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1. Introduction 1AbstractAlthough spectral partitioning has been an active area of research, there are still many limitationswhich prevent its widespread use. These limitations include the inability to work directly witha hypergraph model, great di�culty in specifying design constraints, and the inability to specifyarbitrary cost functions. None of those limitations are present in the commonly-used Kernighan-Lin/Fiduccia-Mattheyses (KLFM) style iterative improvement heuristics. Our current work focuseson developing a new multi-way, hybrid spectral/iterative hypergraph partitioning algorithm whichcombines the strengths of spectral partitioners and iterative improvement algorithms to createa new class of partitioners. We show how spectral information (the eigenvectors of a graph)can be incorporated into an iterative partitioning framework. We use spectral information togenerate initial partitions, in
uence the selection of iterative improvement moves, and break out oflocal minima which may trap KLFM improvement algorithms. Our 3-way and 4-way partitioningresults are better than the best published results, demonstrating the e�ectiveness of our new hybridmethod. Our hybrid algorithm produces an average improvement of 27.9% over GFM [33] for 3-waypartitions, 48.7% improvement over GFM for 4-way partitions, and 67.5% improvement over MLF[5] for 4-way partitions.1 Introduction1.1 The ProblemThis paper examines the hypergraph partitioning problem, whose goal is to divide a large system ofconnected components into several smaller subsystems. A hypergraph, which is a generalization ofthe graph model [38], is used as an abstract representation of a more speci�c problem. A hypergraphis composed of vertices (nodes) having arbitrary sizes, and weighted hyperedges which connect thevertices together. The goal of hypergraph partitioning is to divide the vertices of a hypergraph intoseveral distinct subsets subject to size or balance constraints while minimizing the interconnectionsamong those subgraphs. Graphs are simply hypergraphs where all hyperedges are incident uponexactly two vertices.Partitioning algorithms are useful in many areas, such as circuit placement [15] [24], minimizingcommunication in parallel processing simulations [42], optimizing the organization of large computernetworks, and circuit implementation in �eld-programmable gate arrays (FPGAs) [34], [9], [12], [40].Since partitioning with balance constraints is NP-complete [20], we must resort to heuristics to solvethe problem.1.2 ContributionsThis paper describes a new multi-way, hybrid spectral/iterative, graph partitioning algorithm. Wedescribe the theory behind our new spectral/iterative algorithm, show how to combine spectral anditerative partitioners, and present experimental results which validate our algorithm. Our methodsand ideas are general enough to be applied to almost any current and future iterative improvementheuristics. Our contributions include:



2 2. Background1. A new hybrid spectral/iterative partitioning algorithm. This is the �rst algorithm that simul-taneously combines iterative and spectral information in a multi-level partitioning framework.Previously, researchers have combined the two approaches by �nding a solution using a spec-tral algorithm and then performing iterative improvement on it [6, 25, 44]. The simultaneoususe of spectral and traditional gain costs was found in [11], where a single-pass constructiveheuristic was used to create partitions using the weighted sum of the cut gain and a spectralcost function. That heuristic was only a constructive heuristic, and not used for iterative im-provement. In contrast, our current work provides a much more tightly coupled integrationof spectral and iterative improvement methods. The main contributions of our work includethe use of circular orderings to generate multiple initial partitions, using spectral informa-tion within a Kernighan-Lin/Fiduccia-Mattheyses iterative improvement algorithm [29, 17]to break ties in gain, and using spectral information to break out of local minima which maytrap standard iterative improvement algorithms.2. A new k-way improvement method which we call Rotary KLFM.3. The (current) best known 3-way and 4-way hypergraph partitioning results. Our hybridalgorithm produces an average improvement of 27.9% over GFM [33] for 3-way partitions,48.7% improvement over GFM for 4-way partitions, and 67.5% improvement over MLF [5]for 4-way partitions.2 Background2.1 State-of-the-Art PartitionersThe classic Kernighan-Lin/Fiduccia-Mattheyses (KLFM) algorithm even today is used as the basisfor most modern iterative partitioning algorithms. This algorithm combines a greedy hill-climbingapproach with a simple backtracking step, as shown in Figure 2.1. Vertex moves are selected basedon the gain cost function. The gain is typically the total weight of the nets that would becomeuncut by moving the vertex from one partition to another. The algorithm is extremely fast, runningin linear time per pass with respect to the circuit size, is fairly easy to implement, and is easilyadjusted to take various cost functions or constraints into account. Improvements have been madein the selection of moves by biasing clusters of neighbors to be moved in sequence (the CLIPalgorithm [16]), detecting clusters [16], and breaking ties in gain by using look-ahead [31]).KLFM algorithms require a large number of random starts to obtain good partitioning solutions.Because KLFM algorithms are so sensitive to initial starting points, some researchers have soughtways to create more stable performance by using clustering and multiple levels of hierarchy.A top-down approach to �nding clusters in circuits was implemented by Wei and Cheng [41, 42,13]. They used the ratio-cut partitioning algorithm to recursively subdivide a circuit into manysmall clusters. The ratio-cut cost function is the ratio of edges cut over the product of the partitionsizes, EcjP1j�jP2j . They created a contracted graph by collapsing each cluster into a supernode. Theypartitioned this contracted graph, then re-expanded it and ran their ratio-cut iterative improvementalgorithm upon the expanded graph.Other researchers have tried bottom-up clustering algorithms for improving results. In [19], theycreated a linear-time clustering algorithm to �nd well-connected clusters using graph connectivityproperties. In [35], they performed clustering based on Rent's rule, and then executed the KLFM



2. Background 3ALGORITHM: KLFMINPUT: hypergraph, initial 2-way partitioning solutionOUTPUT: improved 2-way partitioning solutionMETHOD:Do fUnlock all verticesInitialize vertex gainsWhile (there are free vertices) fSelect best moveMove vertex and lock in placeUpdate gains of neighborsIf cost is best, save this positiongRewind to best position seeng While (cost has improved)Figure 2.1: The KLFM iterative improvement algorithm.algorithm on the contracted graph. In [14], they developed a clustering algorithm by collapsingcliques into supernodes, and then running the KLFM algorithm on the contracted graph.These methods were subsequently improved upon by using multiple levels of contraction (instead ofjust one level), and iterative improvement at each level of the hierarchy [26, 28, 27, 4, 44]. Currentstate-of-the-art partitioners use the multi-level (hierarchical) approach as shown in Figure 2.3. Ahypergraph is reduced in size by pre-clustering nodes or matching nodes together (Figure 2.2). Amatching of a graph is a set of edges whose vertices are non-overlapping. From this pre-clustering ormatching, a contracted graph which is much smaller than the original graph is created. Figure 2.2ashows a matching of the graph. The thick edges shown are the edges selected for a matching.Figure 2.2b shows the contracted graph. The numbers inside the vertices denote the weight of thevertex, and the numbers next to the edges denote the size of the edge. Several levels of contractioncan be performed to further reduce the problem size (Figure 2.3).
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4 3. Spectral Partitioning and Vectors
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Repeat  for More IterationsFigure 2.3: Hierarchical Partitioning3 Spectral Partitioning and VectorsIn this section, we will give a brief overview of spectral partitioning. Since much of this theory hasbeen published in the past, we will not repeat it here. The interested reader may refer to otherpapers [24, 23, 3, 18, 44] for more details.Assume we are given a graph with n vertices, and we wish to �nd k partitions of this graph. Let vibe vertex i and deg(vi) be the degree of vi. An n � n adjacency matrix, A, is composed of entriesaij which represent the weight of an edge between vertices vi and vj . The n � n diagonal degreematrix, D, has entries dii equal to the sum of the weights of all edges on vertex vi. The Laplacianmatrix is de�ned as Q = D � A. Eh is the total sum of the weights of the edges cut on partitionh. Let M be an n � n diagonal matrix whose entries mii represent the size. S is the matrix suchthat STS = M .Spectral partitioning is based upon using the eigenvectors associated with the smallest eigenvalues ofthe Laplacian, Q. The eigenvectors are actually the solution to a relaxed version of the partitioningproblem, often referred to as the quadratic placement problem [24]. This relaxed problem optimizesthe total sum of squared wiring distance of the nodes in a graph. For instance, the quadratic costof a one-dimensional (linear) placement of nodes is z = 12Pni=1Pnj=1(xi � xj)2ai;j . A spreadingconstraint, xTx = 1 is used to spread the vertices out. The trivial solution, where all vertices areplaced at a single point, corresponds to the eigenvector associated with the smallest eigenvalue, isoften ignored. Many researchers have used the second eigenvector to form partitions [18, 36, 23].A variation of this which takes vertex sizes into account was proposed in [44]. Di�erent researchershave chosen to use di�erent numbers of eigenvectors in creating partitions. To be general, let usassume we are using d eigenvectors, where d is the desired number of dimensions we use, so Xd isour n � d relaxed solution. There have been many attempts at using this information in di�erentways. For instance, some researchers have sought to �nd a k-way partitioning solution by �ndingthe binary partition assignment matrix which satis�es partitioning constraints that is closest tothe n � k eigenvector matrix Xk using a transportation problem [7, 8]. Another approach is toview each row of Xd as a coordinate for the vertex. The partitioning problem can then be solvedby using geometric clustering algorithms [1]. Another view is to think of each row of Xd as a d-dimensional vector. Partitions can then be formed by grouping vertices together based on the anglebetween vectors [10] or by scaling Xd and optimizing for the maximum sum vector partitioningcost (discussed in the next section) [3].



