Stream Tapping: a System for
Improving Efficiency on a
Video-on-Demand Server

Steven W. Carter and Darrell D. E. Long'

UCSC-CRL-97-11
November 2, 1997

Department of Computer Science
University of California, Santa Cruz
Santa Cruz, CA 95064

ABSTRACT

Video-on-Demand (VOD) allows clients to view selected videos at any time, and it is
essential for VOD servers to be run as efliciently as possible. Conventional VOD servers
are not efficient; they dedicate a disk stream for each client, and this strategy quickly uses
up all available streams. Other systems, such as batching, interval caching, and pyramid
broadcasting, have been studied. These systems make more efficient use of the VOD server’s
disk streams.

In this report we present a new VOD system called stream tapping. Stream tapping
allows clients to aggressively “tap” into any disk streams on the VOD server that are
reading data the client can use. This can be accomplished through the use of a small
buffer—as small as 115 MB for MPEG-1 encoding—on the client’s set-top box, and it can
save over 80% of the disk bandwidth used by a conventional system. This report includes
a description and analysis of the stream tapping system, and comparisons between it and
other efliciency-improving systems.

Keywords: Video-on-Demand, efficiency, bandwidth

! This research was supported by the Office of Naval Research under Grant N00014-92—J-1807.

1 Introduction

Video-on-Demand (VOD) allows a client to con-
nect to a VOD server using a television set-top
box (STB), use the STB to make a selection from
the server’s video library, and then begin viewing
the selected video in a short amount of time.

VOD is not yet commercially available. Many
companies have run trials for VOD over the last
five years [1-3], but by and large these compa-
nies have then either scaled back what they in-
tended or left the VOD business altogether. The
reason is cost. VOD—from upgrading or creat-
ing new networks to developing new software to
buying and maintaining hardware —is an expen-
sive business to start up. Any system that can
use existing hardware more efficiently or that can
reduce the amount of hardware needed is very
valuable.

Also, market tests suggest that VOD will be
competitive with video rental stores and pay-
per-view channels [1,4]. With this large num-
ber of potential clients, it is important for the
VOD server in particular to be run efficiently. It
must be able to handle a variety of loads without
(greatly) sacrificing performance, and it must be
able to scale well as more and more clients at-
tempt to use its services.

The three main hardware components of a
VOD service are the VOD server, the client STB,
and the network that connects the two. See Fig-
ure 1. Their role in VOD is described below.

e VOD Server

Many VOD server architectures have been
explored in the literature [5-10], and they
range from distributed systems that contain
a hierarchy of file system and storage nodes
to stand-alone file servers that operate us-
ing only local storage. However, regardless
of the architecture, the VOD server must
perform three roles:

1. Act as a repository for a large number
of videos,

2. Be able to support multiple, simulta-
neous accesses to videos, and

VOD Server
| ste| | s8] | s8]
[[[
v | [Tv] | TV]

Figure 1: The hardware components of a VOD
service.

3. Be able to communicate with clients so
clients can select and view videos.

o (lient STB
The role of the client set-top box is usually
dependent on the specific needs of a partic-
ular VOD provider [11,12] but some trends
are becoming clear [13,14]. The STB must:

1. Be able to communicate with the VOD
server so that it can navigate possible
video selections and receive video data,

2. Be able to decode the data it receives,
both for descrambling and MPEG de-

compression purposes,

3. Have a certain amount of processing
power, and

4. Have at least a small amount of lo-
cal buffer, both to keep enough video
frames on hand to prevent jitter! and
for possible network transport strate-
gies [15,16].

These requirements are enough that many
VOD providers are using stripped-down
computers for the STB [3,11].

! Jitter occurs when the next frame to be shown is not
available, and the STB must wait for the frame to arrive
or skip the frame (and probably other frames) in order to
resynchronize.

o Network
The network is simply the means of com-
munication between the VOD server and
the client STB. It does not have any other
requirements per se, but it should provide
such things as high bandwidth, guaranteed
quality-of-service? (QOS), and multicasting.
This makes ATM an ideal networking choice
[17,18] although even the Internet can be
used [8].

Given these three hardware components, there
are many issues involved in their implementa-
tion. In this report we concentrate on the VOD
server—in particular, how to make it more effi-
cient. The two measures of efficiency we will use
are:

o Latency: the average time a client must wait
before it can begin viewing its request.

e Banduwidth: the amount of disk (or network)
resources used by the server.

Although these two measures appear to corre-
late well, it is not necessarily the case. For ex-
ample, a VOD provider might have the option
of showing a particular video every five minutes
or every ten minutes. The first option has half
the latency but requires twice the bandwidth of
the second option. Any strategy that can reduce
both latency and bandwidth is valuable to VOD
providers.

There are two terms that are important for un-
derstanding stream tapping and other efficiency-
improving systems:

o Display stream: a stream of data a client
receives at its STB.

a stream of data the VOD
server reads from local (disk) storage.

o Disk stream:

The number of simultaneous disk streams a VOD
server can support while maintaining the neces-
sary QOS of the data is limited, and so the care-
ful management of these streams is important.

2 Quality-of-service is simply a commitment to a par-
ticular level of performance. For the network, this relates
to the amount of time i1t takes a video frame to go from

the VOD server to the client STB.

Conventional VOD systems do not use any
strategy at all when it comes to their disk
streams. They simply reserve a disk stream for
each display stream. While this is the easiest
strategy to implement, it is also the least effi-
cient.

Other systems, including stream tapping, at-
tempt to service multiple display streams from
each disk stream. This makes more efficient use
of the available disk bandwidth on the VOD
server, and with more clients able to use the
server at any one time, latencies are usually lower
as well.

What makes stream tapping unique is how
it goes about increasing the number of display
streams for each disk stream. The client STB
initially receives its own disk stream, but then it
is allowed to aggressively “tap” into other disk
streams from the VOD server, storing the tapped
data in a local buffer until it is needed. Every
time the client is able to tap data, its assigned
stream (which only has one display stream) will
not be needed for as long, and the other disk
stream will be able to increase its display streams
by one for the amount of time the STB is able
to tap data from it. This increases the average
number of display streams per disk stream.

The remainder of this report is organized as
follows. We present the stream tapping system
in §2 and then remark on some of its hardware
requirements in §3. In §4 we describe other VOD
systems that have been presented in the litera-
ture.
tapping system is described in §5, and in §6 we
discuss the results from that simulation. In §7
we outline some future plans with stream tap-
ping. Finally, in §8, we provide some concluding
remarks.

The simulation used to test the stream

2 Stream Tapping

The key idea behind stream tapping is that
clients are not restricted to their assigned disk
stream. If other disk streams for the same video
are active on the VOD server, clients are allowed
to “tap” into them, storing the tapped data in a
local buffer until it is needed. By using existing

disk streams as much as possible, the clients min-
imize the amount of time they require their own
disk streams. The rest of this section elaborates
upon how this strategy works.

2.1

Definitions

Several of the parameters used by stream tap-
ping are defined below:

[the size of the STB buffer, measured in min-

utes of video data. Measuring in time allows
us to ignore the particulars of the video en-
coding.

the number of videos offered by the VOD

server.

; the length of video ¢, in minutes, for
1<i<N.
the maximum number of simultaneous disk

streams that the VOD server can support.

the maximum number of simultaneous disk
streams that the client STB can receive.

the arrival rate of requests at the VOD
server, measured in requests per hour.

the difference in time, in minutes, between
the current request for a video and the last
request for the same video that required an
original disk stream.

