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Abstract

Although spectral partitioning has been an active area of research, there are still many limitations
which prevent its widespread use. These limitations include the inability to work directly with
a hypergraph model, great difficulty in specifying design constraints, and the inability to specify
arbitrary cost functions. None of those limitations are present in the commonly-used Kernighan-
Lin/Fiduccia-Mattheyses (KLFM) style iterative improvement heuristics. Our current work focuses
on developing a new multi-way, hybrid spectral/iterative hypergraph partitioning algorithm which
combines the strengths of spectral partitioners and iterative improvement algorithms to create
a new class of partitioners. We show how spectral information (the eigenvectors of a graph)
can be incorporated into an iterative partitioning framework. We use spectral information to
generate initial partitions, influence the selection of iterative improvement moves, and break out of
local minima which may trap KLFM improvement algorithms. Our 3-way and 4-way partitioning
results are better than the best published results, demonstrating the effectiveness of our new hybrid
method. Our hybrid algorithm produces an average improvement of 27.9% over GEM [33] for 3-way
partitions, 48.7% improvement over GEM for 4-way partitions, and 67.5% improvement over ML
[5] for 4-way partitions.

1 Introduction

1.1 The Problem

This paper examines the hypergraph partitioning problem, whose goal is to divide a large system of
connected components into several smaller subsystems. A hypergraph, which is a generalization of
the graph model [38], is used as an abstract representation of a more specific problem. A hypergraph
is composed of vertices (nodes) having arbitrary sizes, and weighted hyperedges which connect the
vertices together. The goal of hypergraph partitioning is to divide the vertices of a hypergraph into
several distinct subsets subject to size or balance constraints while minimizing the interconnections
among those subgraphs. Graphs are simply hypergraphs where all hyperedges are incident upon
exactly two vertices.

Partitioning algorithms are useful in many areas, such as circuit placement [15] [24], minimizing
communication in parallel processing simulations [42], optimizing the organization of large computer
networks, and circuit implementation in field-programmable gate arrays (FPGAs) [34], [9], [12], [40].
Since partitioning with balance constraints is NP-complete [20], we must resort to heuristics to solve
the problem.

1.2 Contributions

This paper describes a new multi-way, hybrid spectral/iterative, graph partitioning algorithm. We
describe the theory behind our new spectral/iterative algorithm, show how to combine spectral and
iterative partitioners, and present experimental results which validate our algorithm. Our methods
and ideas are general enough to be applied to almost any current and future iterative improvement
heuristics. Our contributions include:
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1. A new hybrid spectral/iterative partitioning algorithm. This is the first algorithm that simul-
taneously combines iterative and spectral information in a multi-level partitioning framework.
Previously, researchers have combined the two approaches by finding a solution using a spec-
tral algorithm and then performing iterative improvement on it [6, 25, 44]. The simultaneous
use of spectral and traditional gain costs was found in [11], where a single-pass constructive
heuristic was used to create partitions using the weighted sum of the cut gain and a spectral
cost function. That heuristic was only a constructive heuristic, and not used for iterative im-
provement. In contrast, our current work provides a much more tightly coupled integration
of spectral and iterative improvement methods. The main contributions of our work include
the use of circular orderings to generate multiple initial partitions, using spectral informa-
tion within a Kernighan-Lin/Fiduccia-Mattheyses iterative improvement algorithm [29, 17]
to break ties in gain, and using spectral information to break out of local minima which may
trap standard iterative improvement algorithms.

2. A new k-way improvement method which we call Rotary KLFM.

3. The (current) best known 3-way and 4-way hypergraph partitioning results. Our hybrid
algorithm produces an average improvement of 27.9% over GFM [33] for 3-way partitions,
48.7% improvement over GFM for 4-way partitions, and 67.5% improvement over ML [5]
for 4-way partitions.

2 Background

2.1 State-of-the-Art Partitioners

The classic Kernighan-Lin/Fiduccia-Mattheyses (KLFM) algorithm even today is used as the basis
for most modern iterative partitioning algorithms. This algorithm combines a greedy hill-climbing
approach with a simple backtracking step, as shown in Figure 2.1. Vertex moves are selected based
on the gain cost function. The gain is typically the total weight of the nets that would become
uncut by moving the vertex from one partition to another. The algorithm is extremely fast, running
in linear time per pass with respect to the circuit size, is fairly easy to implement, and is easily
adjusted to take various cost functions or constraints into account. Improvements have been made
in the selection of moves by biasing clusters of neighbors to be moved in sequence (the CLIP
algorithm [16]), detecting clusters [16], and breaking ties in gain by using look-ahead [31]).

KLEFM algorithms require a large number of random starts to obtain good partitioning solutions.
Because KLFM algorithms are so sensitive to initial starting points, some researchers have sought
ways to create more stable performance by using clustering and multiple levels of hierarchy.

A top-down approach to finding clusters in circuits was implemented by Wei and Cheng [41, 42,
13]. They used the ratio-cut partitioning algorithm to recursively subdivide a circuit into many
small clusters. The ratio-cut cost function is the ratio of edges cut over the product of the partition
sizes, IPﬁW' They created a contracted graph by collapsing each cluster into a supernode. They
partitioned this contracted graph, then re-expanded it and ran their ratio-cut iterative improvement
algorithm upon the expanded graph.

Other researchers have tried bottom-up clustering algorithms for improving results. In [19], they
created a linear-time clustering algorithm to find well-connected clusters using graph connectivity
properties. In [35], they performed clustering based on Rent’s rule, and then executed the KLFM
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ALGORITHM: KLFM
INPUT: hypergraph, initial 2-way partitioning solution
OUTPUT: improved 2-way partitioning solution
METHOD:
Do {
Unlock all vertices
Initialize vertex gains
While (there are free vertices) {
Select best move
Move vertex and lock in place
Update gains of neighbors
If cost is best, save this position
)
Rewind to best position seen
} While (cost has improved)

Figure 2.1: The KLFM iterative improvement algorithm.

algorithm on the contracted graph. In [14], they developed a clustering algorithm by collapsing
cliques into supernodes, and then running the KLFM algorithm on the contracted graph.

These methods were subsequently improved upon by using multiple levels of contraction (instead of
just one level), and iterative improvement at each level of the hierarchy [26, 28, 27, 4, 44]. Current
state-of-the-art partitioners use the multi-level (hierarchical) approach as shown in Figure 2.3. A
hypergraph is reduced in size by pre-clustering nodes or matching nodes together (Figure 2.2). A
matching of a graph is a set of edges whose vertices are non-overlapping. From this pre-clustering or
matching, a contracted graph which is much smaller than the original graph is created. Figure 2.2a
shows a matching of the graph. The thick edges shown are the edges selected for a matching.
Figure 2.2b shows the contracted graph. The numbers inside the vertices denote the weight of the
vertex, and the numbers next to the edges denote the size of the edge. Several levels of contraction
can be performed to further reduce the problem size (Figure 2.3).

(a) Matching of a graph (b) Contracted Graph

Figure 2.2: Contracting a graph by matching edges.
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Figure 2.3: Hierarchical Partitioning

3 Spectral Partitioning and Vectors

In this section, we will give a brief overview of spectral partitioning. Since much of this theory has
been published in the past, we will not repeat it here. The interested reader may refer to other
papers [24, 23, 3, 18, 44] for more details.