3. Spectral Partitioning and Vectors 53.1 Maximum Sum Vector PartitioningLet Xd be the n�d matrix composed of the �rst d eigenvectors (those associated with the smallest deigenvalues) of the graph and �d be the d�d diagonal matrix composed of the smallest d eigenvaluesof the graph. The matrix Hd is a diagonal matrix whose entries are all 
. The only constraint onthe value of 
 is that it must be at least as large as �d. In maximum sum vector partitioning, thescaled matrix of eigenvectors is represented by Vd = MXdp(Hd � �d) where Xd and �d satisfyQXd = MXd�d. This is a generalization of the work of [3, 18] who used Vd = Xdp(Hd � �d),where Xd and �d satisfy QXd = Xd�d.Let the vector �i, 1 � i � n be row i of Vd. In maximum sum vector partitioning (MSVP), we wishto divide the vectors �i into k distinct sets of vectors. Let Th = P�i2Ph �i be the sum of each ofthose sets of vectors with 1 � h � k. The goal of MSVP is to maximize Pkh=1 jjThjj2. When d = n,maximum sum vector partitioning is equivalent to minimizing the sum of the edges cut in graphpartitioning.The more eigenvectors being used, the closer an approximation to the graph partitioning problemit is. However, we note that there is a tradeo� in that as you use more eigenvectors, the multi-dimensional embedding becomes more and more di�cult to take advantage of. In particular, whend = n, we have merely replaced one NP-Hard problem with another!Throughout this chapter, however, for the purposes of establishing and proving various results, weuse the full n � n matrices H , V and X .We will derive a new proof of the maximum sum vector partitioning problem. Our proof is simplerthan the proof in [3] and also more general, because it takes vertex sizes into account.Lemma 1: Given X̂ which is orthonormal and H, a diagonal matrix whose entries equal theconstant 
, X̂HX̂T = HPROOF: X̂HX̂Tig = nXk=1 nXj=1 (x̂ijhjk) x̂kgX̂HX̂Tig = nXk=1 nXj=1 x̂ijhjk x̂kg 2Since hjk = 0 when j 6= k and hjj = 
:X̂HX̂Tig = nXj=1 x̂ijhjj x̂jgX̂HX̂Tig = 
 nXj=1 x̂ij x̂jgX̂HX̂Tig = ( 
 when i = g0 otherwiseX̂HX̂T = H 2



6 3. Spectral Partitioning and VectorsTheorem 1: Given the Laplacian, Q, a diagonal matrix H whose entries equal 
, and the scaledeigenvector matrix V = MXp(H � �), then:V V T = MH � QPROOF:Recall that M , is the diagonal matrix of vertex sizes, and STS = M , and Q̂ = S�1QS�1.Multiplying out V V T and simplifying, we �nd that:V V T = (MXq(H � �))(MXq(H � �))T= MX(H � �)(MX)T= MXHXTM �MX�XTM= S(SXHXTS)S � S(SX�XTS)S= S(X̂HX̂T)S � S(SX�XTS)S= SHS � S(X̂�X̂T)S= MH � SQ̂S= MH � Q 2This equation leads to some very interesting corollaries. We can now relate the rows of V to theLaplacian Q, which is directly constructed from the graph's adjacency and degree matrices. Let �irepresent the ith row of V , vi be vertex i and deg(vi) be the degree of vi.Corollary 1: jj�ijj2 = mii
 � deg(vi)Proof: Using Theorem 1, we note that the diagonal entries of V V T equal (MH �Q)ii.jj�ijj2 = �i�Ti = (MH � Q)ii = mii
 � deg(vi)Corollary 2: For i 6= j, �i�Tj = aijProof: Using Theorem 1, we note that the o�-diagonal entries of V V T = A:�i�Tj = aijThe goal maximum sum vector partitioning is to �nd a set of vectors, Th such that the Euclideannorm of their sum is as large as possible. Let Th =Pvi2Ph �i and �Eh be the total weighted sum ofedges contained within a partition.



3. Spectral Partitioning and Vectors 7Theorem 2: Let jjThjj2 = jjPvi2Ph �ijj2 be the vector sum cost of vector partition h, and Eh bethe edges cut in partition h of a graph partition Maximum sum vector partitioning is equivalent tograph partitioning. Pkh=1 jjThjj2 =Pni=1mii
 �Pkh=1EhProof: jjThjj2 = jj Xvi2Ph �ijj2= Xvi2Ph jj�ijj2 + Xvi;�j2Ph;�i 6=�j �i�Tj= Xvi2Phmii
 � deg(vi) + Xvi;�j2Ph;vi 6=vj aij= Xvi2Phmii
 � Eh 2Summing up costs in all the partitions,kXh=1 jjThjj2 = kXh=1 Xvi2Phmii
 � Eh= nXi=1mii
 � kXh=1Eh 2Here are a few other interesting results. We note that it is easy to derive the relationship betweenthe angles between two vertices in terms of their graph properties. Likewise, the distance betweentwo vertices can also be calculated using graph properties.Corollary 3: cos(�i; �j) = aijq((mii
 � deg(vi))(mjj
 � deg(vj)))Proof: cos(�i; �j) = vivTjjjvijj � jjvj jj= aijq((mii
 � deg(vi))(mjj
 � deg(vj))) 2Corollary 4: jj�i � �j jj2 = mii
 � deg(vi) +mjj
 � deg(vj)� 2aij



