
Coping with Memory LatencyRestructuring General-Purpose Programsto cope with Memory LatencyInterim Project ReportDirk ColdeweyUCSC-CRL-97-06March 20, 1997Board of Studies in Computer and Information SciencesUniversity of California, Santa CruzSanta Cruz, CA 95064abstractThe widening gap between microprocessor speeds and DRAM has spawneda number of approaches for tolerating the resulting latency of memory accesses.Four common approaches are software controlled prefetching, multi-threading, non-blocking loads, and relaxed consistency models. Most of these methods have beenevaluated only on array based codes, although prefetching has also shown to bee�ective for instruction cache prefetching in operating system codes that have beenhand-optimized for cache performance. Many of these methods su�er from consid-erable runtime overhead, scalability issues, or only work well for a small problemdomain. This thesis proposes to show that a method of code transformation to sup-port a combination of prefetching and coarse-grain multithreading can signi�cantlyreduce the e�ects of memory latency with less runtime overhead than currently pro-posed forms of prefetching, yet that performs well for both array-based codes as wellas a broad class of pointer-based data structures found in commercial applications.

1.1. Technical Workloads 11. Problem StatementWhile the performance of microproces-sors has doubled roughly every three years,DRAM performance has not kept pace, grow-ing at a rate of roughly 22% every threeyears [HP90]. Consequently the performanceof memory is becoming a limiting factor insystem performance. Faster processor cy-cle times can restrict the size of the pri-mary cache, resulting in a trend towardsputting both a small primary cache and alarger secondary cache directly on the pro-cessor chip of high speed processors such asthe Alpha [Han93]. Shared-memory mul-tiprocessor systems, now commonplace inthe commercial marketplace, further exac-erbate the problem by requiring processorsto compete for the bus in order to satisfyrequests to main memory, introducing ad-ditional latency due to bus contention andcache interference. Recent high end sys-tems SMP systems can be con�gured with12 to 20 or more processors. Distributedmemory multiprocessor systems that pro-vide a global memory abstraction, includingnon-uniform memory architectures (NUMA)such as DASH [LLG+92] and systems basedon Scalable Coherent Interconnect [Gus92],such as the Convex Exemplar su�er the ad-ditional overhead of a global communica-tion network that can extend memory ac-cess times for remote memory to hundredsof clock cycles. Caches can eliminate muchof the memory latency by placing the mostfrequently referenced instructions and datain fast SRAM memory, but even infrequentmisses can have a signi�cant impact on sys-tem performance.Most of the published work on data cacheperformance has been focused on technicalworkloads, which tend to have poor datacache performance. Technical workloadsusually consist of single user loop-intensivescienti�c and engineering applications thatinvolve little operating system activity.

1.1 Technical WorkloadsScienti�c and engineering programs tendto exhibit considerable locality, with only afew loops generating the bulk of all mem-ory references. Software controlled prefetch-ing has proven e�ective in hiding a signi�-cant amount of latency in array based datastructures where future address referencesare readily computed from the surroundingloop variables [Mow94] [KL91] [Por89]. Soft-ware controlled prefetching incurs the over-head of separate prefetch instructions foreach prefetched cache line. Block prefetch-ing loads multiple cache lines of contiguousmemory with a single command. Chen andBaer showed that the instruction overheadcould be signi�cant, ranging from 0:9% to8:6% of execution time for the mix of sci-enti�c and numerical applications that theyevaluated, even when block prefetching wassupported [CB94]. Part of the overheadcomes from the prefetch instructions. Addi-tionally, the index values of each prefetchedarray element must be computed twice: oncewhen the array element is prefetched, andagain when the array element is actuallyused. One goal of the proposed approach isto reduce the insruction overhead of softwarecontrolled prefetching when applied to arraybased codes.1.2 Commercial WorkloadsRecent measurements on commercial work-loads have shown their system resource us-age characteristics to be considerably di�er-ent than those of the commonly used scien-ti�c and engineering benchmarks [MDO94].Commercial applications such as the TPCbenchmark suites distributed by the Trans-action Processing Performance Council runin multi-user environments. Unlike techni-cal workloads, they tend to consist of manyuser processes exhibiting short run-lengths

2 1. Problem Statementbecause of frequent I/O operations. A sub-stantial part of the application path-lengthtends to fall in the operating system kernel.The execution paths tend to have fewer loopiterations and more non-loop branches thantechnical codes.Clark showed that cache performance issigni�cantly lower than application onlytraces would indicate [Cla83]. Using tracesof VAX memory references, Agarwal et alshowed that the OS could be responsible forover 50% of the cache miss rate [AHH88].Torrellas et al showed that the OS signi�-cantly a�ects cache performance, stalling theprocessors for 17% to 21% of their non-idletime for a mix of user-level and commer-cial data base workloads [TGH92]. WhenOS interference with the applications' cachedworking sets is factored in, this numberreached up to 25% 1. Chen and Bershadobserved that OS data and instruction lo-cality is considerably worse than that foundin applications [CB93]. Maynard et al notedthat the branching behavior of operating sys-tem codes tend to be signi�cantly more ran-dom than that of applications, causing morecache lines to be touched. This results in amuch larger footprint and higher cache missrate [MDO94]. They also found that somecommercial applications, and database appli-cations in particular, exhibit caching behav-ior very similar to that of the OS. In sum-mary, commercial codes exhibit considerablyless data locality and instruction reuse, andboth data and instruction cache miss ratesare substantially higher.Torrellas [TXD94] and Xia [Xia96] foundthat careful manual restructuring of the ba-sic blocks of operating system codes couldsubstantially reduce the instruction cachemiss rate. Their approach requires a labor-intensive restructuring of the operating sys-tem for each generation of microprocessor1Torrellas' evaluation environment consisted of afour-way SMP utilizing 33 MHz MIPS R3000 proces-sors. This number can be expected to be considerablydi�erent for 12- to 20-way SMP systems running atup to 440 MHz today.

and cache con�guration. A second goal ofthis approach is to reduce the instructioncache miss rates of applications by increas-ing instruction cache reuse. The requiredprogram transformations are expected to in-volve less continual reengineering.The multi-user commercial workloads in-vestigated by Maynard et al, Torrellas et al,and others exhibit radically di�erent datareference patterns than array based appli-cations. While software controlled dataprefetching has proven e�ective in hiding asigni�cant amount of memory latency in ar-ray based applications, direct application ofexisting data prefetching schemes has notbeen shown to be e�ective for commercialapplications. The third goal of our ap-proach is to extend software controlled dataprefetching to arbitrary pointer based datastructures in commercial systems in gen-eral. The approach should lend itself par-ticularly well to transaction processing andother client/server environments.Software controlled prefetching has thepotential to provide a cost-e�ective meansof improving system performance by hidingmemory latency. Software controlled dataprefetching is currently applicable only toarray-based codes, and incurs signi�cant run-time overhead. We demonstrate that a com-bination of prefetching and coarse grain mul-tithreading can hide memory read latencywithout introducing signi�cant runtime over-head. The proposed approach allows pointerbased data structures to be prefetched whilesimultaneously improving instruction cachebehavior.

2.2. Dataow 32. Related WorkA general-purpose approach to hiding la-tency has been the holy grail of large-scalecomputing since memory was identi�ed asa performance bottleneck. This was ad-dressed as one of the two fundamental is-sues in multipocessing by Arvind and Ian-nucci [AI87]. The widening gap between mi-croprocessors and memory speeds is becom-ing an increasingly important factor in sys-tem performance in uniprocessors as well.2.1 MultithreadingThe Denelcor HEP and its successor, theHorizon were among the earliest architec-tures to employ multithreading to hide mem-ory latency [Jor85]. The HEP consisted ofa 16-element execution pipeline that per-formed a context switch at every clock cy-cle. Only a single instruction from any onethread was allowed to occupy the instruc-tion pipeline at any given time, which re-quired a large number o threads to e�ectivelyutilize the machine, and caused extremelypoor single thread performance. Synchro-nization occurred through full/empty tagsfor each memory word and register. Paral-lelism had to be explicitly speci�ed in HEPFortran [Smi81].Several incarnations of multithreading ar-chitectures have evolved since then, includ-ing April [ALKK90] and more recently an in-terleaved multiple context processor [LGH94].April performs a context switch only when amemory request cannot be satis�ed by thecache or local memory, or when explicitly re-quested, such as for a failed synchronizationattempt. The expense of a context switchcan be high because it requires the executionpipelines to complete processing. In con-trast, the multiple context processor inter-leaves the execution of multiple threads ata per-instruction level, similar to the HEP.In contrast to the HEP, though, it employslocal caches and execution unit pipelining.