Note that 8, L, A, and A are not required to
have integer values.

Stream tapping also divides disk streams into
three types:

1.

Original Streams

Original disk streams can be used at any
time. However, they require that the re-
quested video be read from disk in its en-
tirety, which means they are busy (i.e. read-
ing from storage) for

B, (i) = L; (1)

minutes, where ¢ is the index of the re-
quested video.

Display
'
A
f i
Full Tap Original
Display
'
B
i
Original

Figure 2: Examples of an STB’s buffer while it
is receiving a full tap stream (A) and after the
full tap stream has been released (B).

2. Full Tap Streams

A full tap disk stream can only be used when
the requested video starts within § minutes
of an original disk stream for the same video
(i.e. when A <). This allows the full tap
stream to work in tandem with the original
stream so that the full tap stream can be
released well before the video is complete.

In particular, the requesting STB will re-
ceive both the full tap and original streams
During that time the full
tap stream will read the first A minutes of
the video, and the STB will display it live.
The data from the original stream will be
stored in the STB’s buffer. After A min-
utes, the STB will be able to release the
full tap stream and receive the rest of the
video from its buffer, which will be contin-
ually updated from the original stream and
contain a moving A-minute window of the
video. That means a full tap stream will be
busy for

for A minutes.

By(A)=A (2)
minutes.

Figure 2 gives two examples of the state
of an STB’s buffer when the STB is as-
signed a full tap stream. The shaded areas

of the buffer indicate video data the STB
still needs to display, with the most recent
data on the right. The first part of the figure
shows the buffer during the first A minutes
when the STB is receiving two disk streams.
The full tap stream is being displayed, and
just enough of it is kept in the buffer to
prevent jitter. The second part shows the
buffer after the full tap stream has been re-
leased. Video data from the original stream
is being received and displayed (consumed)
at the same rate, leaving a constant window
of data in the buffer.

. Partial Tap Streams

A partial tap disk stream can be used for a
requested video in any situation where a full
tap stream cannot be used, as long as there
is an original stream for the video currently
active (i.e. when A >). As with the full
tap stream, a partial tap stream can work
in conjunction with the original stream, but
unlike the full tap stream, the partial tap
cannot be fully released until the video is
complete.

In particular, during the first 4 minutes, the
STB will receive both streams. The partial
tap stream will read the first 3 minutes of
the video, and the original stream will read
minutes A to A + 3 of the video. After that,
the STB will repeat the following until the
video is complete:

e The STB’s buffer is full, and the video
data it contains is A — § minutes away
from the STB’s current place in the
video. The STB will reacquire (if nec-
essary) the partial tap stream and re-
ceive the A — § minutes of video data
from there.

e The STB will then temporarily release
the partial tap stream for the next
minutes. During that time it will dis-
play the video data in its buffer and
receive data from the original stream
once again, filling up its buffer while
simultaneously emptying it.

Streams

10 20 30 40

Time (in min)

Figure 3: Three types of disk streams: A is an
original stream, B is full tap stream, and C'is a
partial tap stream.

The partial tap stream will only need to ex-
ist for the first § minutes of the display and
then for the first A — # minutes of every suc-
ceeding A-minute interval. That means it
will be busy for

B =s+ 15 a-)

+ min(A — 3, (L; — 3) mod A)

(3)

minutes, where ¢ is the index of the re-
quested video.

Figure 3 gives an example of the three types of
disk streams when 38 = 10. The original stream
starts at time Ty, the full tap stream starts at
time Ty + 5, and the partial tap stream at time
To+12. The shaded area indicate when the
streams are busy.

2.2 Algorithm

Using the definitions from §2.1, we can now de-
scribe the stream tapping algorithm. Every time
the VOD server can service requests, it must first
assign each request in its request queue one of the
three disk stream types.

e If no instance of the requested video is cur-
rently being read from disk using an origi-
nal stream, then that request is assigned an
original stream.

e If an original stream for the requested video
started less than or equal to # minutes in
the past, then that request is assigned a full
tap stream.

e If an original stream for the requested video
started over # minutes in the past, then a
decision must be made about the type of
disk stream (either original or partial tap)
that the request should be assigned.

This decision can be made based on the request’s
video group. A video group is the set of disk
streams for the requested video, starting with
the most recent original stream and including all
subsequent tap streams. With a minimal amount
of extra storage (one counter for each video), the
VOD server can keep track of A, the scheduling
rate of streams in the group.

Given A\, and A, the VOD server estimates
two values:

e (,, the average disk usage of a video group
that exists for A + 1//\g minutes and has a
scheduling rate of A,.

e O/, the optimal average disk usage of a
video group that exists for less than or equal
to A minutes and has a scheduling rate of

Ay

Cy is the average usage of the group with the
request, and O, is the best average usage of the
group without the request.

The VOD server then requires a parameter to
the algorithm, o, the tap limit. If C'y < 0O, the
request is assigned a partial tap stream, other-
wise it is assigned an original stream.

Once all of the requests have been assigned
stream types, the VOD server will know deter-
ministically the disk scheduling and usage re-
quired by each (for this iteration). It can then
use this information to order the requests in the
queue and to check which requests can be ser-
viced.

2.3 Other Options

In the main part of the stream tapping algorithm
described above, the client STB need only receive
at most two disk streams at any one time. If the
STB has the capability to receive more than this
without sacrificing QOS, then two more options
can be used.

Before
o C
5 e
RN
10 20 30 40
Time (in min)
After
M &
3
10 20 30 40
Time (in min)

Figure 4: Extra tapping: A is an original stream
and B and C are full tap streams to A.

The first of these options is called extra tap-
ping. This option allows an STB receiving a full
or partial tap stream to tap data from any disk
stream on the video server, not just from an orig-
inal stream.

Extra tapping can only be performed under
two conditions:

e The new video data does not displace any
data the STB expects to be in its buffer,
and

e The new video data will still be in the buffer
when it is needed.

In other words, the STB is not allowed to undo
any positive work or to do any unnecessary work.

An example of extra tapping is shown in Fig-
ure 4. The buffer size is 10 minutes, and B and
C'" are full tap streams starting, respectively, 5
and 7 minutes after original stream A. The be-
fore part of the figure shows the video data (in
lighter gray) that the STB receiving stream C'
can tap from stream B. The after part shows
the only parts of the full tap streams that need
to be reserved on the VOD server.

The second option is called stream stacking.
When an STB has data in its buffer to which it

Before

Streams

10 20 30 40

Time (in min)

After

Streams

10 20 30 40

Time (in min)

Figure 5: Stream stacking: A is an original
stream and B is a full tap stream.

is trying to “catch up,” and when it also has
extra space in its buffer, it can use whatever
disk streams are currently available on the VOD
server to help load in the data it needs more
quickly. This does not change the amount of
time the stream is busy, but it rearranges when
data is read from the server, potentially prevent-
ing future bandwidth contention.

Figure 5 provides an example of stream stack-
ing. The buffer size is 10 minutes, and B is a
full tap stream starting 5 minutes after original
stream A. Since the STB receiving B only needs
to reserve half of its buffer for stream A’s data,
it can use the rest of the buffer to more quickly
load the first five minutes of the video. In this
example we assume stream F is available, and
that the STB receiving B is able to use it for
two minutes before another stream reserves it.
The before part of the figure shows the part of
stream B (in lighter gray) that is read by stream
F, and the after part shows how stream B be-
comes available two minutes earlier than it would
have otherwise.

