
Fast and Incremental RoutabilityCheck of A Topological RoutingUsing a Cut-based EncodingMan-Fai YuWayne Wei-Ming DaiUCSC-CRL-97-07April 14, 1997Baskin Center forComputer Engineering & Computer SciencesUniversity of California, Santa CruzSanta Cruz, CA 95064 USAabstractMany performance-driven routing algorithms do not consider routability. Rout-ing trees are built assuming that there are no other wires. The main reason forthis is that it is NP-hard to guarantee routability. Even checking for routabil-ity is a time-consuming process. This limits the usefulness of many performance-driven routing algorithms because unroutable designs are useless. Previous onlineroutability checking is not fast enough for the many iterative improvement steps ina performance-driven routing algorithm. This paper provides such an algorithm.We propose a versatile topological routing encoding that not only allows ane�cient routability check, but also provides proximity information for crosstalk andmanufacturability analysis. Our routing model is applicable to a wide range oftechnologies, including PCB, MCM and standard cell ASIC. It allows rectilinear,octilinear or Euclidean wiring metric and arbitrary-shaped obstacles. It is gridlessand supports variable wire width and spacing. Our algorithm is fast enough tobe integrated into any iterative improvement schemes such as simulated annealing.Our basic observation is that the placement of obstacles is �xed but rerouting isvery frequent. So we emphasize on an e�cient rerouting and routability check stepbut pushes the complexity to building a data structure that depends only on theplacement of the obstacles.Keywords: topological routing, planar routing, routability, single-layer routing,design rule check, visibility graph

11 IntroductionWe propose an e�cient and versatile encoding scheme of topological routing for fast andincremental routability checking. This enables us to do online checking for automaticiterative improvement such as simulated annealing. Our design rule checking is based oncuts and ows. It is gridless, supports variable wire width and spacing, allows rectilinear,octilinear (45 degree) or Euclidean wiring metrics and can have obstacles of arbitrary shape.Many traditional design rule checkers are grid based and restricts all geometry torectilinear. In a high-performance system, we adjust wire widths for optimal delay andwire spacing for crosstalk control. In modern ASIC design there are large irregular macroblocks mixed with small standard cells with over-the-cell routing. This technology shiftcalls for general area routing.Our design rule checking system is based on topological routing. A topological routing isan embedding of wires connecting all terminals as speci�ed by a netlist but not guaranteedto be design-rule correct. The shape of a wire can be changed but a wire is not allowed tocross another wire or an obstacle. Generating a routable topological routing is known to beNP-hard.The motivation that drives this research is the need for a fast and incremental routabilitychecker. For large designs, changes to a routing are inevitable. These changes can comefrom either the designers for last-minute bug �xes or from routing-improvement tools suchas wire-sizing or bu�er-insertion. The router has to 1) allow the changes to be done quicklybecause a tool may generate many rip-up and reroutes, 2) decide that whether the newrouting is routable or not. The only viable way to do this is by devising an incrementalalgorithm. We achieve these two objectives by noting the following. First, maintainingtopological routing takes less e�ort than the full shape and size of each wire in detail.Second, routability is completely determined by topological routing.The Surf system allows the user to directly manipulate topological routings[1]. Valainiset al[2] reported a compaction system using topological layout. Since the �nal geometry ofthe wires are not �xed, many performance-oriented optimizations can be applied. Forexample, wire widths and spacings can be adjusted for yield improvement, impedancematching, crosstalk control and delay. Wire lengths can be adjusted for timing and skewconstraints. By not explicitly recording the exact geometry of all the wires, the amountof information that needs to be changed during rip-up and reroute is less. This leads toe�cient schemes of iterative improvement of topological routing.We �rst describe our routing model in Section 2. Then we give a brief summary of themajor properties of wires and cuts. The majority of the results is from Maley[3]. Thenwe give an estimation of the number of critical cuts. This is the number of cuts we have

2 2 THE ROUTING MODEL

Figure 1: The left �gure shows our routing model. There are obstacles, wires and terminals.Wires terminate at terminals. Terminals can be standalone or on the edge of an obstacle.A terminal is also an obstacle. An obstacle is a point, a line segment or a convex simplepolygon. The right �gure shows Maley's routing model. Features are straight line segments.Obstacles are composed of many features. Terminals are not allowed on an obstacle.to check for routability. The detail derivation is deferred to Appendix A. We showed thatthe number of critical cuts is asymptotically smaller under rectilinear wiring metric thanunder Euclidean metric. Section 5 and 6 are the core part of this paper. We present ourcut-based encoding for topological routing. Cuts with the same ow are grouped into cutclasses which represent topological relationships between obstacles. The most di�cult partof a cut-based encoding is to compute the topological encoding graph. This graph dependssolely on the relative placement of obstacles and terminals. Our e�orts paid o� in checkingdesign rules for a particular routing among these obstacles as shown in Section 7. Sinceobstacle placement is done only once but a routing is iteratively changed, our strategy ise�cient overall.2 The Routing ModelThe routing model is an abstraction of a real-world routing problem. It should be su�cientlysimple to allow theoretical development but real enough for the developed ideas to be usefulin the real world. Our model is based on printed-circuit board (PCB), multichip module(MCM) and ASIC standard cell technology. In these processes, there are a number ofcomponents (or cells) with I/O pins. An I/O pin is in the form of a metal pad. There are�xed obstacles representing keep-outs, blockages, drill holes or intracell routing. This modelhas a clear distinction between wires and obstacles. It is not suitable for cell-level routingwhere exible polygons are the primary objects. Nor is it suitable for microwave circuitswhere the precise geometry of the interconnect is required. To simplify formulation, we