Assume we are given a graph with n vertices, and we wish to find k partitions of this graph. Let v,
be vertex ¢ and deg(v;) be the degree of v;. An n X n adjacency matrix, A, is composed of entries
a;; which represent the weight of an edge between vertices v; and v;. The n X n diagonal degree
matrix, D, has entries d;; equal to the sum of the weights of all edges on vertex v;. The Laplacian
matrix is defined as ¢ = D — A. FE} is the total sum of the weights of the edges cut on partition
h. Let M be an n X n diagonal matrix whose entries m;; represent the size. .S is the matrix such

that STS = M.

Spectral partitioning is based upon using the eigenvectors associated with the smallest eigenvalues of
the Laplacian, (). The eigenvectors are actually the solution to a relaxed version of the partitioning
problem, often referred to as the quadratic placement problem [24]. This relaxed problem optimizes
the total sum of squared wiring distance of the nodes in a graph. For instance, the quadratic cost
of a one-dimensional (linear) placement of nodes is z = £ 370, 327, (¢; — 2;)%a; ;. A spreading
constraint, 7z = 1 is used to spread the vertices out. The trivial solution, where all vertices are
placed at a single point, corresponds to the eigenvector associated with the smallest eigenvalue, is
often ignored. Many researchers have used the second eigenvector to form partitions [18, 36, 23].
A variation of this which takes vertex sizes into account was proposed in [44]. Different researchers
have chosen to use different numbers of eigenvectors in creating partitions. To be general, let us
assume we are using d eigenvectors, where d is the desired number of dimensions we use, so Xy is
our n X d relaxed solution. There have been many attempts at using this information in different
ways. For instance, some researchers have sought to find a k-way partitioning solution by finding
the binary partition assignment matrix which satisfies partitioning constraints that is closest to
the n x k eigenvector matrix Xy using a transportation problem [7, 8]. Another approach is to
view each row of Xy as a coordinate for the vertex. The partitioning problem can then be solved
by using geometric clustering algorithms [1]. Another view is to think of each row of X as a d-
dimensional vector. Partitions can then be formed by grouping vertices together based on the angle
between vectors [10] or by scaling X; and optimizing for the maximum sum vector partitioning
cost (discussed in the next section) [3].
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3.1 Maximum Sum Vector Partitioning

Let X4 be the nxd matrix composed of the first d eigenvectors (those associated with the smallest d
eigenvalues) of the graph and Ay be the d x d diagonal matrix composed of the smallest d eigenvalues
of the graph. The matrix Hy is a diagonal matrix whose entries are all «v. The only constraint on
the value of « is that it must be at least as large as A;. In maximum sum vector partitioning, the
scaled matrix of eigenvectors is represented by Vy; = M X4\/(Hq — Ag) where Xy and Ay satisfy
QX4 = MX A, This is a generalization of the work of [3, 18] who used Vy; = X4/ (Hq — Ag),
where X; and Ay satisfy QX = X A4.

Let the vector v;, 1 < ¢ < n be row i of V4. In maximum sum vector partitioning (MSVP), we wish
to divide the vectors v; into & distinct sets of vectors. Let T}, = ZwePh v; be the sum of each of

those sets of vectors with 1 < h < k. The goal of MSVP is to maximize Y5 _, [|T|[>. When d = n,
maximum sum vector partitioning is equivalent to minimizing the sum of the edges cut in graph
partitioning.

The more eigenvectors being used, the closer an approximation to the graph partitioning problem
it is. However, we note that there is a tradeoff in that as you use more eigenvectors, the multi-
dimensional embedding becomes more and more difficult to take advantage of. In particular, when
d = n, we have merely replaced one NP-Hard problem with another!

Throughout this chapter, however, for the purposes of establishing and proving various results, we
use the full n x n matrices H, V and X.

We will derive a new proof of the maximum sum vector partitioning problem. Our proof is simpler
than the proof in [3] and also more general, because it takes vertex sizes into account.

Lemma 1: Given X which is orthonormal and H, a diagonal matriz whose entries equal the
constant v, XHXT = H

PROOF:
% 1
XHX;, = Z Z Bijhjk) Brg
XHX}; = ZZ ZihikTrg
k=1j=1
a
Since hjr = 0 when j # k and h;; = 7:
~ o T n R R
XHX! = Zwijhjjxjg
e R
XHX;, = Z Tijlig
. when ¢ =
T _ 9
XHX { otherwise
xXux' = H
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Theorem 1: Given the Laplacian, ), a diagonal matriz H whose entries equal v, and the scaled

eigenvector matriz V. = MX\/(H — A), then:

Vvl =MH-Q

PROOF:

Recall that M, is the diagonal matrix of vertex sizes, and STS = M, and Q = S~1Qs-—.
Multiplying out VVT and simplifying, we find that:

VvvT = (MX\/(H - A)(MX\/(H - A)T
= MX(H-ANMX)T
= MXHX"M - MXAXTM
= S(SXHXTS)S - S(SXAXTS)S
= S(XHXT)S - 5(SxAXxTs)s
= SHS-S(XAXT)s
= MH - SQS
= MH-Q

a

This equation leads to some very interesting corollaries. We can now relate the rows of V to the
Laplacian ), which is directly constructed from the graph’s adjacency and degree matrices. Let v;
represent the i row of V', v; be vertex ¢ and deg(v;) be the degree of v;.

Corollary 1:

I

||lvil|* = miy — deg(v;)

Proof: Using Theorem 1, we note that the diagonal entries of VV7T equal (M H — Q);;.
lwil|? = var! = (MH = Q)i = miiy — deg(v;)

Corollary 2: For i # j,

T _
ViV; = i

Proof: Using Theorem 1, we note that the off-diagonal entries of VV7T = A:

I/Z'I/]T = a;;
The goal maximum sum vector partitioning is to find a set of vectors, T} such that the Fuclidean

norm of their sum is as large as possible. Let T, =}, cp, vi and E}, be the total weighted sum of
edges contained within a partition.
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Theorem 2: Let ||T3]|*> = || Y2, cp, vill? be the vector sum cost of vector partition h, and E} be
the edges cut in partition h of a graph partition Maximum sum vector partitioning is equivalent to

graph partitioning. S 5_, ||Thl)?

Proof:

1731

S may — oy B

1> vl

Summing up costs in all the partitions,

vi€Pp
= > P+ Y wwf
vi€Pp Ui7y]€Ph7yi;éy]
= Y miy—degv)+ D ay
v, €P, v, V5 € Pr,vi# vy
= > miy-Ey
vi€Pp
O
k k
SNTHIP = >0 > muy— Ey
h=1 h=1v,EP),
n k
= > may— Y By
=1 h=1
O

Here are a few other interesting results. We note that it is easy to derive the relationship between

the angles between two vertices

in terms of their graph properties. Likewise, the distance between

two vertices can also be calculated using graph properties.

