Fast and Incremental Routability
Check of A Topological Routing
Using a Cut-based Encoding

Man-Fai Yu
Wayne Wei-Ming Dai

UCSC-CRL-97-07
April 14, 1997

Baskin Center for
Computer Engineering & Computer Sciences
University of California, Santa Cruz

Santa Cruz, CA 95064 USA

ABSTRACT

Many performance-driven routing algorithms do not consider routability. Rout-
ing trees are built assuming that there are no other wires. The main reason for
this is that it is NP-hard to guarantee routability. Even checking for routabil-
ity is a time-consuming process. This limits the usefulness of many performance-
driven routing algorithms because unroutable designs are useless. Previous online
routability checking is not fast enough for the many iterative improvement steps in
a performance-driven routing algorithm. This paper provides such an algorithm.

We propose a versatile topological routing encoding that not only allows an
efficient routability check, but also provides proximity information for crosstalk and
manufacturability analysis. Our routing model is applicable to a wide range of
technologies, including PCB, MCM and standard cell ASIC. It allows rectilinear,
octilinear or Euclidean wiring metric and arbitrary-shaped obstacles. It is gridless
and supports variable wire width and spacing. Our algorithm is fast enough to
be integrated into any iterative improvement schemes such as simulated annealing.
Our basic observation is that the placement of obstacles is fixed but rerouting is
very frequent. So we emphasize on an efficient rerouting and routability check step
but pushes the complexity to building a data structure that depends only on the
placement of the obstacles.

Keywords: topological routing, planar routing, routability, single-layer routing,
design rule check, visibility graph

1 Introduction

We propose an efficient and versatile encoding scheme of topological routing for fast and
incremental routability checking. This enables us to do online checking for automatic
iterative improvement such as simulated annealing. Our design rule checking is based on
cuts and flows. It is gridless, supports variable wire width and spacing, allows rectilinear,
octilinear (45 degree) or Euclidean wiring metrics and can have obstacles of arbitrary shape.

Many traditional design rule checkers are grid based and restricts all geometry to
rectilinear. In a high-performance system, we adjust wire widths for optimal delay and
wire spacing for crosstalk control. In modern ASIC design there are large irregular macro
blocks mixed with small standard cells with over-the-cell routing. This technology shift
calls for general area routing.

Our design rule checking system is based on topological routing. A topological routing is
an embedding of wires connecting all terminals as specified by a netlist but not guaranteed
to be design-rule correct. The shape of a wire can be changed but a wire is not allowed to
cross another wire or an obstacle. Generating a routable topological routing is known to be
NP-hard.

The motivation that drives this research is the need for a fast and incremental routability
checker. For large designs, changes to a routing are inevitable. These changes can come
from either the designers for last-minute bug fixes or from routing-improvement tools such
as wire-sizing or buffer-insertion. The router has to 1) allow the changes to be done quickly
because a tool may generate many rip-up and reroutes, 2) decide that whether the new
routing is routable or not. The only viable way to do this is by devising an incremental
algorithm. We achieve these two objectives by noting the following. First, maintaining
topological routing takes less effort than the full shape and size of each wire in detail.
Second, routability is completely determined by topological routing.

The Surf system allows the user to directly manipulate topological routings[1]. Valainis
et al[2] reported a compaction system using topological layout. Since the final geometry of
the wires are not fixed, many performance-oriented optimizations can be applied. For
example, wire widths and spacings can be adjusted for yield improvement, impedance
matching, crosstalk control and delay. Wire lengths can be adjusted for timing and skew
constraints. By not explicitly recording the exact geometry of all the wires, the amount
of information that needs to be changed during rip-up and reroute is less. This leads to
efficient schemes of iterative improvement of topological routing.

We first describe our routing model in Section 2. Then we give a brief summary of the
major properties of wires and cuts. The majority of the results is from Maley[3]. Then

we give an estimation of the number of critical cuts. This is the number of cuts we have

2 2 THE ROUTING MODEL

l Feature
Obstacles \\‘

.

Pad

Wire —
Terminals

Figure 1: The left figure shows our routing model. There are obstacles, wires and terminals.
Wires terminate at terminals. Terminals can be standalone or on the edge of an obstacle.
A terminal is also an obstacle. An obstacle is a point, a line segment or a convex simple
polygon. The right figure shows Maley’s routing model. Features are straight line segments.

Obstacles are composed of many features. Terminals are not allowed on an obstacle.

to check for routability. The detail derivation is deferred to Appendix A. We showed that
the number of critical cuts is asymptotically smaller under rectilinear wiring metric than
under Euclidean metric. Section 5 and 6 are the core part of this paper. We present our
cut-based encoding for topological routing. Cuts with the same flow are grouped into cut
classes which represent topological relationships between obstacles. The most difficult part
of a cut-based encoding is to compute the topological encoding graph. This graph depends
solely on the relative placement of obstacles and terminals. Our efforts paid off in checking
design rules for a particular routing among these obstacles as shown in Section 7. Since
obstacle placement is done only once but a routing is iteratively changed, our strategy is

efficient overall.

2 The Routing Model

The routing model is an abstraction of a real-world routing problem. It should be sufficiently
simple to allow theoretical development but real enough for the developed ideas to be useful
in the real world. Our model is based on printed-circuit board (PCB), multichip module
(MCM) and ASIC standard cell technology. In these processes, there are a number of
components (or cells) with I/O pins. An I/O pin is in the form of a metal pad. There are
fixed obstacles representing keep-outs, blockages, drill holes or intracell routing. This model
has a clear distinction between wires and obstacles. It is not suitable for cell-level routing
where flexible polygons are the primary objects. Nor is it suitable for microwave circuits

where the precise geometry of the interconnect is required. To simplify formulation, we

assume that all geometries are piecewise-linear. For technical reasons which we will explain
below, we require that all obstacles are convex. Our model allows concave obstacles to be
represented as a group of abutting convex obstacles so there is no practical limitation on
the shape of obstacles.