3assume that all geometries are piecewise-linear. For technical reasons which we will explainbelow, we require that all obstacles are convex. Our model allows concave obstacles to berepresented as a group of abutting convex obstacles so there is no practical limitation onthe shape of obstacles.On a grid-based layout system, obstacles are de�ned by clusters of grids. Terminals arealso on grids[4, 5]. These systems need many grid points to represent large obstacles. Thisis because their grid points is a uniform discretization of the routing space. We directlysupports obstacles as objects and does not restrict them to be on a grid. This is importantin performance-driven routing systems because wires may be sized for delay and spacingmay be irregular for crosstalk control. In Maley's work[3], the routing model is gridless butterminals are not allowed to touch an obstacle. This is to avoid the technical di�culty indealing with apparent design rule violation when a wire connecting to a terminal on theboundary of an obstacle gets below the minimum spacing with respect to the obstacle. Inreal designs, it is possible that an obstacle represents a macro block and its pins are on theboundary of the block. Our routing model supports this by attached terminals. We willdiscuss this further after we have de�ned the topological encoding graph(Section 5).Fig. 1 shows the objects in our routing model. A terminal is a point where a wireends. A terminal can be standalone or on the boundary of an obstacle. An obstacle is asimple polygon. In PCBs or MCMs, wires usually end at a pad. In our model, a pad isrepresented by a single point|a terminal. The dimensions of the pad are taken into accountby reducing the capacity of the cuts ending on this terminal. More than one wire may endon one terminal. If a terminal is on the boundary of an obstacle, we say it is attached tothe obstacle. Otherwise it is a standalone terminal.The routing boundary P is a simple polygon that contain all the routing objects. Therouting region B = P � X � T where X is the set of all obstacles and T the set of allterminals. B is usually an open multiconnected space.3 The Routability TheoremThis section briey introduces some result of Maley[3] on which we develop the encoding.The most important concepts are cuts and ows. Intuitively, we measure the wires betweena pair of obstacles. If the total width and spacing used by the wires is less than the spacingbetween these two obstacles, then these wires can be routed successfully between them. Thepath we use to measure between two obstacles is called a cut. The total amount of spaceused by the wires (with spacing) is the ow of the cut. The total amount of space that canbe used to route wires is the capacity of the cut. The ow has to be always less than thecapacity for all cuts in order for the whole design to be routable.

4 3 THE ROUTABILITY THEOREMA major result of Maley[3, esp. Ch. 2] is that we only need to consider the shortestcuts and wires. To decide whether a topological routing is routable, we �rst computethe rubberband equivalent of all the wires. A rubberband equivalent (RBE) of a wire isthe shortest path that is path homotopic to the wire. Further, the topology completelydetermines routability.A path p is a continuous piecewise linear function p : I ! B where I is the interval[0::1] and B is the routing region. A wire is a path that does not touch any other wires orobstacles except at the terminals. The endpoints of a path p are the points fp(0); p(1)g. Apath p is path homotopic to a path q if there exists a continuous piecewise-linear functionH : I� I! B where H(0; �) = p and H(1; �) = q and their terminals coincide.Maley used the concept of features instead of obstacles (Fig. 1). A feature is a singlepoint or a straight line segment that touches nothing except at its endpoints. Hence anobstacle is a collection of features. The use of features simpli�es a lot of mathematicaldevelopment for routability because straight line segments are convex and simple to describe.The downside is that a simple polygon is broken down into many straight line segments sothe layout system has to keep track of many objects. In Section 5, we see that many cutsbetween features are redundant because these features (straight line segments) are part ofthe boundary of a single obstacle. So although features are convenient for mathematicaltreatment, we use obstacles as our basic objects. This is one of the reasons why our encodingis compact.A cut is a path that starts and ends on features. A cut is between two features if itstarts and ends on the two features. The ow of a cut is the sum of the width and spacingof all the RBEs of wires that intersect the cut. The capacity of a cut x, denoted cap x, isthe maximum total width plus spacing wires can cross without violating design rules.Theorem 1 (Maley's Sketch Routability Theorem) A topological routing is routableif and only if all shortest straight cuts between all pairs of visible features are safe.A cut is safe if the ow of the cut is less than or equal to its capacity. A feature f isvisible from a feature g if there exists a pair of points p and q on f and g respectively suchthat a straight line can be drawn from p to q without touching or intersecting any otherfeatures. The set of all cuts that needs to be checked for safety is called the critical cut set.By Theorem 1, the set of all cuts is the set of edges of the visibility graph with end-points of features as vertices. It is natural to assume that the number of edges of this graphdepends heavily on the routing metric and the placement of features. The following sectiongives quantitative answers to this question.

5
Figure 2: Three unique cases to derive a topological routing from numbers on the edges ofa triangle.4 Problem Size EstimationAccording to Theorem 1, we have to check the shortest straight cuts between each visiblepair of features. Hence the number of cuts to check is the number of edges in the visibilitygraph where the vertices are the features. The cost of design rule checking is directlyproportional to the number of cuts we need to check. So it is in our interest to �nd theminimum number of cuts to check that is necessary to determine routability. It is clearthat we have to check at least one cut per pair of visible features. The dominance relationdescribed in Section 5 allows us to reduce the number of cuts to check between one pair ofobstacles. We still have to check cuts between di�erent pairs of obstacles. For m features, inthe worst case we need to check m(m� 1)=2 cuts. In most practical situations, the numberof cuts to check is a lot less. Appendix A give detailed estimation on the size of the criticalcut set in a uniform grid. The main results are:� The number of cuts to check is O(n2) where n is the number of obstacles but theconstant is smaller than the worst case.� For octilinear wiring metric, the number of cuts to check for each grid point is2(n� 1) + 1 2 O(n). Therefore it is O(n2) for all points.� For rectilinear wiring metric, we only need to check 4 cuts for each grid point so thetotal number of cuts to check is only O(n).5 A Cut-based Topological EncodingIn almost all layout systems, wires are recorded as sequences of line segments. They can becollectively called wire-based encoding. For a given wire, this encoding can report quicklythe shape, width, length and exact geometry of the wire. This encoding is more awkwardwhen proximity information is required. Given a wire, it is not easy to identify at any

