
Simulation of Elastic Membraneswith Triangulated Spring MeshesUCSC-CRL-97-12Allen Van Gelder and Jane Wilhelmsavg@cs.ucsc.edu and wilhelms@cs.ucsc.eduComputer Science Dept.University of California, Santa Cruz 95064E-mail: favg,wilhelmsg@cs.ucsc.eduJuly 3, 1997AbstractSpring meshes have been used to model elastic material by numerous researchers, with skin, textiles,and soft tissue being typical applications. However, given a speci�ed set of elastic material properties,the question of whether a particular spring mesh accurately simulates those properties, has been largelyignored in the literature. In two dimensions, given a discretization of a membrane as a triangle mesh,the standard �nite element method analyzes each triangle approximately as a membrane with speci�edelastic properties, computing stresses and strains. An alternative is to regard each edge as a spring,assuming the springs are connected by \pin-joints" at the vertices of the discretization. This alternative,called a \spring mesh", is computationally more attractive. Previous reports on the technique are silenton the subject of assigning sti�ness to the various springs. This paper shows that assigning the samesti�ness to all springs badly fails to simulate a uniform elastic membrane, for equilibrium calculations.A formula for spring sti�ness that provides a more accurate simulation is then derived. Its accuracyis demonstrated on test and practical mesh examples. It is also shown that an exact simulation is notpossible, in general.KeyWordsComputer graphics, �nite element method, spring mesh, elastic membrane, tissue models.1 IntroductionDiscrete models of elastic materials have many applications, particularly in computer graphics. The drivingforce for this research was the problem of modeling skin so that it would stretch and slide realistically overan underlying body of modeled muscles and bones. Particularly, on animal skin with markings, the markingsshould shift realistically in response to underlying limb movements, and so on. For this purpose, skin can beregarded as a uniform, isotropic elastic membrane. However, the results apply equally well to non-uniform,isotropic elastic membranes, as well as to 3D isotropic elastic solids. An isotropic elastic material is onewhose local deformation in response to force is independent of direction; however this response might vary1
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?Figure 1: Triangle in rest position at left has arrived at the vertex positions shown at right. The problem is todetermine what stresses are now present in the triangle. For the membrane model, this involves decomposingthe transformation into a rigid-body motion and a deformation.over space, in which case the material is non-uniform, but still may be isotropic. We have not investigatednon-isotropic elasticity.Our main concerns were that the model arrive at accurate equilibrium positions within a reasonableamount of computation. The membrane is given as a triangulated surface, produced by some independentsurface generation process, so we do not have control over the sizes and shapes of the triangles. Thetraditional �nite element method models each triangle as an individual elastic membrane, with compatibilityconditions to ensure they join correctly after deformation. An alternative seen in computer graphics literatureis to model each edge in the triangulated surface as a spring, i.e., an idealized one-dimensional elasticobject. Springs are connected as pin joints at the vertices. This approach o�ers conceptual simplicity andcomputational simplicity compared to the �rst, but it is unclear under what conditions it produces the sameresults.To illustrate one reason spring meshes are easier to work with, consider the problem depicted in Figure 1,which might be termed the inverse elasticity problem. Suppose we are given that the original triangle at theleft is now in the position shown at the right. What internal elastic forces is that triangle producing? Thisis a completely straightforward problem for the spring-mesh model. For the membrane model, the solutionis not at all obvious.This paper investigates the connection between the two models, with particular attention to �nding thespring constants for the second model that allow it to simulate the �rst model. Previous papers have notspelled out a scheme for setting spring constants, leaving the presumption that they are all equal, or in thecase of a multi-level model, that they are all equal within each level. Several test cases demonstrate thatthis choice of making all spring constants equal produces quite noticeable distortions (see Section 7). Weshow that an exact simulation between the two models is impossible in general (see Example 5.1). However,we derive a formula for spring constants that enables an irregular spring mesh to simulate uniform elasticitymore accurately (see Section 6). Because the formula is local, it extends immediately to the case of non-uniform membranes. Tests show that the approximate formula produces very accurate results in most cases.Meshing strategies to avoid the worst case are discussed.2



