Coping with Memory Latency

Restructuring General-Purpose Programs
to cope with Memory Latency

Interim Project Report

Dirk Coldewey

UCSC-CRL-97-06
March 20, 1997

Board of Studies in Computer and Information Sciences
University of California, Santa Cruz

Santa Cruz, CA 95064

ABSTRACT

The widening gap between microprocessor speeds and DRAM has spawned
a number of approaches for tolerating the resulting latency of memory accesses.
Four common approaches are software controlled prefetching, multi-threading, non-
blocking loads, and relaxed consistency models. Most of these methods have been
evaluated only on array based codes, although prefetching has also shown to be
effective for instruction cache prefetching in operating system codes that have been
hand-optimized for cache performance. Many of these methods suffer from consid-
erable runtime overhead, scalability issues, or only work well for a small problem
domain. This thesis proposes to show that a method of code transformation to sup-
port a combination of prefetching and coarse-grain multithreading can significantly
reduce the effects of memory latency with less runtime overhead than currently pro-
posed forms of prefetching, yet that performs well for both array-based codes as well
as a broad class of pointer-based data structures found in commercial applications.



1.1. Technical Workloads

1. Problem Statement

While the performance of microproces-
sors has doubled roughly every three years,
DRAM performance has not kept pace, grow-
ing at a rate of roughly 22% every three
years [HP90]. Consequently the performance
of memory is becoming a limiting factor in
system performance. Faster processor cy-
cle times can restrict the size of the pri-
mary cache, resulting in a trend towards
putting both a small primary cache and a
larger secondary cache directly on the pro-
cessor chip of high speed processors such as
the Alpha [Han93]. Shared-memory mul-
tiprocessor systems, now commonplace in
the commercial marketplace, further exac-
erbate the problem by requiring processors
to compete for the bus in order to satisfy
requests to main memory, introducing ad-
ditional latency due to bus contention and
cache interference. Recent high end sys-
tems SMP systems can be configured with
12 to 20 or more processors. Distributed
memory multiprocessor systems that pro-
vide a global memory abstraction, including
non-uniform memory architectures (NUMA)
such as DASH [LLG192] and systems based
on Scalable Coherent Interconnect [Gus92],
such as the Convex Exemplar suffer the ad-
ditional overhead of a global communica-
tion network that can extend memory ac-
cess times for remote memory to hundreds
of clock cycles. Caches can eliminate much
of the memory latency by placing the most
frequently referenced instructions and data
in fast SRAM memory, but even infrequent
misses can have a significant impact on sys-
tem performance.

Most of the published work on data cache
performance has been focused on technical
workloads, which tend to have poor data
cache performance. Technical workloads
usually consist of single user loop-intensive
scientific and engineering applications that

involve little operating system activity.

1.1 Technical Workloads

Scientific and engineering programs tend
to exhibit considerable locality, with only a
few loops generating the bulk of all mem-
ory references. Software controlled prefetch-
ing has proven effective in hiding a signifi-
cant amount of latency in array based data
structures where future address references
are readily computed from the surrounding
loop variables [Mow94] [KL91] [Por89]. Soft-
ware controlled prefetching incurs the over-
head of separate prefetch instructions for
each prefetched cache line. Block prefetch-
ing loads multiple cache lines of contiguous
memory with a single command. Chen and
Baer showed that the instruction overhead
could be significant, ranging from 0.9% to
8.6% of execution time for the mix of sci-
entific and numerical applications that they
evaluated, even when block prefetching was
supported [CB94]. Part of the overhead
comes from the prefetch instructions. Addi-
tionally, the index values of each prefetched
array element must be computed twice: once
when the array element is prefetched, and
again when the array element is actually
used. One goal of the proposed approach is
to reduce the insruction overhead of software
controlled prefetching when applied to array
based codes.

1.2 Commercial Workloads

Recent measurements on commercial work-
loads have shown their system resource us-
age characteristics to be considerably differ-
ent than those of the commonly used scien-
tific and engineering benchmarks [MDO94].
Commercial applications such as the TPC
benchmark suites distributed by the Trans-
action Processing Performance Council run
Unlike techni-
cal workloads, they tend to consist of many
user processes exhibiting short run-lengths

in multi-user environments.



because of frequent 1/O operations. A sub-
stantial part of the application path-length
tends to fall in the operating system kernel.
The execution paths tend to have fewer loop
iterations and more non-loop branches than
technical codes.

Clark showed that cache performance is
significantly lower than application only
traces would indicate [Cla83]. Using traces
of VAX memory references, Agarwal et al
showed that the OS could be responsible for
over 50% of the cache miss rate [AHHS8|.
Torrellas et al showed that the OS signifi-
cantly affects cache performance, stalling the
processors for 17% to 21% of their non-idle
time for a mix of user-level and commer-
cial data base workloads [TGH92]. When
OS interference with the applications’ cached
working sets is factored in, this number
reached up to 25% !. Chen and Bershad
observed that OS data and instruction lo-
cality is considerably worse than that found
in applications [CB93]. Maynard et al noted
that the branching behavior of operating sys-
tem codes tend to be significantly more ran-
dom than that of applications, causing more
cache lines to be touched. This results in a
much larger footprint and higher cache miss
rate [MDO94]. They also found that some
commercial applications, and database appli-
cations in particular, exhibit caching behav-
ior very similar to that of the OS. In sum-
mary, commercial codes exhibit considerably
less data locality and instruction reuse, and
both data and instruction cache miss rates
are substantially higher.

Torrellas [TXD94] and Xia [Xia96] found
that careful manual restructuring of the ba-
sic blocks of operating system codes could
substantially reduce the instruction cache
miss rate. Their approach requires a labor-
intensive restructuring of the operating sys-
tem for each generation of microprocessor

!Torrellas’ evaluation environment consisted of a
four-way SMP utilizing 33 MHz MIPS R3000 proces-
sors. This number can be expected to be considerably
different for 12- to 20-way SMP systems running at
up to 440 MHz today.

1. Problem Statement

and cache configuration. A second goal of
this approach is to reduce the instruction
cache miss rates of applications by increas-
The required
program transformations are expected to in-

ing instruction cache reuse.

volve less continual reengineering.

The multi-user commercial workloads in-
vestigated by Maynard et al, Torrellas et al,
and others exhibit radically different data
reference patterns than array based appli-
cations.  While software controlled data
prefetching has proven effective in hiding a
significant amount of memory latency in ar-
ray based applications, direct application of
existing data prefetching schemes has not
been shown to be effective for commercial
applications.  The third goal of our ap-
proach is to extend software controlled data
prefetching to arbitrary pointer based data
structures in commercial systems in gen-
The approach should lend itself par-
ticularly well to transaction processing and

eral.

other client/server environments.

Software controlled prefetching has the
potential to provide a cost-effective means
of improving system performance by hiding
memory latency. Software controlled data
prefetching is currently applicable only to
array-based codes, and incurs significant run-
time overhead. We demonstrate that a com-
bination of prefetching and coarse grain mul-
tithreading can hide memory read latency
without introducing significant runtime over-
head. The proposed approach allows pointer
based data structures to be prefetched while
simultaneously improving instruction cache
behavior.



2.2. Dataflow

2. Related Work

A general-purpose approach to hiding la-
tency has been the holy grail of large-scale
computing since memory was identified as
a performance bottleneck. This was ad-
dressed as one of the two fundamental is-
sues in multipocessing by Arvind and lan-
nucci [AI87]. The widening gap between mi-
croprocessors and memory speeds is becom-
ing an increasingly important factor in sys-
tem performance in uniprocessors as well.