6 5 A CUT-BASED TOPOLOGICAL ENCODINGgiven point the nearest neighboring wire. This information is important for routability andcrosstalk computation.In this paper, we propose a cut-based encoding. In this encoding, the main objects inthe encoding are cuts. Each cut contains a sequence of intersecting wires. This approachwas used by several researchers for PCB routing, compaction and layout optimization[8, 9, 10, 2, 11]. Our encoding is based on Yu, Darnauer and Dai[11]. Since any encodingnecessarily describes the topological routing, we can create a corresponding wire-basedencoding from a cut-based encoding and vice versa.The fundamental advantage of cut-based encoding is that the basis of the encoding isdetached from the routing. In our encoding the basis of the encoding is a triangulationbased solely on the placement of obstacles and terminals. In a typical routing environment,the placement of these objects are �xed whereas the routing changes frequently. We recordthe routing as a simple vector of numbers on top of the basis. Changing the routing istherefore very easy. The cuts carries information between adjacent wires and obstacles.In this paper we take advantage of this information by building an e�cient routabilitytest (Section 7). Other performance constraints that relates to proximity information suchas crosstalk control, defect analysis or electromigration can also take advantage of suchinformation.Our encoding is based on a discretization of the routing space with triangles. The Trian-gle Encoding Theorem (Theorem 2) establishes our base|the topology of each triangle canbe determined easily. The major part of the development is on the dominance relationshipbetween cuts. Due to dominance, cuts can be grouped into equivalence classes where it issu�cient to use one cut to represent the whole class (the dominant cut). This developmentculminates to the introduction of the topological encoding graph (TEG). The edges of thisgraph represents the necessary critical cuts, i.e., routability cannot be determined if onecut is missing from this graph. A TEG in general is not planar. The most important resultof this section is that a TEG always contain a triangulation (Lemma 6). Using (one of) thetriangulation as the basis, we introduce our cut-based encoding. The cuts that are part ofthis triangulation are explicit cuts. An explicit cut is both a cut (that needs to be checked)and a vehicle for encoding a topological routing.We �rst assume that all wires are of the same width and require the same minimumspacing. Later in this section we suggest ways to extend this to support wires of unevenwidth and di�erent requirements of minimum spacing.Our basic observation is the following:Theorem 2 (Triangle Encoding Theorem) Given three cuts forming a triangle and theow of each cut, we can decide, for the area within the triangle, either

7
Figure 3: A wire connecting to a vertex should not intersect a cut incident to it. It is anunnecessary crossing and it can be represented by one without the crossing.

Figure 4: The topological routing is not unique if ows are only speci�ed on a polygon withmore than 3 sides.1. no topological routing exists, or2. there exist a unique topological routing.Proof: Refer to Fig. 2. Only three cases are possible within a triangle. In the �rst case(Case 0), there are no wires connected to any vertex. In this case, consider the followingequations, (b+ c� a)=2 = � (c+ a� b)=2 = � (a+ b� c)=2 = Given (a; b; c), either (�; �;) has a positive integer solution or not. If so, the solution isunique. If the solution exists, the topological routing can be constructed as shown in the�gure. If not, a topological routing does not exist.If there is one or more wires (Case 1) connecting to a vertex, it must intersect the cutnot adjacent to the vertex. Refer to Fig. 3. In this case a valid unique topology exists ifc > a+ b.Finally, a unique topology exists for a triangle with two connections (Case 2) if a = 0and b = c or their symmetric permutation thereof. The only di�erence with Case 0 is thatthere is a wire on top of a wire. This can be checked from the given netlist. 2Fig. 4 shows that topology can only be uniquely speci�ed with a triangulation. However,in a quadrilateral if one of the cuts has zero ow, the topology can be speci�ed using

8 5 A CUT-BASED TOPOLOGICAL ENCODING
Figure 5: Reduce the critical cut set using Corollaries 3 and 4. This is because we knowthat the ow across the edge of an obstacle is zero. In general, we only need to check a fewcuts between any pair of convex polygons.Theorem 2 by simply collapsing the empty cut. In general, we have the following corollaries.Corollary 3 Routing topology can be decided within an n-sided polygon if the ow is zeroon at least n� 3 edges.Corollary 4 Given an n-sided polygon, let cuts a and b be the only two cuts with non-zeroow. The ow of a is equal to the ow of b if there is no connection within the polygon. Ifcap a � cap b, we say a dominates b.a dominates b because they have the same ow so if the lower capacity cut is safe, theother cut is safe. We can avoid checking many cuts using Corollaries 3 and 4 (Fig. 5).The dominance relationship gives us a powerful way to reduce the number of cuts weneed to check for routability. Intuitively, dominance can only happen between cuts thatare between the same pair of obstacles. However, not any pair of cuts between a pair ofobstacles have a dominance relationship. This is because there may be another obstacle(Fig. 5). The concept of boundary homotopy formally captures this situation.To simplify the treatment of attached terminals, we consider an attached terminal astandalone terminal in�nitesimally close to its obstacle. This is simply represented bylinking them with a cut with zero capacity.A path q is boundary homotopic to a path p if there exists a piece-wise linear continuousfunction H :I� I! B where H(0; �) = p, H(1; �) = q, H(�; 0) 2 b and H(�; 1) 2 c for somedistinct obstacle boundaries b and c. b or c can be a point if an end point of q or p is on astandalone terminal. Since all obstacles are convex, we do not have to check cuts that endon the same obstacle.It is easy to verify that boundary homotopy is an equivalence relation. If two simplecuts p and q are boundary homotopic with the homotopy H, then the area bounded by p, q,H(�; 0) and H(�; 1) has no standalone terminals or obstacles. Therefore either the two cutsboth intersect a wire or they both do not because wires end at terminals. By Corollary 4,

