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0 abstractAs the devices and lines shrink into the deep submicron range, it is moree�ective to insert the intermediate bu�ers rather than to widen the wires.Almost all existing timing driven 
oorplanning and placement algorithms andtools don't consider the option of bu�er insertion, so many good solutionswith smaller area and better routability may be unnecessarily excluded. Inthis paper, we propose a new methodology of 
oorplanning and placementwhere bu�ered trees are used to estimate the wiring delay. Instead of treatingthe delay as one of the objectives as done by most of the previous works, weformulate the Delay Bounded MinimumBu�ered Tree (DBMB-tree) as follows:given a net and delay bounds associated with critical terminals, construct atree with intermediate bu�ers inserted to minimize the total wiring lengthwhile satisfying the given delay bounds. Based on the Elmore delay model,we propose an e�cient algorithm to construct DBMB-tree for 
oorplanningand placement. Experiment results show that using bu�er insertion at the
oorplanning and placement stage yields signi�cantly better solutions in termsof both chip area and total wire length.Existing multi-objective 
oorplanning tools use weighted cost summationsubject to user-de�ned constraints to evaluate the solution. It is di�cult, if notimpossible, to derive a set of weight values from the vaguely de�ned multipleobjectives and the optimization results are very sensitive to the choice of theweight values. Multi-dimension cost vector is introduced to represent the costvalue for each objective explicitly [10]. We de�ne the acceptance functionin multiple dimensions based on the votes of invited experts, and order theobjectives by their sensitivities. Multiple objectives are introduced graduallyduring the optimization process. The experiment results demonstrate thee�ciency of the approach.Keywords: Floorplanning, Timing Constraints, Bu�er Insertion, TotalWiring Length, Delay Bounded Minimum Bu�ered Tree, Multi-Objectives,Cost Vectors.



1. Introduction 11 IntroductionIn high speed design, long lines should be treated as distributed RC delay lines andthe delay of the lines can be reduced by wire widening or intermediate bu�er insertion.Widening the wire makes it a more capacitive line with smaller line resistance. Byincreasing the sizes of bu�ers at the source, the wire delay will be reduced. On theother hand, the intermediate bu�ers decouple a large load that is o� the critical pathor divide a long wire into short segments each of which has small line resistance,making the delay of the line more linear with the length. As the devices and linesshrink into the deep submicron range, it is more e�ective, both in terms of power andarea, to insert the intermediate bu�er rather than to widen the wires.Because 
oorplanning and placement have a signi�cant impact on achievablesignal delay in timing driven layout design, many research centered on timing driven
oorplanning and placement. Almost all existing timing driven 
oorplanning andplacement algorithms don't consider the option of bu�er insertion. Only wire lengthsor Elmore delay of the lines are used to evaluate the delay. However, it is commonpractice to insert bu�ers late at the routing stage. A large industry design may containas many as tens of thousands intermediate bu�ers. Therefore it is too conservativeto ignore the option of bu�er insertion during 
oorplanning and many good solutionswith smaller area and better routability may be unnecessarily excluded.To make the feasible solution space more realistic, in this paper, we propose anew methodology of 
oorplanning and placement where bu�ered trees are used toestimate the wiring delay. We formulate the Delay Bounded Minimum Bu�eredTree (DBMB-tree) as follows: given a net and delay bounds associated with criticalterminals, construct a tree with intermediate bu�ers inserted to minimize the totalwiring length while satisfying the given delay bounds. Based on Elmore delay model,we propose an e�cient algorithm to construct DBMB-trees for 
oorplanning andplacement. Experiment results show that using bu�er insertion at the 
