is also agood means of analyzing data content. Figure6.2shows the colormap visualizations of the num-ber of samples for the accumulated colors ineach viewing direction to reach di�erent targetopacities. The rendering is done using regu-lar sampling and tri-linear interpolation of data.It shows that our data level visualization pro-vides an added dimension to looking at volumedata that is di�erent from viewing in stereo, iso-surfaces, rendering from multiple viewing points,or adjusting transfer functions.



6. APPLICABILITY OF METRICS 7
(a) image (b) � = 0:10 (c) � = 0:15 (d) � = 0:20Figure 6.2: Number of samples to reach the given accumulated opacity in volume renderingof Hipip data. (a) volume rendered image using regular sampling, and using the standard\rainbow" colormap, the number of samples when the ray accumulates up to (b) 0.10,(c) 0.15, (d) 0.20 opacity. Black regions indicate that rays entered and exited the volumewithout reaching the target opacity level.6.2 Distance MetricsDistance based metrics such as the eye dis-tance and the volume distance are useful for de-termining whether the rays have penetrated deepenough into the volume data or not. In Figure6.3, columns (b) and (c) show the level of pen-etration using the eye and volume distances re-spectively. The range of actual values used tocolormap the data from these metrics are listedin Table 6.1. Column (b) shows that the eyedistance is larger for farther corners and closerfor the near corner of the data volume { this isnot apparent in the volume rendered image alone.Column (c) shows the distance information mea-sured starting from the entry point into the datavolume. Regions that are black indicate that theray penetrated through the entire volume with-out reaching the maximum opacity (0.11) for raytermination.The �gures shown so far used the standard\rainbow" colormap. The human's non-linearperceptual response to this colormap can givethe false impressions of linear magnitude andundesirable false geometries and banding in thevisualizations. Column (d) of Figure 6.3 shows analternative method of presenting distance metricinformation by treating it as a height map.

6.3 Dot Product and CorrelationWhere independent metrics like number ofsamples or volume and eye distance fail to ex-plain di�erences, combined metrics like statisti-cal correlations and the dot product of ray samplevectors provide another perspective into how thedata sets and algorithms di�er.Both images in Figure 6.4 are generated byregular ray samplingwith the same step size. Theonly di�erence is that the top image uses datainterpolation while the bottom image uses colorinterpolation. Note that the black area indicatesthe ray passed though the entire volume withoutsatisfying the given stop conditions that user sets.The �rst column of Figure 6.4 shows that theblue and red blobs near the center of the image ispresent in the bottom row but not the top row.The images on the number of samples (column(b)) show that both algorithms reached the areaof interest. The other four images in Figure 6.4are from metrics that combine two sets into one.The dot product of the red color components andthe correlation of the blue color components, us-ing variation 1 of Figure 5.1, show that thereare low correlations around the area in question.However, they also show a spot with higher sim-ilarity in the midst of the low correlation area.
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(a) images (b) (c) (d) (e)Figure 6.3: Top row from (a) to (d) contains images and metrics visualizations of ray castingwith regular sampling and bottom row from (a) to (d) is for cell face intersection sampling.The distance between two samples in regular sampling method is same as the lateral size ofa cell of 643 Hipip data. Each column shows (a) volume rendered image, (b) the distancefrom the eye point, (c) distance from the volume's bounding box in viewing direction wheneach ray accumulates an opacity of 0.11, and (d) the volume distance rendered as a height�eld. The top image of column (e) is the image of the di�erence between the top and bottomof column (b) and bottom image of column (e) is the image of the di�erence between thetop and bottom of column (c).(a) (b) (c) (d) (e) top (e) bottomAlgorithm Number of Eye point Volume Number of samples Distancesamples distance distance di�erence di�erenceregular min : 6 min : 11423.6 min : 5.99943sampling max : 61 max : 11490.6 max : 61.0005 min : 1 min : 0cell face min : 8 min 11423 min : 5.45037 max : 51 max : 3.20intersection max 93 max : 11490.2 max : 60.7501samplingTable 6.1: Minimum and maximum of metrics colormapped in Figure 6. The eye pointdistance is calculated in orthographic view and thus the size of numbers are not important.Note that the colormapping from column (b) to (d) is done in terms of each column'sminimum and maximum, so comparisons can be made within each column.That is the colors are similar at that spot but dif-ferent around the spot. This may be attributedto the di�using e�ects of color interpolation andis reinforced by the dot product metric, usingvariation 2, where most of the image is red (orhigh) except around the region where the twoblobs are missing. The dot product of opacityvalues using variation 2 is also lower in the areaof interest. Note that variation 2 uses extrapo-lated sample values to make the program collectdata up to the same physical location. However, the correlation of data using variation 2 showsvery high correlation in most of area includingthe area of interest. This implies that the datasampled are very similar but the colors are di�er-ent except at that one spot and thus the sourceof the di�erences is most likely to be the di�er-ence in interpolation method that computed thecolor intensities at the sampling points. This isconsistent with the fact that the correlation ordot product metrics using variation 1 showed ahigh spot surrounded by relatively low values.
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image 1 distancesfrom eyesfor image 1 dot productof red color(variation 1) correlationof blue color(variation 1)
image 2 distancesfrom eyesfor image 2 dot productof opacities(variation 2) correlationof data(variation 2)Figure 6.4: Dot products and correlation metrics used to explain the discrepancies betweenimage 1 and 2. The di�erence arose from the fact that the top row interpolated data valueswhile the bottom row interpolated color values { leading to di�erent sample vectors.7 CONCLUSIONSWe presented a framework for comparing dif-ferent DVR algorithms and illustrated this by mapping di�erent DVR algorithms to ray based
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