9two boundary homotopic cuts have the same ow. So all cuts within an equivalence class(cut class for short) has the same ow. The cut with the lowest capacity is called thedominant cut of the cut class.Maley proved that all critical cuts are straight[3]. From now on we will only considerstraight cuts. We say that two cut classes �1 and �2 intersect if the endpoints of �1 and �2are on di�erent obstacles and for any straight cut in �1 there is a straight cut in �2 thatintersects it. Note that the intersection concept does not apply to cut classes that shareat least one obstacle. The intersection of cut classes captures the topological relationshipsbetween obstacles. This is observed by the following lemma.Lemma 5 Let the set of cut classes intersected by a cut class � be I(�) and the set oftwo terminating obstacles E(�). Two cut classes �1 = �2 if and only if I(�1) = I(�2) andE(�1) = E(�2).Proof: The \only if" part is straightforward. If two cut classes are the same, they mustterminate on the boundaries of the same set of obstacles. Also, the de�nition of intersectionimplies that if one cut in a class intersects some cut, then all cuts in the class intersects thesame cut. Therefore the intersection counts are the same if the two classes are the same.Now we consider the \if" part. Contrapositively, if �1 6= �2, there are two cases. The�rst case is that their terminating obstacle boundaries are di�erent, hence E(�1) 6= E(�2).Now we consider the second case. We can assume that �1 and �2 terminates on the sameobstacle boundaries. Let p1 2 �1 and p2 2 �2 be two cuts. Let b1 be the (partial) boundarybetween p1(0) and p2(0) and b2 be the boundary between p1(1) and p2(1). Since �1 6= �2,there is an obstacle s such that the loop b1 � p1 � b2 � p2 is inessential.1A straight cut c terminating at s intersects either p1 or p2 because b1 and b2 are part ofobstacle boundaries. c cannot intersect both p1 and p2 because it is straight. There is atleast one c because the whole routing region is bounded by the bounding polygon. HenceI(�1) 6= I(�2). 2This lemma says that a cut class is uniquely speci�ed by where it is terminating at andwhat other cut classes it intersects. To record a cut class, all we need is the names of theobstacles it terminates at and the names of cut classes that intersects it. We will use thisproperty to construct our encoding.We are ready to de�ne the Topology Encoding Graph (TEG). This graph is the basisof our encoding scheme. For a routing instance, let the set of obstacles be X, the set ofterminals be T , the set of dominant cuts from all cut classes in T [X [f0g be C, where 0is the routing boundary polygon. Let D be a maximal planar subset of C.1that can be shrinked to a point.

10 5 A CUT-BASED TOPOLOGICAL ENCODINGDe�nition 1 (Topology Encoding Graph) A Topology Encoding Graph of a routinginstance is a graph with vertices de�ned as follows:� T , the terminal vertices.� X, the obstacle vertices.� f0g, the boundary vertex, representing the routing boundary polygon.The edges are de�ned as follows.� An edge (terminal-obstacle edge) exists between an attached terminal and its obstacle.� For each dominant cut c in D, there is an edge between its terminating obsta-cles/terminals.Each edge in a TEG has a capacity. The capacity of a dominant-cut edge is the capacityof the cut under the current wiring metric. For a terminal-obstacle edge, its capacity ispermanently set to 0.Since D is planar and no obstacles overlap, a TEG is planar. We call the dominant cutsthat corresponds to an edge in a TEG explicit cut. Other cuts are implicit cuts.De�nition 2 (Cut-based Encoding) A Cut-based Encoding of a topological routing isa triple (G;M; x) where G is a TEG of the routing instance, x is a vector of ows for eachedge in T and M is the set of implicit cuts. Each implicit cut is represented by its beginningand end vertices and the sequence of its intersecting explicit cuts.Checking the safety of explicit cuts is trivial. Checking implicit cuts is not that hardeither. Section 7 presents an e�cient algorithm for checking implicit cuts. An encodingis proper if we can decide from the encoding that either 1) a topological routing does notexist, or 2) there is a unique topological routing and in the latter case, deduce the routingfrom the encoding. We will now show that our cut-based encoding is proper. Our mainapproach is to show that TEG is a triangulation so that for each triangle, we apply theTriangle Encoding Theorem.We start with a proof that a maximal planar subgraph of a shadowed visibility graph isa triangulation.Lemma 6 A maximal planar subgraph of a shadowed visibility graph under the rectilinearmetric is a triangulation.Proof: Suppose there is a maximal planar subgraph that is not a triangulation. Thenthere is a face with more than 3 vertices. Name these vertices in counterclockwise order

11

Figure 6: The critical cut set is greatly reduced after applying dominance relationship andCorollary 3. (a) shows the cuts that needs to be checked according to Maley[3]. (b) showsall the dominant cuts. It is su�cient to check these cuts. From these cuts, we choose amaximal planar subset as our encoding basis (c). These are the explicit cuts. Other cutsare implicit cuts.v0; v1; : : : ; vm�1 of m vertices. There is no edge between a vertex vi and all other verticesexcept vi�1 and vi+1 so vi is not 4-visible to all vertices except vi�1 and vi+1. Refer toFig. 16. For any i, vi and vi+2 must be in the opposite quadrant of vi+1. So vi+2 is in theshadow of vi+1. The same argument holds for vi+1 so vi+3 is in the shadow of vi+2, whichis in the shadow of vi+1. Repeating the argument, starting at v0, v2; : : : ; vm�1 are in theshadow of v1. This leads to a contradiction because vm�1 should be 4-visible from v0. 2Since a shadowed visibility graph under rectilinear metric is a subgraph of one underoctilinear metric, which is a subgraph of one under Euclidean metric, this lemma holds foroctilinear and Euclidean metrics.Consider the visibility graph of all obstacle boundaries broken down as straight linesegments and terminals (Fig. 6). A maximal planar graph H of this visibility graph isa triangulation according to Lemma 6. Not all the edges in the visibility graph has acorresponding edge in the TEG because the TEG only records dominant cuts. However, notriangles will be added or removed because edges within the same cut class forms multipleedges between two vertices instead of triangles. From the above arguments, we showed thatthe cut-based encoding scheme is proper.Our encoding is minimal because each cut is topologically signi�cant. Removing any cutfrom an encoding we will miss a critical cut. The number of vertices is also minimal becauseeach terminal or obstacle is represented as one and only one vertex. The most importantconcept behind our encoding is that the routing space is not discretized uniformly. It isdiscretized (by triangles) only if it makes a topological di�erence.If wire width and spacing are non-uniform, we have to record the wires intersecting