oorplanningand placement stage yields signi�cantly better solutions in terms of both chip areaand total wiring length.The byproduct of this work is the explicit exploration of multiple objectives.Bu�er insertion added another competing criteria into the already complicated designspace. While a good tradeo� is searched for the competing objectives, such as chiparea, total wire lengths, and power consumption, some other constraints have to bemet such as delay bound, chip aspect ratio, total number of bu�ers, and legal bu�erlocations.Existing multi-objective 
oorplanning tools use weighted cost summation subjectto user-de�ned constraints to evaluate the solution. It is di�cult, if not impossible,to derive a set of weight values from the vaguely de�ned multiple objectives. Theoptimization results are very sensitive to the choice of the weight values. Furthermore,the constant weights may not be su�cient to keep the terms of the cost functionproperly balanced throughout the optimization process. Finally, the reported singlesolution with minimized aggregated cost value may not represent the best tradeo�among multiple objectives. The inherent weight and constraint speci�cation problems



2 2. Related Works and Overview of DBMBcan be eliminated by explicit design space exploration [10]. Explicit design spaceexploration is performed by using a multi-dimensional cost vector and searching for aset of non-redundant solutions representing the best tradeo�s of the cost dimensions.A desirable solution may be chosen from the set and only at that time the trade-o�sget made. This methodology �ts in the Genetic Algorithm (GA) very well since GAmaintains a population of solutions [10]. However, GA has no explicit way to makecontinuous local search but causes large jumps in the solution space. On the otherhand, Simulated Annealing (SA) generates a single sequence of solutions and searchesfor an optimum solution along this search path.We propose a new stochastic optimization method, named genetic simulatedannealing (GSA) [15]. GSA successfully combines the local stochastic hill climbingfeatures from simulated annealing and the global crossover operation from geneticalgorithm.Multi-dimension cost vector is introduced to represent the cost value for eachobjective explicitly. SA-based local search generates the single search path andaccept each solution along the path by the acceptance function based on its costand current temperature. The traditional acceptance function is one dimensionaland limits the explicit cost value representation in multiple dimensions. We de�nethe multi-dimension acceptance function based on the votes of invited experts. Theobjectives are ordered by the sensitivity de�ned for each of them. Multiple objectivesare introduced gradually during the optimization process but not simultaneously. Theexperiment results demonstrate the e�ciency of the approach.The remainder of the paper is as follows. Section 2 reviews the related works oninterconnect optimization and intermediate bu�er insertion, and overviews the under-lying idea of our DBMB-tree algorithm. Section 3 describes the DBMB algorithm indetail and presents the experiment results on general 
oorplanning using DBMB. TheMultiple objective optimization is discussed in Section 4, followed by the conclusionin Section 5.2 Related Works and Overview of DBMB2.1 Related WorksUntil recently, the minimum steiner tree has been used to construct the routingsince it has the smallest total wiring length. However, the source-to-sink path delayin a minimum steiner tree may be too large to satisfy the required delay bound. Anumber of algorithms have been proposed to make the trade-o�s between the totalwiring length and the radius (the longest source-to-sink path length) of the tree [1,5, 7, 8, 11, 17]. The \Bounded-Radius Minimum Routing Tree (BRMRT)" [6] usesparameter � to specify the tradeo� between the minimum radius and the minimumcost. Fig. 2.1 shows three interconnection trees for the same net with di�erent �value.For deep submicron design, the path length is no longer accurate for the estimationof the path delay. To directly optimize Elmore delay taking into account di�erent



2. Related Works and Overview of DBMB 3