8 3. Spectral Partitioning and VectorsProof: jj�i � �j jj2 = jj�ijj+ jj�j jj � 2�i�Tj= mii
 � deg(vi) +mjj
 � deg(vj)� 2aij 2Corollary 5: jj�i + �j jj2 = mii
 � deg(vi) +mjj
 � deg(vj) + 2aijProof: jj�i + �j jj2 = jj�ijj+ jj�j jj+ 2�i�Tj= mii
 � deg(vi) +mjj
 � deg(vj) + 2aij 23.2 Using the ResultsWe showed that the n-dimensional maximum vector sum problem is equivalent to the graphpartitioning problem. In practice, it is too expensive to compute a large number of eigenvectors oflarge benchmarks. Furthermore, it is di�cult to make use of that multi-dimensional informatione�ectively. Therefore, we choose to use fewer eigenvectors (the �rst three) which then gives usan approximation of the partitioning problem, but one which is much easier to work with. Sincethe �rst eigenvector contains no useful information, we can use the second and third eigenvectorsto form a planar embedding. The importance of the planar embedding comes from the spatialproximity of vertices.3.3 EmbeddingsFigure 3.1 shows an example of the 2-dimensional embedding formed by the second and thirdeigenvectors of the Laplacian of a graph. We also show two partitions found by our partitionerto graphically illustrate the motivation behind our hybrid partitioner. Vertices that belong to thesame partition tend to be spatially close together in the embedding.Figure 3.2 shows an example of the 2-dimensional embedding formed by the second and third scaledgeneralized eigenvectors of the Laplacian a structured mesh. In this case, it is even more obviousthat spatial proximity is useful in obtaining good partitions of this graph.There are a number of di�erent variations on spectral partitioning: those based on the standardeigenvectors (traditional spectral partitioning), generalized eigenvectors (spectral partitioning withvertex sizes), scaled eigenvectors (maximum vector sum partitioning), and generalized scaled eigen-vectors (maximum vector sum partitioning with vertex sizes). Our work concentrates on using themaximum sum vector partitioning formulation, so we use embeddings based on the generalizedscaled eigenvectors, Vd = MXdp(Hd � �d), with 
 = j�2j+ j�dj. Appendix A gives experimentalveri�cation of our embedding choice.
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Figure 3.1: A 2-dimensional embedding of circuit p2 ga.4 Hybrid Spectral/Iterative PartitioningResearchers have tried to combine spectral and iterative partitioners by using the result of theEIG1 spectral partitioner [23] as the initial partition of an iterative improvement algorithm. Theresults were inferior to using random starts [25]. The primary problem is that the EIG1 algorithmonly gives one starting point. Although it may be a very good one, it is not necessarily the bestone for iterative improvement. We believe that a more integrated hybrid approach can utilizethe strengths of both methods. In [11], they introduced a single-pass heuristic which constructedpartitions based on the weighted sum of the edges cut and orthogonality (which was calculated usingthe eigenvectors of the graph). The algorithm was only used to construct partitions, and couldnot be used for iterative improvement. This paper signi�cantly improves upon those previousattempts at combining spectral and iterative algorithms by directly using spectral information ina multi-level, k-way, KLFM iterative improvement algorithm.The primary advantage of spectral algorithms is that they are able to �nd a globally optimalsolution to a relaxed version of the partitioning problem. They have been found to perform wellon partitioning problems using the ratio-cut cost function. However, spectral partitioning methodssu�er from many glaring weaknesses which prevent them from performing well in constrainedpartitioning problems. These problems include:� Constraints such as partition size, partition topology, and pin limits are di�cult to incorpo-
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Figure 3.2: A 2-dimensional embedding of 'struct', a structured mesh.rate.� Converting a hypergraph into a graph will often result in a loss of information because therepresentation has changed. Optimal solutions for the resulting graph do not necessarilycorrespond to optimal solutions for the original hypergraph, although they may be very close.� Only one deterministic solution is found. If that is a good solution, then there is no problem,however, if the solution is poor, then you are stuck with it.� Arbitrary cost functions are either di�cult or impossible to incorporate.� The relaxed continuous-space solution may not be close to the optimal discrete partitioningsolution.With all of the above di�culties, it is no wonder that for bipartitioning with balance constraints,spectral algorithms have been found to be 4% worse than the standard KLFM algorithm and 18.8%worse than more advanced iterative partitioning algorithms [16]. What if we could combine spectralinformation with iterative improvement algorithms to obtain one uni�ed method which combinesthe advantages of both methods? We could utilize the global information from a spectral algorithmwithin an iterative partitioning framework and gain the bene�ts of both methods.



5. Multi-way Partitioning 115 Multi-way PartitioningMost of the research done on iterative improvement has focused on 2-way partitioning. For k-way partitioners where k > 2, things are more complicated. We can decompose partitioning intotwo important phases: the generation of k initial partitions and the re�nement of the solution.For iterative improvement partitioners, one obvious choice is to start with many random k-waypartitions and improve upon the result. Another method makes use of an existing 2-way partitioner[29, 32]: Repeatedly apply a 2-way partitioning algorithm until the desired number of partitionsis reached or constraints have been satis�ed. One could iteratively create feasible partitions bybreaking o� pieces that satisfy constraints and then repeating the process on the remainder ofthe problem, or, recursively create balanced bipartitions until all partitions satisfy the constraints.Both methods have the consequence that the early partitionings may adversely a�ect the qualityof later partitions.Once k partitions have been created, iterative improvement can be used to re�ne the solution.Kernighan and Lin [29] suggested performing 2-way iterative improvement to each of the k(k�1)2pairs of partitions (we call this Pairwise KLFM).Another approach, which we call Extended KLFM, involves extending the gain cost function inKLFM algorithms to directly support iterative moves from any one partition to any other partition[37, 26]. There are k(k � 1) possible directions of movement for vertices at each step.We propose a new k-way iterative improvement method, Rotary KLFM which lies somewherebetween the two improvement methods described above. In Rotary KLFM, each partition is usedin turn as the target partition. The only moves considered are those in which vertices move intoor out of the target partition, so there are 2(k� 1) possible directions of movement at each step.Currently, there are no direct comparisons among Pairwise KLFM, Extended KLFM, and RotaryKLFM. We compare our Rotary KLFM method to the Extended KLFM implementation of [33] inSection 7, however, because of underlying di�erences between the iterative improvement algorithms,the comparison is not equal. Each method has its own advantages. The advantage of PairwiseKLFM is that any existing 2-way iterative improvement heuristic can be used to improve k-waypartitions. However, for each round of improvement, there are k(k�1)2 iterative improvement passes,which could become prohibitively time-consuming as k increases. Rotary KLFM only needs kimprovement passes for each round, while in Extended KLFM, there is only one pass for each roundof improvement. In Pairwise KLFM, at each move step, there are only two possible directions forvertices to move. Rotary KLFM and Extended KLFM are quite similar, but Rotary KLFM issimpler because there are fewer possible move choices at each step and there are fewer gain updatesto be made because there are 2(k � 1) directions of movement compared to k(k � 1) in ExtendedKLFM.5.1 OverviewBefore we describe the details of our hybrid algorithm, we �rst present our multi-level partitioningframework, and describe its most important components. Figure 5.1 illustrates our multi-levelpartitioner. Spectral information can be used in the contraction algorithms, initial partitioning,and in the iterative improvement process. The eigenvectors and eigenvalues of a graph are computedduring the initial partitioning. We can optionally recompute the eigenvectors in the Expand phase



12 5. Multi-way Partitioningif desired. In our benchmarks, we recompute eigenvectors during expansion, unless otherwise noted.ALGORITHM: MLHINPUT: hypergraph, target number of partitions,k, maximum contracted sizeOUTPUT: k-way partitioning solutionMETHOD:Read hypergraphWhile (graph > maximum contracted size) fContract graphgfor i=1 to max iterations fInitial k-way PartitioningIterative ImprovementWhile (graph not fully expanded) fExpand graph, map solutionIterative Improvementgg Figure 5.1: The multi-level partitioning algorithm.Our Rotary KLFM iterative improvement algorithm (Figure 5.2) improves k-way partitions byiteratively working on one partition at a time. Each partition is used in turn as the target partition.The only moves considered are those in which vertices move from one of the k� 1 other partitionsinto the target partition, or out of the target partition and into one of the k�1 other partitions. Wewill hereafter refer to this k-way KLFM algorithm as Rotary KLFM. We use spectral informationin the updating of the neighbor gains to break ties and in
uence the move sequence. Figure 5.3shows how moves are selected. Our implementation uses heaps to store vertex gains rather thanbuckets. This design decision was made in order to support arbitrary (non-integer) gains whichwere necessary in our hybrid spectral/iterative algorithm.5.2 Using Spectral InformationThere are three key areas in iterative improvement algorithms that can be augmented using spectralinformation:1. Initial partition generation2. Breaking ties when choosing the next move to make3. Jumping out of local minimaInitial PartitionThe partitioning problem requires us to divide our set of vertices into several distinct subsets.What we need to do is to use the spectral information in such a way that we can quickly andsimply generate an initial partitioning.