Although it might not have been obvious from
the descriptions above, stream stacking and ex-
tra tapping can only be used during the first 3

minutes of full and partial tap streams. For a
proof that this extra data does not overflow the
client’s local buffer, please see Appendix B.

3 System Requirements

Stream tapping is more complicated than con-
ventional systems, and because of this it imposes
some extra requirements on the hardware com-
ponents of a VOD service. (These are the same
components shown in Figure 1.) Some of the
extra requirements are discussed below.

3.1 VOD Server

The main difference between a VOD server using
stream tapping and one running a conventional
scheme is that the stream tapping server requires
a stronger software solution.

e The server must be able to reserve disk
bandwidth in advance. This also makes disk
scheduling more difficult.

e Stream tapping requires a richer protocol
between the server and the client. The client
must be informed about the identity of the
data it receives, and the server must provide
that information.

o If extra tapping is used, the server must be
able to make quick decisions about avail-
able bandwidth, construct and break down
short-duration multicast groups, and keep
track of which parts of the videos the clients
have received.

However, because the software is more compli-
cated, the server will require less hardware, and
thus money spent on software development will
be mitigated by money saved on hardware. If
VOD providers run multiple servers, they should
save even more.

3.2 Network

Unlike conventional systems, stream tapping re-
quires that the network be able to reserve band-
width in advance (assuming a network that can

provide QOS assurances is used). This sort of
capability can be added to standard reservation
protocols, such as RSVP [19] and ST-II [20],
with minor modifications [21,22]. Also, because
stream tapping reduces the amount of network
bandwidth used by the VOD server, it can func-
tion on networks with much lower bandwidth ca-
pabilities than conventional systems require.

3.3 Client STB

In order to perform stream tapping, the client
STB must have a local buffer that can store min-
utes of video data. This buffer does not need
to be large. Using MPEG-1 video encoding (at
1.5 Mbps), a 10-minute buffer is only 115 MB;
using MPEG-2 encoding (at 4 Mbps), the same
buffer is only 300 MB. These small sizes mean the
buffer should be relatively cheap to add to the
STB. Even the 300 MB buffer should cost far less
than $100, and this is not excessive when STB’s
are expected to have prices similar to VCR’s?.

4 Related Work

Other researchers have developed systems for im-
proving the efficiency of VOD servers, and we
briefly describe some of these systems below.
The systems are distinguished by their most fun-
damental or unique idea.

4.1 Batching

A simple but effective technique for improv-
ing VOD server efficiency is known as batch-
ing [23,24]. When the VOD server has multiple
requests for the same video in its request queue,
it may service them all (that is, batch the re-
quests together) by multicasting the video to all
of the requesting clients.

The problem with batching is that it does not
attempt to make efficient use of the VOD server’s
disk bandwidth until the server is in an over-
loaded state (i.e. when it is putting a large

®In fact, STB’s may cost far more than this. Time
Warner used a scaled-down Indy workstation, costing over
a thousand dollars, in its Orlando trial [3].

percentage of the video requests into its request
queue). As long as the server’s request queue is
small, batching will function essentially the same
as a conventional system.

4.2 Delayed Batching

Delayed batching [25,26] works much like stan-
dard batching, except that instead of servicing a
request as soon as possible, the VOD server will
wait a certain amount of time (called the batch-
ing interval) in an effort to increase the number
of requests batched together. The batching in-
terval is allowed to change for each video and is
usually based on the popularity of the video.
Delayed batching solves the problem found in
standard batching in that it is able to batch re-
quests regardless of the load on the VOD server.
However, it creates two new problems: it guaran-
tees that the average client latency will be non-
zero, and the only way for it to minimize latency
is to maximize disk bandwidth (and vice versa).

4.3 Staggered Broadcasting

With staggered broadcasting [27-29], a disk
stream for a video is only started at regular in-
tervals (such as every ten minutes), and all re-
quests received for the video during the current
interval are batched together. This is similar to
delayed batching except in how the interval timer
is started (a video request versus a regular inter-
val). Thus staggered broadcasting also has the
same two problems as delayed batching.

4.4 Pyramid Broadcasting

With pyramid broadcasting® [30,31], the VOD
server reserves a certain number of disk streams
for a set of (popular) videos. However, rather
than having each stream read out an entire video,
the streams read out multiplicatively increasing
segments of the videos. The client STB must

“For the rest of this report, when we refer to pyra-
mid broadcasting, we will mean the unconstrained,
permutation-based version presented by Aggarwal et al.
[30]. This is the version that produced the lowest average
client latency for a given bandwidth.

then jump from stream to stream in order to
receive an entire video.

Pyramid broadcasting gives a much better la-
tency than that found in staggered broadcast-
ing (the latency is exponential in the bandwidth
rather than linear), but in order for the STB to
receive each segment as it is needed, the video
data must be transferred at a rate about three
times the consumption rate. Because of this, the
STB must also have a local buffer, and the size
of this buffer must be at least 300 MB (and per-
haps as large as 900 MB) for MPEG-1 encoding.
This is much larger than the buffer required by
stream tapping.

4.5 Piggybacking

In piggybacking [32, 33], the display rates of
videos are changed by £5% (little enough so hu-
man observers should not notice) so that two ex-
isting disk streams can be “merged” into one.
That is, the rate of one disk stream can be in-
creased while the rate of another is decreased,
and once the streams reach the same position in
the video, one can be released.

This strategy works well in that, except for
one possible stream jump by the client STB, all
of the work is done by the VOD server. However,
this gain is heavily offset by the amount of time
it takes for two streams to merge; if the streams
start A minutes apart, piggybacking will take
10A minutes to merge them. This is 10 times
longer than it takes stream tapping to achieve
a similar effect. Also, if the video rate changes
cannot be made on the fly, piggybacking will re-
quire at least two versions of each video (one fast
and one slow—a normal speed isn’t necessarily
needed), increasing the storage requirements.

4.6 Interval Caching

With interval caching [34,35], the VOD server
keeps a local cache of some large size (perhaps
in the GB range). When a new video request is
to be serviced, the server checks if another disk
stream has been assigned for that video, and, if
so, attempts to keep the interval of video data
between the two display streams in its cache. It

does this by placing data in the cache as it is read
for the first display stream, leaving it there until
the second display stream needs it, and then free-
ing it after the second display stream has used it.
In this way, the second display stream only re-
quires a disk stream for the small amount of time
it needs to “catch up” to the cached data (since
the other disk stream’s data is not placed in the
cache until the second display stream starts).

Clearly, the effectiveness of interval caching is
dependent on the size of the VOD server’s cache,
but bigger is not necessarily better. The best size
is influenced by the relative costs of disk streams
and cache space. For servers of the size used
in this report and for MPEG-1 encoding, Dan
and Sitaram found that the most cost effective
cache size was only 250 to 500 MB; yet even using
a cache large enough to hold 8 videos (roughly
10 GB), they only found a disk bandwidth sav-
ings of 40-50% over conventional systems [34].
Stream tapping can achieve this for any video
with an average interarrival time of 20 minutes
or less (see §6). Also, while interval caching is
able to save disk streams on the VOD server, it
does nothing to save bandwidth on the network.
It has the same network requirements as conven-
tional systems.

4.7 Asynchronous Multicasting

Asynchronous multicasting [36,37] allows a client
to join a multicast group for a video after the
video has started. The VOD server accomplishes
this by breaking up the video into segments of
length S and sending out a segment every S
minutes—but using a transfer rate N times the
consumption rate of the video, so the transfer
only takes S/N minutes. This allows a client to
join a multicast group late, store the segments
that are current for the other members of the
group in a local buffer until they are needed, and
use the gaps between the segments to receive seg-
ments that it missed.