2.1 Multithreading

The Denelcor HEP and its successor, the
Horizon were among the earliest architec-
tures to employ multithreading to hide mem-
ory latency [Jor85]. The HEP consisted of
a l6-element execution pipeline that per-
formed a context switch at every clock cy-
cle. Only a single instruction from any one
thread was allowed to occupy the instruc-
tion pipeline at any given time, which re-
quired a large number o threads to effectively
utilize the machine, and caused extremely
poor single thread performance. Synchro-
nization occurred through full/empty tags
for each memory word and register. Paral-
lelism had to be explicitly specified in HEP
Fortran [Smi81].

Several incarnations of multithreading ar-
chitectures have evolved since then, includ-
ing April [ALKK90] and more recently an in-

terleaved multiple context processor [LGH94].

April performs a context switch only when a
memory request cannot be satisfied by the
cache or local memory, or when explicitly re-
quested, such as for a failed synchronization
attempt. The expense of a context switch
can be high because it requires the execution
pipelines to complete processing.
trast, the multiple context processor inter-
leaves the execution of multiple threads at
a per-instruction level, similar to the HEP.
In contrast to the HEP, though, it employs
local caches and execution unit pipelining.

In con-

This results in efficient use of the processor
even in the single thread case, as well as in
fewer pipeline bubbles on a cache miss; only
the thread that suffers the cache miss is actu-
ally stalled. Thus if the processor supports n
simultaneous threads, only 1/n pipeline bub-
bles will occur for each thread that blocks on
a cache miss.

2.2 Dataflow

The idea of multithreading was taken
a step further in the MIT Tagged-Token
Dataflow Architecture, where synchroniza-
tion occurred at the instruction level [NA89].
Dataflow processors rely on low-cost context
switching as a method of hiding memory la-
tency and synchronization overhead [AI8T].
Dataflow architectures restrict their applica-
tion domain to dataflow graphs, which avoid
all but data dependencies. This allows them
to maximize the amount of parallelism ex-
ploitable by the hardware, right down to the
instruction level.

lannucci considered processor architec-
tures to constitute a continuum, with von
Neumann architectures occupying one end
of the spectrum and dataflow processors at
the other end [lan88]. He recognized that
it is possible to pick a point on this contin-
uum that represented a much coarser gran-
ularity of parallelism than at the instruc-
tion level, and proposed a hybrid architec-
ture between von Neumann and Dataflow.
Large sequences of serial code can be identi-
fied in most dataflow graphs, and the most
efficient execution of serial code occurs on a
serial processor equipped with optimizations
resulting from 30 years of engineering expe-
rience [Got91].

John Ellis pointed out that, in spite of the
promises of scalability and ready access to
program parallelism, no commercially viable
general-purpose architecture at the dataflow
end of the spectrum had been introduced by



1985 [ElI85]. In the meantime, dataflow as a
hardware architecture appears to be nothing
more than a historical footnote, perhaps be-
cause the economics and rapid evolution of
microprocessors have made specialized hard-
ware economically non-viable, or perhaps be-
cause the constraints of the single assignment
languages on which dataflow represent too
radical a departure from existing practices.
In any case, they completely neglect the ex-
isting investment in software.

2.3 Prefetching

Prefetching decouples the initiation of
memory read requests from their arrival. If
enough work can be found between the time
the memory read request was initiated and
when it is satisfied, overlapping computation
and communication has the potential to com-
pletely hide memory latency. If the memory
system is pipelined, memory references can
also be overlapped with other memory refer-
ences.

One of the most common forms of prefetch-
ing is very commonplace in modern cache de-
signs, where cache lines are larger than the
memory word size. Some RISC processors
will go so far as to reorder the memory re-
quests so that the word that generated the
miss will be satisfied first [IBM90]. In this
instance, the hardware is essentially guess-
ing that a temporally proximate future mem-
ory reference will fall within the same cache
line. In multiprocessor systems, increased
line sizes carry a concomitant potential for
false sharing, where several processors that
share no data invalidate each others lines be-
cause they each store to words that fall into
the same cache line. Some modern RISC pro-
cessors such as UltraSparc prefetch instruc-
tions for several cache lines beyond an in-
struction that generates a miss in the instruc-
tion cache.

Jouppi’s proposed multi-stream buffers

were a step in the evolution of prefetching
sequential operands [Jou90]. Stream buffers

2. Related Work

automatically prefetch additional cache lines,
starting at the initial miss target. His mea-
surements indicate that instruction streams
break their sequential access pattern by
the time the sixth successive cache line is
prefetched. Data reference accesses patterns
are less regular, allowing only a 25% reduc-
tion in data cache misses to be achieved.
This form of speculative prefetching can in-
crease memory traffic by prefetching cache
lines that will never be used, and thus may
not be appropriate in a multiprocessor envi-
ronment.

Porterfield first took advantage of compile
time information to predict future references
and prefetched all array references in inner
loops a single iteration ahead [Por89]. He
then refined his algorithm to take into ac-
count dependence information and to esti-
mate the number of loop iterations before
the loop began accessing data that would no
longer fit into the cache. Klaiber and Levy
extended Porterfield’s work to fetch into a
separate fetch buffer more than a single it-
eration ahead [KL91]. Mowry noted that,
in addition to representing an inefficient use
of chip area, their approach makes non-
binding prefetches difficult [Mow94]. The
non-binding property of prefetches is essen-
tial to ensuring program correctness in a
multiprocessor environment. Lam et al pro-
posed algorithms to predict cache misses in
nested loops in order to optimize blocking
algorithms for various cache geometries to
maximize cache reuse [LRW91]. Wolf in-
corporated these ideas into a compiler that
performed automatic parallelization and lo-
cality optimizations via loop slicing [Wol92].
Mowry extended Lam and Wolf’s algorithms
to incorporate prefetching in the form of soft-
ware pipelining. The salient features of this
approach are that Wolf’s algorithms perform
reasonably well at predicting misses. These
algorithms are applicable to loop-intensive
numerical codes, and do not address other
data structures and algorithms. Software
controlled prefetching is an important aspect
of the proposed approach, and therefore a



2.4. Non-blocking Loads

for ( i=0; i<256; i++ )
X[i] = Y[i+1] + Y[I+2] - Z;

Figure 2.1: Original Loop.

/* prolog */

for ( i=0; i<4; i+=2 ) {
PREFETCH(&X[i]);
PREFETCH(&Y[i+1]);

+

/* steady state loop */

for ( i=0; i<252; i+=2 ) {
PREFETCH(&X[i+4]);
PREFETCH(&Y[i+5]);
X[i] = Y[i+1] + Y[i+2] - Z;
X[i+1] = Y[i+2] + Y[i+3] - Z;

+

/* epilogue */

for ( i=252; i<256; i+=2 ) {
X[i] = Y[i+1] + Y[i+2] - Z;
X[i+1] = Y[i+2] + Y[i+3] - Z;

Figure 2.2: Software pipelining ap-
plied to a simple loop

brief introduction is in order. Borrowing an
example from Chen and Baer [CB94], con-
sider the code transformation in figure 2.2.

The loop is split into a prolog, a steady
state loop, and an epilogue. The prolog
prefetches the data for the first for itera-
tions of the steady state loop. The steady
state loop issues prefetch instructions for the
operands required 4 iterations later, while
the epilogue executes the last four iterations
without issuing any new prefetch operations.
This example assumes that the cache line
holds two array elements, so the loop is un-
rolled to avoid unnecessary prefetches, which
can cause additional pressure on the regis-
ters [CB94]. In general, prefetches are sched-
uled [+] loop iterations ahead, where e is the
estimated execution time of the loop and m
is the memory latency. Chen and Baer com-
ment on the potential for prefetched data to
be displaced before they can be used or to in-
terfere with the working set, although Mowry

tended to double the prefetch distance in his
experiments without suffering significantly
from interference effects [Mow94].