Corollary 3:

cos(v;, vj) = G
V ((mizy = deg(v:)) (mjjy = deg(v;))
Proof:
(v ;) i
cos(v;, V; T
: [oill - Il ]
_ i
V ((mizy = deg(v:)) (mjjy = deg(v;))
O
Corollary 4:
lvi = vi|I* = migy = deg(vi) + mj;y = deg(v;) = 2a;5
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Proof:

T
lvi =vill* = Mwll + vil| = 2vv;

= myy — deg(v;) + my;y — deg(v;) — 2a;;

O
Corollary 5:
v + I/]‘||2 = myy — deg(v;) + mj;y — deg(v;) + 2a;;
Proof:
lvi +vill? = il + ]| + 2w
= myy — deg(v;) + my;y — deg(v;) + 2a;;
O

3.2 Using the Results

We showed that the n-dimensional maximum vector sum problem is equivalent to the graph
partitioning problem. In practice, it is too expensive to compute a large number of eigenvectors of
large benchmarks. Furthermore, it is difficult to make use of that multi-dimensional information
effectively. Therefore, we choose to use fewer eigenvectors (the first three) which then gives us
an approximation of the partitioning problem, but one which is much easier to work with. Since
the first eigenvector contains no useful information, we can use the second and third eigenvectors
to form a planar embedding. The importance of the planar embedding comes from the spatial
proximity of vertices.

3.3 Embeddings

Figure 3.1 shows an example of the 2-dimensional embedding formed by the second and third
eigenvectors of the Laplacian of a graph. We also show two partitions found by our partitioner
to graphically illustrate the motivation behind our hybrid partitioner. Vertices that belong to the
same partition tend to be spatially close together in the embedding.

Figure 3.2 shows an example of the 2-dimensional embedding formed by the second and third scaled
generalized eigenvectors of the Laplacian a structured mesh. In this case, it is even more obvious
that spatial proximity is useful in obtaining good partitions of this graph.

There are a number of different variations on spectral partitioning: those based on the standard
eigenvectors (traditional spectral partitioning), generalized eigenvectors (spectral partitioning with
vertex sizes), scaled eigenvectors (maximum vector sum partitioning), and generalized scaled eigen-
vectors (maximum vector sum partitioning with vertex sizes). Our work concentrates on using the
maximum sum vector partitioning formulation, so we use embeddings based on the generalized
scaled eigenvectors, Vg = M X4\/(Hqg — Ag), with v = |A3] + |Aq|. Appendix A gives experimental

verification of our embedding choice.
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Figure 3.1: A 2-dimensional embedding of circuit p2_ga.
4 Hybrid Spectral/Iterative Partitioning

Researchers have tried to combine spectral and iterative partitioners by using the result of the
EIG1 spectral partitioner [23] as the initial partition of an iterative improvement algorithm. The
results were inferior to using random starts [25]. The primary problem is that the EIG1 algorithm
only gives one starting point. Although it may be a very good one, it is not necessarily the best
one for iterative improvement. We believe that a more integrated hybrid approach can utilize
the strengths of both methods. In [11], they introduced a single-pass heuristic which constructed
partitions based on the weighted sum of the edges cut and orthogonality (which was calculated using
the eigenvectors of the graph). The algorithm was only used to construct partitions, and could
not be used for iterative improvement. This paper significantly improves upon those previous
attempts at combining spectral and iterative algorithms by directly using spectral information in
a multi-level, k-way, KLFM iterative improvement algorithm.

The primary advantage of spectral algorithms is that they are able to find a globally optimal
solution to a relaxed version of the partitioning problem. They have been found to perform well
on partitioning problems using the ratio-cut cost function. However, spectral partitioning methods
suffer from many glaring weaknesses which prevent them from performing well in constrained
partitioning problems. These problems include:

e Constraints such as partition size, partition topology, and pin limits are difficult to incorpo-
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Figure 3.2: A 2-dimensional embedding of ’struct’, a structured mesh.

rate.

e Converting a hypergraph into a graph will often result in a loss of information because the
representation has changed. Optimal solutions for the resulting graph do not necessarily
correspond to optimal solutions for the original hypergraph, although they may be very close.

e Only one deterministic solution is found. If that is a good solution, then there is no problem,
however, if the solution is poor, then you are stuck with it.

e Arbitrary cost functions are either difficult or impossible to incorporate.

e The relaxed continuous-space solution may not be close to the optimal discrete partitioning
solution.

With all of the above difficulties, it is no wonder that for bipartitioning with balance constraints,
spectral algorithms have been found to be 4% worse than the standard KLFM algorithm and 18.8%
worse than more advanced iterative partitioning algorithms [16]. What if we could combine spectral
information with iterative improvement algorithms to obtain one unified method which combines
the advantages of both methods? We could utilize the global information from a spectral algorithm
within an iterative partitioning framework and gain the benefits of both methods.
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5 Multi-way Partitioning

Most of the research done on iterative improvement has focused on 2-way partitioning. For k-
way partitioners where k > 2, things are more complicated. We can decompose partitioning into
two important phases: the generation of £ initial partitions and the refinement of the solution.
For iterative improvement partitioners, one obvious choice is to start with many random k-way
partitions and improve upon the result. Another method makes use of an existing 2-way partitioner
[29, 32]: Repeatedly apply a 2-way partitioning algorithm until the desired number of partitions
is reached or constraints have been satisfied. One could iteratively create feasible partitions by
breaking off pieces that satisfy constraints and then repeating the process on the remainder of
the problem, or, recursively create balanced bipartitions until all partitions satisfy the constraints.
Both methods have the consequence that the early partitionings may adversely affect the quality
of later partitions.

Once k partitions have been created, iterative improvement can be used to refine the solution.
Kernighan and Lin [29] suggested performing 2-way iterative improvement to each of the ﬂ@
pairs of partitions (we call this Pairwise KLFM).

Another approach, which we call Extended KLEFM, involves extending the gain cost function in
KLFM algorithms to directly support iterative moves from any one partition to any other partition
[37, 26]. There are k(k — 1) possible directions of movement for vertices at each step.

We propose a new k-way iterative improvement method, Rotary KLFM which lies somewhere
between the two improvement methods described above. In Rotary KLEM, each partition is used
in turn as the target partition. The only moves considered are those in which vertices move into
or out of the target partition, so there are 2(k — 1) possible directions of movement at each step.

Currently, there are no direct comparisons among Pairwise KLFM, Extended KLFM, and Rotary
KLFM. We compare our Rotary KLFM method to the Extended KLFM implementation of [33] in
Section 7, however, because of underlying differences between the iterative improvement algorithms,
the comparison is not equal. Each method has its own advantages. The advantage of Pairwise
KLFM is that any existing 2-way iterative improvement heuristic can be used to improve k-way
partitions. However, for each round of improvement, there are ﬂ@ iterative improvement passes,
which could become prohibitively time-consuming as k increases. Rotary KLFM only needs k
improvement passes for each round, while in Extended KLFM, there is only one pass for each round
of improvement. In Pairwise KLFM, at each move step, there are only two possible directions for
vertices to move. Rotary KLFM and Extended KLFM are quite similar, but Rotary KLFM is
simpler because there are fewer possible move choices at each step and there are fewer gain updates

to be made because there are 2(k — 1) directions of movement compared to k(k — 1) in Extended
KLI'M.

5.1 Overview

Before we describe the details of our hybrid algorithm, we first present our multi-level partitioning
framework, and describe its most important components. Figure 5.1 illustrates our multi-level
partitioner. Spectral information can be used in the contraction algorithms, initial partitioning,
and in the iterative improvement process. The eigenvectors and eigenvalues of a graph are computed
during the initial partitioning. We can optionally recompute the eigenvectors in the Expand phase
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if desired. In our benchmarks, we recompute eigenvectors during expansion, unless otherwise noted.