5. Multi-way Partitioning 13ALGORITHM: Rotary KLFM, k-way Iterative ImprovementINPUT: hypergraph, initial k-way partitioning solutionOUTPUT: improved k-way partitioning solutionMETHOD:Do fFor each partition h fInitialize vertex gains for moves into and out of hWhile (there are unlocked vertices) fSelect best gain move into or out of hMove vertex and lock in placeUpdate gains of vertex neighborsIf best cost, save this positiongRewind to best positiongg While (cost improved)Figure 5.2: The Rotary KLFM improvement algorithm.ALGORITHM: FM Select - Select a vertex to be movedINPUT: Hypergraph; target partition, dest; number of partitions, kLOCALS: Into and Outof, arrays of k heaps which contain the gains ofvertices that can be moved into or out of the destination partitionOUTPUT: Best-gain move which satis�es balance constraints, or,�rst possible move if no moves can satisfy balanceMETHOD:best gain = -INFINITYfor h=1 to k f/* check vertices that can move from target into h */gain = Into[h].Max()Store this move and set best gain=gain if ((gain > best gain)and (move from target to h satis�es balance constraints))/* check vertices that can move out of h and into target */gain = Outof[h].Max()Store this move and set best gain=gain if ((gain > best gain)and (move from h to target satis�es balance constraints))gReturn best move and gain satisfying balance, or the �rst move seen ifnothing satis�es balanceFigure 5.3: Move selection in our iterative improvement algorithm



14 5. Multi-way PartitioningPast work has focused on using the second eigenvector for generating two-way partitions [36, 22]. Forexample, in the EIG1 algorithm [23], each possible partitioning of vertices on the line was checkedto �nd the best ratio-cut cost solution (Figure 5.4). Alpert and Yao [3] extended the conceptto multiple dimensions and multiple eigenvectors by generating linear orderings using space-�llingcurves. Our approach lies somewhere between those two approaches.
Figure 5.4: The EIG1 Spectral Ratio-Cut Partitioning AlgorithmOur focus is to solve the k-way partitioning problem for small values of k, such as 2,3, or 4. Weuse the second and third scaled eigenvectors to obtain a two-dimensional embedding (since the �rsteigenvector contains no useful information). Henceforth, it should be implicitly assumed that whenwe use the word eigenvectors we mean the scaled eigenvectors, Vd. We limit ourselves to planarembeddings for a number of practical as opposed to theoretical reasons:� Planar embeddings are easy to subdivide.� It is easy to generate orderings of vertices.� Computation of the �rst three eigenvectors is fast.� We can visually examine and understand our results.More general methods for searching for solutions in a multi-dimensional solution space using vectorprobes were described in [18]. Since our vertices are embedded in a plane, we can systematicallygenerate many di�erent bipartitions using that placement. Using a planar embedding is a naturalextension of [22], which used the second eigenvector to create an optimal placement of vertices on aline. The reason why we generate many initial partitions, rather than picking only the best one foriterative improvement is because the iterative improvement itself is very sensitive to the startingsolution. Since our spectral partitioning result is so far removed from the original problem (dueto conversion of a hypergraph to a graph, solving a relaxed problem instead of the ideal integerprogramming problem, and multiple levels of contraction), there is only a loose correspondencebetween initial and �nal solution costs. Figure 5.5 shows the initial and �nal solution costs fortwenty iterations of our SWEEPB algorithm (which will be described later). We can readily seethat the correspondence between initial and �nal solution costs is loose at best.One of the �rst methods that comes to mind for generating initial partitions would be to divide theplane with a cutting line around the origin, which we call the SWEEPA algorithm (see Figure 5.6).In SWEEPA, we bisect the plane by stepping through a series of evenly-spaced angles which forma cutting line around the origin. Vertices that lie on one side of the line are placed in one partition,and the remaining vertices are placed in the other partition. We use every sweep step as an initialpartition, rather than just picking the best one. This initial partition is then improved upon byiterative re�nement, which will also enforce partition balance constraints.



5. Multi-way Partitioning 15
200

300

400

500

600

700

800

900

0 10 20 30 40 50 60 70 80 90 100

’p2_ga.u1.a4.vm1.l3.out.ic’
’p2_ga.u1.a4.vm1.l3.out.fc’

Figure 5.5: Initial and �nal solution costs for graph p2 ga, 3 levels of contraction
0

1

23
4

5

0

1

2

3

Figure 5.6: The SWEEPA algorithm on the left, and the SWEEPB algorithm on the right.The SWEEPA algorithm is not as e�ective at generating a variety of initial partitions because oftenit generates the same initial partitioning for many steps if the planar embedding has large areas ofempty space. In addition, balance constraints may initially be unsatis�ed.To address the problems of SWEEPA, we invented the SWEEPB algorithm. In the SWEEPBalgorithm, we create a circular ordering of the vertices in the plane so that we can systematicallycreate balanced initial partitions. The ordering of vertices is simply the angle of a vector withrespect to the (1,0) vector, going in counter-clockwise direction. If we wish to create � initialpartitions, we generate initial partitions by starting each partition nk� nodes apart. From the



16 5. Multi-way Partitioningstarting point, we place as many subsequent nodes as will �t into that partition, and when thatpartition is �lled up, we continue travelling around the circular ordering, �lling up each subsequentpartition in order. For example, consider the SWEEPB diagram in Figure 5.6, where we would likefour iterations: � = 4. If we want two balanced partitions, in the �rst iteration, P1 starts with thenode number zero, whose angle is closest to the (1; 0) vector. P1 is �lled up with the �rst eightnodes, and P2 is �lled up with the remaining nodes. In the second iteration, we start at vertex162�4 = 2 of the ordering. P1 is �lled up with the �rst eight nodes from that starting point, and P2contains the remaining nodes. On the third iteration, P1 starts at node 4, and on the last iteration,P1 starts at node 6.BalanceWe use soft constraints to enforce balance in partitions. The balance parameter is a user input,bal, which limits the minimum and maximum partition sizes as follows: (1 � bal)jjPtjj � jjPhjj �(1 + bal)jjPtjj. Here, Ph is an arbitrary partition, h, and jjPtjj is the target partition size, whichis the total sum of the sizes of all vertices divided by k, the number of partitions desired. Unlessotherwise noted, we always use bal = 0:1.After every iterative improvement vertex move is made, we evaluate the cost of a solution. Typically,this cost is just the desired cost function, such as the ratio-cut cost, or the number of hyperedgescut. We add an auxiliary cost to that number to discourage imbalanced partitions. This auxiliarycost is equal to ten times the amount of imbalance of every partition.Breaking Ties and Avoiding Local MinimaIterative improvement methods are very sensitive to tie-breaking strategies when vertices are se-lected for movement. Rather than breaking ties arbitrarily, we break ties using spectral information.Consider what information we have. We have a two-dimensional placement of vertices in the plane.When we make iterative improvement moves, we can easily calculate distances using a wide varietyof cost metrics. These distances could be either the distance from the vertex to be moved to thevector sum of the destination partitions, or it could be the distance from a vertex to its adjacent(connected one hop away in the graph, as opposed to spatially adjacent) neighbors. Using theseideas, we can come up with a number of tie-breaking strategies.The total gain is a weighted combination of the standard cut gain and our spectral gain:gain = � � cut gain+ � � spec gain (5.1)After each vertex move in iterative improvement, the neighbors of the moved vertex must have theirgains updated. The cut gain is the standard KLFM gain, which is the weight of the hyperedgesthat become uncut by a move.Figure 5.7 shows the tie-breaking strategies we tried, and Table 5.1 shows our overall results for2-way partitions on benchmarks p1 ga, p2 ga, t2, t3, t4, t5, and t6. In these experiments, wecontracted to a maximum graph size of 200 nodes, using the � = 1:0 and beta = 0:1.The spectral gain cost we use is the magnitude of the vector sum, which we call the MVSA method.Let Th be the sum of all the vectors (which represent vertices) in partition Ph. The spectral gain