In particular, the buffer must be able to hold
some multiple M of the segment size S. This
allows the client to join a multicast group as long
as the M*™ segment has not yet been sent to the

rest of the group, or within (M — 1)S minutes
of the start of the video. Using an example of
M =3 and S =6 [37], this means the client’s
buffer must be able to hold 18 minutes of video
data, but it can only catch up to videos that
started less than 12 minutes in the past.

Stream tapping was developed independently
of asynchronous multicasting, and although the
two systems share some similarities (especially
with full tap streams), there are some important
differences. Stream tapping:

e Does not break the video into segments,

e Does not make any assumptions about the
transfer rate,

o Makes more efficient use of the client buffer,
and

e Requires a lower data rate at the client STB.

5 Simulation

We analyzed the stream tapping system using
simulation. Fach run of the simulation consisted
of a 2-hour warm-up period followed by a 12-
hour interval during which statistics were kept.
Each data point presented in the next section is
the mean average of five such runs. This kept
the variance of the values to (typically) less than

1%.

5.1 Videos

The length of each video was modeled using a
normal distribution with a mean of 110 minutes
and a standard deviation of 10 minutes. These
lengths were truncated to a minimum of 90 min-
utes and a maximum of 180 minutes to keep the
values realistic.

The probability of each video was modeled us-
ing a Zipf-like distribution. (See Appendix A for
details.) This is the distribution recommended
by Drapeau et al. [38] and used by many oth-
ers [23,27,33,34,39]. Also, like many of the
papers just cited, we decided to configure the
distribution to more closely fit empirical video

0.2

0.18 f

Probability

1‘0 26 3“0 4‘0 5‘0 66 70 80 90
Video Index

Figure 6: A Zipf-like distribution with N = 92

and 6 = 0.271.

rental patterns [40], and therefore used N = 92
and a # = 0.271. (See Figure 6.)

5.2 Clients

Clients were generated using a Poisson arrival
process with an interarrival time of 1/A. Clients
were only allowed to select a video based on the
distribution described above. Adding more com-
plexity to the client—such as allowing it to give
up waiting (or renege) on its request, or allowing
it to interact with the video—is planned for the
future.

5.3 VOD Server

Overall, the VOD server acted like an ordinary
server; it received requests, serviced requests if
it had available resources, queued requests if it
did not, and tried to service requests in its queue
every time an event occurred that made a disk
stream available. The only issue left to model
was the amount of time it took the server to ac-
cess a video. This latency depends on the par-
ticular VOD server architecture being used (e.g.
if it uses tertiary storage for unpopular videos).
Since we did not want to make any assumptions
about the server, and since we also wanted to re-
move the effects of the server from the results of
the simulation, we took this latency to be zero.

5.4 Network

The characteristics of a network—its size, band-
width, protocol, and medium—can drastically
influence its effectiveness in supporting VOD.
For this reason we did not want to make any
assumptions about the network, and as with the
VOD server, we also wanted to remove its ef-
fects from the results of the simulation. There-
fore we assumed that the data was able to tra-
verse the network with zero latency and that the
network always had bandwidth available to the
VOD server.

While the assumptions made in this and
the previous subsection are certainly unrealistic,
they are consistent with the approaches taken by
other researchers in the field. Also, even if the
latencies caused by video start-up and the net-
work were included, they are small enough when
compared to the latency caused by contention for
VOD server resources that it is likely the results
would not be very different.

5.5 Client STB

We assumed that the client STB’s were all ex-
actly the same in terms of their buffer size and
maximum data rate. This is not required to be
the case, but it simplified the simulation.

5.6 Scheduling Policy

Stream tapping does not work well with stan-
dard scheduling policies. First-come-first-served
(FCFS) is fair, but it does not recognize the sav-
ings presented by full and partial tap streams.
Maximum queue length (MQL), by scheduling
based on the current number of outstanding re-
quests for each video, favors the tap streams,
but it can cause starvation for unpopular videos.
Minimum service time (MST) recognizes the po-
tential for tap streams better than the others,
but it can cause starvation as well.

For this reason, we created our own scheduling
policy called WSA, the weighted, scaled average
of FCFS, MQL, and MST. In this policy, each re-
quest receives its normal priority from the three
standard policies, but then the values are scaled

to put them in common terms, weighted for tun-
ing purposes, and then added together for the
final priority.

The exploration of other scheduling policies,
and their effect on a stream tapping VOD server,
is planned for the future.

6 Results

In this section we will present simulation results
for stream tapping. These results are for disk
bandwidth and latency, our two primary metrics
for VOD server efficiency. We will first explore
how variations in the parameters and options to
the system affect its performance, and then we
will compare (where possible) stream tapping to
other systems.

We drew upon two standard configurations—
one for measuring latency and one for measuring
disk bandwidth—when running the simulation.
Unless otherwise specified, we used these config-
urations and both options to the system when
simulating results.

The latency configuration is one that might ex-
ist in real life:

e The VOD server has 300 disk streams and
92 videos (S = 300, N = 92).

e The client STB has a 10-minute buffer and
can receive up to 4 disk streams at any one

time (8 =10, C' =4).

This represents a moderately-sized VOD server,
one that could service a community of several
thousand people.

A configuration for measuring disk bandwidth
cannot be based on a realistic setting. This is
for two reasons: it is more informative to know
the bandwidth required by requests for a single
video (which can then be extrapolated for mul-
tiple videos, if needed), and the measurements
should not be influenced by contention for re-
sources. Therefore, the disk bandwidth configu-
ration has the same client STB as the latency
configuration, but its VOD server has an infinite
number of disk streams and only a single video.

10

Figures 7 and 8 show how the tap limit affects
VOD server efficiency. Recall that the tap limit
helps decide whether the server should select a
partial tap stream or an original stream, with a
value of 1.0 meaning it should choose whichever
requires the least amount of disk time. Therefore
the results in Figure 7 are not surprising; the
lowest bandwidth came when the tap limit was
1.0.

Figure 8, which shows the tap limit’s effect on
latency, is more intriguing. The best limit here
came at 1.05, a value that caused the VOD server
to favor partial tap streams. We conjecture this
happened because partial tap streams cause disk
stream “gaps” of size 3, and these allow stream
stacking to be performed more often, and they
allow full tap streams to be scheduled more of-
ten. (We allowed the modeled server to continue
checking on requests even after it found one that
could not be serviced. Giving extra opportuni-
ties for full tap streams causes the scheduling
policy to behave more like MST, which reduces
the average latency.)

Given the slight disparity between the optimal
tap limits for latency and disk bandwidth, we
decided to use a tap limit of 1.0 for the rest of
the results in this section. This value was the
most intuitive choice, and it should work well
regardless of the scheduling policy used. We did
not want to tune stream tapping to the WSA
policy and give it an unfair advantage over the
other systems during later comparisons. Also,
by using a value greater than or equal to 1.0, we
were able to prove the server will never make a
bad stream choice. See Appendix C.