ALGORITHM: MLH
INPUT: hypergraph, target number of partitions,k, maximum contracted size
OUTPUT: k-way partitioning solution
METHOD:
Read hypergraph
While (graph > maximum contracted size) {
Contract graph
}

for i=1 to max_iterations {
Initial k-way Partitioning
Iterative Improvement
While (graph not fully expanded) {
Expand graph, map solution
Iterative Improvement

Figure 5.1: The multi-level partitioning algorithm.

Our Rotary KLFM iterative improvement algorithm (Figure 5.2) improves k-way partitions by
iteratively working on one partition at a time. Each partition is used in turn as the target partition.
The only moves considered are those in which vertices move from one of the £ — 1 other partitions
into the target partition, or out of the target partition and into one of the k —1 other partitions. We
will hereafter refer to this k-way KLFM algorithm as Rotary KLEFM. We use spectral information
in the updating of the neighbor gains to break ties and influence the move sequence. Figure 5.3
shows how moves are selected. Our implementation uses heaps to store vertex gains rather than
buckets. This design decision was made in order to support arbitrary (non-integer) gains which
were necessary in our hybrid spectral /iterative algorithm.

5.2 Using Spectral Information

There are three key areas in iterative improvement algorithms that can be augmented using spectral
information:

1. Initial partition generation

2. Breaking ties when choosing the next move to make

3. Jumping out of local minima

Initial Partition

The partitioning problem requires us to divide our set of vertices into several distinct subsets.
What we need to do is to use the spectral information in such a way that we can quickly and
simply generate an initial partitioning.
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ALGORITHM: Rotary KLFM, k-way Iterative Improvement
INPUT: hypergraph, initial k-way partitioning solution
OUTPUT: improved k-way partitioning solution
METHOD:
Do {
For each partition h {
Initialize vertex gains for moves into and out of h
While (there are unlocked vertices) {
Select best gain move into or out of A
Move vertex and lock in place
Update gains of vertex neighbors
If best cost, save this position

}

Rewind to best position

}

} While (cost improved)

Figure 5.2: The Rotary KLFM improvement algorithm.

ALGORITHM: FM Select - Select a vertex to be moved
INPUT: Hypergraph; target partition, dest; number of partitions, k
LOCALS: Into and Outof, arrays of k heaps which contain the gains of
vertices that can be moved into or out of the destination partition
OUTPUT: Best-gain move which satisfies balance constraints, or,
first possible move if no moves can satisfy balance

METHOD:
best_gain = -INFINITY
for h=1 to k {

/* check vertices that can move from target into h */
gain = Into[h].Max()
Store this move and set best_gain=gain if ((gain > best_gain)
and (move from target to h satisfies balance constraints))
/* check vertices that can move out of h and into target */
gain = Outof[h].Max()
Store this move and set best_gain=gain if ((gain > best_gain)
and (move from h to target satisfies balance constraints))
}
Return best move and gain satisfying balance, or the first move seen if
nothing satisfies balance

Figure 5.3: Move selection in our iterative improvement algorithm

13
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Past work has focused on using the second eigenvector for generating two-way partitions [36, 22]. For
example, in the EIG1 algorithm [23], each possible partitioning of vertices on the line was checked
to find the best ratio-cut cost solution (Figure 5.4). Alpert and Yao [3] extended the concept
to multiple dimensions and multiple eigenvectors by generating linear orderings using space-filling
curves. Our approach lies somewhere between those two approaches.

—0;,0—0—000—0

I N N T

Figure 5.4: The EIG1 Spectral Ratio-Cut Partitioning Algorithm

Our focus is to solve the k-way partitioning problem for small values of k, such as 2,3, or 4. We
use the second and third scaled eigenvectors to obtain a two-dimensional embedding (since the first
eigenvector contains no useful information). Henceforth, it should be implicitly assumed that when
we use the word eigenvectors we mean the scaled eigenvectors, V;. We limit ourselves to planar
embeddings for a number of practical as opposed to theoretical reasons:

e Planar embeddings are easy to subdivide.
e It is easy to generate orderings of vertices.
e Computation of the first three eigenvectors is fast.

e We can visually examine and understand our results.

More general methods for searching for solutions in a multi-dimensional solution space using vector
probes were described in [18]. Since our vertices are embedded in a plane, we can systematically
generate many different bipartitions using that placement. Using a planar embedding is a natural
extension of [22], which used the second eigenvector to create an optimal placement of vertices on a
line. The reason why we generate many initial partitions, rather than picking only the best one for
iterative improvement is because the iterative improvement itself is very sensitive to the starting
solution. Since our spectral partitioning result is so far removed from the original problem (due
to conversion of a hypergraph to a graph, solving a relaxed problem instead of the ideal integer
programming problem, and multiple levels of contraction), there is only a loose correspondence
between initial and final solution costs. Figure 5.5 shows the initial and final solution costs for
twenty iterations of our SWEEPB algorithm (which will be described later). We can readily see
that the correspondence between initial and final solution costs is loose at best.

One of the first methods that comes to mind for generating initial partitions would be to divide the
plane with a cutting line around the origin, which we call the SWEEPA algorithm (see Figure 5.6).
In SWEEPA, we bisect the plane by stepping through a series of evenly-spaced angles which form
a cutting line around the origin. Vertices that lie on one side of the line are placed in one partition,
and the remaining vertices are placed in the other partition. We use every sweep step as an initial
partition, rather than just picking the best one. This initial partition is then improved upon by
iterative refinement, which will also enforce partition balance constraints.
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Figure 5.6: The SWEEPA algorithm on the left, and the SWEEPB algorithm on the right.

The SWEEPA algorithm is not as effective at generating a variety of initial partitions because often
it generates the same initial partitioning for many steps if the planar embedding has large areas of
empty space. In addition, balance constraints may initially be unsatisfied.

To address the problems of SWEEPA, we invented the SWEEPB algorithm. In the SWEEPB

algorithm, we create a circular ordering of the vertices in the plane so that we can systematically

create balanced initial partitions. The ordering of vertices is simply the angle of a vector with

respect to the (1,0) vector, going in counter-clockwise direction. If we wish to create p initial
n

partitions, we generate initial partitions by starting each partition T nodes apart. From the
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starting point, we place as many subsequent nodes as will fit into that partition, and when that
partition is filled up, we continue travelling around the circular ordering, filling up each subsequent
partition in order. For example, consider the SWEEPB diagram in Figure 5.6, where we would like
four iterations: p = 4. If we want two balanced partitions, in the first iteration, P1 starts with the
node number zero, whose angle is closest to the (1,0) vector. P1 is filled up with the first eight
nodes, and P2 is filled up with the remaining nodes. In the second iteration, we start at vertex
% = 2 of the ordering. P1 is filled up with the first eight nodes from that starting point, and P2
contains the remaining nodes. On the third iteration, P1 starts at node 4, and on the last iteration,
P1 starts at node 6.

Balance

We use soft constraints to enforce balance in partitions. The balance parameter is a user input,
bal, which limits the minimum and maximum partition sizes as follows: (1 — bal)||FP|| < || Pu]| <
(14 bal)||P||. Here, P}, is an arbitrary partition, h, and ||F%|| is the target partition size, which
is the total sum of the sizes of all vertices divided by k, the number of partitions desired. Unless
otherwise noted, we always use bal = 0.1.

After every iterative improvement vertex move is made, we evaluate the cost of a solution. Typically,
this cost is just the desired cost function, such as the ratio-cut cost, or the number of hyperedges
cut. We add an auxiliary cost to that number to discourage imbalanced partitions. This auxiliary
cost is equal to ten times the amount of imbalance of every partition.