2.4 Non-blocking Loads

Non-blocking loads are a special form of
prefetching. Non-blocking loads are regis-
ter load instructions that allow processing to
proceed upon a data cache miss until the tar-
get register is actually referenced. This ap-
proach has a number of severe limitations.
Loads are non-blocking but not non-binding.
A load is considered binding when the refer-
enced data is no longer exposed to the co-
herency mechanisms of the memory hierar-
chy, in this case once it has been assigned
to a register 1.
piler must ensure that no stores occur to
the address for which a load has previously
been initiated [Mow94]. A further problem
arises from the need to find sufficient work

This means that the com-

between register loads to keep the proces-
sor busy. This issue is universal to all ap-
proaches to hiding read latency.
greater problem for non-blocking loads be-
cause of the additional pressure on the reg-
isters, since the target register is unavailable
for the entire duration between the time it

It is a

is first referenced to the time that it is actu-
ally used. Farkas al used a trace scheduling
compiler retargeted to an architecture sup-
porting non-blocking loads to increase the
distance between a load instruction and the
first use of the corresponding target regis-
ter [FJ94] 2. The branching behavior of
non-numerical codes makes it unlikely that

! Prefetches to specialized prefetch buffers also suf-
fer from this problem [KI1.91] [Jou90].

2Tt is conceivable that the available distance may
be further constrained by a trend towards multiple-
issue and VLIW architectures. Adding registers
to increase the available distance introduces a host
of other problems, including the number of mem-
ory locations bound to registers and the concomi-
tant reduction parallelism available across processor
boundaries and between threads in multiple context
environments.



even a VLIW compiler can find sufficient
intra-thread parallelism to keep the proces-
sor busy without resorting to speculative ex-
ecution [TXD94] [MDO94]. Given the poor
instruction cache performance of commercial
workloads, any benefits derived from specu-
lative execution is likely to evaporate quickly
with the increased instruction cache miss
rate.

2.5 Relaxed Consistency Models

Memory consistency models have a sig-
nificant impact on performance in multi-
processor designs.  Sequential consistency
guarantees that the execution of instruc-
tions behaves as it would on a uniproces-
sor that does not employ any load or store
buffers. This ensures program correctness
in instances where multiple threads of con-
trol read and write the same data — mu-
tual exclusion. In a uniprocessor, this prob-
lem is solved by ensuring that the results
of store operations are visible to the coher-
ence mechanisms of the memory hierarchy,
either by making the write buffer (which is
usually small) fully set associative as in vic-
tim caches [Jou90], or by using an write-
allocate cache policy that ensures that the
caches always reflect the values in the store
buffers. In a multiprocessor, sequential con-
sistency can be maintained by ensuring that
all store operations stall until the main mem-
ory is updated. It has the unfortunate side
effect of disallowing buffering of write opera-
tions, thus introducing considerable latency
into the system.

Relazed consistency permits a more ar-
bitrary interleaving of read and write re-
quests, based on the observation that it pos-
sible to get away with it almost all of the
time [Pfi95]. At times when sequential con-
sistency is essential, specialized operations
ensure that the state of memory is consistent
throughout the memory hierarchy. Release
consistency is the most relaxed memory con-
sistency model, requiring that synchroniza-

2. Related Work

tion occur via specialized acquire and release
operations to acquire and release synchro-
nization variables [GLL190]. Mowry stud-
ied the impact of employing release consis-
tency instead of sequential consistency on
the Stanford DASH Multiprocessor in con-
junction with software-controlled prefetch-
ing, and found that it could have a dramatic
impact on performance [Mow94].



3.1. Coarse Grain Multithreading

3. Proposed Solution

Software controlled prefetching has proven
effective at hiding memory latency in many
We would like to in-
vestigate means of hiding latency for a more

loop intensive codes.

general class of programs. Given the non-
loop branching behavior of operating system
and data base codes, it is unlikely that soft-
ware controlled prefetching or other previous
means of hardware prefetching will prove ef-
fective. Another technique must be found
to hide latency. For prefetching to be ef-
fective, the prefetch address must be iden-
tifiable far enough in advance so that it can
be prefetched into near memory by the time
it is first referenced. There may be an in-
sufficient number of instructions between the
time a variable is bound to an address and
when it is first used to permit the data to be
prefetched in time. A common approach is
to perform a context switch before the first
use of the remote data. The problem with
this scheme is that the number of context
switches is a function of the number of re-
mote references. Since each context switch
carries overhead, the context switch time
may quickly overwhelm any benefit derived
from hiding the latency of the remote refer-
ence. If a sufficient number of remote refer-
ences can be prefetched for an entire block
of code at once, then only a single context
switch is required. Based on this obser-
vation, we propose a method of combining
coarse-grain multithreading with prefetching
to hide memory latency. The general ap-
proach is described in section 3.1. Section 3.2
describes how this approach can be extended
to allow software controlled prefetching to be
applied to pointer based data structures such
as binary trees. Finally, section 3.3 proposes
hardware support for this method that sub-
stantially reduces the instruction overhead of
prefetching.

3.1 Coarse Grain Multithreading

We initially constrain our problem domain
to codes that can be partitioned into blocks
in which all the data that will be accessed in
the block is predictable between the time the
block is entered and the first data reference.
The purpose of this restriction is to enable
the programmer or compiler to place prefetch
instructions for the long latency memory ref-
erences that occur within the block at the
beginning of the block. In practical terms,
this means that blocks must have a small
number of entry and exit points. Xia showed
that many of the frequently executed blocks
of operating system codes meet this crite-
rion [Xia96]. For the time being we also im-
pose a second restriction, requiring that all
instructions that perform long latency data
references within the block must have a high
probability of being executed. This restric-
tion makes it possible to avoid issuing un-
necessary prefetches. Figure 3.1 illustrates
a block of code that does not exhibit this
quality; it cannot necessarily be discerned by
compile time whether Y will be referenced.
This restriction does preclude many impor-
tant data structures, such as binary trees.
Strategies for prefetching such data struc-
tures are discussed in section 3.2.

Blocks that experience the highest instruc-
tion and data cache miss rates are identi-
fied using cache profiling [SP95], or simply
by means of educated guesses on the part
of the programmer. The generic schema for
tranforming these code blocks to perform
prefetching is as follows:

1. Determine the data that will be ref-
erenced within the block and place
prefetch commands that prefetch the re-
quired data into cache at the beginning
of the block. This information might
be gathered through profiling or some
other means of gathering cache statis-
tics [SP95] [MDO94]. Compilers can



/* start of block */

£00(X);

if ( funky() )
foo(Y);
foo(Z);

/* end of block */

Figure 3.1: Reference to Y is diffi-
cult to predict at the beginning of
the block.

identify references that are likely to miss
in the data cache for many array based
codes [Mow94].

2. Provide the address of the
tion at which execution can continue

instruc-

once (sufficient) data has arrived to the
context switch mechanism. This ad-
dress is referred to as the continua-
tion. continuation, in accordance with

Graf [GHD*91].