On a grid-based layout system, obstacles are defined by clusters of grids. Terminals are
also on grids[4, 5]. These systems need many grid points to represent large obstacles. This
is because their grid points is a uniform discretization of the routing space. We directly
supports obstacles as objects and does not restrict them to be on a grid. This is important
in performance-driven routing systems because wires may be sized for delay and spacing
may be irregular for crosstalk control. In Maley’s work[3], the routing model is gridless but
terminals are not allowed to touch an obstacle. This is to avoid the technical difficulty in
dealing with apparent design rule violation when a wire connecting to a terminal on the
boundary of an obstacle gets below the minimum spacing with respect to the obstacle. In
real designs, it is possible that an obstacle represents a macro block and its pins are on the
boundary of the block. Our routing model supports this by attached terminals. We will
discuss this further after we have defined the topological encoding graph(Section 5).

Fig. 1 shows the objects in our routing model. A terminal is a point where a wire
ends. A terminal can be standalone or on the boundary of an obstacle. An obstacle is a
simple polygon. In PCBs or MCMs, wires usually end at a pad. In our model, a pad is
represented by a single point a terminal. The dimensions of the pad are taken into account
by reducing the capacity of the cuts ending on this terminal. More than one wire may end
on one terminal. If a terminal is on the boundary of an obstacle, we say it is attached to
the obstacle. Otherwise it is a standalone terminal.

The routing boundary P is a simple polygon that contain all the routing objects. The
routing region B = P — X — T where X is the set of all obstacles and T' the set of all

terminals. B is usually an open multiconnected space.

3 The Routability Theorem

This section briefly introduces some result of Maley[3] on which we develop the encoding.
The most important concepts are cuts and flows. Intuitively, we measure the wires between
a pair of obstacles. If the total width and spacing used by the wires is less than the spacing
between these two obstacles, then these wires can be routed successfully between them. The
path we use to measure between two obstacles is called a cut. The total amount of space
used by the wires (with spacing) is the flow of the cut. The total amount of space that can
be used to route wires is the capacity of the cut. The flow has to be always less than the

capacity for all cuts in order for the whole design to be routable.

4 3 THE ROUTABILITY THEOREM

A major result of Maley[3, esp. Ch. 2] is that we only need to consider the shortest
cuts and wires. To decide whether a topological routing is routable, we first compute
the rubberband equivalent of all the wires. A rubberband equivalent (RBE) of a wire is
the shortest path that is path homotopic to the wire. Further, the topology completely
determines routability.

A path p is a continuous piecewise linear function p : I — B where I is the interval
[0..1] and B is the routing region. A wire is a path that does not touch any other wires or
obstacles except at the terminals. The endpoints of a path p are the points {p(0),p(1)}. A
path p is path homotopic to a path ¢ if there exists a continuous piecewise-linear function
H:1Ix1I— B where H(0,-) =p and H(1,-) = g and their terminals coincide.

Maley used the concept of features instead of obstacles (Fig. 1). A feature is a single
point or a straight line segment that touches nothing except at its endpoints. Hence an
obstacle is a collection of features. The use of features simplifies a lot of mathematical
development for routability because straight line segments are convex and simple to describe.
The downside is that a simple polygon is broken down into many straight line segments so
the layout system has to keep track of many objects. In Section 5, we see that many cuts
between features are redundant because these features (straight line segments) are part of
the boundary of a single obstacle. So although features are convenient for mathematical
treatment, we use obstacles as our basic objects. This is one of the reasons why our encoding
is compact.

A cut is a path that starts and ends on features. A cut is between two features if it
starts and ends on the two features. The flow of a cut is the sum of the width and spacing
of all the RBEs of wires that intersect the cut. The capacity of a cut z, denoted cap x, is

the maximum total width plus spacing wires can cross without violating design rules.

Theorem 1 (Maley’s Sketch Routability Theorem) A topological routing is routable

if and only if all shortest straight cuts between all pairs of visible features are safe.

A cut is safe if the flow of the cut is less than or equal to its capacity. A feature f is
visible from a feature g if there exists a pair of points p and ¢ on f and g respectively such
that a straight line can be drawn from p to ¢ without touching or intersecting any other
features. The set of all cuts that needs to be checked for safety is called the critical cut set.

By Theorem 1, the set of all cuts is the set of edges of the visibility graph with end-
points of features as vertices. It is natural to assume that the number of edges of this graph
depends heavily on the routing metric and the placement of features. The following section

gives quantitative answers to this question.

—_—

—= b a b
SN/

c c
Case 0 Case 1 Case 2

Figure 2: Three unique cases to derive a topological routing from numbers on the edges of

a triangle.

4 Problem Size Estimation

According to Theorem 1, we have to check the shortest straight cuts between each visible
pair of features. Hence the number of cuts to check is the number of edges in the visibility
graph where the vertices are the features. The cost of design rule checking is directly
proportional to the number of cuts we need to check. So it is in our interest to find the
minimum number of cuts to check that is necessary to determine routability. It is clear
that we have to check at least one cut per pair of visible features. The dominance relation
described in Section 5 allows us to reduce the number of cuts to check between one pair of
obstacles. We still have to check cuts between different pairs of obstacles. For m features, in
the worst case we need to check m(m —1)/2 cuts. In most practical situations, the number
of cuts to check is a lot less. Appendix A give detailed estimation on the size of the critical

cut set in a uniform grid. The main results are:

e The number of cuts to check is O(n?) where n is the number of obstacles but the

constant is smaller than the worst case.

e For octilinear wiring metric, the number of cuts to check for each grid point is

2(n — 1) + 1 € O(n). Therefore it is O(n?) for all points.

e For rectilinear wiring metric, we only need to check 4 cuts for each grid point so the

total number of cuts to check is only O(n).

5 A Cut-based Topological Encoding

In almost all layout systems, wires are recorded as sequences of line segments. They can be
collectively called wire-based encoding. For a given wire, this encoding can report quickly
the shape, width, length and exact geometry of the wire. This encoding is more awkward

when prozimity information is required. Given a wire, it is not easy to identify at any

6 5 A CUT-BASED TOPOLOGICAL ENCODING

given point the nearest neighboring wire. This information is important for routability and
crosstalk computation.

In this paper, we propose a cut-based encoding. In this encoding, the main objects in
the encoding are cuts. Each cut contains a sequence of intersecting wires. This approach
was used by several researchers for PCB routing, compaction and layout optimization
(8, 9, 10, 2, 11]. Our encoding is based on Yu, Darnauer and Dai[l1]. Since any encoding
necessarily describes the topological routing, we can create a corresponding wire-based
encoding from a cut-based encoding and vice versa.