2 BackgroundAlthough a rich literature exists on �nite element methods for engineering elasticity, this literature hasconsidered mainly materials that undergo very little deformation within their elastic limits, such as metals,and is more concerned with distribution of forces, rather than the deformation itself [TG51, Whi85, ZT89].Computer graphics applications are typically more concerned with observable deformations of less rigidmaterials, such as skin, other soft tissue, fabrics, inated balls, etc. [TPBF87, TF88, TW88, TW90,VCMT95, LTW95, KGC+96].Terzopoulos et al. introduced the use of elasticity theory for modeling deformable materials into thecomputer graphics literature [TPBF87]. The work was extended to inelastic materials [TF88] and tocombinations of rigid and deformable materials [TW88] the next year. Terzopoulos and co-authors havemore recently applied elastic models to simulation of the face [TW90, TW91, LTW95] and �sh [TTG95].They use a layered model of facial tissue consisting of triangular prism �nite elements connected by biphasicsprings.Miller used a simple elastic spring-mesh model with �xed spring constants to model the motion of snakesand worms [Mil88]. Chen and Zeltzer used a �nite element model to simulate a skeletal muscle [CZ92].Isometric brick elements were used.Celniker and Gossard [CG91] used �nite elements for general free-form modeling. Primitives automati-cally deformed to minimize energy based on user-supplied values. Curve and surface elements were used.Volino et al. used a �nite element model to simulate deformable surfaces such as cloth [VCMT95].Although their model seems related to this paper, the details are insu�cient for an exact comparison. Also,there appear to be some typographical errors in their formula, because applying it literally to an isoscelesright triangle gave strains in the wrong direction.Koch et al. recently described the use of �nite element models for simulating facial surgery. They processphotogrammetric and CT scan data of the face to create a �nite element model of the facial surface and softtissue. Sti�ness parameters depend on the type of material modeled: bone, skin, muscle, or fat. A globallyC1 continuous �nite element model with nonlinear shape functions, based on triangular prism elements, isdeveloped. The system is built on commercial available modeling and animation systems for interactivegeometric manipulation and rendering. The computation of the global sti�ness matrix took 17 minutes, andsolving the global equation system took 11 minutes on an SGI Indigo 2.In the above cited research, elastic materials are represented as spring meshes in several cases. Thesepapers either explicitly state that the sti�ness coe�cients of these springs are independent of the geometry(but often depend on the material), or they imply it by not giving any method to choose the values. Aswe shall show experimentally, for a membrane of uniform material, identical spring sti�ness coe�cientsfor all edges in the mesh lead to noticeable distortions. This paper derives a geometrically based formulafor varying the coe�cients to provide a more accurate simulation of an isotropic membrane (Section 6).Again, experimental results con�rm the accuracy of this formula on test meshes, as well as practical meshes(Section 7).3 Isotropic Elastic MaterialsFor an isotropic, linearly elastic material, the relationship between stress and strain depends on two param-eters of elasticity, called Young's modulus (E) and the Poisson coe�cient (�) [TG51]. These parametersmay vary by position in the material, but if they do not we say the material is uniform. For a membrane ofconstant thickness t, we write E2 = Et, so that E2 is the \two-dimensional Young's modulus". Similarly fora one-dimensional spring (also called truss), of constant cross-sectional area a, we write E1 = Ea.3



Recall that stress is the force per unit length due to deformation of the material, while strain isdeformation per unit length, with deformation being the local change in length in a particular direction.Rigid body motions consisting of translations and rotations do not contribute to deformation.Young's modulus is also called the modulus of sti�ness, because it measures the material's resistanceto deformation. The Poisson coe�cient � measures the tendency of the material to shrink in directionsorthogonal to a stretching stress, or expand in directions orthogonal to a compression stress. All naturalmaterials have � � 0. The assumption of incompressibility implies � = 0:50. Timoshenko and Goodierrecommend using � = 0:25 for \most materials" [TG51].4 Modeling Elastic MembranesIn elasticity terminology, a membrane is an idealized two-dimensional elastic material for which