Breaking Ties and Avoiding Local Minima

[terative improvement methods are very sensitive to tie-breaking strategies when vertices are se-
lected for movement. Rather than breaking ties arbitrarily, we break ties using spectral information.
Consider what information we have. We have a two-dimensional placement of vertices in the plane.
When we make iterative improvement moves, we can easily calculate distances using a wide variety
of cost metrics. These distances could be either the distance from the vertex to be moved to the
vector sum of the destination partitions, or it could be the distance from a vertex to its adjacent
(connected one hop away in the graph, as opposed to spatially adjacent) neighbors. Using these
ideas, we can come up with a number of tie-breaking strategies.

The total gain is a weighted combination of the standard cut gain and our spectral gain:

gain = « - cut_gain + 3 - spec_gain (5.1)

After each vertex move in iterative improvement, the neighbors of the moved vertex must have their
gains updated. The cut_gain is the standard KLFM gain, which is the weight of the hyperedges
that become uncut by a move.

Figure 5.7 shows the tie-breaking strategies we tried, and Table 5.1 shows our overall results for
2-way partitions on benchmarks pl_ga, p2_ga, t2, t3, t4, t5, and t6. In these experiments, we
contracted to a maximum graph size of 200 nodes, using the o = 1.0 and beta = 0.1.

The spectral gain cost we use is the magnitude of the vector sum, which we call the MVSA method.
Let T} be the sum of all the vectors (which represent vertices) in partition Pj,. The spectral gain
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ALGORITHM: Compute_Gain - Compute the gain of a move
INPUT: Hypergraph; vertex to update, v; last moved vertex, lastv
last move destination, lastp; target partition, dest;
number of partitions, k; gain method,method; weights o and /3
OUTPUT: The gain of a vertex move
METHOD:
cut_gain = total weight of nets uncut when v is moved to dest
if (method==COSAVG1)
spec_gain = cosine of the angle from v to the vector sum of all vertices in the destination
if v is in dest then spec_gain=-1
if (method==COSN)
spec_gain = 1+cosine of the angle from v to lastv
if (method==COSAVG)
spec_gain = 1+cosine of the angle from v to the vector sum of all vertices in the destination
if (method==MVSAVG)
spec_gain = magnitude of vector sum of v to the vector sum of all vertices in the destination
if (method==MVSN)
spec_gain = magnitude of vector sum of v to lastv
if (method==DISTAVG)
spec_gain = distance from v to the vector sum of all vertices in the destination
if (method==DISTN)
spec_gain = distance from v to lastv
if (v is in lastp) and (method != COSAVGI)

then spec_gain=-spec_gain

gain = «- cut_gain + - spec_gain
Return gain

Figure 5.7: Calculating the hybrid spectral /iterative gain

Method | Actual Size | Unit Size
COSA 135.8 145.1
COSA1 138.0 142.1
COSN 133.4 145.6
MVSA 129.1 139.5
MVSN 131.4 147.9
DISTA 131.3 141.9
DISTN 134.8 144.6

Table 5.1: Comparison of various spectral-based cost metrics, using recalculated eigen-
vectors at each level. Results are the geometric mean of 2x the cut cost over seven
benchmarks.
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of a vector v; with respect to a destination partition P, is ||v; +T}||>. The vector sums, T}, of each
of the k target partitions are calculated at the beginning of each pass, and are not dynamically
updated as moves are made. The spectral gain is negated when the target destination is not the
same partition as the last moved vertex. This encourages groups of vertices to move to the same
target destination in connected groups, similar to the FM-CLIP algorithm [16].

When o = 1, and g = 0, our algorithm behaves like the standard KLFM algorithm. When
[ is greater than 0, then the spectral gain information is used to influence the selection of the
vertices. We experimented with two methods of incorporating spectral information. Our first
method, HYBRID, is a simple tie-breaking strategy where we set @« = 1.0 and 5 = 0.1. The
spectral information contributes only a small portion to the gain so that in effect, it is only used
to break ties in gain.

Our second method, HYBRIDA, focuses on breaking out of local minima. The KLFM improvement
algorithm makes greedy moves based on the cut gain. If we are able to make moves using some
other objective cost function, then we can break out of local minima. In the HYBRIDA method,
we alternately run our KLFM improvement algorithm using o« = 1.0, 3 = 0.0 and &« = 0.0, 3 = 1.0.

6 Issues in Multi-level Spectral Partitioning

There are a number of issues involved in multi-level spectral partitioning. Implementation choices
at each step can have a significant effect on the final partitioning result. In this section, we consider
the following implementation choices:

e Hypergraph to graph conversion - What is the best way to convert a hypergraph (circuit)
into a graph so that it can be used in an eigensolver?

e Contraction algorithm - How should a (hyper)graph be contracted into a smaller one?
e Levels of hierarchy - What is the right number of levels to use to obtain good solutions?

e Disconnected graphs - What should be done about them?

6.1 Hypergraph to graph conversion

Figure 6.1a shows a hyperedge (net) from a hypergraph. In order to turn the hypergraph into a
graph, all hyperedges must be transformed into edges (which connect exactly two vertices together).
In the past, most researchers have simply performed a clique expansion [38] on hyperedges, shown
in Figure 6.1b. In clique expansion, an edg;((z iﬁ)connected between all pairs of vertices incident on

a degree d hyperedge, creating a total of =—— edges. With clique expansion, the primary factor

affecting the outcome is the choice of edge weights. Some possibilities include ﬁ, %1'5 [18] which is
optimized for placement, or ﬁ [2] which is optimized for partitioning, or one which is optimized

for k-way partitioning [21].

6.2 Star Graph

We develop a new hypergraph to graph conversion model, based on using the star graph (Figure
6.1c). The first use the star expansion in spectral partitioning was reported in [11]. Although the
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paper described star graphs, it did not present any significant quantitative or theoretical evaluation
of the model. We derive an edge weighting function for the star graph, and we experimentally
evaluate the performance of the star graph model. The star model creates a dummy vertex which
is used to represent every edge in the hypergraph. Every actual vertex which is connected to
the net is then connected to the dummy vertex representing the hyperedge. After sparse matrix
computations have been performed, the dummy vertices are ignored. Since a star graph only creates
d new edges for each hyperedge (where d is the degree of the hyperedge), matrices associated with
star graphs are much sparser than those associated with clique expansions, which create @
edges for each degree d hyperedge. On the other hand, this is offset by the fact that |F| more rows

are needed in the eigenvector solution.

Tables 6.1 and 6.2 show the time to compute the eigenvectors associated with the three smallest
eigenvalues of various benchmarks. The time includes both the eigenvector computation and the
time to translate the hypergraph into a graph. We see that the star graph performs consistently
better when we use non-unit-size vertices. We also note that in the case where we perform three
levels of contraction and compute the eigenvectors of the contracted graph, the execution times are
about the same.

o T
O

(a) Hyperedge (b) Clique Expansion (c) Star Expansion

O

.

Figure 6.1: Approximating hypergraphs with graphs

We would like to carefully choose the weights of the star graph to optimize its performance for our
problem.

A simple weighting model for star graphs is to pick the weight such that the sum of all the new
edge weights is unit weight. Thus, w = 5. We call this the StarD weighting model.