5. Multi-way Partitioning 17ALGORITHM: Compute Gain - Compute the gain of a moveINPUT: Hypergraph; vertex to update, v; last moved vertex, lastvlast move destination, lastp; target partition, dest;number of partitions, k; gain method,method; weights � and �OUTPUT: The gain of a vertex moveMETHOD:cut gain = total weight of nets uncut when v is moved to destif (method==COSAVG1)spec gain = cosine of the angle from v to the vector sum of all vertices in the destinationif v is in dest then spec gain=-1if (method==COSN)spec gain = 1+cosine of the angle from v to lastvif (method==COSAVG)spec gain = 1+cosine of the angle from v to the vector sum of all vertices in the destinationif (method==MVSAVG)spec gain = magnitude of vector sum of v to the vector sum of all vertices in the destinationif (method==MVSN)spec gain = magnitude of vector sum of v to lastvif (method==DISTAVG)spec gain = distance from v to the vector sum of all vertices in the destinationif (method==DISTN)spec gain = distance from v to lastvif (v is in lastp) and (method != COSAVG1)then spec gain=-spec gaingain = �� cut gain + �� spec gainReturn gain Figure 5.7: Calculating the hybrid spectral/iterative gainMethod Actual Size Unit SizeCOSA 135.8 145.1COSA1 138.0 142.1COSN 133.4 145.6MVSA 129.1 139.5MVSN 131.4 147.9DISTA 131.3 141.9DISTN 134.8 144.6Table 5.1: Comparison of various spectral-based cost metrics, using recalculated eigen-vectors at each level. Results are the geometric mean of 2x the cut cost over sevenbenchmarks.



18 6. Issues in Multi-level Spectral Partitioningof a vector �i with respect to a destination partition Ph is jj�i+Thjj2. The vector sums, Th, of eachof the k target partitions are calculated at the beginning of each pass, and are not dynamicallyupdated as moves are made. The spectral gain is negated when the target destination is not thesame partition as the last moved vertex. This encourages groups of vertices to move to the sametarget destination in connected groups, similar to the FM-CLIP algorithm [16].When � = 1, and � = 0, our algorithm behaves like the standard KLFM algorithm. When� is greater than 0, then the spectral gain information is used to in
uence the selection of thevertices. We experimented with two methods of incorporating spectral information. Our �rstmethod, HYBRID, is a simple tie-breaking strategy where we set � = 1:0 and � = 0:1. Thespectral information contributes only a small portion to the gain so that in e�ect, it is only usedto break ties in gain.Our second method, HYBRIDA, focuses on breaking out of local minima. The KLFM improvementalgorithm makes greedy moves based on the cut gain. If we are able to make moves using someother objective cost function, then we can break out of local minima. In the HYBRIDA method,we alternately run our KLFM improvement algorithm using � = 1:0, � = 0:0 and � = 0:0, � = 1:0.6 Issues in Multi-level Spectral PartitioningThere are a number of issues involved in multi-level spectral partitioning. Implementation choicesat each step can have a signi�cant e�ect on the �nal partitioning result. In this section, we considerthe following implementation choices:� Hypergraph to graph conversion - What is the best way to convert a hypergraph (circuit)into a graph so that it can be used in an eigensolver?� Contraction algorithm - How should a (hyper)graph be contracted into a smaller one?� Levels of hierarchy - What is the right number of levels to use to obtain good solutions?� Disconnected graphs - What should be done about them?6.1 Hypergraph to graph conversionFigure 6.1a shows a hyperedge (net) from a hypergraph. In order to turn the hypergraph into agraph, all hyperedges must be transformed into edges (which connect exactly two vertices together).In the past, most researchers have simply performed a clique expansion [38] on hyperedges, shownin Figure 6.1b. In clique expansion, an edge is connected between all pairs of vertices incident ona degree d hyperedge, creating a total of d(d�1)2 edges. With clique expansion, the primary factora�ecting the outcome is the choice of edge weights. Some possibilities include 1d�1 , 2d 1:5 [18] which isoptimized for placement, or 4d(d�1) [2] which is optimized for partitioning, or one which is optimizedfor k-way partitioning [21].6.2 Star GraphWe develop a new hypergraph to graph conversion model, based on using the star graph (Figure6.1c). The �rst use the star expansion in spectral partitioning was reported in [11]. Although the



6. Issues in Multi-level Spectral Partitioning 19paper described star graphs, it did not present any signi�cant quantitative or theoretical evaluationof the model. We derive an edge weighting function for the star graph, and we experimentallyevaluate the performance of the star graph model. The star model creates a dummy vertex whichis used to represent every edge in the hypergraph. Every actual vertex which is connected tothe net is then connected to the dummy vertex representing the hyperedge. After sparse matrixcomputations have been performed, the dummy vertices are ignored. Since a star graph only createsd new edges for each hyperedge (where d is the degree of the hyperedge), matrices associated withstar graphs are much sparser than those associated with clique expansions, which create d(d�1)2edges for each degree d hyperedge. On the other hand, this is o�set by the fact that jEj more rowsare needed in the eigenvector solution.Tables 6.1 and 6.2 show the time to compute the eigenvectors associated with the three smallesteigenvalues of various benchmarks. The time includes both the eigenvector computation and thetime to translate the hypergraph into a graph. We see that the star graph performs consistentlybetter when we use non-unit-size vertices. We also note that in the case where we perform threelevels of contraction and compute the eigenvectors of the contracted graph, the execution times areabout the same.
(a) Hyperedge (b) Clique Expansion (c) Star ExpansionFigure 6.1: Approximating hypergraphs with graphsWe would like to carefully choose the weights of the star graph to optimize its performance for ourproblem.A simple weighting model for star graphs is to pick the weight such that the sum of all the newedge weights is unit weight. Thus, w = 1d . We call this the StarD weighting model.We could alternatively optimize our weights for the quadratic placement objective function. Wederive the best weighting of edges in the star graph by examining the highest and lowest costplacements along a unit span, following the same method as [18]. The extreme cases are shown inFigure 6.2. The symbol 'X' is the dummy vertex which represents the hyperedge, and the circlesrepresent single vertices. The concentric circle symbol represents multiple vertices placed at thesame point. Let w represent the weight of a star graph's edge, which we will calculate below. Thereare two possible cases which we consider.� Unconstrained Solution Figure 6.2a shows the minimum cost placement of one star net inthe unit span. In this situation, all vertices are at the center except for two which are at theleft and right extreme. The total quadratic placement cost is 2w(12)2 = w2 . Figure 6.2b shows