forces neededto bend the surface are negligible in comparison to those needed to stretch or compress it. The simplest caseis a planar membrane. In most cases the �nite element method approximates a nonplanar membrane by acollection of planar patches, although higher order surfaces are sometimes used [Whi85, Fen86]. We shallrestrict attention to the case of planar triangular patches. To make the paper accessible to a wider audience,and to provide geometrical insights, we shall avoid the use of tensor notation in the development.Consider �rst a planar surface with a given discretization in the form of a set of verticesV = fvi; i = 1; : : : ; ng ;a triangulated planar graph connecting those vertices, producing a set of nonoverlapping triangles,fTe; e = 1; : : : ;mg :We make no assumption about the regularity of the triangulation. We assume the locations of the verticesin E2 (Euclidean 2-space) are given for the situation in which there are no stresses.In any orthonormal coordinate system (u; v), denoting stress components by �uu, �vv, and �uv, anddenoting strain components by "uu, "vv, and "uv, we have"uu = (�uu � ��vv)=E2 (1)"vv = (���uu + �vv)=E2 (2)12"uv = (1 + �)�uv=E2 (3)where E2 and � were de�ned in Section 3. We avoid a matrix notation here, although it is seen in someengineering texts [BR75, Fen86], because the three components of � and of " are more appropriately viewedas 2� 2 symmetric matrices, rather than 3-vectors.Suppose coordinate frame (u; v) is rotated counter-clockwise from the coordinate frame (x; y) by angle�. Let R(�) denote the rotation matrix: R(�) = � cos � � sin �sin � cos � � (4)so that �uv� = R(�)�xy�. Then stress matrices in di�erent coordinate frames are related through the similaritytransformation: � �uu �uv�uv �vv � = R�1(�) � �xx �xy�xy �yy �R(�) (5)4



For symmetric matrices, as is well known, there are two choices of � that diagonalize the left-hand side, andare 90 degrees apart. These are called the principal directions for the stress. Similar remarks apply to thestrain matrix, but note the factor of 12 on the o�-diagonal elements:� "uu 12"uv12"uv "vv � = R�1(�) � "xx 12"xy12"xy "yy �R(�) (6)Given a set of external forces acting along the edges of a discretized membrane, the equilibrium problemis to �nd a deformation that induces strains and stresses that balance the external forces. For equilibriumto exist, the external forces and torques must sum to zero.In the triangulated �nite element formulation, the deformations at vertices, �j ; j = 1; : : : ; n, are relatedto the external forces loaded on those vertices, fi; i = 1; : : : ; n, through a sti�ness matrix K with elementsKij. However, the elements Kij are not scalars. Since �j and fi are 2-vectors, Kij is best thought of asa linear transformation from E2 to E2. This view is independent of the coordinate frame. If a coordinateframe is chosen, then of course Kij can be represented by a 2� 2 matrix in that frame. The interpretationof the linear transformation Kij is: Kij�j is the elastic force experienced at vertex i due to a displacement�j of vertex j. Letting � and f be the vectors of �j and fi, in equilibrium, we haveK� + f = 0 (7)The form of Kij depends on the �nite element model being used.5 Exact Simulation by Springs is ImpossibleThis section demonstrates the di�culties encountered in an attempt to simulate a linearly elastic materialaccurately by a spring mesh, using the same triangulated surface for both models. The problems are shown toarise even in the simplest case: a two-dimensional planar membrane of constant thickness, with the simplestmembrane model (constant strain), and with uniform elasticity in the membrane.The �nite element model most often seen for membranes is commonly called the constant strain model[BR75, Whi85, Fen86, ZT89]. Each triangle's stress and strain functions are assumed to be constant overthe triangle's surface. This ensures that each triangle deforms into a triangle, and the global deformation isa piecewise continuous function of position. Each triangle edge has a uniform force per unit length, which isthe sum of an internal forces due to the stress and \body force" in the triangle, and external forces appliedto that edge. \Body force" is usually weight. In equilibrium, the internal and external force at the edge sumto zero. The K matrix is computed by computing the contribution of each triangle separately, and summing.Let the triangle Te have vertices p, q, and r in counter-clockwise order. Fix a coordinate frame (x; y)for de�niteness. We use the notations (xp; yp) for the position of p and (xqp; yqp) as an abbreviation for(xq � xp; yq � yp). Then Kmembe is a 3� 3 matrix, whose elements are representable in the (x; y) frame as2� 2 matrices. Kmembe = 24Kmembpp Kmembpq KmembprKmembqp Kmembqq KmembqrKmembrp Kmembrq Kmembrr 35 (8)where Kmembpp = E24�(1� �2) � y2rq + �1��2 �x2rq � �1+�2 � yrqxrq� � 1+�2 � yrqxrq x2rq + �1��2 � y2rq � (9)Kmembpq = E24�(1� �2) � yrqypr + �1��2 �xrqxpr ��yrqxpr � �1��2 � yprxrq��xrqypr � �1��2 �xpryrq xrqxpr + �1��2 � yrqypr � (10)5