12 6 COMPUTING AN ENCODING

Figure 7: A TEG and its dependency graph. The explicit cuts are labeled as alphabets andimplicit cuts as numbers. The left is a TEG of Fig. 6. The right is (one of) its loop-freedependency graph. Using the dependency graph, we can compute the ows of all implicitcuts very quickly (Section 7).each cut in the TEG in order. Note that the ordering information is already embeddedin the topological routing. Explicitly recording it makes safety checks much more e�cient.Therefore the ordering information is a form of cache and can be regenerated by applyingthe Triangle Encoding Theorem to all triangles.6 Computing An EncodingGiven a set of obstacles, the bounding polygon and a set of terminals, we wish to generatea cut-based encoding excluding the ow vector because in a cut-based encoding, all therouting information is captured by the ow vector. We want to create a TEG and a set ofimplicit cuts.We start with a visibility graph of the obstacles. All critical cuts are edges of the visibilitygraph. Many edges in the visibility graph are redundant because they are dominated byother cuts. We eliminate them by computing the intersections of all pairs of cuts and removethose with identical intersections according to Lemma 5. We then choose some cuts to forma triangulation and leave the rest as implicit cuts. Fig. 6 shows our process.We �rst represent all polygons as multiple line segments (features in Maley[3]'s termi-nology). For an obstacle with attached terminals, we break up its boundary at the attachedterminals and at its polygonal vertices (Fig. 6a). We use Ghosh's algorithm[12] to computethe visibility graph between all pairs of line segments and/or points. The complexity ofthis algorithm is O(n log n + E) where n is the number of points and endpoints of linesegments and E the number of edges in the visibility graph. If an edge exists between twoline segments, the corresponding cut is the shortest straight cut between them. If there are

13Algorithm 1 (Encoding)Algorithm Encoding (Obstacles S, Bounding polygon B, Terminals T)Convert all the polygons to features F from S [B [TCompute the visibility graph G from FCompute intersections among cuts from GRemove redundant cuts so that each cut has a unique set of intersections.Pick enough cuts to form a triangulation, designate them as explicit cutsDesignate the rest as implicit cutsFigure 8: Algorithm Encodingmany cuts of the same capacity, we arbitrarily choose one.Next we compute all the intersections of these cuts. We use an algorithm described inPreparata and Shamos[13, pp. 284] to compute all the intersections between all pairs of cutsin O((K + E) logE) time where K is the number of intersections. We have to remove allbut one cut with the same terminating obstacles and intersections because they belong tothe same cut class according to Lemma 5. This can be done in O(E) time using a hash tablewith a key composed of the terminating obstacle names and the names of all intersectingcuts. For each cut class we save the dominant cut.Now we can form a TEG by simply pick the cuts to form a triangulation. A simpleO(E) algorithm for this is to choose an unmarked cut, mark all the cuts that intersect thiscut and repeat. All the remaining unmarked cuts are maximally planar because they donot intersect each other. By Lemma 6 we have a triangulation. Lemma 6 guarantees thata triangulation exists. The remaining cuts are implicit cuts. Fig. 8 summarizes the wholeprocess.7 A Fast Design Rule Check AlgorithmGiven a topological routing encoded in a cut-based encoding, we want to decide its routabil-ity. By Theorem 1, we need to decide the safety of all the cuts. The ow of each explicitcut is known because that is part of the encoding so the safety of each explicit cut can bedetermined trivially. This section presents an e�cient algorithm to determine the safety ofimplicit cuts.Our basic observation is shown in Fig. 9. Given a pair of triangles that share oneedge, we can �nd the ow of the diagonal implicit cut. Fig. 10 shows 6 di�erent wiretopology con�gurations with the same formula for the ow of f . Fig. 11 shows another twocases involving multiple fanouts. Any wire topology can be classi�ed into one of these 8

14 7 A FAST DESIGN RULE CHECK ALGORITHM
Figure 9: Computing the ow of an implicit cut f in a quadrilateral. There are two possibletopological routings. The ow of the implicit cut, f , is di�erent in these two cases. Theinequality under each case distinguishes each other.
Figure 10: 6 topology con�gurations of two triangles and a diagonal implicit cut. In allcases, the ow of the implicit cut, f is equal to a + c � e or b + d � e depending on thepolarity of a+ c� b� d.con�gurations with a suitable rotation and naming of edges. In short we have the followinglemma.Lemma 7 Given two triangles sharing a cut, we can decide the ow of the diagonal implicitcut in constant time.Since the ow of an implicit cut can be computed from �ve cuts, we de�ne a dependencygraph to capture this relationship. From the dependency graph, we can compute the owof any implicit cut.
Figure 11: 2 topologies that need special handling. Both happens when there is more thanone wire connected to a vertex. The test condition and the ow of f is indicated below eachcon�guration.

15De�nition 3 A dependency graph of cuts is a directed graph where each vertex is a cut.An arc exists between two vertices if the ow of the to-vertex can be computed from thefrom-vertex. If a cut is implicit, there are 5 incoming arcs. Explicit cuts have no incomingarcs.Since the ow of each implicit cut can be computed by di�erent sets of surroundingcuts, there can be many possible dependency graphs. We seek a form of dependency graphthat allows us to compute the ows of all implicit cuts. A loop-free dependency graphaccomplishes this purpose (Fig. 7).One way to construct a loop-free dependency graph is as follows. Let �(c) be the numberof explicit cuts the cut c intersects. Note that �(c) = 0 if c is an explicit cut. If for eacharc (u; v) in a dependency graph G, we can guarantee �(u) < �(v), then G is loop-free. Forthis to work we also have to show that 1) for any implicit cut, there exists at least one setof 5 cuts from which its ow can be calculated, and 2) all these 5 cuts has a lower �. Oncewe obtained the dependency graph, we can compute the ow of any implicit cut from theows of all explicit cuts. This allows us to do, for example, incremental recalculation of theows of all a�ected implicit cuts whenever an explicit cut's ow changes.Let the corridor be the sequence of triangles an implicit cut intersects (This is part ofthe cut-based encoding). A corridor is bounded by a left and a right wall, which are twopaths not intersecting the cut but ending at the same vertices as the cut. For a cut fromvertex u to vertex v, let the vertices on the left wall be (u; l1; l2; : : : ; lm; v) and on the rightwall be (u; r1; r2; : : : ; rn; v). We seek a pair (li; rj) such that cuts lirj, uli, urj , liv, rjv allexist and their � number are all less than �(uv).We can simply check all mn combinations for the �ve cuts. Since we only need tocompute the dependency graph once, this step is not critical. More importantly, we needto show that 1) there exists a pair of vertices on each wall with all the 5 cuts, and 2) allthe 5 cuts have lower � than the given cut.Consider a vertex l on the left wall of a cut c from vertex u to v which is the closest tothe cut line (Fig. 12). The distance between a vertex and a cut line is the distance betweenits corresponding terminal and the cut line or between the nearest point on the closure ofthe corresponding partial boundary and the cut line. It can be shown that l is visible fromu and v. Assume not, then suppose some vertex l0 blocks l from u. Consider the triangleluv. Its height is the distance between l and uv, which is the maximum among points on luand lv. Hence l0 must be strictly closer to uv in order to block l from u. This is contradictto the proposition that l is the closest vertex to uv.Since l is visible from u and v, there is a cut between l and u and between l and v. Bythe same argument, there are cuts ru and rv where r is the closest vertex on the right wall.