Figure 9 shows how the size of the client buffer
affects disk usage on the VOD server. As ex-
pected, a larger buffer improves the disk usage
on the VOD server for all arrival rates except
for the largest, A = 120. This happens because
stream tapping was designed with a small buffer
in mind, and when the buffer size and arrival
rate become large enough, it is not always best
for the VOD server to assign a request a full tap
stream. Changing the algorithm so that a stream
decision is made for all tap streams (instead of
just partial tap streams) is a trivial matter, and

11

30 T T T

Lambda= 3 —-— e
Lambda= 12 -+
Lambda= 30 -=- Y

25 - Lambda= 60 -x a

Lambda = 120 -+-- -

20 A
[e o e

10 gB BB Bee

Average Disk Usage (streams)

.
0.6 0.8 1 1.2 1.4 1.6 1.8 2
Tap Limit

Figure 7: Using disk bandwidth to determine the
best tap limit (N =1, S = o0).

T T
Lambda =300 —-—
10 - Lambda = 375 -+ -
Lambda = 450 -&--
. Lambda = 525 -
T Lambda = 600 -&--

N

X
XK

Average Latency (min)
@

" ! . . .
0.6 0.8 1 1.2 1.4 1.6 1.8 2
Tap Limit

Figure 8: Using latency to determine the best
tap limit (N =92, S = 300).

22 T T

A Lambda= 3 —-—
20 Lambda= 12 -+- 1
Lambda = 30 -&-
8% Lambda = 60 -x--
. 5 Lambda = 120 -&--
£ 16 - 1
[} A
2 N
7 14 b 1
o Tl /,,»/““’”/“
2 22F % e a T T 1
1%
]
K 10 r . x 1
a Tl x " x
) F Tm b
? 8 + B S
g ol e e
E +»"““"“4-”“,,,“,7
s I B R
..
o
5 10 15 20 25 30 35 40
Buffer Size (min)
Figure 9: STB buffer size versus disk usage
(N=1,5=00).

it is something we will explore in the future.

Figure 9 also shows that with a 10-minute
buffer on the client, the VOD server only re-
quires about 15 disk streams on average to give
a zero latency for a particular video, even if the
video is requested 120 times per hour. If stag-
gered broadcasting were to use 15 disk streams
for a video, it would give a latency of over 3.5
minutes.

The effect the buffer size has on client latency
is shown in Figure 10. This graph is very en-
couraging; even when there were twice as many
requests per hour as there were disk streams on
the VOD server, the server was able to handle
the load and and give reasonable latencies, even
for the 5-minute buffer.

It is also worth noting that a conventional sys-
tem, by reserving a disk stream for each display
stream, can only handle about 164 requests per
hour when it has 300 disk streams; any more
than that and it will begin to generate an infi-
nite request queue. Stream tapping can handle
almost twice that many requests per hour be-
fore it even begins to generate non-zero latencies
(with g > 10).

Figure 11 shows how the number of disk
streams on the VOD server affects latency. The
arrival rates are given as a percentage of those
streams per hour. This allows the arrival rates
to be meaningful for each server size.

Figure 9 already provided examples showing
that when the request rate for a video is dou-
bled, the bandwidth required by the video does
not double. (For example, for 3 = 10, when the
request rate jumped from 30 to 60 per hour, the
bandwidth only increased from about 10 to 12
disk streams.) Thus the results from Figure 11
should not be surprising. Increasing the disk
bandwidth and the request rate by the same fac-
tor allows the VOD server to perform more effi-
ciently. This is why stream tapping scales well.

The effect of the VOD server’s library size on
latency is shown in Figure 12. Stream tapping
works best when it receives a high rate of re-
quests for a single video; that allows most clients
to receive a significant amount of their video
data through tapping. Thus we would expect the

10 T
Lambda = 300 —~—
9% Lambda = 375 -+
AN Lambda = 450 -&--
> Lambda = 525 -
8 Lambda = 600 -+
“
P 7h A
£
£
g 6
o
=4
Q
© 5 = a
-
()
g 4y
[X,
2
< 31 . .
* S
2+) -
1L a
0 oy T . ;
5 10 15 20 25 30

Buffer Size (min)

Figure 10: STB buffer size
(N =92, S =300).

versus latency

35 T T
Lambda = 100% ——
Lambda = 150% -+--
30 | Lambda = 200% -&--
K Lambda = 250% -x
Lambda = 300% ---

25 Lo

20 F O

Average Latency (min)

0 L . L = Ny
100 200 300 400 500 600 700
Maximum Server Streams

Figure 11: VOD server disk streams versus la-
tency (N =92, S = 300).

30 T T T

Lambda =300 —-—
Lambda = 375 -+--
Lambda = 450 -&--
25 | Lambda = 525 -x

Lambda = 600 -&--

20 |

15 e

Average Latency (min)

10 -

.
120 140 160 180 200 220 240
Total Videos

60 80 100

Figure 12: VOD server library size versus latency

(N =92, S = 300).

12

20 T T

E Lambda= 3 —-—
Lambda= 12 -+- |
Lambda = 30 -&-
Lambda = 60 -x

18 F ™

16

777777777

S T T

14 %
12 r

10 B

Average Disk Usage (streams)

7
4 5 6
Maximum Client Streams

Figure 13: Maximum client streams versus disk

bandwidth (N =1, .S = oo, A = 60).

10 T T

Lambda =300 ——
Lambda = 375 -+--
Lambda = 450 -&--
Lambda = 525 -
Lambda = 600 -+--

Y N

Average Latency (min)

4 5 6
Maximum Client Streams

Figure 14: Maximum client streams versus la-
tency (N =92, § =300, A = 525).

VOD server to show lower latencies when there
are fewer videos (but the request rate remains
the same), and that is the case in this figure.

Figures 13 and 14 show how the maximum
number of client disk streams affects VOD server
efficiency. The basic part of the stream tapping
system requires two client streams, and only the
options to the system make use of more. Thus
we expected a priori that the performance gains
from increasing the number of client streams
would be small, and that is what we found. Both
disk usage and latency improve when moving
from 2 to 3 client streams, but after that the

gains are minimal.

Figure 13 might be a little misleading in that it

13

20 T T
Neither Option ——
Extra Tapping -+

18 I Both Options -&--

Average Disk Usage (streams)

. .
40 100

.
20

60 8 120
Arrival Rate (per hour)

Figure 15: Effects of the stream tapping options
on disk usage (N =1, § = 0).

indicates the server uses more bandwidth when
the clients can accept more streams. This is be-
cause, by allowing the server to have infinite disk
streams when measuring disk usage, the clients
are able to perform stream stacking to its fullest
extent. The more clients can perform stream
stacking, the less they can perform extra tap-
ping (since the “stacked” data can no longer be
tapped by later-arriving requests), and the less
efficient the VOD server becomes with regard to
disk bandwidth. This is also a problem with
other graphs that measure disk usage, but to a
smaller extent since the default value of C'is only
4.

Figures 15 and 16 show how the extra tap-
ping and stream stacking options affect the VOD
server. Note that stream stacking is not included
in Figure 15. When it is used alone, it simply
rearranges when video data is read from disk; it
does not change the actual disk usage.

These results were slightly disappointing:
while the options appear to improve disk usage
to a significant extent, they only decreased la-
tency by a slight amount (roughly 20 seconds for
each data point). This appears to be caused by
two things:

e Extra tapping causes gaps in disk streams
that reduce the overall disk usage, but the
gaps are not large enough and do not line
up well enough to allow other streams to be

scheduled.

T
Neither Option ——
Stream Stacking -+---
7 I ExtraTapping -&-
Both Options -

Average Latency (min)
»

0
300 350 400 450 500 550 600
Arrival Rate (per hour)

Figure 16: Effects of the stream tapping options
on latency (N =92, S = 300).