The fundamental advantage of cut-based encoding is that the basis of the encoding is
detached from the routing. In our encoding the basis of the encoding is a triangulation
based solely on the placement of obstacles and terminals. In a typical routing environment,
the placement of these objects are fixed whereas the routing changes frequently. We record
the routing as a simple vector of numbers on top of the basis. Changing the routing is
therefore very easy. The cuts carries information between adjacent wires and obstacles.
In this paper we take advantage of this information by building an efficient routability
test (Section 7). Other performance constraints that relates to proximity information such
as crosstalk control, defect analysis or electromigration can also take advantage of such
information.

Our encoding is based on a discretization of the routing space with triangles. The Trian-
gle Encoding Theorem (Theorem 2) establishes our base the topology of each triangle can
be determined easily. The major part of the development is on the dominance relationship
between cuts. Due to dominance, cuts can be grouped into equivalence classes where it is
sufficient to use one cut to represent the whole class (the dominant cut). This development
culminates to the introduction of the topological encoding graph (TEG). The edges of this
graph represents the necessary critical cuts, i.e., routability cannot be determined if one
cut is missing from this graph. A TEG in general is not planar. The most important result
of this section is that a TEG always contain a triangulation (Lemma 6). Using (one of) the
triangulation as the basis, we introduce our cut-based encoding. The cuts that are part of
this triangulation are explicit cuts. An explicit cut is both a cut (that needs to be checked)
and a vehicle for encoding a topological routing.

We first assume that all wires are of the same width and require the same minimum
spacing. Later in this section we suggest ways to extend this to support wires of uneven
width and different requirements of minimum spacing.

Our basic observation is the following:

Theorem 2 (Triangle Encoding Theorem) Given three cuts forming a triangle and the

flow of each cut, we can decide, for the area within the triangle, either

o

Figure 3: A wire connecting to a vertex should not intersect a cut incident to it. It is an

unnecessary crossing and it can be represented by one without the crossing.

Figure 4: The topological routing is not unique if flows are only specified on a polygon with

more than 3 sides.

1. no topological routing exists, or
2. there exist a unique topological routing.

ProOOF: Refer to Fig. 2. Only three cases are possible within a triangle. In the first case
(Case 0), there are no wires connected to any vertex. In this case, consider the following
equations,

b+c—a))2=a (c+a-0)/2=0 (a+b—¢)/2=1

Given (a,b,c), either («, 3,) has a positive integer solution or not. If so, the solution is
unique. If the solution exists, the topological routing can be constructed as shown in the
figure. If not, a topological routing does not exist.

If there is one or more wires (Case 1) connecting to a vertex, it must intersect the cut
not adjacent to the vertex. Refer to Fig. 3. In this case a valid unique topology exists if
c>a+b.

Finally, a unique topology exists for a triangle with two connections (Case 2) if a = 0
and b = ¢ or their symmetric permutation thereof. The only difference with Case 0 is that

there is a wire on top of a wire. This can be checked from the given netlist. O

Fig. 4 shows that topology can only be uniquely specified with a triangulation. However,

in a quadrilateral if one of the cuts has zero flow, the topology can be specified using

8 5 A CUT-BASED TOPOLOGICAL ENCODING

flow

' > ; 4

same flow, dominance no dominance no dominance

Figure 5: Reduce the critical cut set using Corollaries 3 and 4. This is because we know
that the flow across the edge of an obstacle is zero. In general, we only need to check a few

cuts between any pair of convex polygons.

Theorem 2 by simply collapsing the empty cut. In general, we have the following corollaries.

Corollary 3 Routing topology can be decided within an n-sided polygon if the flow is zero

on at least n — 3 edges.

Corollary 4 Given an n-sided polygon, let cuts a and b be the only two cuts with non-zero
flow. The flow of a is equal to the flow of b if there is no connection within the polygon. If

capa < capb, we say a dominates b.

a dominates b because they have the same flow so if the lower capacity cut is safe, the
other cut is safe. We can avoid checking many cuts using Corollaries 3 and 4 (Fig. 5).

The dominance relationship gives us a powerful way to reduce the number of cuts we
need to check for routability. Intuitively, dominance can only happen between cuts that
are between the same pair of obstacles. However, not any pair of cuts between a pair of
obstacles have a dominance relationship. This is because there may be another obstacle
(Fig. 5). The concept of boundary homotopy formally captures this situation.

To simplify the treatment of attached terminals, we consider an attached terminal a
standalone terminal infinitesimally close to its obstacle. This is simply represented by
linking them with a cut with zero capacity.

A path ¢ is boundary homotopic to a path p if there exists a piece-wise linear continuous
function H:I x I — B where H(0,) =p, H(1,:) = ¢q, H(-,0) € b and H(-,1) € ¢ for some
distinct obstacle boundaries b and c¢. b or ¢ can be a point if an end point of ¢ or p is on a
standalone terminal. Since all obstacles are convex, we do not have to check cuts that end
on the same obstacle.

It is easy to verify that boundary homotopy is an equivalence relation. If two simple
cuts p and g are boundary homotopic with the homotopy H, then the area bounded by p, ¢,
H(-,0) and H(-,1) has no standalone terminals or obstacles. Therefore either the two cuts

both intersect a wire or they both do not because wires end at terminals. By Corollary 4,

two boundary homotopic cuts have the same flow. So all cuts within an equivalence class
(cut class for short) has the same flow. The cut with the lowest capacity is called the
dominant cut of the cut class.

Maley proved that all critical cuts are straight[3]. From now on we will only consider
straight cuts. We say that two cut classes w1 and 7y intersect if the endpoints of 1 and 7y
are on different obstacles and for any straight cut in 7 there is a straight cut in w9 that
intersects it. Note that the intersection concept does not apply to cut classes that share
at least one obstacle. The intersection of cut classes captures the topological relationships

between obstacles. This is observed by the following lemma.

Lemma 5 Let the set of cut classes intersected by a cut class m be I(w) and the set of
two terminating obstacles E(m). Two cut classes m = m if and only if I(m) = I(my) and

E(’]Tl) = E(ﬂ'g).