20 6. Issues in Multi-level Spectral Partitioningnon-unit unitCircuit CliqueF StarF CliqueF StarFindustry2 132.88 163.11 132.87 160.09p1 ga 11.25 2.09 2.06 6.73p2 ga 29.58 11.04 5.58 14.28t2 60.09 4.75 11.42 15.40t3 47.38 2.98 9.54 16.26t4 41.45 4.13 14.61 15.46t5 105.64 6.67 30.54 37.91t6 43.06 6.18 9.54 12.99GMean 46.98 7.40 12.77 20.34Table 6.1: Time to compute �rst three eigenvectors of various benchmarks using nocontraction.the maximum cost placement on the unit span. Here, the total cost is wd. We can solve forthe best value of w by solving w2wd = 1, and we �nd that w = p2pd .� Constrained Solution In spectral partitioning, we would not expect Figure 6.2b to occurvery often because we are optimizing the quadratic placement. Since a dummy vertex is onlyconnected to vertices that are incident on that hyperedge, we would expect that in minimum-cost quadratic placements, the dummy vertex will lie between vertices. Figure 6.2c shows themaximum cost placement of vertices subject to the constraint that the dummy vertex liesbetween other vertices. The quadratic cost is 2w d2(:5)2 = wd4 . The minimum-cost case is stillthe same, as shown in Figure 6.2a. We can solve for w using the equation w2 � wd4 = 1. Ouranswer is w = p8pd .Both cases have a solution of the form cpd . The constant c is unimportant because it is just aconstant scaling factor. We call this model the StarF weighting model. In our experiments, we usec = p8.
(a) (b) (c)Figure 6.2: Star graph- extreme cost cases along the unit spanTable 6.3 is a quantitative comparison the star and clique graph models. We ran 20 iterations ofour SWEEPB algorithm on the circuits p1 ga, p2 ga, t2, t3, t4, t5,t6, and industry2, contractinguntil circuits at most 400 nodes in size, and using the MVSA tie-breaking strategy. We sought to�nd balanced 2-way partitions with a 10% slack. Our results show that our StarF graph modelproduces excellent results, and is one of the top performers in the average and best cost testsfor unit size vertices. This is the graph model we use in all of our benchmarks, unless otherwisespeci�ed. The CliqueD model is the best performer for tests using actual vertex sizes. Examiningthe best and worst case net models for the best solution cost using unit size vertices, there is only



6. Issues in Multi-level Spectral Partitioning 21non-unit unitCircuit CliqueF StarF CliqueF StarFindustry2 15.85 7.75 15.83 7.74p1 ga 1.35 0.50 0.40 0.76p2 ga 3.09 1.87 0.91 1.91t2 3.84 0.72 1.09 0.92t3 3.13 0.74 0.86 0.91t4 2.38 0.76 1.10 1.02t5 5.36 1.03 2.50 1.75t6 3.93 0.78 1.22 1.23GMean 3.76 1.11 1.44 1.46Table 6.2: Time to compute �rst three eigenvectors of various benchmarks using threelevels of contraction.Graph Model non-unit unitAverage Best Average BestCliqueD 146.1 129.3 164.4 143.2CliqueF 154.3 133.2 158.9 143.0CliqueP 153.3 134.8 161.0 141.4CliqueK 154.5 129.1 162.9 144.1StarF 157.8 138.2 162.3 141.5StarD 156.9 132.7 161.4 142.4Table 6.3: Comparison of hypergraph to graph conversion techniques. Numbers are thegeometric mean of the 2x the total cut cost over seven test circuits.a 1.9% improvement. The graph model chosen does not appear to be a signi�cant factor for thesetests. Examining the best and worst case net models for the best solution cost using actual vertexsizes, we see an 7.8% span of improvement. The graph model appears to be more important whenvertices are non-unit size. We note that in our benchmarks, the span of the actual vertex sizes varysigni�cantly, having sizes that range over several orders of magnitude within the same circuit.6.3 Contraction MethodIn the past, researchers have used a variety of contraction methods to reduce the size of a problem.The contraction method plays a key role in not only reducing the problem size, but also in
uencingthe �nal solution. We chose to use the heavy edge matching cost function [27]. This cost functioncontracts the edges with the highest weights, which would be the most undesirable to cut. Weconvert the hypergraph into a graph, sort the edges based on the edge weight, and match anyunmatched pairs of vertices as edges are picked in order of decreasing cost.6.4 Levels of ContractionGraph contraction has a signi�cant in
uence on solution quality. One of the contributing parametersof contraction is the clustering or matching method, which has been widely studied. Less attention



22 6. Issues in Multi-level Spectral PartitioningMax average best -Nodes HYBRIDA HYBRID KFMC HYBRIDA HYBRID KFMC GMEAN100 163.6 168.8 169.6 146.2 149.1 147.5 157.1200 164.3 172.3 175.2 140.9 145.4 148.0 157.1400 168.6 176.6 183.5 141.2 149.6 150.0 160.8800 172.6 186.2 194.5 147.7 153.6 152.4 166.91600 177.7 192.8 217.3 147.8 162.1 162.3 175.2unlimited 188.0 213.4 257.2 156.5 166.8 178.5 190.7Table 6.4: Comparison of various levels of contraction using unit size vertices. Numbersare the geometric mean of 2x the total cut cost.Max average best -Nodes HYBRIDA HYBRID KFMC HYBRIDA HYBRID KFMC GMEAN100 149.6 150.8 148.7 134.0 132.7 130.6 140.8200 153.2 151.5 152.6 131.3 130.7 131.1 141.3400 156.3 155.4 158.3 137.4 133.3 132.1 145.0800 158.8 163.2 155.8 136.3 129.4 129.2 144.81600 179.1 180.5 170.2 138.0 137.1 132.0 154.8unlimited 195.8 193.8 189.3 140.7 135.9 143.3 164.3Table 6.5: Comparison of various levels of contraction, using actual vertex sizes. Numbersare geometric mean of 2x the total cut cost.has been paid to the levels of contraction. This can have a dramatic e�ect on partitioning. Asthe number of levels of hierarchy increases, the initial problem solution becomes farther removedfrom the original problem. The best solutions may be precluded due to the contraction algorithm.This is o�set by the fact that more levels of iterative improvement can be run when there are morehierarchical levels.Many researchers have only used one level of contraction to perform partitioning [19, 13, 14], ora �xed number of levels, such as three [44]. Other researchers have chosen to contract the graphuntil the number of nodes in the graph reaches a target size, such as 35 nodes[5], 100 nodes [28] or200 nodes [26]. For four-way partitioning, contraction was limited to 100 nodes in [5].We ran some benchmarks using the graphs p1 ga, p2 ga, t2, t3, t4, t5, t6 for the unit-size and actual-size vertex tests, with the geometric mean of the total number of cuts shown shown in Table 6.4and 6.5. In our tests, we evaluated various values of Max Nodes: 100, 200, 400, 800, 1600, andunlimited (which corresponds to no levels of contraction). We found that for two-way partitions,the best maximum number of nodes is in the 100 to 200 node range. We use a 200 node maximumcontracted graph size for our 2-way 3-way and 4-way partitioning tests. Results are shown usingour HYBRIDA, HYBRID, and KFMC, our implementation of the multi-level FM-CLIP algorithms.6.5 Disconnected GraphsDisconnected graphs cause problems for eigensolvers because solutions tend to lead to extremelyunbalanced partitions (partitions where each connected component is in its own partition). We