16 7 A FAST DESIGN RULE CHECK ALGORITHM

Figure 12: Corridors, walls, closest vertices and dependent cutsFinally, there is a cut rl because there is no vertex within the quadrilateral urvl so r andl must be visible to each other. We call the cut rl the diagonal cut and ru, rv, lu and lvenclosing cuts. We have the following lemma.Lemma 8 Given any implicit cut uv, there exists a set of �ve cuts ul, lv, ur, rv and rvwhere l is the closest vertex from the cut uv on its right wall and r is the closest vertex onits left wall.Now we show that all these �ve cuts intersects fewer explicit cuts than the given implicitcut. If the diagonal cut is an explicit cut, all the enclosing cuts intersects at least one explicitcut less than uv because uv intersects the diagonal cut but the enclosing cuts do not.The argument is more technical when the diagonal cut is implicit. We refer interestedreaders to Appendix B for details. We proved the following lemma.Lemma 9 Given any implicit cut c, its diagonal cut and all its enclosing cuts intersectsfewer explicit cuts than c.The following theorem summaries the results of this section.Theorem 10 The ow of all implicit cuts can be computed by building and traversing aloop-free dependency graph (Def. 3).Fig. 13 is a simple breadth-�rst search algorithm to compute all the ows of a�ectedimplicit cuts when the ow of some explicit cuts changed.Since a cut-based encoding records the sequence of explicit cuts each implicit cutintersects, the � of an implicit cut takes constant time to compute (assuming that the lengthof the sequence is stored). Thus sorting all implicit cuts by their � requires O(m logm)

17Algorithm 2 (Inc-DRC)Algorithm Inc-DRC (Dependency graph G, Set of changed explicit cuts S)Add S to queue Qwhile Q not empty doe dequeue(Q)Update the ow of e using Lemma 8 and 9Q enqueue(Q; children of e)endfor Figure 13: Algorithm Inc-DRCtime where m is the total number of implicit cuts. Building the dependency graph requires�nding the diagonal cut and the enclosing cuts for each implicit cut. If most implicit cutsare short (Appendix A), it is more e�cient to check all pairs of vertices between the wallsthan computing the closest vertices to the cut on each wall. Hence it takes O(mk2) timewhere k is the number of vertices of the longest wall. Traversing the graph takes only O(m)time because each node in the graph is only visited once and it takes constant time todecide the topology within a triangle (Triangle Encoding Theorem). The size of the graphdepends on the number of implicit cuts, which depends on the total number of cuts becausethe number of explicit cuts is �xed with respect to the number of obstacles. Appendix Agives an estimation on the total number of critical cuts.The power of our design rule check algorithm lies in the last step. As long as thedependency graph is unchanged, we can update the ow of all the depending implicit cutswhenever there is any change in the ow of any explicit cut. This algorithm can be expandedeasily to wires with variable width and spacing so that the sequence of wires intersectingany cut, implicit or explicit, can be computed e�ciently.8 ConclusionThis paper presented advances in three important areas in general area routing. For pinsarranged in a grid, the rectilinear wiring metric has asymptotically less number of criticalcuts than octilinear and Euclidean metrics. Even under octilinear and Euclidean metrics,the expected number of cuts to check is a lot less than the worst case. Shadowing and a�nite wire pitch contributed to reduce the number of critical cuts. The latter also tends toeliminate long critical cuts, which costs more to check than short cuts.A second contribution of this paper is a practical wiring model based on cuts. This is the�rst wiring model that considers obstacles of arbitrary size and shapes. Pins are also allowed

18 A A REALISTIC ESTIMATION OF THE NUMBER OF CRITICAL CUTS

Figure 14: All the points visible from the origin on a 6� 5 grid.on the boundary of obstacles. This model can be directly applied to standard cell, MCM orPCB routing. This model is particularly useful for performance-driven routing because it hasno restrictions on wire width and spacing, pin and obstacle placement, shape of obstacles,and wiring metric. By recording only the topological routing instead of the exact geometryof the wires, the encoding is compact and clean. Coupled with the dependency graph,another contribution of this paper, the encoding allows fast computation of the ow of anycut and enhance can decide the routability of a topological routing. The ow computationis also incremental in nature so the encoding is highly suitable for iterative improvementschemes such as simulated annealing. Our approach pushed all the work into generating aTEG, which depends only on the relative positions of the obstacles and terminals. Clearlyour philosophy here is that the components are not nearly moved as much as ripping-upand rerouting wires. Comparing to other wire-based schemes, this is a sure win.A A Realistic Estimation of the Number of Critical CutsFor m features, in the worst case we need to check m(m� 1)=2 cuts. This is the case whenall features are arranged in a circle. In a realistic routing problem, features are more likelyto be pads arranged in grids. In the following we show that the number of features visiblefrom a feature in a grid is linear to the number of grid points. The number of cuts to checkis further reduced due to the �nite size of wire width and spacing. Finally, the number ofcuts is reduced to eight per grid point if we use rectilinear wiring metric.Suppose all features are points on a regular grid with unit pitch. The grid is n featureswide. Consider the number of points visible from the point at the lower-left corner, which