PrOOF: The “only if” part is straightforward. If two cut classes are the same, they must
terminate on the boundaries of the same set of obstacles. Also, the definition of intersection
implies that if one cut in a class intersects some cut, then all cuts in the class intersects the
same cut. Therefore the intersection counts are the same if the two classes are the same.

Now we consider the “if” part. Contrapositively, if 71 # w9, there are two cases. The
first case is that their terminating obstacle boundaries are different, hence E(m) # E(m9).
Now we consider the second case. We can assume that m; and 75 terminates on the same
obstacle boundaries. Let p; € m; and py € w9 be two cuts. Let by be the (partial) boundary
between p1(0) and py(0) and by be the boundary between p;(1) and po(1). Since m # 7,
there is an obstacle s such that the loop by o p; o by o py is inessential.!

A straight cut ¢ terminating at s intersects either p; or py because by and by are part of
obstacle boundaries. ¢ cannot intersect both p; and py because it is straight. There is at

least one c because the whole routing region is bounded by the bounding polygon. Hence
I(my) # I(m2). O

This lemma says that a cut class is uniquely specified by where it is terminating at and
what other cut classes it intersects. To record a cut class, all we need is the names of the
obstacles it terminates at and the names of cut classes that intersects it. We will use this
property to construct our encoding.

We are ready to define the Topology Encoding Graph (TEG). This graph is the basis
of our encoding scheme. For a routing instance, let the set of obstacles be X, the set of
terminals be T, the set of dominant cuts from all cut classes in U X U {0} be C, where 0

is the routing boundary polygon. Let D be a maximal planar subset of C.

'that can be shrinked to a point.

10 5 A CUT-BASED TOPOLOGICAL ENCODING

Definition 1 (Topology Encoding Graph) A Topology Encoding Graph of a routing

instance is a graph with vertices defined as follows:
e T, the terminal vertices.
e X, the obstacle vertices.
e {0}, the boundary vertex, representing the routing boundary polygon.
The edges are defined as follows.
e An edge (terminal-obstacle edge) exists between an attached terminal and its obstacle.

e For each dominant cut c in D, there is an edge between its terminating obsta-

cles/terminals.

Each edge in a TEG has a capacity. The capacity of a dominant-cut edge is the capacity
of the cut under the current wiring metric. For a terminal-obstacle edge, its capacity is
permanently set to 0.

Since D is planar and no obstacles overlap, a TEG is planar. We call the dominant cuts

that corresponds to an edge in a TEG ezplicit cut. Other cuts are implicit cuts.

Definition 2 (Cut-based Encoding) A Cut-based Encoding of a topological routing is
a triple (G, M, x) where G is a TEG of the routing instance, x is a vector of flows for each
edge inT and M 1is the set of implicit cuts. Each implicit cut is represented by its beginning

and end vertices and the sequence of its intersecting explicit cuts.

Checking the safety of explicit cuts is trivial. Checking implicit cuts is not that hard
either. Section 7 presents an efficient algorithm for checking implicit cuts. An encoding
is proper if we can decide from the encoding that either 1) a topological routing does not
exist, or 2) there is a unique topological routing and in the latter case, deduce the routing
from the encoding. We will now show that our cut-based encoding is proper. Our main
approach is to show that TEG is a triangulation so that for each triangle, we apply the
Triangle Encoding Theorem.

We start with a proof that a maximal planar subgraph of a shadowed visibility graph is

a triangulation.

Lemma 6 A mazximal planar subgraph of a shadowed visibility graph under the rectilinear

metric is a triangulation.

PROOF: Suppose there is a maximal planar subgraph that is not a triangulation. Then

there is a face with more than 3 vertices. Name these vertices in counterclockwise order

11

(b)

Figure 6: The critical cut set is greatly reduced after applying dominance relationship and
Corollary 3. (a) shows the cuts that needs to be checked according to Maley[3]. (b) shows
all the dominant cuts. It is sufficient to check these cuts. From these cuts, we choose a
maximal planar subset as our encoding basis (c). These are the ezplicit cuts. Other cuts

are implicit cuts.

Vg, VU1, -, Um_1 Of m vertices. There is no edge between a vertex v; and all other vertices
except v;_1 and v;41 S0 v; is not 4-visible to all vertices except v;_1 and v;y1. Refer to
Fig. 16. For any 7, v; and v;42 must be in the opposite quadrant of v;;1. So v;49 is in the
shadow of v; 1. The same argument holds for v;;1 so v;13 is in the shadow of v;9, which
is in the shadow of v;;1. Repeating the argument, starting at vg, va,..., vy 1 are in the

shadow of v;. This leads to a contradiction because v,,_; should be 4-visible from vg. O

Since a shadowed visibility graph under rectilinear metric is a subgraph of one under
octilinear metric, which is a subgraph of one under Euclidean metric, this lemma holds for
octilinear and Euclidean metrics.

Consider the visibility graph of all obstacle boundaries broken down as straight line
segments and terminals (Fig. 6). A maximal planar graph H of this visibility graph is
a triangulation according to Lemma 6. Not all the edges in the visibility graph has a
corresponding edge in the TEG because the TEG only records dominant cuts. However, no
triangles will be added or removed because edges within the same cut class forms multiple
edges between two vertices instead of triangles. From the above arguments, we showed that
the cut-based encoding scheme is proper.

Our encoding is minimal because each cut is topologically significant. Removing any cut
from an encoding we will miss a critical cut. The number of vertices is also minimal because
each terminal or obstacle is represented as one and only one vertex. The most important
concept behind our encoding is that the routing space is not discretized uniformly. It is
discretized (by triangles) only if it makes a topological difference.

If wire width and spacing are non-uniform, we have to record the wires intersecting

12 6 COMPUTING AN ENCODING

Figure 7: A TEG and its dependency graph. The explicit cuts are labeled as alphabets and
implicit cuts as numbers. The left is a TEG of Fig. 6. The right is (one of) its loop-free
dependency graph. Using the dependency graph, we can compute the flows of all implicit
cuts very quickly (Section 7).

each cut in the TEG in order. Note that the ordering information is already embedded
in the topological routing. Explicitly recording it makes safety checks much more efficient.
Therefore the ordering information is a form of cache and can be regenerated by applying

the Triangle Encoding Theorem to all triangles.