12

T
FCFS —-—
MST -+
MQL -=
10 F WSA - P
/*
= L
£ 8 e
>
o
c
3]
© 6
4 .
p g
5] o
Z 4 e
B
2 L
A
0 il L L L L L
300 350 400 450 500 550 600

Arrival Rate (per hour)

Figure 17: Average latencies for four scheduling
policies (N =92, .S = 300).

e Stream stacking only exists to improve la-
tency (it does not help disk usage), but it
requires available streams in order to func-
tion. That is, in most of the situations when
it can help, it is not needed.

However, it is possible that with a larger
VOD server (which gives more disk streams to
work with and allows more interactions between
streams) or with a different strategy for using the
options (such as changing how available streams
are split up during stream stacking) the options
might perform better.

Figures 17 and 18 show how WSA compared to
other scheduling policies like FCFS, MQL, and
MST. We found these results heartening: WSA

140

120 -

100

60 -

Maximum Latency (min)
a

40 |

20 -

0
300 350 400 450 500 550 600
Arrival Rate (per hour)

Figure 18: Maximum latencies for four schedul-
ing policies (N =92, S = 300).

performed well—with an average latency be-
tween FCEFS and MQL and a maximum latency
close to FCFS—even though we did not take
a great deal of time to study different schedul-
ing policies or tune the WSA policy. We expect
that with more analysis we will be able to find a
scheduling policy that will work even better with
stream tapping than WSA does now.

Figure 19 shows how much disk bandwidth is
saved by using stream tapping instead of a con-
ventional system. (We could compare latencies
as well, but for any arrival rate that creates non-
zero latencies for stream tapping, a conventional
system generates an infinite queue.) Note that
stream tapping saves over 80% when the interar-
rival time is 2 minutes or less (that is, when the
video is popular), and even saves 15% when the
interarrival time is 60 minutes.

Figure 20 compares stream tapping to the two
broadcasting systems. Because of their deter-
ministic nature, it is possible to write functions
for latency based on the disk bandwidth (mea-
sured in streams) provided the two broadcasting
systems. Given a video 7, we used

L;

for staggered broadcasting and

L;

L,(5) = 3 21)

14

Savings in Disk Usage (%)

10

. . . .
10 20 30 40 50 60
Interarrival Time (min)

Figure 19: Savings in disk usage: stream tapping
over conventional systems (N =1, .S = o0).

for pyramid broadcasting [30]. Note that even
with the high arrival rate (a request every ten
seconds) stream tapping was very competitive
and outperformed both broadcasting systems
given enough disk streams.

Figures 21 and 22 compare stream tapping to
batching and asynchronous multicasting. We es-
timated the performance of asynchronous mul-
ticasting by modeling it as stream tapping with
only full tap streams. This should provide an
upper bound on its performance since, using a
10-minute buffer, a request in asynchronous mul-
ticasting can only join a multicast group for a
video that started less than 6-7 minutes in the
past. Our model increases this to 10 minutes.

Figure 21 compares the three systems using
disk bandwidth. This is not particularly fair
to batching; by allowing the VOD server unlim-
ited disk streams to measure usage without con-
tention, the server never had any requests in its
queue, and thus batching in this case performed
exactly the same as a conventional system. In
both Figures 21 and 22, stream tapping handily
outperforms the other systems.

7 Future Work

There are a variety of topics we have not yet
explored at all, or have not explored as fully as
we should. Some of the more important topics
are listed in the subsections below.

15

45 T T T

Staggered Broadcasting ——

40 % Pyramid Broadcasting -+-- |
i Stream Tapping -=--

35 L

Average Latency (min)

8 0
Disk Streams

Figure 20: Average latency for three VOD sys-
tems (N =1, A = 360).

T T
L Batching ——

256 Asynch. Multicast -+--
Stream Tapping -&-

Average Disk Usage (streams)

.
20 40 60 80 100 120
Arrival Rate (per hour)

Figure 21: Average disk usage for three VOD
systems (N =1, 5 = 00).

16 T

T T
Batching ——
Asynch. Multicast -+---
14 - Stream Tapping -&--

Average Latency (min)

0 »«’// e L L L L L
200 250 300 350 400 450 500 550 600
Arrival Rate (per hour)

Figure 22: Average latency for three VOD sys-
tems (N =92, S = 300).

7.1 Scheduling Policies

As we mentioned before (see §5.6), our WSA
scheduling policy is very simplistic and can more
than likely be improved upon. Others have
looked at scheduling policies for VOD servers
but have not considered the service time of the
request [23,24]. This is a very important fac-
tor with stream tapping since service times can
range from a few seconds to hundreds of minutes.

7.2 Client Reneging

There are three important ways of rating a
scheduling policy:

e Average latency, which we have discussed in
this report.

Client reneging rate, which is the percentage
of time clients renege on their video request
because it has taken too long to be serviced.

Fairness, which is a measure how “fair” the
scheduling policy is in regard to the differ-
ent videos offered by the VOD server. A
perfectly fair policy has an equal reneging
rate for each video.

In this report, we have only considered the first
of these three methods (while giving hints about
the latter two through the use of the maximum
latency). By adding client reneging to the simu-
lation, we will be able to study the reneging rate
and fairness as well.

7.8 Stream Decision Process

While working with stream tapping, we found
there were situations when it was not always best
to assign a request a full tap stream. For ex-
ample, if 3 =30, L =110, and a disk stream is
started for a video every minute, then a video
group will contain an original stream and 30 full
tap streams, and it will require

30
110+) j=575

i=1

16

minutes of disk time. However, if an original
stream was used instead of the 15th full tap
stream from above, the same requests would only

require

14 15
10+ j+110+> j=445

i=1 i=1

minutes of disk time. Changing the decision pro-
cess s0 that an original stream can be assigned at
any time is an important step in making stream
tapping more versatile.

7.4 Server Library Size

We chose a library size of 92 videos because that
allowed us to model our workload against empiri-
cal data [40]. This size is probably much smaller
than will actually be used: Drapeau et al. [38]
estimate that VOD servers will contain around
500 (MPEG-1 encoded) videos, while some real
life VOD trials feature servers that can hold over
1000 videos [1,2]. Large library sizes are a good
selling point for VOD providers, but it is not
clear to what extent they affect VOD server sim-
ulations. Even with our distribution, the 92nd
video is only selected 0.4% of the time. If hun-
dreds of more videos are added, they will all have
very small selection probabilities, and it may
turn out that during a 12-hour simulation, not
many more than 92 videos are selected anyway.
However, this is something we plan to explore.

7.5 VCR Control

VCR control includes functions such as pause,
fast forward, and rewind. Systems that start
videos after semi-regular intervals (such as stag-
gered broadcasting) can perform these func-
tions very efficiently in a discontinuous man-
ner [25,27,28]. That is, the functions can be
mimicked by allowing the client STB to jump
forward a stream (for fast forward), jump back-
ward a stream (for rewind), or wait for a trailing
stream to reach the same point in the video (for
pause). However, this implementation does not
allow for cuing (viewing the video while using
fast forward or rewind) and it might not give

the client much precision in deciding the dura-
tion of the function (depending on how often new
streams are started). And thus continuous VCR
functions are preferred.

Systems such as stream tapping, piggyback-
ing, and batching can support continuous VCR
functions, but as far as we have been able to
find, no such studies have been performed. This
is probably because the systems will encounter
serious degradation in performance when VCR
controls are added: each VCR action taken by
a client can potentially move the client out of
its current multicast group and into a new group
where it is the only member. This would, in ef-
fect, break down all the work the system went
through to create a large multicast group.