We could alternatively optimize our weights for the quadratic placement objective function. We
derive the best weighting of edges in the star graph by examining the highest and lowest cost
placements along a unit span, following the same method as [18]. The extreme cases are shown in
Figure 6.2. The symbol "X’ is the dummy vertex which represents the hyperedge, and the circles
represent single vertices. The concentric circle symbol represents multiple vertices placed at the
same point. Let w represent the weight of a star graph’s edge, which we will calculate below. There
are two possible cases which we consider.

e Unconstrained Solution Figure 6.2a shows the minimum cost placement of one star net in
the unit span. In this situation, all vertices are at the center except for two which are at the
left and right extreme. The total quadratic placement cost is 2w($)% = %. Figure 6.2b shows
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non-unit unit

Circuit Cliquelr | StarF | CliquelF | StarF
industry2 | 132.88 | 163.11 | 132.87 | 160.09
pl_ga 11.25 2.09 2.06 6.73

p2_ga 29.58 11.04 5.58 14.28
12 60.09 4.75 11.42 15.40
3 47.38 2.98 9.54 16.26
t4 41.45 4.13 14.61 15.46
t5 105.64 6.67 30.54 37.91
16 43.06 6.18 9.54 12.99
GMean 46.98 7.40 12.77 20.34

Table 6.1: Time to compute first three eigenvectors of various benchmarks using no
contraction.

the maximum cost placement on the unit span. Here, the total cost is wd. We can solve for
_ V2
=z

e Constrained Solution In spectral partitioning, we would not expect Figure 6.2b to occur

the best value of w by solving $wd = 1, and we find that w

very often because we are optimizing the quadratic placement. Since a dummy vertex is only

connected to vertices that are incident on that hyperedge, we would expect that in minimum-

cost quadratic placements, the dummy vertex will lie between vertices. Figure 6.2c shows the

maximum cost placement of vertices subject to the constraint that the dummy vertex lies

between other vertices. The quadratic cost is 2w%(.5)2 = wTd. The minimum-cost case is still
w o wd

the same, as shown in Figure 6.2a. We can solve for w using the equation % - %% = 1. Our

: _ V8
answer is w = Y=,
Vd

Both cases have a solution of the form Ld. The constant ¢ is unimportant because it is just a

constant scaling factor. We call this model the StarF weighting model. In our experiments, we use

c=/8.

O—®0 »—©® O—*x®
@ o ©

Figure 6.2: Star graph- extreme cost cases along the unit span

Table 6.3 is a quantitative comparison the star and clique graph models. We ran 20 iterations of
our SWEEPB algorithm on the circuits pl_ga, p2_ga, 12, t3, t4, t5,t6, and industry2, contracting
until circuits at most 400 nodes in size, and using the MVSA tie-breaking strategy. We sought to
find balanced 2-way partitions with a 10% slack. Our results show that our StarF graph model
produces excellent results, and is one of the top performers in the average and best cost tests
for unit size vertices. This is the graph model we use in all of our benchmarks, unless otherwise
specified. The CliqueD model is the best performer for tests using actual vertex sizes. Examining
the best and worst case net models for the best solution cost using unit size vertices, there is only
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non-unit unit
Circuit CliquelF | StarF | Cliquelr | StarF
industry2 15.85 7.75 15.83 7.74
pl_ga 1.35 0.50 0.40 0.76
p2_ga 3.09 1.87 0.91 1.91
12 3.84 0.72 1.09 0.92
3 3.13 0.74 0.86 0.91
t4 2.38 0.76 1.10 1.02
t5 5.36 1.03 2.50 1.75
6 3.93 0.78 1.22 1.23
GMean 3.76 1.11 1.44 1.46

Table 6.2: Time to compute first three eigenvectors of various benchmarks using three
levels of contraction.

Graph Model non-unit unit
Average | Best | Average | Best
CliqueD 146.1 129.3 164.4 143.2
CliqueF 154.3 133.2 158.9 143.0
CliqueP 153.3 134.8 161.0 141.4
CliqueK 154.5 129.1 162.9 144.1
StarF 157.8 138.2 162.3 141.5
StarD 156.9 132.7 161.4 142.4

Table 6.3: Comparison of hypergraph to graph conversion techniques. Numbers are the
geometric mean of the 2x the total cut cost over seven test circuits.

a 1.9% improvement. The graph model chosen does not appear to be a significant factor for these
tests. Examining the best and worst case net models for the best solution cost using actual vertex
sizes, we see an 7.8% span of improvement. The graph model appears to be more important when
vertices are non-unit size. We note that in our benchmarks, the span of the actual vertex sizes vary
significantly, having sizes that range over several orders of magnitude within the same circuit.

6.3 Contraction Method

In the past, researchers have used a variety of contraction methods to reduce the size of a problem.
The contraction method plays a key role in not only reducing the problem size, but also influencing
the final solution. We chose to use the heavy edge matching cost function [27]. This cost function
contracts the edges with the highest weights, which would be the most undesirable to cut. We
convert the hypergraph into a graph, sort the edges based on the edge weight, and match any
unmatched pairs of vertices as edges are picked in order of decreasing cost.

6.4 Levels of Contraction

Graph contraction has asignificant influence on solution quality. One of the contributing parameters
of contraction is the clustering or matching method, which has been widely studied. Less attention
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Max average best -
Nodes HYBRIDA | HYBRID | KFMC | HYBRIDA | HYBRID | KFMC | GMEAN
100 163.6 168.8 169.6 146.2 149.1 147.5 157.1
200 164.3 172.3 175.2 140.9 145.4 148.0 157.1
400 168.6 176.6 183.5 141.2 149.6 150.0 160.8
800 172.6 186.2 194.5 147.7 153.6 152.4 166.9
1600 177.7 192.8 217.3 147.8 162.1 162.3 175.2
unlimited 188.0 213.4 257.2 156.5 166.8 178.5 190.7

Table 6.4: Comparison of various levels of contraction using unit size vertices. Numbers
are the geometric mean of 2x the total cut cost.

Max average best -
Nodes HYBRIDA | HYBRID | KFMC | HYBRIDA | HYBRID | KFMC | GMEAN
100 149.6 150.8 148.7 134.0 132.7 130.6 140.8
200 153.2 151.5 152.6 131.3 130.7 131.1 141.3
400 156.3 155.4 158.3 137.4 133.3 132.1 145.0
800 158.8 163.2 155.8 136.3 129.4 129.2 144.8
1600 179.1 180.5 170.2 138.0 137.1 132.0 154.8
unlimited 195.8 193.8 189.3 140.7 135.9 143.3 164.3

Table 6.5: Comparison of various levels of contraction, using actual vertex sizes. Numbers
are geometric mean of 2x the total cut cost.

has been paid to the levels of contraction. This can have a dramatic effect on partitioning. As
the number of levels of hierarchy increases, the initial problem solution becomes farther removed
from the original problem. The best solutions may be precluded due to the contraction algorithm.
This is offset by the fact that more levels of iterative improvement can be run when there are more
hierarchical levels.

Many researchers have only used one level of contraction to perform partitioning [19, 13, 14], or
a fixed number of levels, such as three [44]. Other researchers have chosen to contract the graph
until the number of nodes in the graph reaches a target size, such as 35 nodes[5], 100 nodes [28] or
200 nodes [26]. For four-way partitioning, contraction was limited to 100 nodes in [5].