6 Computing An Encoding

Given a set of obstacles, the bounding polygon and a set of terminals, we wish to generate
a cut-based encoding excluding the flow vector because in a cut-based encoding, all the
routing information is captured by the flow vector. We want to create a TEG and a set of
implicit cuts.

We start with a visibility graph of the obstacles. All critical cuts are edges of the visibility
graph. Many edges in the visibility graph are redundant because they are dominated by
other cuts. We eliminate them by computing the intersections of all pairs of cuts and remove
those with identical intersections according to Lemma 5. We then choose some cuts to form
a triangulation and leave the rest as implicit cuts. Fig. 6 shows our process.

We first represent all polygons as multiple line segments (features in Maley[3]’s termi-
nology). For an obstacle with attached terminals, we break up its boundary at the attached
terminals and at its polygonal vertices (Fig. 6a). We use Ghosh’s algorithm[12] to compute
the visibility graph between all pairs of line segments and/or points. The complexity of
this algorithm is O(nlogn + E) where n is the number of points and endpoints of line
segments and E the number of edges in the visibility graph. If an edge exists between two

line segments, the corresponding cut is the shortest straight cut between them. If there are

13

Algorithm 1 (Encoding)

Algorithm Encoding (Obstacles S, Bounding polygon B, Terminals T")
Convert all the polygons to features F' from SUBUT
Compute the visibility graph G from F
Compute intersections among cuts from G
Remove redundant cuts so that each cut has a unique set of intersections.
Pick enough cuts to form a triangulation, designate them as explicit cuts

Designate the rest as implicit cuts

Figure 8: Algorithm Encoding

many cuts of the same capacity, we arbitrarily choose one.

Next we compute all the intersections of these cuts. We use an algorithm described in
Preparata and Shamos[13, pp. 284] to compute all the intersections between all pairs of cuts
in O((K + E)log E) time where K is the number of intersections. We have to remove all
but one cut with the same terminating obstacles and intersections because they belong to
the same cut class according to Lemma 5. This can be done in O(E) time using a hash table
with a key composed of the terminating obstacle names and the names of all intersecting
cuts. For each cut class we save the dominant cut.

Now we can form a TEG by simply pick the cuts to form a triangulation. A simple
O(E) algorithm for this is to choose an unmarked cut, mark all the cuts that intersect this
cut and repeat. All the remaining unmarked cuts are maximally planar because they do
not intersect each other. By Lemma 6 we have a triangulation. Lemma 6 guarantees that
a triangulation exists. The remaining cuts are implicit cuts. Fig. 8 summarizes the whole

process.

7 A Fast Design Rule Check Algorithm

Given a topological routing encoded in a cut-based encoding, we want to decide its routabil-
ity. By Theorem 1, we need to decide the safety of all the cuts. The flow of each explicit
cut is known because that is part of the encoding so the safety of each explicit cut can be
determined trivially. This section presents an efficient algorithm to determine the safety of
implicit cuts.

Our basic observation is shown in Fig. 9. Given a pair of triangles that share one
edge, we can find the flow of the diagonal implicit cut. Fig. 10 shows 6 different wire
topology configurations with the same formula for the flow of f. Fig. 11 shows another two

cases involving multiple fanouts. Any wire topology can be classified into one of these 8

14 7 A FAST DESIGN RULE CHECK ALGORITHM

Figure 9: Computing the flow of an implicit cut f in a quadrilateral. There are two possible
topological routings. The flow of the implicit cut, f, is different in these two cases. The

inequality under each case distinguishes each other.

Figure 10: 6 topology configurations of two triangles and a diagonal implicit cut. In all
cases, the flow of the implicit cut, f is equal to a + ¢ — e or b + d — e depending on the

polarity of a + ¢ — b — d.

configurations with a suitable rotation and naming of edges. In short we have the following

lemma.

Lemma 7 Given two triangles sharing a cut, we can decide the flow of the diagonal implicit

cut 1n constant time.

Since the flow of an implicit cut can be computed from five cuts, we define a dependency
graph to capture this relationship. From the dependency graph, we can compute the flow

of any implicit cut.

e>d+c+1 d>c+eand a>b+e
f=(@+b—e)/2 f=a+d—2e

Figure 11: 2 topologies that need special handling. Both happens when there is more than
one wire connected to a vertex. The test condition and the flow of f is indicated below each

configuration.

15

Definition 3 A dependency graph of cuts is a directed graph where each vertex is a cut.
An arc exists between two vertices if the flow of the to-vertexr can be computed from the
from-vertex. If a cut is implicit, there are § incoming arcs. Fxplicit cuts have no incoming

arcs.

Since the flow of each implicit cut can be computed by different sets of surrounding
cuts, there can be many possible dependency graphs. We seek a form of dependency graph
that allows us to compute the flows of all implicit cuts. A loop-free dependency graph
accomplishes this purpose (Fig. 7).

One way to construct a loop-free dependency graph is as follows. Let o(c¢) be the number
of explicit cuts the cut ¢ intersects. Note that o(c) = 0 if ¢ is an explicit cut. If for each
arc (u,v) in a dependency graph GG, we can guarantee o(u) < o(v), then G is loop-free. For
this to work we also have to show that 1) for any implicit cut, there exists at least one set
of 5 cuts from which its flow can be calculated, and 2) all these 5 cuts has a lower 0. Once
we obtained the dependency graph, we can compute the flow of any implicit cut from the
flows of all explicit cuts. This allows us to do, for example, incremental recalculation of the
flows of all affected implicit cuts whenever an explicit cut’s flow changes.

Let the corridor be the sequence of triangles an implicit cut intersects (This is part of
the cut-based encoding). A corridor is bounded by a left and a right wall, which are two
paths not intersecting the cut but ending at the same vertices as the cut. For a cut from
vertex u to vertex v, let the vertices on the left wall be (u,ly,ls,...,ly,,v) and on the right
wall be (u,71,79,...,75,v). We seek a pair (I;,7;) such that cuts l;r;, ul;, wrj, ljv, 70 all
exist and their o number are all less than o(uv).

We can simply check all mn combinations for the five cuts. Since we only need to
compute the dependency graph once, this step is not critical. More importantly, we need
to show that 1) there exists a pair of vertices on each wall with all the 5 cuts, and 2) all
the 5 cuts have lower o than the given cut.