But stream tapping might have an edge:

e A client moved out of its current group
would still be able to tap data from other
disk streams. This might allow it to be as-
signed the equivalent of a full or partial tap
stream and save on disk bandwidth.

e Because stream tapping requires a buffer on
the client STB, not all VCR functions would
require the client to leave its group. For ex-
ample, a client receiving an original stream
can pause up to minutes before it must
jump to a new group.

These points will help to mitigate the effects of
VCR actions, but obviously they will not alle-
viate them entirely. However, a study must be
done to see how much the VCR controls will hurt
stream tapping performance, and how this inter-
active version of stream tapping will rate com-
pared to other systems providing VCR controls.

8 Conclusion

Efficiency is very important for VOD servers; it
reduces the amount of hardware a server requires
in order to function, and it reduces the amount
of time clients must wait before their requests
can be serviced. The latter might be enough to
determine whether a VOD service succeeds or
fails.

In this report we presented a system called
stream tapping that can improve the efficiency of
VOD servers. It allows clients to tap into all disk
streams on the VOD server so they can minimize
the amount of new disk bandwidth they require
for their requests. This reduces the total amount
of bandwidth required by the server, and that in
turn leads to lower latencies for the clients.

Stream tapping does not make any assump-
tions about its environment.
VOD servers of any size, does not require exces-
sive network bandwidth, and can be scaled to
fit the desired complexity of the VOD server or
client STB. Stream tapping also does not require
any a priori knowledge by the VOD provider,
such as which videos will be popular and which
will not.

It can work with

We tested stream tapping through the use of
Using MPEG-1 encoding, videos
with an average length of 110 minutes, and a
VOD server with 300 disk streams available, we

found that even when the client buffer was as

simulation.

small as 115 MB stream tapping gave less than
5-minute latencies even when as many as 450 re-
quests were made each hour. We also compared
stream tapping to a variety of other VOD sys-
tems and found that it performed as well or bet-
ter than all of them. In particular, it required
less than 20% of the disk bandwidth used by con-
ventional systems (which dedicate a disk stream
on the server for each client) for popular videos.

Appendix
A

Given a parameter NV, the number of objects to
be considered, a Zipf distribution assigns object
¢ the frequency

i) = 5

Then the probability for object ¢ is given by

17

A Zipf-like distribution modifies the above
slightly by using a second parameter #. With
f the frequency for object ¢ becomes

and the probability for ¢ is calculated in the same
fashion.

B

When a client STB is assigned a full or partial
tap stream, it will receive data from

o Its assigned stream,
e The original stream it is tapping, and

e Any streams it can use for stacking or extra
tapping

during its first A (for full taps) or g (for par-
tial taps) minutes. We will use this appendix to
prove that the client’s buffer can hold all of this
data without overflowing.

Let d be the length of the interval (A or f3),
and note that d < . Also note that the origi-
nal stream being tapped is sending data that the
STB buffer must hold for the entire d minutes,
but the other streams are only sending data for
the first d minutes of the video. Now consider
any time ¢t between Tp, the starting time of the
tap stream, and Ty + d. The client buffer will
have t minutes of data from the original stream in
its buffer, but it will only have at most d —¢ min-
utes of data from the other sources. That means
the buffer will have at most d —t+t=d <
minutes of video data in it during the time inter-

val. And so the variety of sources will not cause
the STB buffer to overflow.

C

When the stream tapping algorithm decides be-
tween a partial tap stream and an original
stream, it does not consider the effect of future
streams on the current video group. It makes a

18

simple greedy decision based on the optimal av-
erage usage for the group—up until the time of
the current request—and the average usage for
the group if the request is assigned a partial tap
stream. That leaves open the possibility that
the algorithm could make a bad choice. That
is, it is possible for the algorithm to decide on
an original stream when a series of future par-
tial tap streams would bring the average usage
within the tap limit of the optimal usage. In this
appendix we will prove that when the tap limit is
greater than or equal to 1.0, the algorithm never
makes a bad choice.

We will first define some notation. Let a be
the tap limit, let § =1/A, be the interarrival
time for streams for the video, and let U;; be
the total usage for the itP through j*" streams
to the video group. (So, for example, Uy ; is the
usage of the original stream in the group.) Let
r be the index of the stream that causes the op-
timal average usage, and let s > r be the index
of the first request that the algorithm assigns an
original stream.

Then we know

Ul,s aUl,r
56 ré

and we need to prove that for any t > s,
Ul,t Ul,r
té rd

Let us first look at the average group usage for
the sth request (assuming it was assigned a par-
tial tap stream rather than an original stream).

Ul,s
56

(4)

> w

Ul,r + Ur—l—l,s
80

r

S
Ur—l—l,s .
(s—r)d

Ul,r
ré

S—7T

s

The average usage is simply the weighted aver-
age of the optimal average usage and the average
usage of the streams arriving after r. Hence, by
Equation 4 we know

Ul,r

Ur—l—l,s
(87
rd

(s —1)8

But
Ur—l—l,s o 1 UT’+1J’+1_|_
(s—9)85 (s—r) J
Ur—|—2,7’—|—2 U575
S)

which is a weighted average as well. Since the
usage of each request increases the farther away
the request gets from the original stream (i.e.
with increasing index), we have

Us,s Ul,r
5 YT (5)

Now consider any ¢ > s. The average usage of
the video group is

U~ Ui+ Usya
té té

Ul,s S
sé t

QED.

References

[1] James R. Allen, Blaise L. Heltai, Arthur H.
Koenig, Donald F. Snow, and James R.
Watson. VCTV: a video-on-demand market
test. ATET Technical Journal, 72(1):7-14,
January 1993.

[2] Bruno Suard, Leopold Verbist, and Dirk De
Schoenmacker. Update on VOD trials. In
Proceedings of ICCT "96, pages 1033-6, Bei-
jing, China, May 1996. IEEE Computer So-
ciety Press.

19

[3] Tekla S. Perry. The trials and trevails of
interactive TV. IEEE Spectrum, 33(4):22-
8, April 1996.

[4] David Tobenkin. Customers respond to
video on demand. Broadcasting & Cable,
123(48):16, November 1993.

[5] Susan T. Whitehead. Time Warner Ca-
ble’s Full Service Network—program man-
agement of the FSN virtual organization. In
Proceedings of the 2nd International Work-
shop on Community Networking Integrated
Multimedia Services in the Home, pages
291-9, Princeton, NJ, USA, June 1995.
IEEE Computer Society Press.

[6] Milind M. Buddhikot and Gurudatta M.
Parulkar. Efficient data layout, schedul-
ing and playout control in MARS. In Pro-
ceedings of the 5th International Workshop
on Network and Operating System Support
for Digital Audio and Visual, pages 31829,
Durham, NH, USA, April 1995. Springer.

[7] Roger L. Haskin and Frank B. Schmuck.
The Tiger Shark file system. In Proceedings
of COMPCON 96, pages 226-231, Santa
Clara, CA, USA, February 1996. IEEE

Computer Society Press.

[8] Kunihiro Taniguchi, Hitoya Tachikawa,
Takeshi Nishida, and Hiroshi Kitamura.
Internet video-on-demand system architec-
ture: MINS. IFICE Transactions on
Communications, E79-B(8):1068-75, Au-
gust 1996.

[9] Shunichiro Nakamura, Harumi Minemura,
Tomohisa Yamaguchi, Hiroshi Shimizu,
Takashi Watanabe, and Tadanori Mizuno.
Distributed RAID style video server. IFICFE
Transactions on Communications, KET9-
B(8):1030-8, August 1996.