and other components are found by cyclic permutation of (p; q; r). In the above equations, E2 is the two-dimensional Young's modulus, and � is the Poisson coe�cient, both being properties of the material. Also,� denotes the area of the triangle, following �nite-element notation.Now let us consider a di�erent elasticity problem, analysis of an arrangement of pin-jointed trusses. Thisproblem is equivalent what is usually called a \spring mesh" in computer graphics literature. That is, eachelastic element is one-dimensional, elements are \pinned" together at the vertices, so they may rotate freely.Stretching or compressing an element from its \rest length" produces a one-dimensional stress. We shallbegin with a planar arrangement, with linear elasticity. This is one of the earliest problems to be analyzedwith the �nite element method [TCMT56].Let us consider the same triangle as above: edges (p; q), (q; r), and (r; p), in their rest positions. Inaddition, we specify the rest lengths and spring sti�ness coe�cients as Lqp, kqp, etc. We continue toabbreviate (xq�xp) as xqp, etc. The sti�ness matrix for the triangle of springs (or trusses), Kspringe , is againa 3�3 matrix whose elements are represented in the (x; y) frame as 2�2 matrices. We have [BR75, ZT89]:Kspringpp = E1 26664 kqpx2qpL3qp + kprx2prL3pr kqpxqpyqpL3qp + kprxpryprL3prkqpxqpyqpL3qp + kprxpryprL3pr kqpy2qpL3qp + kpry2prL3pr 37775 (11)Kspringpq = E1 26664 �kqpx2qpL3qp �kqpxqpyqpL3qp�kqpxqpyqpL3qp �kqpy2qpL3qp 37775 (12)and other components are found by cyclic permutation of (p; q; r).Now, if we want the spring triangle to simulate the constant strain triangle, the obvious approach is totry to choose kqp, krq, kpr, and E1 to bring the sti�ness matrices of the two models into agreement. However,by inspecting the two constraints Kspringpq;11 = Kmembpq;11 Kspringpq;12 = Kmembpq;12we see that, in general, no such choice is possible. In particular, if p = (0; 0), q = (1; 0) and r = (0; 1), thenthe second constraint is not satis�ed by any choice of spring constants.In summary, examination of the sti�ness matrices associated with the constant strain model and thespring-mesh model shows that, in general, no assignments of individual sti�ness coe�cients enable thesti�ness matrix of the latter to agree with that of the former.However, there is a possible saving clause. The sti�ness matrices actually are singular, and thereforeare not unique representations of the constraints. Therefore, it is still possible that systems with di�eringsti�ness matrices may have the same equilibria. We now show that this is not the case.Example 5.1: Consider again an isosceles right triangle, only this time, for convenience, with p = (0; 0),q = (1; 1) and r = (�1; 1). Considering this as a membrane, assume a uniform, tensile, boundary stress ofmagnitude p2 is applied horizontally on edges (p; q) and (r; p), as shown in Figure 2. This is equivalent tohorizontal tensile forces of magnitude 1 being applied at vertices q and r in the spring-mesh model. The twoopposing forces at p cancel.For the membrane model, the internal stress at equilibrium is �xx = 2, �yy = 0, and �xy = 0. Therefore,the strain is "xx = 2=E2, "yy = �2�=E2, and "xy = 0. In other words, if edge (q; r) increases in length bysome small amount, 2"xx, then the height (in y) decreases by �"xx.6
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membrane spring meshFigure 2: Isosceles right triangle subjected to horizontal forces (above) deforms di�erently under themembrane model (left) and the spring-mesh model (right). See Section 5 for discussion.However, for the spring-mesh model, since there is no force on p, the edges (p; q) and (r; p) are underno tension and do not change length, despite the horizontal forces at q and r. It follows that an increasein length of (q; r) by any small amount, 2�, is accompanied by a decrease in height of �. But � � 12 forall physical materials. Therefore, no matter how the spring sti�ness for (q; r) is chosen, the spring-meshdeformation cannot agree with the membrane deformation for horizontal external forces.6 Constant Strain Approximation by Spring MeshesLet us consider from �rst principles the problem of assigning spring sti�ness coe�cients to the edges of atriangle in such a way that the triangle will deform in the same manner as an isotropic elastic membrane, atleast to the �rst order e�ects, as modeled by the constraint strain model. That is, we limit consideration tothe case that the external forces are uniformly distributed along each edge (di�erent edges may have di�erentforces { only the distribution is uniform). Also, we are concerned only with linear, equilibrium deformations.Therefore, we assume that the net external force and torque are zero.Consider a triangle with edges a, b, and c in counter-clockwise order. Let �, �, and  be the opposingangles, as shown in Figure 3, left. Now suppose opposing external forces are applied at the ends of edge c,say a stretching force, for de�niteness.First, suppose that the triangle consists of pin-connected springs (or trusses). Then, clearly edge c willelongate, and edges a and b will not change length. Moreover, edge c will remain horizontal. Assuming a7