3. Perform a context switch to some other
piece of code for which data should be
ready, if necessary.

This scheme presupposes a runtime sys-
tem that coordinates the context switches.
Context is defined as the state of the pro-
gram required to let execution proceed at
the specified continuation. Context switches
can occur among multiple blocks that are
allowed to execute in parallel. It is conve-
nient to think of the blocks among which
context switching occurs as threads. Threads
are loosely defined as sets of instructions
that are executed until they voluntarily yield
control to the runtime system. Threads
share a common address space with other
threads running within the same system-
level process. A thread has associated with
it a certain amount of state — at the very
least the program counter and register val-
ues.
quired to save the context of a thread prior
to performing a context switch, some archi-
tectures provide multiple contexts in hard-

ware [ALKK90] [LGH94].

To reduce the amount of overhead re-

3. Proposed Solution

entry point:
S(X,Y);
finished;

Figure 3.2: Orignal Code Block

entry point:
prefetch data(&X[0],count);
prefetch data(&Y[0],count);
prefetch instructions(cont,fini);
context_switch;

cont:
S(X,Y);

fini:

Figure  3.3: Multithreaded
Prefetching Code Block Schema.

The original code block of figure 3.2 is
instrumented with prefetch instructions for
data and possibly instructions, as illustrated
in figure 3.3. The details of the context
switch are dependent on the amount of state
that must be saved at the point of the con-
text switch, and how much context can be
supported in hardware. A generic schema for
context switching in the absence of hardware
support is provided in figure 3.4. The con-
text switch schema minimizes the overhead
of a context switch in instances when the
runtime system determines that the current
thread is to continue executing, since no con-
text is saved unless a different target is deter-
mined. The call to next_thread causes the
runtime system to return the thread identi-
fier of the next thread scheduled to run. If
the thread identifier matches that the cur-
rent thread, then the current thread contin-
ues executing. Otherwise, the context re-
quired to permit the current thread to run,
once it is rescheduled, is saved. The entry
point of the current thread, identified with
the context_restore label in figure 3.4, is
then passed to the runtime system in order
to provide the reentry point of the current
thread.

There are several problems with this
scheme. First, the overhead of a context



3.2. Strategies for arbitrary Data Structures

context_switch:
target = next_thread();
if ( target !'= this_thread ) {
thread_save(this_thread);

thread_switch(this_thread,restore);

restore:
thread_restore(this_thread)
¥

continuation: ...

Figure 3.4: Context switch schema.

switch may severely reduce any performance
benefits derived from having the prefetched
data in the cache unless context switches
can be performed without significant over-

head.
ment hides the fact that, at the very least,

The simple context_switch state-

the continuation address must be communi-
The

overhead of saving thread context may be

cated to the thread control software.

addressed by providing multiple contexts in
hardware [ALKK90] [LGH94]. Second, there
must be another block of code that is ready
to run in order to keep the processor busy
while the data for the current block is being
prefetched. The other block should not suf-
fer significant cache conflicts with the data
being prefetched. Evaluating which blocks
of code are ready to run can also be expen-
sive, depending upon the complexity of the
underlying mechanism. For software pipelin-
ing, scheduling is a natural result of the loop-
ing mechanism, but our target codes are not
constrained to loop intensive codes. Mowry
showed that a victim cache can be effective in
hiding some of the spurious cache evictions
due to conflicts [Mow94], but clearly the cur-
rently executing context should not be a loop
intensive blocked algorithm that effectively
utilizes most of the cache before yielding to
another thread. A specialized hardware con-
text unit to support low overhead scheduling
of code blocks and control prefetching is pro-
posed in section 3.3.

3.2 Strategies for arbitrary Data
Structures

Pointer-based data structures do not lend
themselves particularly well to prefetching.
Consider a search through a linked list of
structures, where the a pointer to the head
of the next structure is the only means of
determining the address of the next element.
Prefetching clearly takes on an entirely dif-
ferent meaning than when the address of the
next element can be determined as a function
of the base address of a data structure and
the induction variables. Traversal of a linked
list is described in section 3.2.1. The branch-
ing behavior of many applications such as
tree structures precludes the use of software
controlled prefetching because the traversal
through the data structure essentially fol-
lows a random path. Consider the traversal
of a binary tree. If both the left and right
node of a tree are always prefetched, then
one prefetch target will usually have been
prefetched in vain. To make matters worse,
software pipelining is scheduled D = [{]
loop iterations ahead in order to hide la-
tency, where s is the execution time of the
shortest path through the loop and [ is the
prefetch latency. It is obviously not desirable
to prefetch up to 2P nodes when only D are
required for the comparisons that control the
traversal through the tree.

While a single traversal of the tree does not
provide sufficient opportunity to exploit soft-
ware pipelining, many traversals performed
concurrently can provide sufficient paral-
lelism to allow software pipelining to be ex-
ploited. Conceivably, the traversal of com-
mon data structures in many codes is not
initiated in tight loops, but is temporally dis-
tributed. In general, some codes that have
runtime profiles similar to that illustrated in
figure 3.5 can be restructured so that traver-
sal of the data structures is performed in par-
allel.  Software pipelining can then be ap-
plied.
environment, for instance, multiple tempo-

In an online transaction processing

rally proximate transactions can conceivably
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traverse( DataStructure, keyl );
other_work_1();

traverse( DataStructure, key2 );
other_work_2();

traverse( DataStructure, key3 );

Figure 3.5: Code exhibiting poten-
tial for temporal restructuring.

be grouped for simultaneous traversal of the
data structure.

The premise behind the approach is that
a single unit of work performed on a given
data structure may not provide sufficient op-
portunity to hide the latency via software
pipelining, work is allowed to accumulate un-
til a threshold is reached or a request for im-
mediate resumption forces work to proceed.
Traversal of a binary search tree is described
in section 3.2.2, followed by a recursive ver-
sion in section 3.2.3.

3.2.1 Searching an Unordered

Linked List

Neither non-blocking loads nor traditional
software controlled prefetching can help hide
the latency encountered in traversing a
linked list, although both techniques may be-
come applicable after program transforma-
tion. The list header points only to the
first element on the linked list, and subse-
quent elements cannot generally be known
in advance. Recall that, in order to hide
the memory latency of references in loop-
based codes, prefetches may have to occur
multiple iterations in advance. This is prob-
lematic for several reasons. Some point-
ers may generate memory exceptions. This
problem is solved by making prefetches non-
excepting [Mow94]. A larger problem is that
the address of the nth element requires that
the addresses of the pointers to the next field

3. Proposed Solution

of each preceding element in the linked list be
resolved. While Mowry’s compiler algorithm
is able to prefetch a single level of indirection
in a dense array, a linked list represents an
arbitrary level of indirection.

The snippet of code in figure 3.7 illustrates
a search through a linked list using software
pipelined prefetching!. The overhead con-
sists of the prefetch instructions and the pro-
log. The prolog, as coded, is unlikely to
vield any direct benefit because the first five
prefetches are likely to miss; it does allow
us to prefetch far enough in advance during
the steady state to hide most of the mem-
ory latency. The variable PipeDepth of this
example represents the prefetch distance, i.e.
the number of iterations that the code is exe-
cuted in advance in order to hide the memory
latency. If the memory latency is 100 cycles
and the prefetch distance is 10, this could
impose a 1000 cycle stall time.

Alternatively, the list header can maintain
a separate array whose elements always point
to the first PipeDepth elements instead of
just the first element. Additional overhead
is incurred in the extra time required for in-
sertion and deletion of the first PipeDepth el-
ements for the benefit of completely avoiding
the initial misses on a search?. There is also
the overhead associated with maintaining an
array of PipeDepth elements, which is ex-
pected to have a neglible impact on the data
footprint. If list->head is now assumed to
be an array of PipeDepth elements, the pro-
log code is illustrated in figure 3.8

If the desired element is located at the
front of the list, then any extra prefetch op-
erations represent pure overhead and unnec-
essary additional memory traffic. The same

'Remember that this example is for the purpose
of illustrating how a pointer chain may be prefetched.
If a linked list 1s long enough and searched frequently
enough to warrant prefetching, a more efficient data
structure would presumably be selected.