7. Results on MCNC Benchmarks 23�x this problem by introducing dummy edges to connect the graph. These edges are introducedimmediately before the eigensolver is invoked, and are then removed immediately after, so thatthey are never taken into account in any partition cut costs. For clique expansions, we pick anarbitrary vertex in each connected component and connect those chosen vertices together in a ring,in arbitrary order. For star graphs, we introduce a hyperedge which is connected to an arbitraryvertex in each of the components. Another approach to handling disconnected graphs is to usehigher-order eigenvectors. Alpert [3] used up to ten eigenvectors in creating partitions. Shau [39]used di�erent pairs of eigenvectors (1st and 2nd; 2nd and 3rd; 1st and 3rd) in his experiments.Pairwise selection of higher-order eigenvectors would be easy to implement in our partitioner,if necessary. Since we did not observe unusually poor performance for graphs using our simpleconnection method, we did not need to resort to using combinations of higher order eigenvectors.7 Results on MCNC BenchmarksWe compared our hybrid algorithms against existing published results. The benchmark circuits weused are shown in Table 7.1. We show results for our HYBRID method, which uses the SWEEPBspectral initial partitioning algorithm and uses � = 1:0 and � = 0:1 in the iterative improvementgain cost. We also show results for the HYBRIDA method, which also uses SWEEPB for initialpartitioning, and alternates between � = 1:0, � = 0:0 and � = 0:0, � = 1:0 for each pass in orderto jump out of local minima. Circuit Nodes Netsp1 ga 833 902p1 sc 833 902p2 ga 3014 3029p2 sc 3014 3029t2 1663 1720t3 1607 1618t4 1515 1658t5 2595 2750t6 1752 1541biomed 6514 5742s13207 8772 8651s15850 10470 10383industry2 12637 13419industry3 15406 21923Table 7.1: Benchmark Circuits7.1 Implementation DetailsOur partitioner was implemented in C++. We used the LASO code (written by David S. Scott)to compute eigenvectors and eigenvalues using sparse matrices. We replaced the traditional KLFMbucket implementation with heaps in order to support non-integer gains due to our hybrid costfunction: gain = � � cut gain+ � � spec gain.



24 7. Results on MCNC Benchmarksk HYBRID HYBRIDA HYBRIDR KFMC2 41.9 40.2 42.4 38.73 88.7 92.2 89.5 94.94 122.9 124.3 132.8 132.6Table 7.2: Hybrid algorithms have greater improvement as k increases. Numbers are thegeometric mean cut cost over eight benchmarks with actual vertex sizes.We contracted graphs until there were at most 200 nodes. We examined both the HYBRIDtie-breaking algorithm as well as the HYBRIDA algorithm that alternates between spectral anditerative gain costs. The SWEEPB initial partitioning method was used with both HYBRID andHYBRIDA for 20 iterations (� = 20). We also report some results with the HYBRID tie-breakingstrategy (� = 1:0, � = 0:1) using random initial partitions instead of the SWEEPB method, whichwe call the HYBRIDR method.7.2 Performance as k increasesOur partitioner performs well on 2-way partitioning, but is not better than the best 2-way parti-tioners. Appendix B gives the detailed benchmark results for the interested reader. The strengthof our partitioner lies in combining global spectral information with iterative improvement. Globalinformation becomes even more important in 3-way and 4-way partitioning, which is why our 3-wayand 4-way results, are substantially better than other partitioners. Table 7.2 compares our hybridalgorithm with KFMC, our multi-level k-way implementation of the FM-CLIP method. We usedthe benchmarks p1 ga, p1 sc, p2 ga, p2 sc, t2, t3, t5, and t6, with actual vertex sizes, a balancefactor of bal = 0:1, and the total hyperedges cut cost function. The HYBRID method is 7.6% worsethan KFMC in 2-way partitioning. In 3-way partitioning, HYBRID is 7.0% better than KFMC,and HYBRID is 7.9% better than KFMC in 4-way partitioning.Table 7.3 compares our hybrid algorithm with KFMC using unit size vertices. We used thebenchmarks p1 ga, p2 ga, t2, t3, t4, t5, and t6, with a balance factor of bal = 0:1, and thetotal hyperedges cut cost function. For 2,3,4,5, and 6-way partitioning, HYBRID is better thanKFMC by 6.2%, 9.0%, 27.3%, 31.3%, and 37.0% respectively.As further evidence that spectral information is useful, especially as k increases, we can examinethe results of the HYBRIDR method compared to the HYBRID method in Tables 7.2 and 7.3. Theonly di�erence between these two methods is the way initial partitions are generated. HYBRIDRuses random initial partitions, while HYBRID uses the SWEEPB method. We can see that fork = 2 and 3, HYBRIDR performs very well- sometimes slightly better, and sometimes slightlyworse than HYBRID. However, as k increases, we see consistently better results with HYBRID,which uses the spectral embedding for generating initial partitions.7.3 Comparison against GFM and Primal-DualWe compared the total number of hyperedges cut by our hybrid algorithms to the GFM [33] andPrimal-Dual (PD) algorithm [43]. These tests use the actual vertex sizes (which were obtainedfrom Andrew Kahng of UCLA). We omitted graph t5 because in four-way partitioning, the largest



7. Results on MCNC Benchmarks 25k HYBRID HYBRIDA HYBRIDR KFMC2 69.7 70.9 69.7 74.03 103.2 104.0 101.8 112.54 123.4 123.7 130.2 157.15 146.8 143.5 158.8 192.76 166.0 165.6 175.0 227.4Table 7.3: Hybrid algorithms have greater improvement as k increases. Numbers are thegeometric mean cut cost over seven benchmarks with unit vertex sizes.Benchmark PD GFM KFMC HYBRIDA HYBRIDp1 ga 56 74 66 66 68p1 sc 77 76 74 74 69p2 ga 377 259 179 184 179p2 sc 370 261 198 180 186t2 81 81 81 81 81t3 108 101 81 77 73t5 80 85 88 89 83t6 157 104 66 58 50GMEAN 126.62 113.48 94.93 92.17 88.70Table 7.4: Comparison of our HYBRID and HYBRIDA 3-way partitioning results againstthe GFM and PD partitioner using actual vertex sizes.node in the circuit is larger than that allowed by balance constraints. Each partition was alloweda balance factor of bal = 0:5, and we used the CliqueD clique model.Tables 7.4 and 7.5 show the results of our hybrid partitioner compared with the previously publishedresults of [33]. The last row, GMEAN, is the geometric mean over all of the circuits. In the three-way partitioning, our HYBRIDA method gives a 23.1% improvement, and HYBRID gives a 27.9%improvement over GFM. In four-way partitioning, HYBRIDA is 48.7% better than GFM andHYBRID is 46.9% better than GFM.As a control experiment, Tables 7.4 and 7.5 also show the results of 20 iterations of KFMC, ourimplementation of a multi-level, k-way FM-CLIP algorithm which uses our Rotary KLFM improve-ment method to determine whether the hybrid algorithm was really the source of improvement,rather than other factors, such as contraction method, levels of contraction, or Rotary KLFM. OurKFMC algorithm results are 11.6% better than GFM in 3-way partitioning, and 37.8% better thanGFM in 4-way partitioning. Signi�cant gains are made by our multi-level Rotary KLFM method.This leads us to conclude that a large portion of the substantial improvements in our k-way par-titioning results come from the multi-level Rotary KLFM algorithm. Comparing our best hybridalgorithm results with KFMC, we observed a 7.0% improvement over KFMC in 3-way partitioning,and a 7.9% improvement over KFMC in 4-way partitionings.