(b) (c)(a)Figure 2.1: (a) the shortest path tree (SPT) with � = 0; (b) the minimumcost spanning tree (MST) with � = 1; (c) a \tradeo�" between the twoconstructions with 0 < � <1load capacitances of the sinks, several attempts have been made. With exponentialtiming complexity, the branch and the bound algorithms [4, 3] provide the optimaland near-optimal solutions that minimize the delay from the source to an identi�edcritical sink or a set of critical sinks. For a set of critical sinks, it minimizes thelinear combination of sink delays. It is very di�cult to choose the proper weights, orthe criticality, for the linear combination. While [12] proposed a modi�ed Dreyfus-Wagner Steiner tree algorithm for minimizing the maximal source-to-sink delay, [20]proposed an algorithm for maximizing the delay slack, di�erences between the realdelays and the given delay bounds, at sinks. The maximal source-to-sink delay is notnecessarily interesting when the corresponding sink is o� the critical path. On theother hand, there maybe more than one critical sinks in the same net, which associatewith multiple critical paths. In typical deep submicron designs, more than 60% ofthe paths in a timing critical design may be critical [24].Intermediate bu�er insertion creates another degree of freedom for interconnectoptimization. Early works on fanout optimization problem focused on the construc-tion of bu�ered trees in logic synthesis [2, 22, 23] without taking into account thewiring e�ect. Recently, layout driven fanout optimization have been proposed [14,25]. For a given steiner tree, a polynomial time dynamic programming algorithmwas proposed in [26] for the delay-optimal bu�er insertion problem. Based on thedynamic programming algorithm, [16] integrated wire sizing and power minimizationwith the tree construction under a more accurate delay model taking signal slew intoaccount. Inspired by the same dynamic programming algorithm, simultaneous steinertree construction and bu�er insertion algorithm was proposed by [19], and late thework extended to include wire sizing [18]. In the formulation of the problem [19, 18],the main objective is to maximize the required arrival time at the root of the tree,which is de�ned as the minimum among the di�erences between the arrival time ofthe sinks and the delay from the root to the sinks.Because timing driven 
oorplanning and placement are usually iterated with thestatic timing analysis tools, the critical path information is often available and thetiming requirement for critical terminals becomes more and more clear when the



4 3. Description of DBMB-tree Algorithmiteration progresses. Therefore, it is su�cient to have delay bounded rather thanoptimizing the delay as in [19, 18].[27] proposed a Delay Bounded Minimum Steiner tree algorithm (DBMST) toconstruct a low cost Steiner tree with bounded delay constraints. DBMST algorithmconsists of two phases: initialization of tree satisfying the given delay bounds anditerative re�nement of the topology to reduce the wiring cost while satisfying the delaybounds associated with critical sinks. The Elmore delay at sinks are very sensitiveto the topology change and they have to be recomputed every time the topology ischanged. DBMST algorithm searches all possible topological update exhaustively ateach iteration and it is very time consuming.Our DBMB-tree algorithm makes following two major contributions:� Treating the delay bounds provided by static timing analysis tools as constraintsrather than formulating the delay into the objectives, as in [16, 26].� E�cient bu�er insertion and tree re�nement algorithm which try to minimizetotal wire length and the number of bu�ers.2.2 Overview of DBMB-tree AlgorithmWe formulate the Delay Bounded Minimum Bu�ered tree (DBMB-tree) as fol-lows: given a signal net and the delay bounds associated with the critical terminals,construct a tree with intermediate bu�ers inserted to minimize the total wiring lengthwhile satisfying the given delay bounds. Based on Elmore delay model, we developan e�cient algorithm for DBMB spanning tree construction.Contrast to DBMST [27] which starts with max-delay-slack tree, DBMB-treealgorithm begins with a routing tree which trades o� the minimumtotal wiring lengthand the minimum source-sink path length based on the criticality de�ned for criticalsinks.For those sinks not meeting the delay bounds, the algorithm �rst applies bu�erinsertion to reduce the Elmore delay of the sinks. Then for the sinks whose delaybounds still can not be satis�ed with intermediate bu�er insertion, the algorithmre�nes the topology of the tree by the cut-and-link operation to reduce the source-to-sink path delay. The cut-and-link operation will not increase the Elmore delayfrom the source to other sinks and minimize the increase in total wire length. Ifnecessary, the bu�er insertion operation will be invoked for the second time. Thealgorithm guarantees to �nd a feasible, hopefully optimal or near optimal, solution,if one exists. The overall time complexity of the DBMB spanning tree algorithm isO(n2), where n is the total number of terminals of the net.3 Description of DBMB-tree Algorithm3.1 Delay ModelBefore discussing the DBMB-tree algorithm, we brie