This results in e�cient use of the processoreven in the single thread case, as well as infewer pipeline bubbles on a cache miss; onlythe thread that su�ers the cache miss is actu-ally stalled. Thus if the processor supports nsimultaneous threads, only 1=n pipeline bub-bles will occur for each thread that blocks ona cache miss.2.2 DataowThe idea of multithreading was takena step further in the MIT Tagged-TokenDataow Architecture, where synchroniza-tion occurred at the instruction level [NA89].Dataow processors rely on low-cost contextswitching as a method of hiding memory la-tency and synchronization overhead [AI87].Dataow architectures restrict their applica-tion domain to dataow graphs, which avoidall but data dependencies. This allows themto maximize the amount of parallelism ex-ploitable by the hardware, right down to theinstruction level.Iannucci considered processor architec-tures to constitute a continuum, with vonNeumann architectures occupying one endof the spectrum and dataow processors atthe other end [Ian88]. He recognized thatit is possible to pick a point on this contin-uum that represented a much coarser gran-ularity of parallelism than at the instruc-tion level, and proposed a hybrid architec-ture between von Neumann and Dataow.Large sequences of serial code can be identi-�ed in most dataow graphs, and the moste�cient execution of serial code occurs on aserial processor equipped with optimizationsresulting from 30 years of engineering expe-rience [Got91].John Ellis pointed out that, in spite of thepromises of scalability and ready access toprogram parallelism, no commercially viablegeneral-purpose architecture at the dataowend of the spectrum had been introduced by

4 2. Related Work1985 [Ell85]. In the meantime, dataow as ahardware architecture appears to be nothingmore than a historical footnote, perhaps be-cause the economics and rapid evolution ofmicroprocessors have made specialized hard-ware economically non-viable, or perhaps be-cause the constraints of the single assignmentlanguages on which dataow represent tooradical a departure from existing practices.In any case, they completely neglect the ex-isting investment in software.2.3 PrefetchingPrefetching decouples the initiation ofmemory read requests from their arrival. Ifenough work can be found between the timethe memory read request was initiated andwhen it is satis�ed, overlapping computationand communication has the potential to com-pletely hide memory latency. If the memorysystem is pipelined, memory references canalso be overlapped with other memory refer-ences.One of the most common forms of prefetch-ing is very commonplace in modern cache de-signs, where cache lines are larger than thememory word size. Some RISC processorswill go so far as to reorder the memory re-quests so that the word that generated themiss will be satis�ed �rst [IBM90]. In thisinstance, the hardware is essentially guess-ing that a temporally proximate future mem-ory reference will fall within the same cacheline. In multiprocessor systems, increasedline sizes carry a concomitant potential forfalse sharing, where several processors thatshare no data invalidate each others lines be-cause they each store to words that fall intothe same cache line. Some modern RISC pro-cessors such as UltraSparc prefetch instruc-tions for several cache lines beyond an in-struction that generates a miss in the instruc-tion cache.Jouppi's proposed multi-stream bu�erswere a step in the evolution of prefetchingsequential operands [Jou90]. Stream bu�ers

automatically prefetch additional cache lines,starting at the initial miss target. His mea-surements indicate that instruction streamsbreak their sequential access pattern bythe time the sixth successive cache line isprefetched. Data reference accesses patternsare less regular, allowing only a 25% reduc-tion in data cache misses to be achieved.This form of speculative prefetching can in-crease memory tra�c by prefetching cachelines that will never be used, and thus maynot be appropriate in a multiprocessor envi-ronment.Porter�eld �rst took advantage of compiletime information to predict future referencesand prefetched all array references in innerloops a single iteration ahead [Por89]. Hethen re�ned his algorithm to take into ac-count dependence information and to esti-mate the number of loop iterations beforethe loop began accessing data that would nolonger �t into the cache. Klaiber and Levyextended Porter�eld's work to fetch into aseparate fetch bu�er more than a single it-eration ahead [KL91]. Mowry noted that,in addition to representing an ine�cient useof chip area, their approach makes non-binding prefetches di�cult [Mow94]. Thenon-binding property of prefetches is essen-tial to ensuring program correctness in amultiprocessor environment. Lam et al pro-posed algorithms to predict cache misses innested loops in order to optimize blockingalgorithms for various cache geometries tomaximize cache reuse [LRW91]. Wolf in-corporated these ideas into a compiler thatperformed automatic parallelization and lo-cality optimizations via loop slicing [Wol92].Mowry extended Lam and Wolf's algorithmsto incorporate prefetching in the form of soft-ware pipelining. The salient features of thisapproach are that Wolf's algorithms performreasonably well at predicting misses. Thesealgorithms are applicable to loop-intensivenumerical codes, and do not address otherdata structures and algorithms. Softwarecontrolled prefetching is an important aspectof the proposed approach, and therefore a

2.4. Non-blocking Loads 5for (i=0; i<256; i++)X[i] = Y[i+1] + Y[I+2] - Z;Figure 2.1: Original Loop./* prolog */for (i=0; i<4; i+=2) {PREFETCH(&X[i]);PREFETCH(&Y[i+1]);}/* steady state loop */for (i=0; i<252; i+=2) {PREFETCH(&X[i+4]);PREFETCH(&Y[i+5]);X[i] = Y[i+1] + Y[i+2] - Z;X[i+1] = Y[i+2] + Y[i+3] - Z;}/* epilogue */for (i=252; i<256; i+=2) {X[i] = Y[i+1] + Y[i+2] - Z;X[i+1] = Y[i+2] + Y[i+3] - Z;} Figure 2.2: Software pipelining ap-plied to a simple loopbrief introduction is in order. Borrowing anexample from Chen and Baer [CB94], con-sider the code transformation in �gure 2.2.The loop is split into a prolog, a steadystate loop, and an epilogue. The prologprefetches the data for the �rst for itera-tions of the steady state loop. The steadystate loop issues prefetch instructions for theoperands required 4 iterations later, whilethe epilogue executes the last four iterationswithout issuing any new prefetch operations.This example assumes that the cache lineholds two array elements, so the loop is un-rolled to avoid unnecessary prefetches, whichcan cause additional pressure on the regis-ters [CB94]. In general, prefetches are sched-uled dme e loop iterations ahead, where e is theestimated execution time of the loop and mis the memory latency. Chen and Baer com-ment on the potential for prefetched data tobe displaced before they can be used or to in-terfere with the working set, although Mowry

tended to double the prefetch distance in hisexperiments without su�ering signi�cantlyfrom interference e�ects [Mow94].2.4 Non-blocking LoadsNon-blocking loads are a special form ofprefetching. Non-blocking loads are regis-ter load instructions that allow processing toproceed upon a data cache miss until the tar-get register is actually referenced. This ap-proach has a number of severe limitations.Loads are non-blocking but not non-binding.A load is considered binding when the refer-enced data is no longer exposed to the co-herency mechanisms of the memory hierar-chy, in this case once it has been assignedto a register 1. This means that the com-piler must ensure that no stores occur tothe address for which a load has previouslybeen initiated [Mow94]. A further problemarises from the need to �nd su�cient workbetween register loads to keep the proces-sor busy. This issue is universal to all ap-proaches to hiding read latency. It is agreater problem for non-blocking loads be-cause of the additional pressure on the reg-isters, since the target register is unavailablefor the entire duration between the time itis �rst referenced to the time that it is actu-ally used. Farkas al used a trace schedulingcompiler retargeted to an architecture sup-porting non-blocking loads to increase thedistance between a load instruction and the�rst use of the corresponding target regis-ter [FJ94] 2. The branching behavior ofnon-numerical codes makes it unlikely that1Prefetches to specialized prefetch bu�ers also suf-fer from this problem [KL91] [Jou90].2It is conceivable that the available distance maybe further constrained by a trend towards multiple-issue and VLIW architectures. Adding registersto increase the available distance introduces a hostof other problems, including the number of mem-ory locations bound to registers and the concomi-tant reduction parallelism available across processorboundaries and between threads in multiple contextenvironments.