26 8. Execution TimeBenchmark PD GFM KFMC HYBRIDA HYBRIDp1 ga 102 107 98 87 91p1 sc 107 110 90 86 99p2 ga 459 335 229 215 228p2 sc 426 354 234 236 226t2 217 182 131 132 124t3 170 162 104 101 105t5 213 208 144 153 139t6 189 145 103 67 68GMEAN 205.41 182.70 132.59 122.85 124.34Table 7.5: Comparison of our HYBRID and HYBRIDA 4-way partitioning results againstthe GFM and PD partitioner using actual vertex sizes.Benchmark HYBRID HYBRIDA KFMC MLF GORDIANbiomed 239 210 280 311 479industry2 337 386 458 398 1179industry3 763 752 784 830 1965p1 ga 94 96 112 126 157p2 ga 265 275 293 346 502s13207 136 113 164 472 590s15850 122 109 147 347 678GMEAN 220.57 212.89 259.64 356.62 619.42Table 7.6: Comparison of our HYBRID and HYBRIDA 4-way partitioning results againstMLF and GORDIAN. Results are 2x the total number of hyperedges cut using unit-sizevertices.7.4 Comparison against MLF and GORDIANWe compared our hybrid algorithm to the MLF [5] and GORDIAN algorithms [30] as reported in[5]. We also report the results of our KFMC method for comparison. These tests use unit vertexsizes with a balance factor of bal = 0:1 and we used the StarF graph model.Table 7.6 shows that our HYBRIDA partitioner is 22.0% better than KFMC, 67.5% better thanthe MLF algorithm, and 191.0% better than GORDIAN in terms of the number of hyperedgesedges cut. It is apparent that our Rotary FM algorithm provides signi�cant improvements, andour hybrid spectral/iterative method is able to e�ectively use the global spectral information tosubstantially improve upon other partitioning methods.8 Execution TimeThe execution time of our partitioner is slower than that of other partitioners due to the use ofheap data structures rather than buckets. Heaps were necessary in order to support non-integergains in iterative improvement for our hybrid algorithm. Three-way partitioning execution timeresults (in seconds) are shown in Table 8.1. All our tests were run on a Sun Ultra 170, while GFM



9. Conclusion 27Benchmark HYBRIDA HYBRID GFMp1 ga 84.9 55.1 30p1 sc 78.9 54.4 36p2 ga 747.0 351.8 222p2 sc 489.6 354.9 211t2 767.4 556.9 158t3 499.5 372.3 92t5 2346.0 1407.5 276t6 1076.3 757.3 101Table 8.1: Comparison of execution time in seconds against the GFM, 3-way partitions.execution times are on a Sun Sparc 10.9 ConclusionWe have developed a new hybrid spectral/iterative partitioning algorithm and have demonstratedthat it performs better than the best known 3 and 4-way partitioners, using both unit vertex sizesand actual vertex sizes. The hybrid algorithm we have presented is only the �rst step in developingnewer, more sophisticated iterative improvement algorithms. They key ideas that need furtherresearch include the use of new gain cost functions to in
uence move selection and new objectivefunctions that allow iterative improvement algorithms to break out of local minima. Other areas offuture research include new ways of using spectral information to generate initial partitions, usinghigher dimensions (more eigenvectors), generating orderings using other methods or cost functions,and investigating methods for speeding up hybrid partitioning.References[1] C. J. Alpert and A. B. Kahng. Geometric embeddings for faster (and better) multi-way netlistpartitioning. Technical Report CSD TR-920052, UCLA, October 1992.[2] C. J. Alpert and A. B. Kahng. Geometric embeddings for faster and better multi-way netlistpartitioning. In Proc. ACM/IEEE Design Automation Conference, pages 743{748, 1993.[3] C. J. Alpert and So-Zen Yao. Spectral partitioning: The more eigenvectors, the better. InProceedings of the 32nd ACM/IEEE Design Automation Conference, June 1995.[4] Charles J. Alpert, LarsW. Hagen, and Andrew B. Kahng. A hybrid multilevel/genetic approachfor circuit partitioning. In Proceedings of the ACM/SIGDA Physical Design Workshop, pages100{105, 1996.[5] Charles J. Alpert, Jen-Hsin Huang, and Andrew B. Kahng. Multilevel circuit partitioning. In34th Design Automation Conference, volume 34, 1997.[6] E. R. Barnes. Partitioning the nodes of a graph. Proceedings of Graph Theory with Applicationsto Algorithms and Computer Science, pages 57{72, 1985.[7] E.R. Barnes. An algorithm for partitioning the nodes of a graph. SIAM Journal on Algorithmand Discrete Method, 3:541{550, December 1982.
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30 A. Embedding ChoicesAverage Cost Best CostMethod Unit Size Actual Size Unit Size Actual SizeStandard Eigenvectors 163.8 152.7 143.3 129.5Scaled Standard 159.0 205.4 143.3 156.0Generalized Eigenvectors 162.3 157.8 141.5 138.2Scaled Generalized 158.2 150.7 139.5 129.1Table A.1: Comparison of embedding types for balanced partition tests. Numbers are thegeometric mean of 2x the hyperedges cut for seven benchmarks.A Embedding ChoicesWe experimentally tested four spectral formulations with our HYBRID algorithm. We ran 20iterations of HYBRID using the SWEEPB algorithm to generate initial 2-way partitions, with amaximum contracted graph size of 200 nodes and a balance factor of bal = 0:1. Table A.1 showsthe geometric mean of the results from benchmarks p1 ga, p2 ga, t2, t3, t4, t5, and t6. The�rst row shows the results using the eigenvectors of the Laplacian matrix of a graph. The secondrow shows results using the scaled eigenvectors based on the maximum sum vector partitioningformulation [18, 3]. The third row shows the results using the eigenvectors of the generalizedproblem where vertex sizes are taken into account [44]. Finally, the fourth row shows the result forthe generalized maximum sum vector partitioning. We can see that in terms of the best cost, inthe tests where vertices are initially unit size, the generalized scaled eigenvector results are 2.7%better than the worst embedding choice. In tests using actual vertex sizes, the generalized scaledeigenvector formulation is 20.8% better than the worst choice.B 2-Way Partitioning ComparisonWe give our 2-way partitioning results in Table B.1. We compare our results against GFM [33],Strawman [25], and MLC [5]. All partitioners allowed a balance factor of bal = 0:1, and usedunit size vertices. Our results are on par with the best 2-way partitioners, but are not the bestoverall. The strength of our partitioner lies in combining global spectral information with iterativeimprovement. Global information becomes even more important in 3-way and 4-way partitioning,which is why our 3-way and 4-way results, are substantially better than other partitioners.



B. 2-Way Partitioning Comparison 31
Benchmark HYBRID(20) HYBRIDA(20) GFM(80) Strawman(10) MLC(100)balu 27 27 27 27 27biomed 123 102 84 83 83industry2 189 188 211 188 164industry3 270 270 241 256 243p1 ga 47 47 47 49 47p2 ga 139 145 139 143 139s13207 68 63 66 57 55s1423 13 13 16 14 -s1488 50 53 46 - -s15850 45 45 63 44 44s35932 49 50 41 47 41s38417 59 57 81 53 49s38584 51 55 47 49 47s9234 44 42 41 42 40sioo 25 25 25 - -struct 47 34 41 33 -Table B.1: Comparison of our HYBRID and HYBRIDA 2-way partitioning results againstother 2-way partitioners. Results are the total number of hyperedges cut using unit-sizevertices. The number in parenthesis next to the algorithm name denotes the number ofiterative improvement runs.