We ran some benchmarks using the graphs pl_ga, p2_ga, t2, t3, t4, t5, t6 for the unit-size and actual-
size vertex tests, with the geometric mean of the total number of cuts shown shown in Table 6.4
and 6.5. In our tests, we evaluated various values of Max Nodes: 100, 200, 400, 800, 1600, and
unlimited (which corresponds to no levels of contraction). We found that for two-way partitions,
the best maximum number of nodes is in the 100 to 200 node range. We use a 200 node maximum

contracted graph size for our 2-way 3-way and 4-way partitioning tests. Results are shown using
our HYBRIDA, HYBRID, and KFMC, our implementation of the multi-level FM-CLIP algorithms.

6.5 Disconnected Graphs

Disconnected graphs cause problems for eigensolvers because solutions tend to lead to extremely
unbalanced partitions (partitions where each connected component is in its own partition). We
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fix this problem by introducing dummy edges to connect the graph. These edges are introduced
immediately before the eigensolver is invoked, and are then removed immediately after, so that
they are never taken into account in any partition cut costs. For clique expansions, we pick an
arbitrary vertex in each connected component and connect those chosen vertices together in a ring,
in arbitrary order. For star graphs, we introduce a hyperedge which is connected to an arbitrary
vertex in each of the components. Another approach to handling disconnected graphs is to use
higher-order eigenvectors. Alpert [3] used up to ten eigenvectors in creating partitions. Shau [39]
used different pairs of eigenvectors (1st and 2nd; 2nd and 3rd; 1st and 3rd) in his experiments.
Pairwise selection of higher-order eigenvectors would be easy to implement in our partitioner,
if necessary. Since we did not observe unusually poor performance for graphs using our simple
connection method, we did not need to resort to using combinations of higher order eigenvectors.

7 Results on MCNC Benchmarks

We compared our hybrid algorithms against existing published results. The benchmark circuits we
used are shown in Table 7.1. We show results for our HYBRID method, which uses the SWEEPB
spectral initial partitioning algorithm and uses o« = 1.0 and $ = 0.1 in the iterative improvement
gain cost. We also show results for the HYBRIDA method, which also uses SWEEPB for initial
partitioning, and alternates between o = 1.0, 3 = 0.0 and o = 0.0, 8 = 1.0 for each pass in order
to jump out of local minima.

Circuit Nodes Nets
pl_ga 833 902
plsc 833 902
p2_ga 3014 | 3029
p2sc 3014 | 3029
12 1663 | 1720
3 1607 | 1618
t4 1515 | 1658
t5 2595 | 2750
16 1752 | 1541
biomed 6514 | 5742
513207 8772 | 8651
s15850 10470 | 10383
industry2 | 12637 | 13419
industry3 | 15406 | 21923

Table 7.1: Benchmark Circuits

7.1 Implementation Details

Our partitioner was implemented in C+4. We used the LASO code (written by David S. Scott)
to compute eigenvectors and eigenvalues using sparse matrices. We replaced the traditional KLFM
bucket implementation with heaps in order to support non-integer gains due to our hybrid cost
function: gain = « - cut_gain + 3 - spec_gain.
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k | HYBRID | HYBRIDA | HYBRIDR | KFMC
2 41.9 40.2 42.4 38.7
3 8.7 92.2 89.5 94.9
4 122.9 124.3 132.8 132.6

Table 7.2: Hybrid algorithms have greater improvement as & increases. Numbers are the
geometric mean cut cost over eight benchmarks with actual vertex sizes.

We contracted graphs until there were at most 200 nodes. We examined both the HYBRID
tie-breaking algorithm as well as the HYBRIDA algorithm that alternates between spectral and
iterative gain costs. The SWEEPB initial partitioning method was used with both HYBRID and
HYBRIDA for 20 iterations (p = 20). We also report some results with the HYBRID tie-breaking
strategy (o= 1.0, f = 0.1) using random initial partitions instead of the SWEEPB method, which
we call the HYBRIDR method.

7.2 Performance as k£ Increases

Our partitioner performs well on 2-way partitioning, but is not better than the best 2-way parti-
tioners. Appendix B gives the detailed benchmark results for the interested reader. The strength
of our partitioner lies in combining global spectral information with iterative improvement. Global
information becomes even more important in 3-way and 4-way partitioning, which is why our 3-way
and 4-way results, are substantially better than other partitioners. Table 7.2 compares our hybrid
algorithm with KFMC, our multi-level k-way implementation of the FM-CLIP method. We used
the benchmarks pl_ga, plsc, p2_ga, p2.sc, t2, t3, th, and t6, with actual vertex sizes, a balance
factor of bal = 0.1, and the total hyperedges cut cost function. The HYBRID method is 7.6% worse
than KFMC in 2-way partitioning. In 3-way partitioning, HYBRID is 7.0% better than KFMC,
and HYBRID is 7.9% better than KFMC in 4-way partitioning.

Table 7.3 compares our hybrid algorithm with KFMC using unit size vertices. We used the
benchmarks pl_ga, p2_ga, t2, t3, t4, t5, and t6, with a balance factor of bal = 0.1, and the
total hyperedges cut cost function. For 2,3,4.5, and 6-way partitioning, HYBRID is better than
KEMC by 6.2%, 9.0%, 27.3%, 31.3%, and 37.0% respectively.

As further evidence that spectral information is useful, especially as k increases, we can examine
the results of the HYBRIDR method compared to the HYBRID method in Tables 7.2 and 7.3. The
only difference between these two methods is the way initial partitions are generated. HYBRIDR
uses random initial partitions, while HYBRID uses the SWEEPB method. We can see that for
k = 2 and 3, HYBRIDR performs very well- sometimes slightly better, and sometimes slightly
worse than HYBRID. However, as k increases, we see consistently better results with HYBRID,
which uses the spectral embedding for generating initial partitions.

7.3 Comparison against GFM and Primal-Dual

We compared the total number of hyperedges cut by our hybrid algorithms to the GFM [33] and
Primal-Dual (PD) algorithm [43]. These tests use the actual vertex sizes (which were obtained
from Andrew Kahng of UCLA). We omitted graph t5 because in four-way partitioning, the largest
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k | HYBRID | HYBRIDA | HYBRIDR | KFMC
2 69.7 70.9 69.7 74.0
3 103.2 104.0 101.8 112.5
4 123.4 123.7 130.2 157.1
5 146.8 143.5 158.8 192.7
6 166.0 165.6 175.0 227.4

Table 7.3: Hybrid algorithms have greater improvement as k increases. Numbers are the
geometric mean cut cost over seven benchmarks with unit vertex sizes.

Benchmark PD GFM | KFMC | HYBRIDA | HYBRID
pl_ga 56 74 66 66 68
plsc 77 76 74 74 69
p2_ga 377 259 179 184 179
p2sc 370 261 198 180 186

2 81 81 81 81 81

t3 108 101 81 77 73

t5 80 85 88 89 83

t6 157 104 66 58 50
GMEAN 126.62 | 113.48 | 94.93 92.17 88.70

Table 7.4: Comparison of our HYBRID and HYBRIDA 3-way partitioning results against
the GFM and PD partitioner using actual vertex sizes.

node in the circuit is larger than that allowed by balance constraints. Each partition was allowed
a balance factor of bal = 0.5, and we used the CliqueD clique model.

Tables 7.4 and 7.5 show the results of our hybrid partitioner compared with the previously published
results of [33]. The last row, GMEAN, is the geometric mean over all of the circuits. In the three-
way partitioning, our HYBRIDA method gives a 23.1% improvement, and HYBRID gives a 27.9%
improvement over GFM. In four-way partitioning, HYBRIDA is 48.7% better than GFM and
HYBRID is 46.9% better than GFM.