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γFigure 3: Undeformed triangular membrane (left, dashes), is rotated into a frame such that the v-axis bisectsthe angle  (center). A constant strain with u and v axes as principal directions deforms the triangle (center,solid �gure), which is then rotated back to make the upper edge horizontal (right, solid �gure). The secondrotation is slightly di�erent from the inverse of the �rst. The overall e�ect is the same as if the trianglewere a spring mesh and a stretching force were applied horizontally at the ends of edge c. See Section 6 fordiscussion.uniform distribution of mass, the center of gravity will not move, since no net work is done on the body.Therefore the black triangle in the right part of the �gure represents the equilibrium position. Notice thatthe lower vertex elevates by exactly twice the amount that edge c descends, to maintain the center of gravity.The amount of elongation of edge c is de�ned as �c=c, where we use \c" both to denote the edge and itslength. This elongation depends only on c and kc, the spring sti�ness for edge c.Now, suppose that the triangle consists of a membrane modeled by the constant strain model. Thehorizontal opposing external forces are distributed uniformly along edges a and b with force-per-unit-lengthof �f=a and f=b, where f is a force in the positive horizontal direction. These boundary forces must bebalanced by internal stress to achieve equilibrium.The question is, for what family of internal stresses will the corresponding strains be such that the lengthsof a and b do not change? This question has an elegant geometrical answer, which is indicated in the centerpanel of Figure 3. The key is to rotate into the coordinate frame (u; v) such that the v-axis bisects the angle (after that vertex is translated to the origin).Now, any constant stress whose principal directions are the u and v axes will produce identical elongationsin edges a and b. (Recall that elongations are �a=a and �b=b, not �a and �b.) This follows from theobservation that the slopes of edges a and b are equal in magnitude, although opposite in sign. For example,a positive stress �uu increases the u-location of the rightmost vertex by b sin(=2)�uu=E2 and decreases theu-location of the leftmost vertex by a sin(=2)�uu=E2. This stress decreases the v-locations of the rightmostand leftmost vertices by �b cos(=2)�uu=E2 and �a cos(=2)�uu=E2, respectively. By similar triangles, therelative change in length, which is the strain, is the same for edges a and b. Similar remarks apply to a stress�vv. For small elongations, the e�ects of �uu and �vv may be superposed.Since any constant stress whose principal directions are the u and v axes will produce identical elongationsin edges a and b, it su�ces to characterize the family of such stresses that produce zero elongation in edgeb. For small elongations in the u and v directions, the elongation of edge b is zero just when the rightmostvertex is displaced in a direction orthogonal to edge b; i.e.,�v�u = � sin(=2)cos(=2) (13)8



The family of stresses that satis�es this condition is given bycos(=2)(���uu + �vv)sin(=2)(�uu � ��vv) = � sin(=2)cos(=2) (14)which can be rewritten as�vv((1 + �) cos  + (1� �)) = �uu((1 + �) cos � (1� �)) (15)Letting (�u;�v) denote the displacement of the rightmost vertex, and letting �c denote the change in thelength of edge c, for small elongations (ignoring second order terms), we have�c = 2 sin(�)�us1 + ��v�u�2 = 2 sin(�)�ucos(=2) (16)where the relation (sin�=a) = (sin �=b) was used to eliminate sin �. But�u = �b sin(=2)E2 � (�uu � ��vv) (17)Now, let f denote the magnitude of the force stretching edge c (with f < 0 to denote a compression force).In the spring mesh model, let kc be the spring sti�ness coe�cient of edge c. Thenf = kc�c (18)Now, switching to the constant strain membrane model, de�ne � = (�� �)=2. This is the direction parallelto edge c, relative to the u-axis. Then the stress in direction �, denoted as ��, is given by Eq. 5�� = cos2 ��uu + sin2 ��vv (19)Next, �vv can be eliminated from the above equation by use of Eq. 15, giving:�� = �(1 + �) cos  + (1� �)(cos(�� �))(1 + �) cos + (1� �) ��uu (20)Now, the boundary condition requires [TG51]�� = fa sin � = fb sin� (21)Combining Eqs. 15{21, we obtainfkc = 2b sin� sin(=2)E2 cos(=2) �1� � �vv�uu��uu (22)1kc = 2 sin(=2)E2 cos(=2) � (1� �2)(1 + cos )(1 + �) cos  + (1� �) cos(�� �)� (23)Solving for kc: kc = E2(1� �2) � sin� sin � � � cos� cos �sin  � (24)Finally, using standard geometric identities:kc = � E21 + �� 2 area(Te)c2 +� E2 �1� �2� (a2 + b2 � c2)4 area(Te) (25)Corresponding formulas may be obtained for ka and kb by the obvious renaming.The coe�cient derived, kc applies for one triangle of which c is an edge, but unless c is a boundary edge,c occurs in two triangles, so the two individual coe�cients are added to give the total sti�ness coe�cient foredge c in the overall spring mesh. 9