19is at the origin. We can conveniently address the grid by integer coordinates. Recallthat a point is visible from another point if the straight line segment between these twopoints does not intersect or touch any other points. A point at (h; k), h > 0, k > 0hides all the points that lie on the same straight line from (0; 0) to (h; k). These pointshave the coordinates (lh; lk) where l is an integer greater than 0 (Fig. 14). If we associateeach point (h; k) with the fraction k=h, the number of points visible from the origin, �, isthen the number of irreducible fractions with numerators and denominators less than orequal to n. By symmetry, � = 2�(n) where �(n) is the number of irreducible fractionsin [0 : : : 1] with denominator less than or equal to n. It can be shown that[6, pp. 139]�(x) = 3x2=�2 +O(x log x). Hence � 2 �(n2), i.e., linear to the number of points. This isthe same order of complexity as in the worst case but the average number of visible pointsdecreased from n� 1 to 6n=�2 � 0:608n.A further re�nement of this model considers the e�ect of the �nite wire width andspacing. Consider the grid point (5; 2) in Fig. 15. If the minimum wire pitch (width plusspacing) is 0.1, then the capacity of the cut (0; 0) � (5; 2) is bp25 + 4=0:1c = 53. Thetotal capacity of the cuts (0; 0)� (2; 1) and (2; 1)� (5; 2) is bp4 + 1=0:1c+ bp9 + 1=0:1c =22 + 31 = 53. Therefore if the latter two cuts are safe, the former is safe. Hence we canexclude the former cut from our check list. Intuitively, the larger the minimum wire pitch,p, the more long cuts we can throw away. In the following we derive a relation between thenumber of cuts to be checked from the origin against p.Any irreducible fraction can be expressed as (m + m0)=(n + n0) where m, m0, n andn0 are positive integers and m0n � mn0 = 1 [6, pp. 118]. The three fractions, m=n <(m +m0)=(n + n0) < m0=n0 are consecutive fractions in the sense that there are no otherfractions of denominator less than or equal to n+ n0 between the gaps. We will show thatthe sum of the lengths of the vectors (n m)T and (n0 m0)T are the closest to the length ofthe vector (n+ n0 m+m0)T .Lemma 11 Given two distinct fractions m=n and m0=n0 with m=n < m0=n0, the angle � at(n0;m0) subtended by the line segment (0; 0) � (n+ n0;m +m0) is the largest if m=n; (m +m0)=(n+ n0);m0=n0 are consecutive.Proof: Refer to Fig. 15. If � and �0 are the angles of elevation of the vectors (n m)Tand (n0 m0)T respectively, then tan � = m=n and tan �0 = m0=n0. Since � = � � (� � �0),it is maximized when � � �0 is minimized. Indeed, since m=n; (m+m0)=(n+ n0);m0=n0 areconsecutive, tan �0 � tan � = m0=n0 �m=n is minimal. Therefore �0 � � is minimal because0 � �0; � � �=2. 2By Lemma 11, we only need to consider the triangle (0; 0), (n;m), (n+n0;m+m0) since

20 A A REALISTIC ESTIMATION OF THE NUMBER OF CRITICAL CUTS
Figure 15: The cut (5; 2) has the same ow as the sum of cuts (3; 1) and (2; 1). If the wirepitch is large enough, the capacities will be the same too because ow has to be integer.Therefore it is su�cient to check (3; 1) and (2; 1).any other triangle will be less \skinny" than this one. We consider z, the di�erence in thesum of the length of the two vectors (n m)T and (n0 m0)T and the vector (n+n0 m+m0)T .z =qm2 + n2 +qm02 + n02 �q(m+m0)2 + (n+ n0)2:If z is less than one wire pitch, we can eliminate the cut (0; 0) � (n+ n0;m+m0) from thecheck list. In the following we develop an asymptotic estimation on z as m, n, m0 and n0becomes very large.We start with z2.z2 = 2�m2 + n2 +m02 + n02 +mm0 + nn0 +q(mm0 + nn0)2 + 1�q(m2 +mm0 + nn0 + n2)2 + 1�q(m02 +mm0 + nn0 + n02)2 + 1� ;using the relation (m0n �mn0)2 = m02n2 +m2n02 � 2mm0nn0 = 1. Since the coordinatesare large, we use px2 + 1 = x(1 + 1=(2x2) +O(1=x4)). Then, after simpli�cation,z2 � 1mm0 + nn0 � 1m2 +mm0 + nn0 + n2 � 1m02 +mm0 + nn0 + n02= 1(mm0 + nn0)(m2 +mm0 + nn0 + n2)(m02 +mm0 + nn0 + n02) :Let r2 = m2 + n2 and r02 = m02 + n02. Since (mm0 + nn0)2 + 1 = r2r02,z2 � 1pr2r02 � 1(r2 +pr2r02 � 1)(r02 +pr2r02 � 1)� 1r2r02(r + r0)2 :Hence, z � 1rr0(r + r0) :

21

Figure 16: 2(n � 1) + 1 points are visible under shadowing of octilinear metric. Only 3points are visible under rectilinear metric. The two right diagrams shows the regions ofvisible points. For octilinear metric, all points in the shaded area at the right is shadowedby the point at the center to the points in the shaded area bounded by dotted lines at theleft. The other three directions are similar. The rightmost diagram shows shadowing forrectilinear metric. Two points within neighboring quadrants are visible. Points in oppositequadrants are not visible.We do not have to check cuts longer than such that z is less than or equal to the wirepitch p. Therefore max(r; r0) de�nes a radius within which we need to check all cuts. InEuclidean metric the number of cuts we need to check for an n-size grid is O(n2). Since zis in O(1=r3), we have the following lemma.Lemma 12 The number of cuts we need to check at the origin for wire pitch p is O(1=p3=2).If we are willing to sacri�ce some routability and use a piecewise linear wiring metric,we can potentially reduce the number of cuts to check to a constant at each point. A pointq is shadowed [7][3, pp. 46] by another point p if cap q0 = cap r0 + cap qr, where 0 is theorigin. Figure 16 shows shadowing for octilinear and rectilinear wiring metric. We de�nethe shadowed visibility graph to be the set of cuts we need to check under shadowing. A pairof points are 4-visible if they are visible under rectilinear shadowing. Similarly, we de�ne8-visible for the octilinear metric and1-visible for Euclidean metric. We simply use visiblewhen it is applicable for all routing metrics. It is straightforward to show that 4-visibilityimplies 8-visibility, which implies1-visibility.On a grid, for octilinear metric, the points (1; 0), (0; 1), (1; 1), (i+1; i) and (i; i+1) fori > 0 are 8-visible from the origin. For a grid of size n � n, the number of 8-visible gridpoints is 2(n�1)+1 2 O(n). Applying the �nite pitch argument the cut size further reducesto O(1=p3). For rectilinear metric, only the three nearest neighbors are 4-visible, i.e., O(1).In general, the critical cut set consists of cuts to the nearest eight grid points for each grid