6 2. Related Workeven a VLIW compiler can �nd su�cientintra-thread parallelism to keep the proces-sor busy without resorting to speculative ex-ecution [TXD94] [MDO94]. Given the poorinstruction cache performance of commercialworkloads, any bene�ts derived from specu-lative execution is likely to evaporate quicklywith the increased instruction cache missrate.2.5 Relaxed Consistency ModelsMemory consistency models have a sig-ni�cant impact on performance in multi-processor designs. Sequential consistencyguarantees that the execution of instruc-tions behaves as it would on a uniproces-sor that does not employ any load or storebu�ers. This ensures program correctnessin instances where multiple threads of con-trol read and write the same data { mu-tual exclusion. In a uniprocessor, this prob-lem is solved by ensuring that the resultsof store operations are visible to the coher-ence mechanisms of the memory hierarchy,either by making the write bu�er (which isusually small) fully set associative as in vic-tim caches [Jou90], or by using an write-allocate cache policy that ensures that thecaches always reect the values in the storebu�ers. In a multiprocessor, sequential con-sistency can be maintained by ensuring thatall store operations stall until the main mem-ory is updated. It has the unfortunate sidee�ect of disallowing bu�ering of write opera-tions, thus introducing considerable latencyinto the system.Relaxed consistency permits a more ar-bitrary interleaving of read and write re-quests, based on the observation that it pos-sible to get away with it almost all of thetime [P�95]. At times when sequential con-sistency is essential, specialized operationsensure that the state of memory is consistentthroughout the memory hierarchy. Releaseconsistency is the most relaxed memory con-sistency model, requiring that synchroniza-

tion occur via specialized acquire and releaseoperations to acquire and release synchro-nization variables [GLL+90]. Mowry stud-ied the impact of employing release consis-tency instead of sequential consistency onthe Stanford DASH Multiprocessor in con-junction with software-controlled prefetch-ing, and found that it could have a dramaticimpact on performance [Mow94].

3.1. Coarse Grain Multithreading 73. Proposed SolutionSoftware controlled prefetching has provene�ective at hiding memory latency in manyloop intensive codes. We would like to in-vestigate means of hiding latency for a moregeneral class of programs. Given the non-loop branching behavior of operating systemand data base codes, it is unlikely that soft-ware controlled prefetching or other previousmeans of hardware prefetching will prove ef-fective. Another technique must be foundto hide latency. For prefetching to be ef-fective, the prefetch address must be iden-ti�able far enough in advance so that it canbe prefetched into near memory by the timeit is �rst referenced. There may be an in-su�cient number of instructions between thetime a variable is bound to an address andwhen it is �rst used to permit the data to beprefetched in time. A common approach isto perform a context switch before the �rstuse of the remote data. The problem withthis scheme is that the number of contextswitches is a function of the number of re-mote references. Since each context switchcarries overhead, the context switch timemay quickly overwhelm any bene�t derivedfrom hiding the latency of the remote refer-ence. If a su�cient number of remote refer-ences can be prefetched for an entire blockof code at once, then only a single contextswitch is required. Based on this obser-vation, we propose a method of combiningcoarse-grain multithreading with prefetchingto hide memory latency. The general ap-proach is described in section 3.1. Section 3.2describes how this approach can be extendedto allow software controlled prefetching to beapplied to pointer based data structures suchas binary trees. Finally, section 3.3 proposeshardware support for this method that sub-stantially reduces the instruction overhead ofprefetching.

3.1 Coarse Grain MultithreadingWe initially constrain our problem domainto codes that can be partitioned into blocksin which all the data that will be accessed inthe block is predictable between the time theblock is entered and the �rst data reference.The purpose of this restriction is to enablethe programmer or compiler to place prefetchinstructions for the long latency memory ref-erences that occur within the block at thebeginning of the block. In practical terms,this means that blocks must have a smallnumber of entry and exit points. Xia showedthat many of the frequently executed blocksof operating system codes meet this crite-rion [Xia96]. For the time being we also im-pose a second restriction, requiring that allinstructions that perform long latency datareferences within the block must have a highprobability of being executed. This restric-tion makes it possible to avoid issuing un-necessary prefetches. Figure 3.1 illustratesa block of code that does not exhibit thisquality; it cannot necessarily be discerned bycompile time whether Y will be referenced.This restriction does preclude many impor-tant data structures, such as binary trees.Strategies for prefetching such data struc-tures are discussed in section 3.2.Blocks that experience the highest instruc-tion and data cache miss rates are identi-�ed using cache pro�ling [SP95], or simplyby means of educated guesses on the partof the programmer. The generic schema fortranforming these code blocks to performprefetching is as follows:1. Determine the data that will be ref-erenced within the block and placeprefetch commands that prefetch the re-quired data into cache at the beginningof the block. This information mightbe gathered through pro�ling or someother means of gathering cache statis-tics [SP95] [MDO94]. Compilers can

8 3. Proposed Solution/* start of block */...foo(X);if (funky())foo(Y);foo(Z);.../* end of block */Figure 3.1: Reference to Y is di�-cult to predict at the beginning ofthe block.identify references that are likely to missin the data cache for many array basedcodes [Mow94].2. Provide the address of the instruc-tion at which execution can continueonce (su�cient) data has arrived to thecontext switch mechanism. This ad-dress is referred to as the continua-tion. continuation, in accordance withGraf [GHD+91].3. Perform a context switch to some otherpiece of code for which data should beready, if necessary.This scheme presupposes a runtime sys-tem that coordinates the context switches.Context is de�ned as the state of the pro-gram required to let execution proceed atthe speci�ed continuation. Context switchescan occur among multiple blocks that areallowed to execute in parallel. It is conve-nient to think of the blocks among whichcontext switching occurs as threads. Threadsare loosely de�ned as sets of instructionsthat are executed until they voluntarily yieldcontrol to the runtime system. Threadsshare a common address space with otherthreads running within the same system-level process. A thread has associated withit a certain amount of state { at the veryleast the program counter and register val-ues. To reduce the amount of overhead re-quired to save the context of a thread priorto performing a context switch, some archi-tectures provide multiple contexts in hard-ware [ALKK90] [LGH94].

entry point:S(X,Y);finished;Figure 3.2: Orignal Code Blockentry point:prefetch data(&X[0],count);prefetch data(&Y[0],count);prefetch instructions(cont,fini);context_switch;cont:S(X,Y);fini:...Figure 3.3: MultithreadedPrefetching Code Block Schema.The original code block of �gure 3.2 isinstrumented with prefetch instructions fordata and possibly instructions, as illustratedin �gure 3.3. The details of the contextswitch are dependent on the amount of statethat must be saved at the point of the con-text switch, and how much context can besupported in hardware. A generic schema forcontext switching in the absence of hardwaresupport is provided in �gure 3.4. The con-text switch schema minimizes the overheadof a context switch in instances when theruntime system determines that the currentthread is to continue executing, since no con-text is saved unless a di�erent target is deter-mined. The call to next thread causes theruntime system to return the thread identi-�er of the next thread scheduled to run. Ifthe thread identi�er matches that the cur-rent thread, then the current thread contin-ues executing. Otherwise, the context re-quired to permit the current thread to run,once it is rescheduled, is saved. The entrypoint of the current thread, identi�ed withthe context restore label in �gure 3.4, isthen passed to the runtime system in orderto provide the reentry point of the currentthread.There are several problems with thisscheme. First, the overhead of a context

3.2. Strategies for arbitrary Data Structures 9context_switch:target = next_thread();if (target != this_thread) {thread_save(this_thread);thread_switch(this_thread,restore);restore:thread_restore(this_thread)}continuation: ...Figure 3.4: Context switch schema.switch may severely reduce any performancebene�ts derived from having the prefetcheddata in the cache unless context switchescan be performed without signi�cant over-head. The simple context switch state-ment hides the fact that, at the very least,the continuation address must be communi-cated to the thread control software. Theoverhead of saving thread context may beaddressed by providing multiple contexts inhardware [ALKK90] [LGH94]. Second, theremust be another block of code that is readyto run in order to keep the processor busywhile the data for the current block is beingprefetched. The other block should not suf-fer signi�cant cache conicts with the databeing prefetched. Evaluating which blocksof code are ready to run can also be expen-sive, depending upon the complexity of theunderlying mechanism. For software pipelin-ing, scheduling is a natural result of the loop-ing mechanism, but our target codes are notconstrained to loop intensive codes. Mowryshowed that a victim cache can be e�ective inhiding some of the spurious cache evictionsdue to conicts [Mow94], but clearly the cur-rently executing context should not be a loopintensive blocked algorithm that e�ectivelyutilizes most of the cache before yielding toanother thread. A specialized hardware con-text unit to support low overhead schedulingof code blocks and control prefetching is pro-posed in section 3.3.