7 Discussion and ConclusionsThe method described has been implemented for some test meshes, where the correct behavior is knownfrom the construction. For simplicity we used � = 0 throughout the tests. Test results are illustrated inFigs. 4 and 5.In the �rst test a simple, hexagonal planar membrane was simulated. As shown in Figure 4, thediscretization was irregular. The external forces were equal radial forces, applied at the six boundaryvertices. Assuming a uniformly elastic membrane, the deformation should also be uniform, at least withsix rotational symmetries. When all edges were assigned the same sti�ness, noticeable distortion occursat equilibrium. This distortion exists for smaller deformations as well; it is not merely a manifestation ofnonlinearity. When edges were assigned coe�cients in accordance with Eq. 25, the distortion disappears.In the second test, an isosurface was extracted, based on a potential �eld from two nearby spheres,forming a \skin" around the pair. The isosurface is represented as a triangulated mesh. Each triangle hasa circle textured upon it, in its undeformed shape (some triangles did not get an entire circle). The widelyvarying sizes of the circles indicate the widely varying sizes of triangles in the isosurface. Because of thepopularity of isosurfaces as a means of surface creation, we believe this test is indicative of e�ects that can beexpected in practice. To induce a deformation, one sphere was pulled away from the other, with the \skin"constrained to stretch so that it surrounded them both. Then the skin was allowed to reach equilibrium,based on the spring mesh model. Now, for a uniformly elastic membrane the skin should deform fairlyuniformly. At least, the deformations of nearby triangles should be approximately the same. The deformedcircles become ellipses that demonstrate the e�ective strain in each triangle. Again, we see that setting allspring coe�cients equal leads to widely varying strains. However, the use of Eq. 25 to assign coe�cientsproduced signi�cantly more uniform strains in the individual triangles.In conclusion, this paper has derived an approximate formula for de�ning spring sti�ness coe�cients foreach edge in terms of the geometry of the mesh triangles containing that edge. The resulting spring meshapproximates an isotropic elastic membrane, at least for small deformations. Experimental results presentedindicate that the agreement is quite good for fairly large deformations as well.AcknowledgmentsThis research was funded in part by Research and Development Laboratories, and by NSF Grant CDA-9115268.References[BR75] William H. Bowes and Leslie T. Russel. Stress Analysis by the Finite Element Method forPracticing Engineers. D. C. Heath, Lexington, 1975.[CG91] G. Celniker and G. Gossard. Deformable curve and surface �nite elements for free-form shapedesign. Computer Graphics (ACM SIGGRAPH Proceedings), 25:257{266, July, 1991.[CZ92] David T. Chen and David Zeltzer. Pump it up: Computer animation based model of muscle usingthe �nite element method. Computer Graphics (ACM SIGGRAPH Proceedings), 26(2):89{98,July 1992.[Fen86] R. T. Fenner. Engineering Elasticity : Application of Numerical and Analytical Techniques. EllisHorwood Series in Mechanical Engineering. John Wiley, New York, 1986.10
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Figure 4: Comparison of e�ect of spring k's on test membrane. The hexagonal membrane at upper left,which is assumed to be of a homogeneous material, is subjected to a constant outward radial force at thesix external vertices. At lower, the regularly triangulated membrane expands correctly to a larger hexagon.At upper right, the irregularly subdivided membrane expands non-uniformly when spring k's are constantfor all edges. At lower left, despite being irregularly subdivided, the membrane expands correctly when thespring k's are calculated correctly, as discussed in the body of the paper.
12



Figure 5: This shows the e�ect of the spring k's on a stretched elastic membrane. In the initial triangulatedmesh, each triangle contained a circle. Because the mesh is quite irregular, the size of the triangles varies.The initial con�guration is shown at lower left. The stretched con�guration at equilibrium is shown at thetop. The stretched con�guration using a constant spring k is shown at top left; notice many of the smallcircles are distorted irregularly. In the top right, correct values are used for spring k's, and the circles aredistorted more regularly. 13