Consider a vertex [on the left wall of a cut ¢ from vertex u to v which is the closest to
the cut line (Fig. 12). The distance between a vertex and a cut line is the distance between
its corresponding terminal and the cut line or between the nearest point on the closure of
the corresponding partial boundary and the cut line. It can be shown that [is visible from
u and v. Assume not, then suppose some vertex I’ blocks [from u. Consider the triangle
luv. Tts height is the distance between [and uw, which is the maximum among points on [u
and [v. Hence I’ must be strictly closer to o in order to block I from w. This is contradict
to the proposition that [is the closest vertex to wv.

Since [is visible from u and v, there is a cut between [and u and between [and v. By

the same argument, there are cuts 7u and 70 where r is the closest vertex on the right wall.

16 7 A FAST DESIGN RULE CHECK ALGORITHM

Figure 12: Corridors, walls, closest vertices and dependent cuts

Finally, there is a cut vl because there is no vertex within the quadrilateral urvl so r and
! must be visible to each other. We call the cut 7l the diagonal cut and 7@, 70, lu and lv

enclosing cuts. We have the following lemma.

Lemma 8 Given any implicit cut o, there exists a set of five cuts ul, lv, ur, 70 and 7o
where | is the closest vertex from the cut wv on its right wall and r is the closest vertex on

its left wall.

Now we show that all these five cuts intersects fewer explicit cuts than the given implicit
cut. If the diagonal cut is an explicit cut, all the enclosing cuts intersects at least one explicit
cut less than ww because uv intersects the diagonal cut but the enclosing cuts do not.

The argument is more technical when the diagonal cut is implicit. We refer interested

readers to Appendix B for details. We proved the following lemma.

Lemma 9 Given any implicit cut ¢, its diagonal cut and all its enclosing cuts intersects

fewer explicit cuts than c.
The following theorem summaries the results of this section.

Theorem 10 The flow of all implicit cuts can be computed by building and traversing a

loop-free dependency graph (Def. 3).

Fig. 13 is a simple breadth-first search algorithm to compute all the flows of affected
implicit cuts when the flow of some explicit cuts changed.

Since a cut-based encoding records the sequence of explicit cuts each implicit cut
intersects, the o of an implicit cut takes constant time to compute (assuming that the length

of the sequence is stored). Thus sorting all implicit cuts by their o requires O(m logm)

17

Algorithm 2 (Inc-DRCQC)
Algorithm Inc-DRC (Dependency graph G, Set of changed explicit cuts .S)
Add S to queue @
while @ not empty do
e + dequeue(Q)
Update the flow of e using Lemma 8 and 9
@ < enqueue(Q, children of e)

endfor

Figure 13: Algorithm Inc-DRC

time where m is the total number of implicit cuts. Building the dependency graph requires
finding the diagonal cut and the enclosing cuts for each implicit cut. If most implicit cuts
are short (Appendix A), it is more efficient to check all pairs of vertices between the walls
than computing the closest vertices to the cut on each wall. Hence it takes O(mk?) time
where k is the number of vertices of the longest wall. Traversing the graph takes only O(m)
time because each node in the graph is only visited once and it takes constant time to
decide the topology within a triangle (Triangle Encoding Theorem). The size of the graph
depends on the number of implicit cuts, which depends on the total number of cuts because
the number of explicit cuts is fixed with respect to the number of obstacles. Appendix A
gives an estimation on the total number of critical cuts.

The power of our design rule check algorithm lies in the last step. As long as the
dependency graph is unchanged, we can update the flow of all the depending implicit cuts
whenever there is any change in the flow of any explicit cut. This algorithm can be expanded
easily to wires with variable width and spacing so that the sequence of wires intersecting

any cut, implicit or explicit, can be computed efficiently.

8 Conclusion

This paper presented advances in three important areas in general area routing. For pins
arranged in a grid, the rectilinear wiring metric has asymptotically less number of critical
cuts than octilinear and FEuclidean metrics. Even under octilinear and Euclidean metrics,
the expected number of cuts to check is a lot less than the worst case. Shadowing and a
finite wire pitch contributed to reduce the number of critical cuts. The latter also tends to
eliminate long critical cuts, which costs more to check than short cuts.

A second contribution of this paper is a practical wiring model based on cuts. This is the

first wiring model that considers obstacles of arbitrary size and shapes. Pins are also allowed

18 A A REALISTIC ESTIMATION OF THE NUMBER OF CRITICAL CUTS

° ° °
° .
) o °
---------- @@ @@

Figure 14: All the points visible from the origin on a 6 x 5 grid.

on the boundary of obstacles. This model can be directly applied to standard cell, MCM or
PCB routing. This model is particularly useful for performance-driven routing because it has
no restrictions on wire width and spacing, pin and obstacle placement, shape of obstacles,
and wiring metric. By recording only the topological routing instead of the exact geometry
of the wires, the encoding is compact and clean. Coupled with the dependency graph,
another contribution of this paper, the encoding allows fast computation of the flow of any
cut and enhance can decide the routability of a topological routing. The flow computation
is also incremental in nature so the encoding is highly suitable for iterative improvement
schemes such as simulated annealing. Our approach pushed all the work into generating a
TEG, which depends only on the relative positions of the obstacles and terminals. Clearly
our philosophy here is that the components are not nearly moved as much as ripping-up

and rerouting wires. Comparing to other wire-based schemes, this is a sure win.

A A Realistic Estimation of the Number of Critical Cuts

For m features, in the worst case we need to check m(m —1)/2 cuts. This is the case when
all features are arranged in a circle. In a realistic routing problem, features are more likely
to be pads arranged in grids. In the following we show that the number of features visible
from a feature in a grid is linear to the number of grid points. The number of cuts to check
is further reduced due to the finite size of wire width and spacing. Finally, the number of
cuts is reduced to eight per grid point if we use rectilinear wiring metric.