3.2 Strategies for arbitrary DataStructuresPointer-based data structures do not lendthemselves particularly well to prefetching.Consider a search through a linked list ofstructures, where the a pointer to the headof the next structure is the only means ofdetermining the address of the next element.Prefetching clearly takes on an entirely dif-ferent meaning than when the address of thenext element can be determined as a functionof the base address of a data structure andthe induction variables. Traversal of a linkedlist is described in section 3.2.1. The branch-ing behavior of many applications such astree structures precludes the use of softwarecontrolled prefetching because the traversalthrough the data structure essentially fol-lows a random path. Consider the traversalof a binary tree. If both the left and rightnode of a tree are always prefetched, thenone prefetch target will usually have beenprefetched in vain. To make matters worse,software pipelining is scheduled D = d lseloop iterations ahead in order to hide la-tency, where s is the execution time of theshortest path through the loop and l is theprefetch latency. It is obviously not desirableto prefetch up to 2D nodes when only D arerequired for the comparisons that control thetraversal through the tree.While a single traversal of the tree does notprovide su�cient opportunity to exploit soft-ware pipelining, many traversals performedconcurrently can provide su�cient paral-lelism to allow software pipelining to be ex-ploited. Conceivably, the traversal of com-mon data structures in many codes is notinitiated in tight loops, but is temporally dis-tributed. In general, some codes that haveruntime pro�les similar to that illustrated in�gure 3.5 can be restructured so that traver-sal of the data structures is performed in par-allel. Software pipelining can then be ap-plied. In an online transaction processingenvironment, for instance, multiple tempo-rally proximate transactions can conceivably

10 3. Proposed Solution...traverse(DataStructure, key1);...other_work_1();...traverse(DataStructure, key2);other_work_2();...traverse(DataStructure, key3);...Figure 3.5: Code exhibiting poten-tial for temporal restructuring.be grouped for simultaneous traversal of thedata structure.The premise behind the approach is thata single unit of work performed on a givendata structure may not provide su�cient op-portunity to hide the latency via softwarepipelining, work is allowed to accumulate un-til a threshold is reached or a request for im-mediate resumption forces work to proceed.Traversal of a binary search tree is describedin section 3.2.2, followed by a recursive ver-sion in section 3.2.3.3.2.1 Searching an UnorderedLinked ListNeither non-blocking loads nor traditionalsoftware controlled prefetching can help hidethe latency encountered in traversing alinked list, although both techniques may be-come applicable after program transforma-tion. The list header points only to the�rst element on the linked list, and subse-quent elements cannot generally be knownin advance. Recall that, in order to hidethe memory latency of references in loop-based codes, prefetches may have to occurmultiple iterations in advance. This is prob-lematic for several reasons. Some point-ers may generate memory exceptions. Thisproblem is solved by making prefetches non-excepting [Mow94]. A larger problem is thatthe address of the nth element requires thatthe addresses of the pointers to the next �eld

of each preceding element in the linked list beresolved. While Mowry's compiler algorithmis able to prefetch a single level of indirectionin a dense array, a linked list represents anarbitrary level of indirection.The snippet of code in �gure 3.7 illustratesa search through a linked list using softwarepipelined prefetching1. The overhead con-sists of the prefetch instructions and the pro-log. The prolog, as coded, is unlikely toyield any direct bene�t because the �rst �veprefetches are likely to miss; it does allowus to prefetch far enough in advance duringthe steady state to hide most of the mem-ory latency. The variable PipeDepth of thisexample represents the prefetch distance, i.e.the number of iterations that the code is exe-cuted in advance in order to hide the memorylatency. If the memory latency is 100 cyclesand the prefetch distance is 10, this couldimpose a 1000 cycle stall time.Alternatively, the list header can maintaina separate array whose elements always pointto the �rst PipeDepth elements instead ofjust the �rst element. Additional overheadis incurred in the extra time required for in-sertion and deletion of the �rst PipeDepth el-ements for the bene�t of completely avoidingthe initial misses on a search2. There is alsothe overhead associated with maintaining anarray of PipeDepth elements, which is ex-pected to have a neglible impact on the datafootprint. If list->head is now assumed tobe an array of PipeDepth elements, the pro-log code is illustrated in �gure 3.8If the desired element is located at thefront of the list, then any extra prefetch op-erations represent pure overhead and unnec-essary additional memory tra�c. The same1Remember that this example is for the purposeof illustrating how a pointer chain may be prefetched.If a linked list is long enough and searched frequentlyenough to warrant prefetching, a more e�cient datastructure would presumably be selected.2If the list is unordered, as assumed here, then in-sertion is only more expensive for the �rst PipeDepthelements, since the list header can include a pointerto element PipeDepth+1.

3.2. Strategies for arbitrary Data Structures 11traverse(DataStructure, key){ if (accumulated keys < threshold) {add key to setperform context switch}Software Pipeline traversalsenable stalled threads} Figure 3.6: Accumulation of su�cient traversal requests to permit e�ective soft-ware pipelining.list_element_psearch_list(list_p list, int key){ int i, j, c, s;list_element_t *p = list->head, *l;/* prolog */s = min(PipeDepth, list->count);for (i=0; i<s && p!=NULL; i++) {PREFETCH(&p->key, sizeof(int));PREFETCH(&p->next, sizeof(list_element_p));p = p->next;}/* steady state */for (c=0, l=list->head; p!=NULL; p=p->next, l=l->next, c++) {PREFETCH(&p->key, sizeof(int));PREFETCH(&p->next, sizeof(list_element_p));if (l->key == key) {printf("found key %d at position %d\n", key, c);return l;}}/* */for (; l!=NULL; l=l->next, c++)if (l->key == key) {printf("found key %d at position %d (postamble)\n", key, c);return l;}return NULL;} Figure 3.7: Software Pipelined prefetching of a linked list.

12 3. Proposed Solutionfor (i=0; i<s && p[i]!=NULL; i++) {PREFETCH(&p[i]->key, sizeof(int));PREFETCH(&p[i]->next, sizeof(list_element_p));} Figure 3.8: Prefetch Prolog of Linked List Search.is true for any prefetches issued for elementsin the linked list located after the desired ele-ment. Since we are primarily concerned withaggregate throughput, however, it is reason-able to expect that the cost of these few casescan be amortized in the course of many iter-ations over a su�ciently long list. Naturally,a more time e�cient data stucture might bea better choice than the linked list selected asan illustrative example here; a means of ap-plying prefetching to the search of a binarytree is discussed in the next section.3.2.2 Binary Tree SearchThe following example illustrates the im-plementation of a multithreaded tree search.The original version in �gure 3.10 includesthe de�nitions of data structures and globalsused in both this and the recursive versiondescribed in 3.2.3. For the sake of simplic-ity, the example assumes lightweight threadsthat perform blocking search operations ona static binary tree, i.e. one which doesnot change between invocations. There isno strict requirement that the application beimplemented using lightweight threads { itneed only support software pipelining. Pro-vided that there is some other synchroniza-tion mechanism, the search request can beimplemeted as a non-blocking call. In theexample provided in �gure 3.13, threads thatsubmit requests to search the tree are addedto an array of requestors until the search re-quest can be satis�ed, although the threadcould be replaced with a callback function,or simply a pointer back to the data struc-ture that creates the correspondence betweeneach search request and the correspondinganswer. The goal is to accumulate enoughsearch requests to allow us to pipeline the

searches for software controlled prefetching;how this is accomplished is dependent on theapplication { a multi-threaded client/serverapplication will behave di�erently than acompiler.As each request is received, the root nodeof the tree and the search key are addedto the search node set. Static or dynamicanalysis of the ideal prefetch distance de-termines a threshold below which prefetch-ing is not considered e�ective, representedby the global variable barrier in the sam-ple code of �gure 3.11. If the number ofreqests for a search falls below this thresh-old, the search is postponed until a su�cientnumber of requests have been submitted toallow processing to proceed. This thresh-old is thus also the maximum number ofkeys for which searches are conducted in thecourse of a single invocation of the simulta-neous search function tree gang search().Since a binary search tree is not necessar-ily balanced, some keys will be matched ear-lier than others. The number of keys be-ing sought will consequently diminish as thesearch progresses through the tree, and theloop over the search keys becomes progres-sively tighter. Eventually the number of re-maining keys will be too small to e�ectivelyhide the memory latency.There are two complimentary means of en-suring that a su�cient number of searchesare in the software pipeline. First, alower bound on the number of simultane-ous searches is established. If the numberof keys remaining in the search set falls be-low the lower bound, then further search-ing is postponed and the function returns,allowing other work in the system to pro-ceed. The stragglers remain in the set of