[10] Huib Eggenhuisen and Sjir Van Loo. Video-
on-demand server. Philips Journal of Re-
search, 50(1-2):201-8, 1996.

[11]

[12]

[13]

[16]

[17]

Alec Livingstone. BT interactive TV. In
Proceedings of the 3rd International Work-
shop on Community Networking, pages 111—
5, Antwerpen, Belgium, May 1996. IEEE
Computer Society Press.

Kiyoshi Kohiyama, Hideaki Shirai, Kiy-
otaka Ogawa, Akio Manakata,
Koga, and Masayuki Ishizaki. Architecture
of MPEG-2 digital set-top-box for CATV
VOD system. IEFEFE Transactions on Con-
sumer Electronics, 42(3):667-72, August
1996.

Yuzuru

Qiang Tan, Mengchu Zhou, Jingjian Li, and
Dingkang Yao. A brief overview of cur-
rent TV set-top box developments. In IFEF
International Conference on Systems, Man
and Cybernetics, pages 2127-32, New York,
NY, USA, October 1996. IEEE Computer
Society Press.

Ajith N. Nair. Interactive television set-
top terminal architectures. In Proceedings of
COMPCON ’96, pages 233-8, Santa Clara,
CA, USA, February 1996. IEEE Computer

Society Press.

Jean M. McManus and Keith W. Ross.
Video on demand over ATM: constant-rate
transmission and transport. [IFEFE Jour-

nal on Selected Areas in Communications,
14(6):1087-98, August 1996.

Jian Ni, Tao Yang, and Danny H. K. Tsang.
CBR transportation of VBR MPEG-2 video
traffic for video-on-demand in ATM net-
In IFEFE International Conference
on Communications, pages 1391-5, Dallas,
TX, USA, June 1996. IEEE Computer So-
ciety Press.

works.

Gert Van der Plas, Raf Smets, Bruno Suard,
and Willem Verbiest. Demonstration of an
ATM-based passive optimal network in the
FTTH trial in Bermuda. In Proceedings
of GLOBECOM ’95, pages 988-92, Singa-
pore, November 1995. IEEE Computer So-
ciety Press.

20

[18]

[19]

[24]

Koichi Shiga. ATM technology meets VOD
systems requirements. Journal of Flectronic
FEngineering, 33(352):28-9, April 1996.

Lixia Zhang, Stephen Deering, Deborah Fs-
trin, Scott Shenker, and Daniel Zappala.
RSVP: a new resource reservation protocol.
IEEE Network, 7(5):8-18, September 1993.

C. Topolcic. Experimental internet stream
protocol, version 2 (ST-II). RFC 1190, Oc-
tober 1990.

Mikael Degermark, Torsten Ko6hler, Stephen
Pink, and Olov Schelén. Advance reserva-
tions for predictive service. In Proceedings
of the 5th International Workshop on Net-
work and Operating System Support for Dig-
ital Audio and Visual, pages 3—15, Durham,
NH, USA, April 1995. Springer.

W. Reinhardt. Advance reservation of
network resources for multimedia applica-
tions. In Second International Workshop
on Advanced Teleservices and High-Speed
Communication Architectures, pages 23—
33, Heidelberg, Germany, September 1994.
Springer-Verlag.

Asit Dan, Dinkar Sitaram, and Perwez Sha-
habuddin. Dynamic batching policies for an

on-demand video server. Multimedia Sys-
tems, 4(3):112-21, June 1996.

Charu C. Aggarwal, Joel L. Wolf, and
Philip S. Yu. On optimal batching poli-
cies for video-on-demand storage servers.
In Proceedings of the International Confer-
ence on Multimedia Computing and Sys-

tems, pages 253-8, Hiroshima, Japan, June
1996. IEEE Computer Society Press.

Victor O. K. Li, Wanjiun Liao, Xiaoxin
Qiu, and Eric W. M. Wong. Performance
model of interactive video-on-demand sys-
tems. IEFFE Journal on Selected Areas in
Communications, 14(6):1099-109, August
1996.

[26]

[28]

[29]

[33]

Hadas Shachnai and Philip S. Yu. The
role of wait tolerance in effective batch-
ing: A paradigm for multimedia schedul-
ing schemes. Technical Report RC 20038,
IBM Research Division, T.J. Watson Re-
search Center, April 1995.

Asit Dan, Perwez Shahabuddin, Dinkar
Sitaram, and Don Towsley. Channel allo-
cation under batching and VCR control in
video-on-demand systems. Journal of Par-
allel and Distributed Computing, 30(2):168-
79, November 1995.

Kevin C. Almeroth and Mostafa H. Ammar.
The use of multicast delivery to provide
a scalable and interactive video-on-demand
service. IEFEFE Journal on Selected Areas
in Communications, 14(5):1110-22, August
1996.

Tzi-cker Chiueh and Chung-ho Lu. A pe-
riodic broadcasting approach to video-on-
demand service. Proceedings of SPIE — The
International Society for Optical Engineer-
g, 2615:162-9, 1996.

Charu C. Aggarwal, Joel L. Wolf, and
Philip S. Yu. A permutation-based pyramid
broadcasting scheme for video-on-demand
systems. In Proceedings of the International
Conference on Multimedia Computing and
Systems, pages 118-26, Hiroshima, Japan,
June 1996. IEEE Computer Society Press.

and T.
Metropolitan area video-on-demand service
using pyramid broadcasting. Multimedia
Systems, 4(4):197-208, August 1996.

S. Viswanathan Imielinski.

Leana Golubchik, John C. S. Lui, and
Richard R. Muntz. Adaptive piggybacking:
a novel technique for data sharing in video-
on-demand storage servers. Multimedia Sys-
tems, 4(30):140-55, June 1996.

Charu C. Aggarwal, Joel L. Wolf, and
Philip S. Yu. On optimal piggyback merg-
ing policies for video-on-demand systems.

21

[35]

[40]

In Proceedings of the International Confer-
ence on Multimedia Systems, pages 253-8,
Hiroshima, Japan, June 1996. IEEE Com-
puter Society Press.

Asit Dan and Dinkar Sitaram. Buffer man-
agement policy for an on-demand video
Technical Report RC 19347, IBM
Research Division, T.J. Watson Research
Center, January 1993.

server.

Mohan Kamath, Krithi Ramamritham, and
Don Towsley. Continuous media sharing
in multimedia database systems. Technical
Report 94-11, University of Massachusetts,
1994.

Heekyoung Woo and Chong-Kwon Kim.
Multicast scheduling for VOD services. Mul-
timedia Tools and Applications, 2(2):157-
171, March 1996.

Hari Kalva and Borko Furht. Techniques for
improving the capacity of video-on-demand
systems. In Proceedings of the 29th An-
nual Hawaii International Conference on
System Sciences, pages 308—15, Wailea, HI,
USA, January 1996. IEEE Computer Soci-
ety Press.

Ann L. Drapeau, David A. Patterson, and
Randy H. Katz. Toward workload charac-
terization of video server and digitial library
applications. 1994 ACM SIGMETRICS
Conference on Measurement and Modeling
of Computer Systems, 22(1):274-5, May
1994.

Kevin C. Almeroth and Mostafa H. Ammar.
The role of multicast communication in the
provision of scalable and interactive video-
on-demand service. In Proceedings of the
5th International Workshop on Network and
Operating System Support for Digital Au-
dio and Visual, pages 251-4, Durham, NH,
USA, April 1995. Springer.

Video Store Magazine, December 13, 1992.