21f the list is unordered, as assumed here, then in-
sertion is only more expensive for the first PipeDepth
elements, since the list header can include a pointer
to element PipeDepth+1.
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traverse( DataStructure, key )

{
if ( accumulated keys < threshold ) {
add key to set
perform context switch
b
Software Pipeline traversals
enable stalled threads
b

Figure 3.6: Accumulation of sufficient traversal requests to permit effective soft-
ware pipelining.

list_element_p
search_list( list_p list, int key )
{
int i, j, ¢, s;
list_element_t *p = list->head, *1;

/* prolog */

s = min( PipeDepth, list->count );

for ( i=0; i<s && p!=NULL; i++ ) {
PREFETCH( &p->key, sizeof(int) );
PREFETCH( &p->next, sizeof(list_element_p) );
P = p—>next;

}

/* steady state */
for ( ¢c=0, 1l=list->head; p!=NULL; p=p->next, l=1->next, c++ ) {
PREFETCH( &p->key, sizeof(int) );
PREFETCH( &p->next, sizeof(list_element_p) );
if ( 1->key == key ) {
printf("found key %d at position %d\n", key, ¢ );
return 1;
}
}

ALY
for ( ; 1!'=NULL; 1=1->next, c++ )
if ( 1->key == key ) {
printf("found key %d at position %d (postamble)\n", key, ¢ );
return 1;
}
return NULL;

Figure 3.7: Software Pipelined prefetching of a linked list.

11
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3. Proposed Solution

for ( i=0; i<s && p[i]!=NULL; i++ ) {
PREFETCH( &plil->key, sizeof(int) );
PREFETCH( &pl[il->next, sizeof(list_element_p) );

¥

Figure 3.8: Prefetch Prolog of Linked List Search.

is true for any prefetches issued for elements
in the linked list located after the desired ele-
ment. Since we are primarily concerned with
aggregate throughput, however, it is reason-
able to expect that the cost of these few cases
can be amortized in the course of many iter-
ations over a sufficiently long list. Naturally,
a more time efficient data stucture might be
a better choice than the linked list selected as
an illustrative example here; a means of ap-
plying prefetching to the search of a binary
tree is discussed in the next section.

3.2.2 Binary Tree Search

The following example illustrates the im-
plementation of a multithreaded tree search.
The original version in figure 3.10 includes
the definitions of data structures and globals
used in both this and the recursive version
described in 3.2.3. For the sake of simplic-
ity, the example assumes lightweight threads
that perform blocking search operations on
a static binary tree, i.e. one which does
not change between invocations. There is
no strict requirement that the application be
implemented using lightweight threads — it
need only support software pipelining. Pro-
vided that there is some other synchroniza-
tion mechanism, the search request can be
implemeted as a non-blocking call. In the
example provided in figure 3.13, threads that
submit requests to search the tree are added
to an array of requestors until the search re-
quest can be satisfied, although the thread
could be replaced with a callback function,
or simply a pointer back to the data struc-
ture that creates the correspondence between
each search request and the corresponding
answer. The goal is to accumulate enough
search requests to allow us to pipeline the

searches for software controlled prefetching;
how this is accomplished is dependent on the
application — a multi-threaded client/server
application will behave differently than a
compiler.

As each request is received, the root node
of the tree and the search key are added
to the search node set. Static or dynamic
analysis of the ideal prefetch distance de-
termines a threshold below which prefetch-
ing is not considered effective, represented
by the global variable barrier in the sam-
ple code of figure 3.11. If the number of
reqests for a search falls below this thresh-
old, the search is postponed until a sufficient
number of requests have been submitted to
allow processing to proceed. This thresh-
old is thus also the maximum number of
keys for which searches are conducted in the
course of a single invocation of the simulta-
neous search function tree_gang search().
Since a binary search tree is not necessar-
ily balanced, some keys will be matched ear-
lier than others. The number of keys be-
ing sought will consequently diminish as the
search progresses through the tree, and the
loop over the search keys becomes progres-
sively tighter. Eventually the number of re-
maining keys will be too small to effectively
hide the memory latency.

There are two complimentary means of en-
suring that a sufficient number of searches
are in the software pipeline. First, a
lower bound on the number of simultane-
If the number
of keys remaining in the search set falls be-
low the lower bound, then further search-
ing is postponed and the function returns,
allowing other work in the system to pro-
ceed. The stragglers remain in the set of

ous searches is established.



3.2. Strategies for arbitrary Data Structures

search nodes until the next call to the rou-
tine. As long as simultaneous searches con-
tinue to be conducted, the search for each
key is guaranteed to complete. Since this
is a binary search tree, insertion of addi-
tional tree nodes will not adversely affect
this scheme, although any deletions from the
tree between instantiations of the searches
will invalidate the search. Second, the ini-
tial threshold that triggered the search is
adjusted so that most of the latency can
be hidden most of the time without intro-
ducing significant self-interference or violat-
ing other system requirements such as ser-
vice response time. Recall that the first call
to the simultaneous search function initially
has only pointers to the root occupying the
While the MSHRs ensure
that only one memory request is outstand-
ing to the same cache line at any given time,
the initial iterations of the search do not pro-
vide enough prefetch targets to hide much
latency. A positive side effect of postponing
searches for the stragglers is that a diverse
set of nodes begins populating the set of re-
quested nodes in the course of a few instan-
tiations of the simultaneous search. A draw-

search node set.

back is that the algorithm becomes sensitive
to deletions. The algorithm can be made ro-
bust with respect to deletions by adding a
state field to the tree header and marking the
tree as “dirty”. requiring remaining searches
to start at the root again and then be forced
to completion to guarantee termination®.

The results for various threshold values are
displayed in figure 3.9. The speedup varied
from 28.7% to 32.3%, where the completion
threshold corresponds to the pipeline depth,
and the startup threshold values refer the the
number of requests that were accumulated
before computation would commence. Since
the difference between the startup and the
completion thresholds represents the number
of requests actually worked on, the relatively
low performance improvement of the runs

®There are presumably better solutions, but this
simple one suffices in order to show robustness.
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with both low completion and low startup
threshold not surprising.

3.2.3 Recursion

Recursion poses a special challenge to the
approach. In order to search a tree recur-
sively, several nested sets of subroutine calls
could be kept in progress simultaneously,
with context switches between them via calls
to longjmp(). This adds significant over-
head in form of saving registers, as well as
adding the potential for a significant amount
of stack growth. Although the sum of the
stack sizes is no worse than it would be if the
searches were performed sequentially, there is
potential for interference among the different
threads due to the resulting increase in the
data footprint.

These issues can be effectively side-stepped
by performing the search in a manner sim-
ilar to the loop-based tree search of sec-
tion 3.2.2. The code in figure 3.14 illus-
trates a recursive version of the search de-
scribed in section 3.2.2. The request is
submitted via the blocking routine of fig-
ure 3.15, and the recursive search is illus-
trated in figure 3.14. The recursion is un-
ravelled if the available amount of work does
not meet the lower bound criterion on the
software pipeline depth. For this particular
application this is of no consequence, but for
applications which rely on maintaining the
state of the stack variables from prior pro-
cedure invocations, this could prove more of
a problem. In these cases the search can be
allowed to complete without regard for the
lower bound, at the expense of more mem-
ory stalls.