3.2. Strategies for arbitrary Data Structures 13search nodes until the next call to the rou-tine. As long as simultaneous searches con-tinue to be conducted, the search for eachkey is guaranteed to complete. Since thisis a binary search tree, insertion of addi-tional tree nodes will not adversely a�ectthis scheme, although any deletions from thetree between instantiations of the searcheswill invalidate the search. Second, the ini-tial threshold that triggered the search isadjusted so that most of the latency canbe hidden most of the time without intro-ducing signi�cant self-interference or violat-ing other system requirements such as ser-vice response time. Recall that the �rst callto the simultaneous search function initiallyhas only pointers to the root occupying thesearch node set. While the MSHRs ensurethat only one memory request is outstand-ing to the same cache line at any given time,the initial iterations of the search do not pro-vide enough prefetch targets to hide muchlatency. A positive side e�ect of postponingsearches for the stragglers is that a diverseset of nodes begins populating the set of re-quested nodes in the course of a few instan-tiations of the simultaneous search. A draw-back is that the algorithm becomes sensitiveto deletions. The algorithm can be made ro-bust with respect to deletions by adding astate �eld to the tree header and marking thetree as \dirty". requiring remaining searchesto start at the root again and then be forcedto completion to guarantee termination3.The results for various threshold values aredisplayed in �gure 3.9. The speedup variedfrom 28.7% to 32.3%, where the completionthreshold corresponds to the pipeline depth,and the startup threshold values refer the thenumber of requests that were accumulatedbefore computation would commence. Sincethe di�erence between the startup and thecompletion thresholds represents the numberof requests actually worked on, the relativelylow performance improvement of the runs3There are presumably better solutions, but thissimple one su�ces in order to show robustness.

with both low completion and low startupthreshold not surprising.3.2.3 RecursionRecursion poses a special challenge to theapproach. In order to search a tree recur-sively, several nested sets of subroutine callscould be kept in progress simultaneously,with context switches between them via callsto longjmp(). This adds signi�cant over-head in form of saving registers, as well asadding the potential for a signi�cant amountof stack growth. Although the sum of thestack sizes is no worse than it would be if thesearches were performed sequentially, there ispotential for interference among the di�erentthreads due to the resulting increase in thedata footprint.These issues can be e�ectively side-steppedby performing the search in a manner sim-ilar to the loop-based tree search of sec-tion 3.2.2. The code in �gure 3.14 illus-trates a recursive version of the search de-scribed in section 3.2.2. The request issubmitted via the blocking routine of �g-ure 3.15, and the recursive search is illus-trated in �gure 3.14. The recursion is un-ravelled if the available amount of work doesnot meet the lower bound criterion on thesoftware pipeline depth. For this particularapplication this is of no consequence, but forapplications which rely on maintaining thestate of the stack variables from prior pro-cedure invocations, this could prove more ofa problem. In these cases the search can beallowed to complete without regard for thelower bound, at the expense of more mem-ory stalls.3.2.4 ApplicabilityThe approach requires a considerable trans-formation of the underlying application,which now must be able to schedule work ina decoupled manner. From the perspectiveof an object oriented system, a message issent to an object that employs accumulation

14 3. Proposed Solution
Performace Improvement for Various Thresholds

"Speedup"
 0.319
 0.313
 0.306

 0.3
 0.294

1 2 3 4 5 6 7 8 9 10
15

20

25

0.285
0.29

0.295
0.3

0.305
0.31

0.315
0.32

0.325
0.33

Completion Threshold

Startup Threshold

Speedup

Figure 3.9: Threshold and Pipeline Depth Values for Prefetching.requires the caller to handle postponementof the result. This means that the caller es-sentially performs a non-blocking request tothe server. One approach might be to treataccess to data structures that are expensiveas one might any other long-latency opera-tion { by blockking the calling thread. I sus-pect that, in practice, this would involve toomuch overhead. A better approach would beto parallelize the subsystem so that feather-weight threads can be utilized.If the application that is being optimizedis a compiler, this might correspond to ini-tiating syntax analysis of di�erent functionswithin the program simultaneously, and thenprocessing the results for each function sep-arately.For operating system codes and other sys-tems with real-time constraints, a micro-timer can be provided with a small amountof additional hardware. Short durationtimers can be expensive to implement e�-ciently in software for a signi�cant numberof threads. These timers can be used to en-

force a scheduling discipline that preventstime critical activities from expiring if an in-su�cient number of events have accumulatedto trigger processing.Because commercial applications exhibitsigni�cant instruction cache miss rates [TXD94][MDO94] [Xia96], this approach bene�tsthe implementation even in the absence ofprefetching hardware because it guarantees,at the very least, instruction cache reuse byforcing temporal locality of instruction ref-erences. Conceivably data locality bene�tsas well, although it is not clear to what ex-tent this can make a di�erence except wherenon-blocking loads can exploit the additionalparallelism.3.3 Context UnitIdeally, we would like to be able to dy-namically schedule units of work when thedata they operate upon is available in nearmemory. The operating system does thisfor I/O requests, for for instance, but the

3.3. Context Unit 15typedef struct node_s {int key;int depth;struct node_s *left, *right;} node_t, *node_p;typedef struct node_set_s {int count;int key[MAX_THRESHOLD];node_p node[MAX_THRESHOLD];thread_t *thread[MAX_THRESHOLD];} node_set_t, *node_set_p;typedef struct tree_s {int count;node_p root;} tree_t, *tree_p;int PipeDepth = 5, Threshold = 20;node_p tree_search(tree_p tree, int key){ node_p node = tree->root;while (node != NULL) {if (key == node->key)return node;if (abs(key) < abs(node->key))node = node->left;elsenode = node->right;}return NULL;} Figure 3.10: Simple search of a binary search.delays due to disk latency are of su�cientmagnitude that operating system overheadis neglible. Since we're interested in hidingmemory latency, which is measured in scoresof cycles rather than hundreds of thousandsof cycles, more attention must be paid tooverhead. One way of reducing instructionoverhead is to increase the amount of usefuldata prefetched with each prefetch instruc-tion. Block prefetching loads multiple cachelines of contiguous memory with a singlecommand. Chen and Baer showed that, evenwhen block prefetching is used, the instruc-tion overhead imposed by software pipelin-
ing can be signi�cant, ranging from 0:9% to8:6% for the mix of scienti�c and numeri-cal applications that they evaluated [CB94].The number of prefetch commands is not theonly overhead associated with software con-trolled pipelining. Another form of overheadcomes from having to recalculate loop indexvalues multiple times { once for the prefetch,and again when the data is used. If soft-ware controlled pipelining can hide most ofthe latency of an array based application, re-ducing prefetch instruction overhead couldhave a signi�cant impact on the �nal exe-cution time. The proposed combination of

16 3. Proposed Solution#define PREFETCH_NODE(i) PREFETCH(node[i], sizeof(node_t))static int barrier = 0;static node_set_t node_set = { 0, {0}, {NULL} };static node_p *node = node_set.node, tmp;static node_set_p tree_gang_search(void);node_set_ptree_search_accumulate(thread_p new_thread, tree_p tree, int new_key){ thread_t *thread = node_set.thread, *tmp_thread;int *key = node_set.key, tmp_key;int prolog, i;if (tree) {thread[barrier] = new_thread;node[barrier] = tree->root;key[barrier] = new_key;barrier++;if (barrier < Threshold)return NULL;}if (!barrier)return NULL;return tree_gang_search();} Figure 3.11: Code to accumulate search requests.prefetching and multithreading imposes ad-ditional overhead in managing the contextswitches.A specialized hardware context unit to sup-port low overhead scheduling of code blocksand control prefetching might consist of thefollowing components:� A table of prefetch schemes, where aprefetch scheme is de�ned by stride, ele-ment size, initial value, and the termina-tion condition. Any number of prefetchschemes may be associated with a con-tinuation, allowing an arbitrary num-ber of prefetch targets to be pendingfor each continuation. This table actsas a cache that is indexed by a uniqueidenti�er for each continuation, such asthe address of the �rst instruction in ablock.
� A table of base addresses with pointersto the associated prefetch schemes.� A state machine to compute prefetch ad-dresses and continuation values. Prefetchaddresses are immediately submitted tothe memory hierarchy to be prefetched.� Synchronization ports from which con-tinuation values can be read. Readinga synchronization port may trigger theprefetch of a set of prefetch addressesassociated with that port, with one portassociated with each continuation.� A queue of enabled continuations. Acontinuation is considered enabled ifprefetching has been initiated and su�-cient operands have arrived to drive thecomputation forward without encoun-tering read stalls. In software pipelin-