Suppose all features are points on a regular grid with unit pitch. The grid is n features

wide. Consider the number of points visible from the point at the lower-left corner, which

19

is at the origin. We can conveniently address the grid by integer coordinates. Recall
that a point is visible from another point if the straight line segment between these two
points does not intersect or touch any other points. A point at (h,k), h > 0, k& > 0
hides all the points that lie on the same straight line from (0,0) to (h,k). These points
have the coordinates (lh,lk) where [is an integer greater than 0 (Fig. 14). If we associate
each point (h, k) with the fraction k/h, the number of points visible from the origin, v, is
then the number of irreducible fractions with numerators and denominators less than or
equal to n. By symmetry, v = 2®(n) where ®(n) is the number of irreducible fractions
in [0...1] with denominator less than or equal to n. It can be shown that[6, pp. 139]
®(x) = 32%/7? + O(xlog x). Hence v € ©(n?), i.e., linear to the number of points. This is
the same order of complexity as in the worst case but the average number of visible points
decreased from n — 1 to 6n/7? ~ 0.608n.

A further refinement of this model considers the effect of the finite wire width and
spacing. Consider the grid point (5,2) in Fig. 15. If the minimum wire pitch (width plus
spacing) is 0.1, then the capacity of the cut (0,0) — (5,2) is |25 +4/0.1] = 53. The
total capacity of the cuts (0,0) — (2,1) and (2,1) — (5,2) is [v4+ 1/0.1] + [v/9+1/0.1] =
22 + 31 = 53. Therefore if the latter two cuts are safe, the former is safe. Hence we can
exclude the former cut from our check list. Intuitively, the larger the minimum wire pitch,
p, the more long cuts we can throw away. In the following we derive a relation between the
number of cuts to be checked from the origin against p.

Any irreducible fraction can be expressed as (m + m')/(n + n') where m, m', n and
n' are positive integers and m'n — mn’ = 1 [6, pp. 118]. The three fractions, m/n <
(m+m')/(n+n") <m'/n' are consecutive fractions in the sense that there are no other
fractions of denominator less than or equal to n + n’ between the gaps. We will show that
the sum of the lengths of the vectors (n m)” and (n’ m/)” are the closest to the length of
the vector (n +n' m +m')T.

Lemma 11 Given two distinct fractions m/n and m'/n' with m/n < m'/n', the angle ¢ at
(n',m') subtended by the line segment (0,0) — (n + n',m +m') is the largest if m/n, (m +

m')/(n+n'),m'/n" are consecutive.

PROOF: Refer to Fig. 15. If and #’ are the angles of elevation of the vectors (n m)’

T respectively, then tanf = m/n and tan@’ = m//n'. Since ¢ = = — (6 — 0'),

and (n' m')
it is maximized when 6 — €' is minimized. Indeed, since m/n, (m +m')/(n +n'),m’/n’ are
consecutive, tan @ — tan = m'/n’ — m/n is minimal. Therefore 6’ — 6 is minimal because

0<¢6,0<m/2 O

By Lemma 11, we only need to consider the triangle (0,0), (n,m), (n+n',m+m') since

20 A A REALISTIC ESTIMATION OF THE NUMBER OF CRITICAL CUTS

Figure 15: The cut (5,2) has the same flow as the sum of cuts (3,1) and (2,1). If the wire
pitch is large enough, the capacities will be the same too because flow has to be integer.

Therefore it is sufficient to check (3,1) and (2,1).

any other triangle will be less “skinny” than this one. We consider z, the difference in the

sum of the length of the two vectors (n m)’ and (n’ m')”" and the vector (n+4n' m+m')".

z:\/m2+n2+\/m’2+n’2—\/(m+m’)2+(n+n’)2.

If 2 is less than one wire pitch, we can eliminate the cut (0,0) — (n + n',m + m’) from the
check list. In the following we develop an asymptotic estimation on z as m, n, m’ and n’
becomes very large.

We start with z2.

22 = 2{m2+n2+m'2+n'2+mm'+nn'+\/(mm’+nn’)2+1

- \/(m2+mm’+nn’+n2)2+17 \/(m'2+mm'+nn'+n'2)2 + 1},

12,,2

using the relation (m'n —mn')? = m2n% + m?n'2 — 2mm/nn’ = 1. Since the coordinates

are large, we use Vo2 + 1 = z(1 + 1/(22?) + O(1/z?)). Then, after simplification,

) 1 1 1

mm' +nn’ mZ4+mm’ +nn' +n2 m?2+mm +nn' + n'?
1

(mm! + nn')(m? + mm' + nn' + n?)(m? + mm' + nn' + n'?)’

%

z

Let 72 = m? +n? and r"? = m/? + n'2. Since (mm' +nn')? +1 = r?r'2,

1
2
2 =~
Vrer2 — 1(r?2 + Vr2r2 — 1) (r"2 + Vr2r’? — 1)
1

7‘27“’2(7“ + 7“’)2'
Hence,

rr'(r+1')

21

Quadrant I
o Visible

Quadrant 11 Quadrant IV

i
not visible

Quadrant 111

Figure 16: 2(n — 1) + 1 points are visible under shadowing of octilinear metric. Only 3
points are visible under rectilinear metric. The two right diagrams shows the regions of
visible points. For octilinear metric, all points in the shaded area at the right is shadowed
by the point at the center to the points in the shaded area bounded by dotted lines at the
left. The other three directions are similar. The rightmost diagram shows shadowing for
rectilinear metric. Two points within neighboring quadrants are visible. Points in opposite

quadrants are not visible.

We do not have to check cuts longer than such that z is less than or equal to the wire
pitch p. Therefore max(r,r') defines a radius within which we need to check all cuts. In
Euclidean metric the number of cuts we need to check for an n-size grid is O(n?). Since z

is in O(1/r3), we have the following lemma.
Lemma 12 The number of cuts we need to check at the origin for wire pitch p is O(1/p*/?).

If we are willing to sacrifice some routability and use a piecewise linear wiring metric,
we can potentially reduce the number of cuts to check to a constant at each point. A point
q is shadowed[7][3, pp. 46] by another point p if cap g0 = capr0 + cap gr, where 0 is the
origin. Figure 16 shows shadowing for octilinear and rectilinear wiring metric. We define
the shadowed visibility graph to be the set of cuts we need to check under shadowing. A pair
of points are 4-visible if they are visible under rectilinear shadowing. Similarly, we define
8-wvisible for the octilinear metric and oo-wisible for Euclidean metric. We simply use wvisible
when it is applicable for all routing metrics. It is straightforward to show that 4-visibility
implies 8-visibility, which implies co-visibility.