3.2.4 Applicability

The approach requires a considerable trans-
formation of the underlying application,
which now must be able to schedule work in
a decoupled manner. From the perspective
of an object oriented system, a message is
sent to an object that employs accumulation
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Performace Improvement for Various Thresholds

Speedup
0.33 -
0.325
0.32
0.315
0.31
0.305 ¥
0.3
0.295
0.29
0.285

"Speedup" —
0.319 -----
0.313 -----
0.306 -

-

20
Startup Threshold

Figure 3.9: Threshold and Pipeline Depth Values for Prefetching.

requires the caller to handle postponement
of the result. This means that the caller es-
sentially performs a non-blocking request to
the server. One approach might be to treat
access to data structures that are expensive
as one might any other long-latency opera-
tion — by blockking the calling thread. I sus-
pect that, in practice, this would involve too
much overhead. A better approach would be
to parallelize the subsystem so that feather-
weight threads can be utilized.

If the application that is being optimized
is a compiler, this might correspond to ini-
tiating syntax analysis of different functions
within the program simultaneously, and then
processing the results for each function sep-
arately.

For operating system codes and other sys-
tems with real-time constraints, a micro-
timer can be provided with a small amount
of additional hardware.  Short duration
timers can be expensive to implement effi-
ciently in software for a significant number
of threads. These timers can be used to en-

force a scheduling discipline that prevents
time critical activities from expiring if an in-
sufficient number of events have accumulated
to trigger processing.

Because commercial applications exhibit
significant instruction cache miss rates [TXD94]
[MDO94] [Xia96], this approach benefits
the implementation even in the absence of
prefetching hardware because it guarantees,
at the very least, instruction cache reuse by
forcing temporal locality of instruction ref-
Conceivably data locality benefits
as well, although it is not clear to what ex-

erences.

tent this can make a difference except where
non-blocking loads can exploit the additional
parallelism.

3.3 Context Unit

Ideally, we would like to be able to dy-
namically schedule units of work when the
data they operate upon is available in near
memory. The operating system does this
for 1/O requests, for for instance, but the
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typedef struct node_s {

int key;

int depth;

struct node_s *left, *right;
} node_t, *node_p;

typedef struct node_set_s {
int count;
int key[MAX_THRESHOLD];
node_p node[MAX_THRESHOLD];
thread_t *thread[MAX_THRESHOLD];
} node_set_t, *node_set_p;
typedef struct tree_s {
int count;
node_p root;
} tree_t, *tree_p;

int PipeDepth = 5, Threshold = 20;

node_p tree_search( tree_p tree, int key )

{

node_p node = tree->root;

while ( node != NULL ) {
if ( key node->key )
return node;
if ( abs(key) < abs(node->key) )

node = node->left;
else
node = node->right;

¥
return NULL;
¥
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Figure 3.10: Simple search of a binary search.

delays due to disk latency are of sufficient
magnitude that operating system overhead
is neglible. Since we’re interested in hiding
memory latency, which is measured in scores
of cycles rather than hundreds of thousands
of cycles, more attention must be paid to
overhead. One way of reducing instruction
overhead is to increase the amount of useful
data prefetched with each prefetch instruc-
tion. Block prefetching loads multiple cache
lines of contiguous memory with a single
command. Chen and Baer showed that, even
when block prefetching is used, the instruc-
tion overhead imposed by software pipelin-

ing can be significant, ranging from 0.9% to
8.6% for the mix of scientific and numeri-
cal applications that they evaluated [CB94].
The number of prefetch commands is not the
only overhead associated with software con-
trolled pipelining. Another form of overhead
comes from having to recalculate loop index
values multiple times — once for the prefetch,
If soft-
ware controlled pipelining can hide most of

and again when the data is used.

the latency of an array based application, re-
ducing prefetch instruction overhead could
have a significant impact on the final exe-

cution time. The proposed combination of
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#tdefine PREFETCH_NODE( i ) PREFETCH( nodel[il], sizeof(node_t) )

static
static
static
static

int barrier = 0;

node_set_t node_set =
node_p *node = node_set.node, tmp;
node_set_p tree_gang_search(void);

node_set_p

tree_search_accumulate( thread_p new_thread, tree_p tree,

{

{ o, {0}, {NULL} };

int new_key )

thread_t *thread = node_set.thread, *tmp_thread;
int *key = node_set.key, tmp_key;
int prolog, 1i;

if ( tree ) {

}

if (

thread[barrier] = new_thread;
node[barrier] = tree->root;
key[barrier] = new_key;
barrier++;

if ( barrier < Threshold )

return NULL;

'barrier )
return NULL;

return tree_gang_search();

Figure 3.11: Code to accumulate search requests.

prefetching and multithreading imposes ad-
ditional overhead in managing the context
switches.

A specialized hardware context unit to sup-
port low overhead scheduling of code blocks
and control prefetching might consist of the
following components:

e A table of prefetch schemes, where a

prefetch scheme is defined by stride, ele-
ment size, initial value, and the termina-
tion condition. Any number of prefetch
schemes may be associated with a con-
tinuation, allowing an arbitrary num-
ber of prefetch targets to be pending
for each continuation. This table acts
as a cache that is indexed by a unique
identifier for each continuation, such as
the address of the first instruction in a

block.

A table of base addresses with pointers
to the associated prefetch schemes.

A state machine to compute prefetch ad-
dresses and continuation values. Prefetch
addresses are immediately submitted to
the memory hierarchy to be prefetched.

Synchronization ports from which con-
tinuation values can be read. Reading
a synchronization port may trigger the
prefetch of a set of prefetch addresses
associated with that port, with one port
associated with each continuation.

A queue of enabled continuations. A
continuation is considered enabled if
prefetching has been initiated and suffi-
cient operands have arrived to drive the
computation forward without encoun-

tering read stalls. In software pipelin-
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node_set_p
tree_gang_search()
{

node_set.count = barrier;

prolog = min( PipeDepth, barrier );

for ( i=0; i<prolog; i++ )
PREFETCH_NODE( i );

while ( barrier ) {
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/* If the threshold has been reached, postpone further searching.
* The condition tree == NULL means we’re '"forcing'" the search.

*/

if ( barrier < PipeDepth && tree != NULL )

break;

/* The MSHRs check for duplicate prefetches.

*/
for ( i=0; i<barrier; ) {
if ( nodel[i] == NULL || (key[i] ==
barrier—-;

nodel[il->key) ) {

SWAP( node[i], node[barrier], tmp );
SWAP( keyl[il, key[barrier], tmp_key );
SWAP( thread[i], thread[barrier], tmp_thread );

continue;

}
if ( key[i]) < nodeli]->key )

node[i] = nodel[i]l->left;
else
node[i] = nodel[il->right;

PREFETCH_NODE(i);

i++;
¥

¥

return &node_set;

Figure 3.12: Loop-based multithreaded search of a binary tree.

ing, this condition is met once the epilog

has completed.

The continuation values can represent
branch target addresses, index values, or
data addresses. The number of simultane-
ous outstanding prefetches should be kept
small, while the number of available prefetch

schemes may be arbitrarily large.