3.3. Context Unit 17node_set_ptree_gang_search(){ node_set.count = barrier;prolog = min(PipeDepth, barrier);for (i=0; i<prolog; i++)PREFETCH_NODE(i);while (barrier) {/* If the threshold has been reached, postpone further searching.* The condition tree == NULL means we're "forcing" the search.*/if (barrier < PipeDepth && tree != NULL)break;/* The MSHRs check for duplicate prefetches.*/for (i=0; i<barrier;) {if (node[i] == NULL || (key[i] == node[i]->key)) {barrier--;SWAP(node[i], node[barrier], tmp);SWAP(key[i], key[barrier], tmp_key);SWAP(thread[i], thread[barrier], tmp_thread);continue;}if (key[i]) < node[i]->key)node[i] = node[i]->left;elsenode[i] = node[i]->right;PREFETCH_NODE(i);i++;}}return &node_set;} Figure 3.12: Loop-based multithreaded search of a binary tree.ing, this condition is met once the epiloghas completed.The continuation values can representbranch target addresses, index values, ordata addresses. The number of simultane-ous outstanding prefetches should be keptsmall, while the number of available prefetchschemes may be arbitrarily large.
3.3.1 SynchronizationPrefetch operations must be synchronizedbetween the processor and the context unitin order to support loop intensive codes.Once the context unit has the information ofwhat to prefetch and how much to prefetchfor each loop iteration, the CPU needs to sig-nal communicate completion of each unit ofwork so that the context unit can initiate anew prefetch operation. This occurs whenthe CPU loads a continuation value from the

18 3. Proposed Solutionvoidblocking_search(thread_t *thread, tree_t *tree, key_t key){ node_set_t *answers;thread_t *sleeper;if ((answers = tree_search_accumulate(thread, tree, key)) == NULL) {thread_sleep();return;}for (sleeper = answers->thread; sleeper != NULL; sleeper++)thread_awaken(sleeper);} Figure 3.13: Multithreaded search request.inttree_gang_search_recurse(tree_t *tree, node_set_t *node_set, int count){ node_p *node = node_set.node, tmp;for (i=0; i<count;) {if (node[i] == NULL || (key[i] == node[i]->key)) {count--;SWAP(node[i], node[count], tmp);SWAP(key[i], key[count], tmp_key);SWAP(thread[i], thread[count], tmp_thread);continue;}if (key[i]) < node[i]->key)node[i] = node[i]->left;elsenode[i] = node[i]->right;PREFETCH_NODE(i);i++;}if (count >= PipeDepth && tree != NULL)return tree_gang_search_recurse(node_set, count);return count;} Figure 3.14: Recursive multithreaded search of binary a tree.context unit.write context id to context unitif (fetch method required)write context fetch methodswrite any runtime context informationread continuation valueThe �rst read of the synchronization portfor a given context results in two sets ofprefetches being enqueued; one for the �rst set of prefetch operands and one for subse-quent sets. Consider the following example,which is representative of a loop declarationfor a blocked algorithm:for (i=0; i<1000; i+=50)loop(i, X);The loop parameters, 0, 1000, 50 are pa-rameters of the context fetch method andare communicated to the context unit via

3.3. Context Unit 19node_set_ptree_gang_search(tree_p tree, int new_key){ static int barrier = 0;static node_set_t node_set = { 0, {0}, {NULL} };static node_p *node = node_set.node, tmp;thread_t *thread = node_set.thread, *tmp_thread;int *key = node_set.key, tmp_key;int prolog, i;if (tree) {node[barrier] = tree->root;key[barrier] = new_key;barrier++;if (barrier < Threshold)return NULL;}if (!barrier)return NULL;node_set.count = barrier;prolog = min(PipeDepth, barrier);for (i=0; i<prolog; i++)PREFETCH_NODE(i);barrier = tree_gang_search_recurse(node_set, barrier);return &node_set;} Figure 3.15: Mutithreaded binary search tree request, recursive version.the call to context method in the followingcode. The base addresses of the two long la-tency operands is written to the context unitvia context base. The transformed code isthen:context_method(X, 0, 10000, 50);for (i=next i; i<1000; i=next i)loop(i, X);The �rst instance of next i initiates the�rst prefetch set and enqueues subsequentprefetches. Thus the initial next i corre-sponds to the prolog of software pipelinedprefetching. By replacing the original as-signment i=0 and the increment operationi+=50 with next i, the recurring run timeoverhead of the synchronization has been re-duced to a single load instruction per loop
iteration4. If the cost of a the next instruc-tion is the same as a register ALU operation,i.e. when the context unit is on-chip, thenthe total overhead of prefetching is the ini-tial cost of preparing the context unit withthe prefetch method and base address.3.3.2 MacropipeliningSoftware pipelining causes at least oneprefetch command to be issued for each cacheline that is to be prefetched. It is possi-ble to reduce some of this overhead by ex-tending the prefetch command to fetch mul-4More accurate would be the di�erence betweena load instruction and a register ALU operation togenerate the next index value.

20 3. Proposed Solutiontiple blocks at each iteration, but this onlymitigates the problem and does not gener-alize beyond contiguous blocks of memory.Macropipelining is an extension of softwarepipelining that allows all of the operands fora loop to be prefetched without signi�cantruntime overhead.The context unit prefetches Context[0]and Context[1] using the methods pro-vided, which are downloaded to the contextunit. Their actual implementation is de-pendent on the capabilities of the contextunit, but semantically they can be thoughof as remote procedure calls that generateloop index values, add them to the providedo�sets, prefetch the appropriate cache lines,and write the resultant loop index value toa table. When the appropriate next com-mand is issued by the processor, the index ismatched against the supplied value via thenext i instruction, and proceeds.Figure 3.16 illustrates how macropipelin-ing can be combined with blocking optimiza-tions to increase cache reuse while minimiz-ing the number of instructions required toprefetch the required cache lines. The nextprimitive is used to synchronize with the con-text unit, notifying it that work on one setof operands has completed and the prefetchof the next set may proceed. The valuereturned from the next i command is thecontinuation value associated with the nextset of available data. If there are no con-straints on the order in which blocks are ac-cessed, then the described form of synchro-nization allows blocks to be computed outof order, depending on what can be accomo-dated in the cache. The described form ofprefetching does not require the entire set ofprefetch operands to be fetched before ex-ecution can proceed { once the �rst set ofprefetch schemes have been executed, execu-tion can proceed.

3.4 SummaryThis study investigated a number of schemesto tolerate latency in commercial applica-tions, beginning with a generic scheme thatcombines prefetching with coarse grain mul-tithreading. An alternative scheme allowsapplication of software pipelining to genericpointer chains, which are augmented withprefetch structures to reduce the missesduring the prolog phase. Data structuresin which the traversal path is not pre-dictable, such as binary search trees, are par-allelized by accumulating a su�cient num-ber of traversal requests to enable softwarepipelining across multiple traversals. Whereit is possible to accumulate traversal requestsfor a data structure in software systems thatexhibit poor instruction cache behavior, be-tween requests, the instruction cache hit rateshould improve as well. Finally, a hard-ware mechanism is proposed that can sub-stantially reduce the instruction overhead ofprefetching when macropipelining, a general-ized form of software pipelining, is applied toarray-based and commercial codes.3.5 Future WorkA signi�cant potential bene�t of the cal-culated procrastination strategy is that itshould also improve instruction cache perfor-mance. Our simulation infrastructure doesnot currently measure instruction cache be-havior at all. This needs to be investi-gated. The integration of the prefetch hard-ware simulator remains to be done. And �-nally, a broader set of applications need tobe investigated in a more complex memoryhierarchy than assumed for this study.