22 B PROOF OF LEMMA 9

Figure 17: Proof of Lemma 9point. This is an asymptotic reduction in the number of cuts to check. It explains the easeof design rule check in early routing systems. These systems represented all obstacles asgrid points and used the rectilinear wiring metric. For octilinear wiring metric, the sizeof the critical cut set is asymptotically the same as Euclidean wiring metric. This is thefundamental reason for the di�culties in extending grid-based, rectilinear routing systemsto true octilinear or all-angle systems.B Proof of Lemma 9Suppose the implicit cut under consideration is from vertex u to vertex v. The vertices land r are the closest vertices on the left and right walls, respectively, to the cut line. If thediagonal cut lr is implicit, then there is at least one intersecting explicit cut since a TEG ismaximally planar. Call this cut l0r0. Without lost of generality, let l0 be in the path fromu to l and let r0 be in the path from r to v.First we observe that if an enclosing cut or the diagonal cut intersects some explicit cutc, the dependent cut uv also intersects the same explicit cut c. Otherwise l or r will not beon their respective wall of the dependent cut.Now we consider the number of explicit cut intersections of lv. If it is explicit, then�(lv) = 0 and is less than �(uv). Otherwise, the cut uv intersects any explicit cut lvintersects plus at least the explicit cut l0r0 (Fig. 17). Hence �(lv) < �(uv). The sameargument applies to ru.All we need to show now is that lu, rv and lr intersects fewer explicit cuts than uv. Forlu (argument for rv is similar), we consider the loop bounded by l0, l, v and r0. Since aTEG is maximally planar, there is at least one explicit cut within this area. We consider

REFERENCES 23the paths P from l0 to l�, Q from l to v� and R from v+ to r0. The vertex l� is the vertexbefore l on the left wall from u to v. Similarly, v� is the vertex before v on the left wall.v+ is the vertex before v on the right wall.An explicit cut between a pair of vertices in P and R is intersected by both ul and uvso it contribute to both � numbers. An explicit cut between a pair of vertices in P and Qis not possible because P and Q are part of the left wall. The only remaining combinationis from Q to R. An explicit cut from Q to R intersects only uv but not ul so if one explicitcut exists then �(uv) > �(ul).If Q has more than one vertex or if lv is implicit, then there is at least one explicit cutfrom Q to R that intersects uv because any explicit cut from Q must end on some vertexin R. On the other hand, if Q is just the vertex l and lv is explicit, there is an explicit cutfrom l to some vertex in R too, due to the maximal planar property of the TEG and thefact that l is on a wall.Therefore in all cases �(uv) > �(ul). Using the same argument we can prove that�(uv) > �(rv) too. For rl, we note that every explicit it intersects also intersects the cutuv so �(rl) � �(uv). The argument about explicit cuts between Q and R in the previousparagraph applies here too. Therefore �(rl) < �(uv). Thus we complete the proof ofLemma 9.References[1] D. Staepelaere, J. Jue, T. Dayan, and W. W.-M. Dai, \Surf: A rubber-band routing system formultichip modules," IEEE Design and Test of Computers, December 1993.[2] J. Valainis, S. Kaptanoglu, E. Liu, and R. Suaya, \Two-dimensional IC layout compaction basedon topological design rule checking," IEEE Trans. Computer-aided Design, vol. 9, pp. 260{275,March 1990.[3] F. M. Maley, Single-layer wire routing and compaction. Cambridge, MA: MIT Press, 1990.[4] K.-Y. Khoo and J. Cong, \An e�cient multilayer MCM router based on four-via routing,"IEEE Trans. Computer-aided Design, vol. 14, pp. 1277{1290, October 1995.[5] J. D. Cho, K.-F. Liao, S. Rajie, and M. Sarrafzadeh, \M2R: Multilayer routing algorithm forhigh-performance MCMs," IEEE Trans. Circuits and Systems I, vol. 41, pp. 253{265, April1994.[6] R. L. Grahm, D. E. Knuth, and O. Patashnik, Concrete Mathematics: A foundation forComputer Science. Reading, MA: Addison-Wesley, 2nd ed., 1994.[7] R. Cole and A. Siegel, \River routing every which way, but loose," in Proc. 25th Ann. Symp.Foundation of Comp. Sci., (Singer Island, FL), pp. 65{73, IEEE, IEEE Computer Society Press,October 1984.

24 REFERENCES[8] R. P. Bazylevych, E. Zamora, and N. F. Storozenko, \The exible routing algorithm for PCB,"Visnyk Lvivskoho Politekhnichnoho Instytutu, vol. N76, pp. 83{88, 1973. In Ukrainian.[9] R. P. Bazylevych, E. F. Zamora, N. F. Storozenko, and R. Pelke, \Flexible Literzugverlegungfur Zweiseitige Leiterplatten mit Hilfe der EDVA 'm-222'," in XX Internat. VissenschaftlichesKolloquium, (Technische Hochschule Ilmenau), pp. 159{162, 1975. In German.[10] R. P. Bazylevych and R. Pelke, \Probleme der Optimierung der Leiter zugver legung beinRechnergestiitzten Leiterplattenentwurf," in 23 Intern. Wiss. Koll., (TH Ilmenau), pp. 117{120, 1978. In German.[11] M.-F. Yu, J. Darnauer, and W. W.-M. Dai, \Interchangeable pin routing with applicationto package layout," in Proc. Intl. Conf. Computer-aided Design, (Santa Clara, CA), IEEE,November 1996.[12] S. K. Ghosh and D. M. Mount, \An output sensitive algorithm for computing visibility grpahs,"SIAM J. of Computing, vol. 20, pp. 888{910, October 1991.[13] F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction. Texts andmonographs in computer science, New York, NY: Springer-Verlag, 1985.