On a grid, for octilinear metric, the points (1,0), (0,1), (1,1), (:+1,7) and (i,7+ 1) for
1 > 0 are 8-visible from the origin. For a grid of size n x n, the number of 8-visible grid
points is 2(n—1)+1 € O(n). Applying the finite pitch argument the cut size further reduces
to O(1/p3). For rectilinear metric, only the three nearest neighbors are 4-visible, i.e., O(1).

In general, the critical cut set consists of cuts to the nearest eight grid points for each grid

22 B PROOF OF LEMMA 9

left wall

right wall

Figure 17: Proof of Lemma 9

point. This is an asymptotic reduction in the number of cuts to check. It explains the ease
of design rule check in early routing systems. These systems represented all obstacles as
grid points and used the rectilinear wiring metric. For octilinear wiring metric, the size
of the critical cut set is asymptotically the same as Euclidean wiring metric. This is the
fundamental reason for the difficulties in extending grid-based, rectilinear routing systems

to true octilinear or all-angle systems.

B Proof of Lemma 9

Suppose the implicit cut under consideration is from vertex u to vertex v. The vertices [
and r are the closest vertices on the left and right walls, respectively, to the cut line. If the
diagonal cut [r is implicit, then there is at least one intersecting explicit cut since a TEG is
maximally planar. Call this cut I’r’. Without lost of generality, let I’ be in the path from
u to [and let 7’ be in the path from r to v.

First we observe that if an enclosing cut or the diagonal cut intersects some explicit cut
¢, the dependent cut wo also intersects the same explicit cut ¢. Otherwise [or r will not be
on their respective wall of the dependent cut.

Now we consider the number of explicit cut intersections of lv. If it is explicit, then
o(lv) = 0 and is less than o(@w). Otherwise, the cut o intersects any explicit cut lv
intersects plus at least the explicit cut I'r’ (Fig. 17). Hence o(lv) < o(@w). The same
argument applies to 7u.

All we need to show now is that lu, 70 and Ir intersects fewer explicit cuts than @w. For
lu (argument for 7@ is similar), we consider the loop bounded by ', I, v and . Since a

TEG is maximally planar, there is at least one explicit cut within this area. We consider

REFERENCES 23

the paths P from I’ to =, Q from [to v~ and R from v* to r’. The vertex [~ is the vertex
before [on the left wall from u to v. Similarly, v~ is the vertex before v on the left wall.
vT is the vertex before v on the right wall.

An explicit cut between a pair of vertices in P and R is intersected by both ul and ww
so it contribute to both ¢ numbers. An explicit cut between a pair of vertices in P and ()
is not possible because P and () are part of the left wall. The only remaining combination
is from @ to R. An explicit cut from Q to R intersects only @w but not ul so if one explicit
cut exists then o(@w) > o(ul).

If Q has more than one vertex or if [v is implicit, then there is at least one explicit cut
from @) to R that intersects uv because any explicit cut from) must end on some vertex
in R. On the other hand, if @ is just the vertex [and lv is explicit, there is an explicit cut
from [to some vertex in R too, due to the maximal planar property of the TEG and the
fact that [is on a wall.

Therefore in all cases o(Ww) > o(ul). Using the same argument we can prove that
o(ww) > o(T0) too. For rl, we note that every explicit it intersects also intersects the cut
o so o(rl) < o(@w). The argument about explicit cuts between @ and R in the previous
paragraph applies here too. Therefore o(rl) < o(@w). Thus we complete the proof of

Lemma 9.

References

[1] D. Staepelaere, J. Jue, T. Dayan, and W. W.-M. Dai, “Surf: A rubber-band routing system for
multichip modules,” IFEFE Design and Test of Computers, December 1993.

[2] J. Valainis, S. Kaptanoglu, E. Liu, and R. Suaya, “Two-dimensional IC layout compaction based
on topological design rule checking,” IEEE Trans. Computer-aided Design, vol. 9, pp. 260 275,
March 1990.

[3] F. M. Maley, Single-layer wire routing and compaction. Cambridge, MA: MIT Press, 1990.

[4] K.-Y. Khoo and J. Cong, “An efficient multilayer MCM router based on four-via routing,”
IEEE Trans. Computer-aided Design, vol. 14, pp. 1277 1290, October 1995.

[5] J. D. Cho, K.-F. Liao, S. Rajie, and M. Sarrafzadeh, “M?R: Multilayer routing algorithm for
high-performance MCMs,” IEEE Trans. Circuits and Systems I, vol. 41, pp. 253-265, April
1994.

[6] R. L. Grahm, D. E. Knuth, and O. Patashnik, Concrete Mathematics: A foundation for
Computer Science. Reading, MA: Addison-Wesley, 2nd ed., 1994.

[7] R. Cole and A. Siegel, “River routing every which way, but loose,” in Proc. 25th Ann. Symp.
Foundation of Comp. Sci., (Singer Island, FL), pp. 65 73, IEEE, IEEE Computer Society Press,
October 1984.

24

(8]

[9]

[10]

REFERENCES

R. P. Bazylevych, E. Zamora, and N. F. Storozenko, “The flexible routing algorithm for PCB,”
Visnyk Lvivskoho Politekhnichnoho Instytutu, vol. N76, pp. 8388, 1973. In Ukrainian.

R. P. Bazylevych, E. F. Zamora, N. F. Storozenko, and R. Pelke, “Flexible Literzugverlegung
fur Zweiseitige Leiterplatten mit Hilfe der EDVA 'm-222"" in XX Internat. Vissenschaftliches
Kolloguium, (Technische Hochschule Ilmenau), pp. 159-162, 1975. In German.

R. P. Bazylevych and R. Pelke, “Probleme der Optimierung der Leiter zugver legung bein
Rechnergestiitzten Leiterplattenentwurt,” in 23 Intern. Wiss. Koll., (TH Ilmenau), pp. 117
120, 1978. In German.

M.-F. Yu, J. Darnauer, and W. W.-M. Dai, “Interchangeable pin routing with application
to package layout,” in Proc. Intl. Conf. Computer-aided Design, (Santa Clara, CA), IEEE,
November 1996.

S. K. Ghosh and D. M. Mount, “An output sensitive algorithm for computing visibility grpahs,”
SIAM J. of Computing, vol. 20, pp. 888-910, October 1991.

F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction. Texts and
monographs in computer science, New York, NY: Springer-Verlag, 1985.