3.5. Future Work 21
context_t Context[2];Context[0].base = X;Context[0].method = X_prefetch;Context[1].base = Y;Context[1].method = Y_prefetch;size = Context[0].size;PREFETCH(Context, 2);for (i=next i; i<size(X); i=next i)for (j=next j; j<size(Y); j=next j)for (ii=i; ii<blocksize(X); ii++) {for (jj=j; jj<blocksize(Y); jj++)F(X[ii][jj],Y[jj]);} Figure 3.16: Reducing prefetch overhead via Macropipelining.

22 4. Approach4. ApproachThere are several components to this re-search. The �rst demonstrates the e�c-tiveness of combining prefetching and coarsegrain multithreading on standard scienti�c,engineering, and numerical codes. A su�-ciently representative set of standard scien-ti�c, engineering, and numerical benchmarkscan be hand-coded to perform prefetching.Second, the restructuring of non-numericcodes is evaluated. This requires a creativeapproach, as discussed in section 4.1. Fi-nally, the proposed hardware support is sim-ulated at the behavioral level. It has alreadybeen implemented and tested but remains tobe incorporated into the simulation environ-ment.Prefetching on its own does not achieve itsfull potential even in scienti�c applications,which can be attributed to several factors.In addition to introducing overhead to gen-erate the addresses and execute the prefetchoperations themselves, prefetching can havedestructive side e�ects. A prefetch opera-tion may evict a line from the cache thatcontains data that is still needed before theprefetched data is referenced. If the evictedblock of memory is referenced again beforethe prefetched cache line is used, the prefetchoperation has the e�ect of replacing a singlemiss with two misses and a prefetch opera-tion. Similarly, a prefetch that arrives tooearly may be evicted by a cache miss beforeit can be used. Prefetches may evict the re-sults of other useful prefetch operations be-fore they are ever referenced. Thus the pro-posed solutions are evaluated for a numberof cache con�gurations.4.1 EvaluationValidation of performance on scienti�ccodes is relatively straightforward using theevaluation infrastructure currently in place.The benchmarks for SPLASH, NAS, and

other numeric applications are widely avail-able. Because of the amount of hand restruc-turing required, I will select an interestingsubset of these benchmarks for evaluation.A potentially challenging component ofthis thesis is evaluating the transformationson commercial codes. These tend to be verylarge software systems that are the result ofhundreds of man-years of e�ort. It is unre-alistic to think that a single person could behope to complete the restructuring of a ma-jor application within the time-span reason-able for a doctoral dissertation, and is wellbeyond the scope of the proposed research.As a result, I plan to show that the advocatedapproach is applicable to a selected group ofdata structures and algorithms that can beidenti�ed by means of pro�ling or publishedresults from the research of others. This in-formation will include the following:� the data structure and algorithm em-ployed.� the average amount of cache pollutionbetween invocations.� the throughput.The data structures and and algorithmswill be optimized, if possible, using the tech-niques proposed. If it is not possible, thereasons will be identi�ed. If the throughputof the system is measured in transactions persecond, for instance, we should be able to es-timate the improvement as a result of ourprogram transformations.The statistics on cache pollution are usedas a parameter to generate cache interferencebetween successive invocations of optimizedcode, as outlined in �gure 4.1. This is con-trasted with unoptimized code in a mannerdescribed in �gure 4.2. Cache statistics areonly gathered for the sections of code withinthe loop that are being evaluated, and dis-abled for the remaining sections.This makes it possible to estimate perfor-mance improvement on this section of code

4.2. Infrastructure 23/* optimized code */while (testing) {perturb_cache(%dirty)turn on cache statistics gatheringcount = gang_schedule(work,results)if result != NULL {for (i=0; i<count; i++) {result = results[i]turn off cache stats gatheringprocess_result(result)turn on cache stats gathering}}turn off cache stats gathering}Figure 4.1: Evaluation of optimizedcode./* unoptimized code */while (testing) {perturb_cache(%dirty)turn on cache statsresult = schedule(work)turn off cache statsprocess_result(result)}Figure 4.2: Evaluation of unopti-mized code.over the required number of iterations. Cau-tion must be exercised to avoid adversely af-fecting throughput for the selected system orapplication in other ways. For instance, forthe tree example described above, this ap-proach works well, but if I now require mul-tiple trees to occupy memory at the sametime, I have potentially adversely a�ectedthe memory and cache footprints of the ap-plication. In general, I'm operating underthe assumption that memory is cheap andplentiful, just slow. Given both Tandem andOracle's approach of throwing memory atany problem, this is a reasonable assumption{ adding 32MB of memory for even a 10%performance improvement is a very good re-turn on investment at todays memory prices.Because the simulation environment isfairly complete, we can generate results over

a broad range of cache pollution values. Thisshotgun approach allows us to show the levelof performance improvement under a broadrange of cache pollution scenarios.4.2 InfrastructureI have constructed an evaluation environ-ment built around the MINT MIPS R4000simulator front end [VF93]. MINT executescode compiled to run on a MIPS R4000 pro-cessor. System calls are passed on to theunderlying operating system. The back endhas been modi�ed to generate and read ad-dress traces instead of relying on simulationto generate cache usage statistics. The simu-lator currently supports two types of traces:those generated by the back end of MINTitself, and PatchWrx traces [SP95]. It pro-vides support for a multilevel cache hierarchyand a pipelined memory subsystem based onthe RS/6000 [IBM90], but can be extendedto model arbitrary pipelined memory subsys-tems. Parameters include bus width, mem-ory interleave factor, number of outstand-ing requests on the bus, and the minimumdistance between them. The memory sub-system simulator also allows for modelingof memory refresh events and static columnDRAM setup and access time.The back end includes a programmableaccess processor to support decoupled ac-cess/execute (DAE) architectures [JRH+94][SWP86] [Wul92] in combination with feath-erweight multithreading [Col94].The integrated memory and cache systemmake it possible to collect numerous statis-tics on cache behavior, both with and with-out prefetching. Besides hit and miss rates,the cache subsystem counts the number ofprefetch operations executed for operandsnot already in the cache, prefetches of linesalready in the cache to measure unnecessaryprefetches, misses to prefetched operands,and the number of prefetched lines that wereevicted before they could be referenced atleast once. The number times prefetches are

24 4. Approachevicted by other prefetches and by normalcache access conicts is also tracked, allow-ing us to evaluate the e�cacy of manual andcompiler inserted prefetch operations.Each cache line has been augmented witha last reference register that always con-tains the time of the last reference to thatcache line. In the absence of a prefetch-ing compiler this provides a means of iden-tifying candidates for prefetching, based onwhich lines exhibit the greatest miss fre-quency. The time stamp indicates the ear-liest point in time at which a prefetch canbe inserted without displacing a cache linethat will be needed prior to the referenceto the prefetched cache line. If the num-ber of cycles between the time that a cacheline becomes available and the time that theprefetch candidate is required is too short,then the prefetch is dropped and no prefetchtrace event is generated. This approach en-ables us to construct an Oracle. An ini-tial execution or trace is used to generatea prefetch event trace based on the earliesttime that a prefetch can be inserted into theinstruction stream without evicting a usefulline. The prefetch event trace is then sortedby timestamp and merged with the originalmemory reference trace. The resulting ex-ecution time gives an upper bound on theimprovement in overall execution time thatcan be achieved by prefetching.Finally, the number of data cache missescaused by each instruction can be trackedto create a pro�le of the instructions thattend to cause the most data cache misses.This information provides an indicator of theamount of e�ort and the number of sepa-rate prefetch instructions required to achievea given coverage factor. For each of theinstructions selected to be preceded by aprefetch, it is possible to trace the addressesthat missed, allowing evaluation of o�-lineand on-line prediction algorithms [KV94] [VK91].

4.2.1 Remaining InfrastructureWorkThe model currently makes several as-sumptions: while it does model �nite prefetchissue queues, it currently assumes in�nitewrite queues. The modeling of prefetch is-sue queues and write queues is essential toaccurately measure the stall times. Thereare some tradeo�s to consider in this modelas well, since there is a potential for con-tention between the prefetch issue queue andthe write bu�er.While arbitrary levels of caches are sup-ported for non-prefetching, the model cur-rently only supports a primary cache andmemory subsystem with prefetching. Sincemost modern microprocessor based systemsincorporate large second level or even thirdlevel caches, the system should be enhancedto support multiple levels of cache.