As a control experiment, Tables 7.4 and 7.5 also show the results of 20 iterations of KFMC, our
implementation of a multi-level, k-way FM-CLIP algorithm which uses our Rotary KLFM improve-
ment method to determine whether the hybrid algorithm was really the source of improvement,
rather than other factors, such as contraction method, levels of contraction, or Rotary KLFM. Our
KFMC algorithm results are 11.6% better than GFM in 3-way partitioning, and 37.8% better than
GFM in 4-way partitioning. Significant gains are made by our multi-level Rotary KLFM method.
This leads us to conclude that a large portion of the substantial improvements in our k-way par-
titioning results come from the multi-level Rotary KLFM algorithm. Comparing our best hybrid
algorithm results with KFMC, we observed a 7.0% improvement over KEMC in 3-way partitioning,
and a 7.9% improvement over KFMC in 4-way partitionings.
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Benchmark PD GFM | KFMC | HYBRIDA | HYBRID
pl_ga 102 107 98 87 91
plsc 107 110 90 86 99
p2_ga 459 335 229 215 228
p2sc 426 354 234 236 226
t2 217 182 131 132 124

t3 170 162 104 101 105

th 213 208 144 153 139

t6 189 145 103 67 68
GMEAN 20541 | 182.70 | 132.59 122.85 124.34

Table 7.5: Comparison of our HYBRID and HYBRIDA 4-way partitioning results against
the GFM and PD partitioner using actual vertex sizes.

Benchmark | HYBRID | HYBRIDA | KFMC | MLy | GORDIAN
biomed 239 210 280 311 479
industry2 337 386 458 398 1179
industry3 763 752 784 830 1965
pl_ga 94 96 112 126 157
p2_ga 265 275 293 346 502
s13207 136 113 164 472 590
515850 122 109 147 347 678
GMEAN 220.57 212.89 259.64 | 356.62 619.42

Table 7.6: Comparison of our HYBRID and HYBRIDA 4-way partitioning results against
MLF and GORDIAN. Results are 2x the total number of hyperedges cut using unit-size
vertices.

7.4 Comparison against MLy and GORDIAN

We compared our hybrid algorithm to the MLy [5] and GORDIAN algorithms [30] as reported in
[5]. We also report the results of our KEMC method for comparison. These tests use unit vertex
sizes with a balance factor of bal = 0.1 and we used the StarF graph model.

Table 7.6 shows that our HYBRIDA partitioner is 22.0% better than KFMC, 67.5% better than
the MLg algorithm, and 191.0% better than GORDIAN in terms of the number of hyperedges
edges cut. It is apparent that our Rotary FM algorithm provides significant improvements, and
our hybrid spectral/iterative method is able to effectively use the global spectral information to
substantially improve upon other partitioning methods.

8 Execution Time

The execution time of our partitioner is slower than that of other partitioners due to the use of
heap data structures rather than buckets. Heaps were necessary in order to support non-integer
gains in iterative improvement for our hybrid algorithm. Three-way partitioning execution time
results (in seconds) are shown in Table 8.1. All our tests were run on a Sun Ultra 170, while GE'M
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Benchmark | HYBRIDA | HYBRID | GFM
pl_ga 84.9 55.1 30
plsc 78.9 54.4 36
p2_ga 747.0 351.8 222
p2sc 489.6 354.9 211
t2 767.4 556.9 158
t3 499.5 372.3 92
th 2346.0 1407.5 276
t6 1076.3 757.3 101

Table 8.1: Comparison of execution time in seconds against the GFM, 3-way partitions.

execution times are on a Sun Sparc 10.

9 Conclusion

We have developed a new hybrid spectral/iterative partitioning algorithm and have demonstrated
that it performs better than the best known 3 and 4-way partitioners, using both unit vertex sizes
and actual vertex sizes. The hybrid algorithm we have presented is only the first step in developing
newer, more sophisticated iterative improvement algorithms. They key ideas that need further
research include the use of new gain cost functions to influence move selection and new objective
functions that allow iterative improvement algorithms to break out of local minima. Other areas of
future research include new ways of using spectral information to generate initial partitions, using
higher dimensions (more eigenvectors), generating orderings using other methods or cost functions,
and investigating methods for speeding up hybrid partitioning.
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30 A. Embedding Choices

Average Cost Best Cost
Method Unit Size | Actual Size | Unit Size | Actual Size
Standard Eigenvectors 163.8 152.7 143.3 129.5
Scaled Standard 159.0 205.4 143.3 156.0
Generalized Eigenvectors 162.3 157.8 141.5 138.2
Scaled Generalized 158.2 150.7 139.5 129.1

Table A.1: Comparison of embedding types for balanced partition tests. Numbers are the
geometric mean of 2x the hyperedges cut for seven benchmarks.

A Embedding Choices

We experimentally tested four spectral formulations with our HYBRID algorithm. We ran 20
iterations of HYBRID using the SWEEPB algorithm to generate initial 2-way partitions, with a
maximum contracted graph size of 200 nodes and a balance factor of bal = 0.1. Table A.1 shows
the geometric mean of the results from benchmarks pl_ga, p2_ga, t2, t3, t4, t5, and t6. The
first row shows the results using the eigenvectors of the Laplacian matrix of a graph. The second
row shows results using the scaled eigenvectors based on the maximum sum vector partitioning
formulation [18, 3]. The third row shows the results using the eigenvectors of the generalized
problem where vertex sizes are taken into account [44]. Finally, the fourth row shows the result for
the generalized maximum sum vector partitioning. We can see that in terms of the best cost, in
the tests where vertices are initially unit size, the generalized scaled eigenvector results are 2.7%
better than the worst embedding choice. In tests using actual vertex sizes, the generalized scaled
eigenvector formulation is 20.8% better than the worst choice.

B 2-Way Partitioning Comparison

We give our 2-way partitioning results in Table B.1. We compare our results against GFM [33],
Strawman [25], and ML¢ [5]. All partitioners allowed a balance factor of bal = 0.1, and used
unit size vertices. Qur results are on par with the best 2-way partitioners, but are not the best
overall. The strength of our partitioner lies in combining global spectral information with iterative
improvement. Global information becomes even more important in 3-way and 4-way partitioning,
which is why our 3-way and 4-way results, are substantially better than other partitioners.



B. 2-Way Partitioning Comparison

Benchmark | HYBRID(20) | HYBRIDA(20) | GFM(80) | Strawman(10) | ML (100)
balu 27 27 27 27 27
biomed 123 102 84 83 83
industry2 189 188 211 188 164
industry3 270 270 241 256 243
pl_ga 47 47 47 49 47
p2_ga 139 145 139 143 139
513207 68 63 66 57 55
51423 13 13 16 14 -
51488 50 53 46 - -
515850 45 45 63 44 44
535932 49 50 41 47 41
538417 59 57 81 53 49
538584 51 55 47 49 47
59234 44 42 41 42 40
sioo 25 25 25 - -
struct 47 34 41 33 -

Table B.1: Comparison of our HYBRID and HYBRIDA 2-way partitioning results against
other 2-way partitioners. Results are the total number of hyperedges cut using unit-size
vertices. The number in parenthesis next to the algorithm name denotes the number of
iterative improvement runs.