3.3.1 Synchronization

Prefetch operations must be synchronized
between the processor and the context unit
in order to support loop intensive codes.
Once the context unit has the information of
what to prefetch and how much to prefetch
for each loop iteration, the CPU needs to sig-
nal communicate completion of each unit of
work so that the context unit can initiate a
new prefetch operation. This occurs when
the CPU loads a continuation value from the



18 3. Proposed Solution

void
blocking_search( thread_t #*thread, tree_t *tree, key_t key )
{
node_set_t *answers;
thread_t *sleeper;
if ( (answers = tree_search_accumulate( thread, tree, key ) ) == NULL ) {
thread_sleep();
return;
}
for ( sleeper = answers->thread; sleeper != NULL; sleeper++ )
thread_awaken( sleeper );

Figure 3.13: Multithreaded search request.

int
tree_gang_search_recurse( tree_t *tree, node_set_t *node_set, int count )
{
node_p *node = node_set.node, tmp;
for ( i=0; i<count; ) {
if ( nodel[i] == NULL || (key[i] == nodel[il->key) ) {
count—-—;
SWAP( node[i], node[count], tmp );
SWAP( keyl[il, key[count], tmp_key );
SWAP( thread[i], thread[count], tmp_thread );
continue;
b
if ( key[i]) < nodeli]l->key )
node[i] = nodel[i]l->left;
else
node[i] = nodel[il->right;

PREFETCH_NODE(i);
i++;

b
if ( count >= PipeDepth && tree !'= NULL )
return tree_gang_search_recurse( node_set, count );

return count;

¥
Figure 3.14: Recursive multithreaded search of binary a tree.
context unit. set of prefetch operands and one for subse-
write context id to context unit quent sets. Consider the following example,
if ( fetch method required ) which is representative of a loop declaration
write context fetch methods for a blocked algorithm:
write any runtime context information for ( i=0; i1<1000; i+=50 )
read continuation value loop( i, X );

The first read of the synchronization port The loop parameters, 0, 1000, 50 are pa-
for a given context results in two sets of rameters of the context fetch method and
prefetches being enqueued; one for the first are communicated to the context unit via



3.3. Context Unit

node_set_p
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tree_gang_search( tree_p tree, int new_key )

{

static int barrier = 0;
static node_set_t node_set = { 0, {0}, {NULL} };
static node_p *node = node_set.node, tmp;
thread_t *thread = node_set.thread, *tmp_thread;
int *key = node_set.key, tmp_key;
int prolog, 1i;
if ( tree ) {

node[barrier] = tree->root;

key[barrier] = new_key;

barrier++;

if ( barrier < Threshold )

return NULL;

}
if ( 'barrier )

return NULL;
node_set.count = barrier;
prolog = min( PipeDepth, barrier );
for ( i=0; i<prolog; i++ )

PREFETCH_NODE( i );
barrier = tree_gang_search_recurse( node_set, barrier );
return &node_set;

}

Figure 3.15: Mutithreaded binary search tree request, recursive version.

the call to context method in the following
code. The base addresses of the two long la-
tency operands is written to the context unit
via context _base. The transformed code is
then:

context_method( X, 0, 10000, 50 );
for ( i=next i; i<1000; i=next i )
loop( i, X );

The first instance of next i initiates the
first prefetch set and enqueues subsequent
prefetches. Thus the initial next i corre-
sponds to the prolog of software pipelined
prefetching. By replacing the original as-
signment i=0 and the increment operation
i+=50 with next i, the recurring run time
overhead of the synchronization has been re-
duced to a single load instruction per loop

iteration?. If the cost of a the next instruc-
tion is the same as a register ALU operation,
i.e. when the context unit is on-chip, then
the total overhead of prefetching is the ini-
tial cost of preparing the context unit with
the prefetch method and base address.

3.3.2 Macropipelining

Software pipelining causes at least one
prefetch command to be issued for each cache
line that is to be prefetched. It is possi-
ble to reduce some of this overhead by ex-
tending the prefetch command to fetch mul-

*More accurate would be the difference between
a load instruction and a register ALU operation to
generate the next index value.
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tiple blocks at each iteration, but this only
mitigates the problem and does not gener-
alize beyond contiguous blocks of memory.
Macropipelining is an extension of software
pipelining that allows all of the operands for
a loop to be prefetched without significant
runtime overhead.

The context unit prefetches Context[0]
and Context[1] using the methods pro-
vided, which are downloaded to the context
unit. Their actual implementation is de-
pendent on the capabilities of the context
unit, but semantically they can be though
of as remote procedure calls that generate
loop index values, add them to the provided
offsets, prefetch the appropriate cache lines,
and write the resultant loop index value to
a table.

mand is issued by the processor, the index is

When the appropriate next com-

matched against the supplied value via the
next i instruction, and proceeds.

Figure 3.16 illustrates how macropipelin-
ing can be combined with blocking optimiza-
tions to increase cache reuse while minimiz-
ing the number of instructions required to
prefetch the required cache lines. The next
primitive is used to synchronize with the con-
text unit, notifying it that work on one set
of operands has completed and the prefetch
of the next set may proceed. The value
returned from the next i command is the
continuation value associated with the next
set of available data. If there are no con-
straints on the order in which blocks are ac-
cessed, then the described form of synchro-
nization allows blocks to be computed out
of order, depending on what can be accomo-
dated in the cache. The described form of
prefetching does not require the entire set of
prefetch operands to be fetched before ex-
ecution can proceed — once the first set of
prefetch schemes have been executed, execu-
tion can proceed.

3. Proposed Solution

3.4 Summary

This study investigated a number of schemes
to tolerate latency in commercial applica-
tions, beginning with a generic scheme that
combines prefetching with coarse grain mul-
tithreading. An alternative scheme allows
application of software pipelining to generic
pointer chains, which are augmented with
prefetch structures to reduce the misses
during the prolog phase.
in which the traversal path is not pre-
dictable, such as binary search trees, are par-
allelized by accumulating a sufficient num-
ber of traversal requests to enable software
pipelining across multiple traversals. Where
it is possible to accumulate traversal requests
for a data structure in software systems that
exhibit poor instruction cache behavior, be-
tween requests, the instruction cache hit rate
should improve as well. Finally, a hard-
ware mechanism is proposed that can sub-
stantially reduce the instruction overhead of
prefetching when macropipelining, a general-
ized form of software pipelining, is applied to
array-based and commercial codes.

Data structures

3.5 Future Work

A significant potential benefit of the cal-
culated procrastination strategy is that it
should also improve instruction cache perfor-
Our simulation infrastructure does
not currently measure instruction cache be-
havior at all. This needs to be investi-
gated. The integration of the prefetch hard-
ware simulator remains to be done. And fi-

mance.

nally, a broader set of applications need to
be investigated in a more complex memory
hierarchy than assumed for this study.
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context_t Context[2];
Context[0] .base = X;

Context[0] .method = X_prefetch;
Context[1] .base = Y;
Context[1] .method = Y_prefetch;

size = Context[0].size;
PREFETCH( Context, 2 );

for ( i=next i; i<size(X); i=next 1 )
for ( j=next j; j<size(Y); j=next j )
for ( ii=i; ii<blocksize(X); ii++ ) {
for ( jj=j; jj<blocksize(Y); jj++ )
F(X[1i1[0331,Y0331);

Figure 3.16: Reducing prefetch overhead via Macropipelining.
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4. Approach

There are several components to this re-
search. The first demonstrates the effic-
tiveness of combining prefetching and coarse
grain multithreading on standard scientific,
engineering, and numerical codes. A suffi-
ciently representative set of standard scien-
tific, engineering, and numerical benchmarks
can be hand-coded to perform prefetching.
Second, the restructuring of non-numeric
codes is evaluated. This requires a creative
approach, as discussed in section 4.1. Fi-
nally, the proposed hardware support is sim-
ulated at the behavioral level. It has already
been implemented and tested but remains to
be incorporated into the simulation environ-
ment.