4.2. Infrastructure 25References[AHH88] Anant Agarwal, John Hennessy,and Mark Horowitz. Cache Per-formance of Operating Systemand Multiprogramming Work-loads. ACM Transactions onComputer Systems, 6(4):393{431,November 1988.[AI87] Arvind and Robert A. Ian-nucci. Two Fundamental Issuesin Multi-processing. TechnicalReport MIT Computation Struc-tures Group Memo 226-6, MIT,May 1987. Conference on Paral-lel Processing in Science and En-gineering.[ALKK90] A. Agarwal, B-H. Lim, D. Kranz,and J. Kubiatowicz. APRIL: AProcessor Architecture for Mul-tiprocessing. In 17th Int. Symp.on Computer Architecture, pages104{114. IEEE, 1990.[CB93] J. Bradley Chen and Brian N.Bershad. The Impact of Operat-ing System Structure on MemorySystem Performance. OperatingSystems Review, 27(5), December1993.[CB94] Tien-Fu Chen and Jean-LoupBaer. A Performance Studyof Software and Hardware DataPrefetching Schemes. In Pro-ceedings of the 21st Annual In-ternational Symposium of Com-puter Architecture, pages 223{232, 1994.[Cla83] D. Clark. Cache Performance inthe VAX-11/780. ACM Trans-actions on Computer Systems,1(1):24{37, February 1983.[Col94] Dirk Coldewey. A Data Flow Ap-proach to Thread Caching. Tech-nical report, UCSC, Santa Cruz,CA, 1994.

[Ell85] John R. Ellis. Bulldog: A Com-piler for VLIW Architectures.PhD thesis, MIT, Boston, MA,1985.[FJ94] Keith I. Farkas and Normann P.Jouppi.Complexity/Performance Trade-o�s with Non-Blocking Loads.In IEEE Computer Architecture,pages 211{222, 1994.[GHD+91] V.G.Graf, J.E. Hoch,G.S. David-son, V.P. Holmes, D.M. Daven-port, and K.M. Steele. The Ep-silon Project. In Advanced Topicsin Data-Flow Computing. Pren-tice Hall, 1991.[GLL+90] Kourosh Gharachorloo, DanielLenoski, James Laudon, PhillipGibbons, AnoopGupta, and JohnHennessy. Memory Consistencyand Event Ordering in scalableshared-memory Multiprocessors.In Proceedings of the 17th Inter-national SymposiumonComputerArchitecture, pages 15{25, June1990.[Got91] Israel Gottlieb. Work Distribu-tion of in the DSDF Architecture.In Advanced Topics in Data-FlowComputing, pages 381{382. Pren-tic Hall, Englewood Cli�s, NewJersey 07632, 1991.[Gus92] David Gustafson. The ScalableCoherent Interface. IEEE Micro,12(1):10{12, February 1992.[Han93] Jim Handy. The Cache MemoryBook. Academic Press, Inc., SanDiego, CA 92101, 1993.[HP90] John L. Hennessy and David A.Patterson. Computer Architec-ture A Quantitative Approach.Morgan Kaufmann Publishers,Inc., San Mateo, California, 1990.

26 4. Approach[Ian88] Robert A. Iannucci. Toward aDataow/Von Neuman HybridArchitecture. In Proc. 15th An-nual Symp. on Computer Archi-tecture, volume 16, pages 131{140. IEEE, 1988.[IBM90] IBM. POWER Processor Ar-chitecture. IBM Corporation,Advanced Workstation Division,Austin, Texas, 1990.[Jor85] Harry F. Jordan. HEP: Achitec-ture, Programming and Perfor-mance. In Parallel MIMD Com-putation: HEP Supercomputerand Its Applications, pages 1{40. MIT Press, Cambridge, Mas-sachusetts, 1985.[Jou90] Norman P. Jouppi. Improv-ing Direct-Mapped Cache Per-formance by the Addition ofa Small Fully-Associative Cacheand Prefetch Bu�ers. In Proc.17th Annual Symp. on ComputerArchitecture, volume 18, pages364{373. IEEE, 1990.[JRH+94] Lizy Kurian John, Vinod Reddy,Paul T. Hulina, , and Lee D.Coraor. Program Balance andits Impact on High PerformanceRISC Architectures. In Proceed-ings of the First IEEESymposiumon High-Performance ComputerArchitecture, pages 370{379, Jan-uary 1994.[KL91] A.C. Klaiber and H.M. Levy.An Architecture for Software-Controlled Data Prefetching. InProceedings of the 18th Interrna-tional Symposium on ComputerArchitecture, pages 43{53, 1991.[KV94] P. Krishnan and Je�rey ScottVitter. Optimal Prediction forPrefetching in theWorst Case. InSODA 94, 1994.

[LGH94] James Laudon, Anoop Gupta,and Mark Horowitz. Architec-tural and Implementation Trade-o�s in the Design of Multiple-Context Processors. In Mul-tithreaded Computer Architec-ture, pages 167{200. Kluwer Aca-demic Publishers, Norwell, Mas-sachusetts 02061, 1994.[LLG+92] Daniel Lenoski, James Laudon,Kourosh Gharachorloo, Wolf-Dietrich Weber, Anoop Gupta,John Hennessy, Mark Horowitz,and Monica S. Lam. The Stan-fordDASHMultiprocessor. Com-puter, pages 63{79, March 1992.[LRW91] Monica S. Lam, Edward E. Roth-berg, and Michael E. Wolf. TheCache Performance and Opti-mizations of Blocked Algorithms.In Proc. Fourth InternationalConference on Architectural Sup-port for Programming Languagesand Operating Systems, April1991.[MDO94] Ann Marie Grizza� Manyard,ColetteM.Donnelly, , andBret R.Olszewski. Contrasting Charac-teristics and Cache Performanceof Technical andMulti-User Com-mercial Workloads. In ASPLOS-VI Proceedings, pages 145{155.ACM Press, November 1994.[Mow94] Todd C. Mowry. Tolerat-ing Latency through Software-ControlledDataPrefetching. PhDthesis, Stanford University, 1994.[NA89] Rishiyur S. Nikhil and Arvind.Can dataow subsume von Neu-mann computing? In Proc.16th International Symposiumon Computer Architecture, pages262{272, 1989.[P�95] Gregory E. P�ster. In Searchof Clusters. Prentice Hall, Inc.,Upper Saddle River, New Jersey,1995.

4.2. Infrastructure 27[Por89] A. K. Porter�eld. SoftwareMeth-ods for Improvement of CachePerformance on SupercomputerApplications. Technical ReportCOMP TR 89-93, Rice Univer-sity, May 1989. Cited in Klai91.[Smi81] Burton J. Smith. ArchitectureandApplications of theHEPMul-tiprocessor Computer System. InTutorial on Supercomputers, page425. IEEE Press, 1981.[SP95] Richard L. Sites and Sharon E.Perl. PatchWrx { A Dynamic Ex-ecution Tracing Tool. TechnicalReport Systems Research Cen-ter, Digital Equipment Corpora-tion, October 1995. Submitted forPublication.[SWP86] J.E. Smith, S. Weiss, and N.Y.Pang. A Simulation Study of De-coupled Architecture Computers.IEEE Transactions on Comput-ers, C-35(8), August 1986. Citedin John94.[TGH92] Josep Torrellas, Anoop Gupta,and John Hennessy. Character-izing the Caching and Synchro-nization Performance of a Multi-processor Operating System. InASPLOS-V Proceedings, pages162{174, September 1992.[TXD94] Josep Torrellas, Chun Xia, andRussell Daigle. OptimizingInstruction Cache Performancefor Operating System IntensiveLoads. In Proceedings of theFirst IEEE Symposium on High-Performance Computer Architec-ture, pages 360{369, January1994.[VF93] Jack E. Veenstra and Robert J.Fowler. MINT Tutorial and UserManual. Technical Report Tech-nical Report 452, University ofRochester, June 1993.

[VK91] Je�rey Scott Vitter and P. Kr-ishnan. Optimal Prefetching viaDat Compression. In Proceedingsof the 32nd Annual Symposiumon Foundations of Computer Sci-ence, October 1991.[Wol92] Michael Edward Wolf. ImprovingLocality and Parallelism inNestedLoops. PhD thesis, Stanford Uni-versity, 1992.[Wul92] W.A. Wulf. Evaluation of theWmArchitecture. In Proceedingsof the 19th Annual InternationalSymposium of Computer Archi-tecture, pages 382{390,May 1992.Cited in John94.[Xia96] Chun Xia. Exploiting Mul-tiprocessor Memory Hierarchiesfor Operating Systems. PhDthesis, University of Illinois atUrbana-Champaign, Urbana, Illi-nois, 1996.