Prefetching on its own does not achieve its
full potential even in scientific applications,
which can be attributed to several factors.
In addition to introducing overhead to gen-
erate the addresses and execute the prefetch
operations themselves, prefetching can have
destructive side effects. A prefetch opera-
tion may evict a line from the cache that
contains data that is still needed before the
prefetched data is referenced. If the evicted
block of memory is referenced again before
the prefetched cache line is used, the prefetch
operation has the effect of replacing a single
miss with two misses and a prefetch opera-
tion. Similarly, a prefetch that arrives too
early may be evicted by a cache miss before
it can be used. Prefetches may evict the re-
sults of other useful prefetch operations be-
fore they are ever referenced. Thus the pro-
posed solutions are evaluated for a number
of cache configurations.

4.1 Evaluation

Validation of performance on scientific
codes is relatively straightforward using the

evaluation infrastructure currently in place.

The benchmarks for SPLASH, NAS, and

4. Approach

other numeric applications are widely avail-
able. Because of the amount of hand restruc-
turing required, I will select an interesting
subset of these benchmarks for evaluation.

A potentially challenging component of
this thesis is evaluating the transformations
on commercial codes. These tend to be very
large software systems that are the result of
hundreds of man-years of effort. It is unre-
alistic to think that a single person could be
hope to complete the restructuring of a ma-
jor application within the time-span reason-
able for a doctoral dissertation, and is well
beyond the scope of the proposed research.
Asaresult, I plan to show that the advocated
approach is applicable to a selected group of
data structures and algorithms that can be
identified by means of profiling or published
results from the research of others. This in-
formation will include the following:

e the data structure and algorithm em-
ployed.

e the average amount of cache pollution
between invocations.

e the throughput.

The data structures and and algorithms
will be optimized, if possible, using the tech-
niques proposed. If it is not possible, the
reasons will be identified. If the throughput
of the system is measured in transactions per
second, for instance, we should be able to es-
timate the improvement as a result of our
program transformations.

The statistics on cache pollution are used
as a parameter to generate cache interference
between successive invocations of optimized
code, as outlined in figure 4.1. This is con-
trasted with unoptimized code in a manner
described in figure 4.2. Cache statistics are
only gathered for the sections of code within
the loop that are being evaluated, and dis-
abled for the remaining sections.

This makes it possible to estimate perfor-
mance improvement on this section of code
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/* optimized code */
while ( testing ) {
perturb_cache( %dirty )
turn on cache statistics gathering
count = gang_schedule(work,results)
if result != NULL {
for ( i=0; i<count; i++ ) {
result = results[i]
turn off cache stats gathering
process_result(result)
turn on cache stats gathering
}
}
turn off cache stats gathering

}

Figure 4.1: Evaluation of optimized
code.

/* unoptimized code */
while ( testing ) {
perturb_cache( %dirty )
turn on cache stats
schedule(work)
turn off cache stats
process_result(result)

result =

Figure 4.2: Evaluation of unopti-
mized code.

over the required number of iterations. Cau-
tion must be exercised to avoid adversely af-
fecting throughput for the selected system or
application in other ways. For instance, for
the tree example described above, this ap-
proach works well, but if I now require mul-
tiple trees to occupy memory at the same
time, 1 have potentially adversely affected
the memory and cache footprints of the ap-
plication. In general, I’'m operating under
the assumption that memory is cheap and
plentiful, just slow. Given both Tandem and
Oracle’s approach of throwing memory at
any problem, this is a reasonable assumption
— adding 32MB of memory for even a 10%
performance improvement is a very good re-
turn on investment at todays memory prices.

Because the simulation environment is
fairly complete, we can generate results over
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a broad range of cache pollution values. This
shotgun approach allows us to show the level
of performance improvement under a broad
range of cache pollution scenarios.

4.2 Infrastructure

I have constructed an evaluation environ-
ment built around the MINT MIPS R4000
simulator front end [VF93]. MINT executes
code compiled to run on a MIPS R4000 pro-
System calls are passed on to the
underlying operating system. The back end
has been modified to generate and read ad-
dress traces instead of relying on simulation
to generate cache usage statistics. The simu-
lator currently supports two types of traces:
those generated by the back end of MINT
itself, and PatchWrx traces [SP95]. It pro-
vides support for a multilevel cache hierarchy
and a pipelined memory subsystem based on
the RS/6000 [IBM90], but can be extended
to model arbitrary pipelined memory subsys-
tems. Parameters include bus width, mem-
ory interleave factor, number of outstand-
ing requests on the bus, and the minimum
distance between them. The memory sub-
system simulator also allows for modeling
of memory refresh events and static column
DRAM setup and access time.

Cessor.

The back end includes a programmable
access processor to support decoupled ac-
cess/execute (DAE) architectures [JRHT94]
[SWP86] [Wul92] in combination with feath-
erweight multithreading [Col94].

The integrated memory and cache system
make it possible to collect numerous statis-
tics on cache behavior, both with and with-
out prefetching. Besides hit and miss rates,
the cache subsystem counts the number of
prefetch operations executed for operands
not already in the cache, prefetches of lines
already in the cache to measure unnecessary
prefetches, misses to prefetched operands,
and the number of prefetched lines that were
evicted before they could be referenced at
least once. The number times prefetches are
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evicted by other prefetches and by normal
cache access conflicts is also tracked, allow-
ing us to evaluate the efficacy of manual and
compiler inserted prefetch operations.

Each cache line has been augmented with
a last reference register that always con-
tains the time of the last reference to that
cache line. In the absence of a prefetch-
ing compiler this provides a means of iden-
tifying candidates for prefetching, based on
which lines exhibit the greatest miss fre-
quency. The time stamp indicates the ear-
liest point in time at which a prefetch can
be inserted without displacing a cache line
that will be needed prior to the reference
If the num-

ber of cycles between the time that a cache

to the prefetched cache line.

line becomes available and the time that the
prefetch candidate is required is too short,
then the prefetch is dropped and no prefetch
trace event is generated. This approach en-
ables us to construct an Oracle. An ini-
tial execution or trace is used to generate
a prefetch event trace based on the earliest
time that a prefetch can be inserted into the
instruction stream without evicting a useful
line. The prefetch event trace is then sorted
by timestamp and merged with the original
memory reference trace. The resulting ex-
ecution time gives an upper bound on the
improvement in overall execution time that

can be achieved by prefetching.

Finally, the number of data cache misses
caused by each instruction can be tracked
to create a profile of the instructions that
tend to cause the most data cache misses.
This information provides an indicator of the
amount of effort and the number of sepa-
rate prefetch instructions required to achieve
For each of the
instructions selected to be preceded by a

a given coverage factor.

prefetch, it is possible to trace the addresses
that missed, allowing evaluation of off-line

4. Approach

4.2.1 Remaining Infrastructure

Work

The model currently makes several as-
sumptions: while it does model finite prefetch
issue queues, it currently assumes infinite
write queues. The modeling of prefetch is-
sue queues and write queues is essential to
accurately measure the stall times. There
are some tradeoffs to consider in this model
as well, since there is a potential for con-
tention between the prefetch issue queue and
the write buffer.

While arbitrary levels of caches are sup-
ported for non-prefetching, the model cur-
rently only supports a primary cache and
memory subsystem with prefetching. Since
most modern microprocessor based systems
incorporate large second level or even third
level caches, the system should be enhanced
to support multiple levels of cache.

and on-line prediction algorithms [KV94] [VK91].
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