y review the Elmore delaymodel. Elmore delay model is based on the �rst moment of the impulse response for



3. Description of DBMB-tree Algorithm 5a distributed RC representation of the routing tree [13, 21] and it is widely used ininterconnect optimization [13].Given a signal net S = fs0; s1; � � � ; sng with s0 the source and s1, � � �, sn sinks,routing tree T rooted at the source s0, let ewv denote the edge from node v to itsparent node w in T . The resistance and capacitance of edge ewv are denoted by rwvand cwv, respectively. Let Tv denote the subtree of T rooted at v, and let ci denote theload capacitance of sink si. We use Cv to denote the tree capacitance of Tv, de�nedto be the sum of the load capacitances of the sinks and the capacitances of the edgesin Tv. The Elmore delay along edge ewv equals to rwv( cwv2 + Cv). Let rd denote theon-resistance of the output driver at the source. Then t0;i, the Elmore delay from thesource to the sink si, is:t0;i = rdC0 + Xewv2path(s0;si) rwv(cwv2 + Cv) (3.1)Assume rwv and cwv proportional to the length of ewv, scaled by the unit resistancer0 and unit capacitance c0, the �rst term rdC0 in Eq. 3.1 is linear with the total wirelength of the tree T , while the second term has quadratic dependence on the pathlength from s0 to si and also depends on the capacitive load of the sinks in T .3.2 DBMB-tree AlgorithmWe formulate the DBMB spanning tree problem as follows:Input: A signal net S = fs0; s1; � � � ; sng, where s0 is the source and s1, � � �, sn thesinks. The geometric locations for each terminal of S and delay bound del(si)associated with each critical sink si.Output: Spanning tree T rooted at s0 which spans S and has intermediate bu�ersinserted.Objective: Minimize the total wiring length of T .Constraint: For each critical sink si: t0;i � del(si), where t0;i is the Elmore delayfrom the source to si.In the DBMB-tree algorithm presented here, we only consider non-invertingbu�ers. The algorithm can be easily extended to handle the inverting bu�ers. Let tb,rb and cb denote the internal delay, resistance and capacitance of the non-invertingbu�er respectively.DBMB-tree construction consists of three phases:1. Estimate the achievable optimal delay t�0;i for each critical sink si 2 S. If9si 2 S : t�0;i > del(si), no bu�ered tree satisfying the delay bounds exists.2. Construct an initial spanning tree T using Prim-Dijkstra tradeo� algorithmwhich obtains the good routing cost and good source-sink path length at criticalsinks simultaneously.3. Re�ne T by placing bu�ers or applying the cut-and-link operations. For eachcritical sink si, whose Elmore delay doesn't meet the speci�ed bound:� Insert intermediate bu�ers if the reduced Elmore delay t00;i � del(si).



6 3. Description of DBMB-tree Algorithm� Otherwise, disconnect si and the subtree Ti from T . Select a sink sj 2 Tand connect sj to si. Insert a bu�er in edge eji eliminating the e�ect oftopology changes to the Elmore delay from the source to the sinks otherthan those in Ti. Insert bu�ers at other edges if necessary. The Elmoredelay t0;i in the modi�ed tree is guaranteed to be within the given bounddel(si) while the increase of total wiring length is minimized.Given a tree topology T , assume uniform wiring lines and only one bu�er can beplaced at each edge ejk. Let dj;k denote the length of edge ejk. The Elmore delayalong edge ejk without bu�er insertion is :tj;k = r0dj;k(c0dj;k2 + Ck) (3.2)When a bu�er is placed x away from sj on edge ejk, the edge delay is:tj;k = r0x(c0x2 + cb)+ r0(dj;k�x)(c0(dj;k � x)2 +Ck)+ rb(c0(dj;k �x)+Ck)+ tb (3.3)where rb << r0dj;k, cb << c0dj;k and tb << tj;k. The optimal x value can be foundfor the single bu�er accordingly [9]. For the purpose of 
oorplanning, we assume thebu�er is placed immediately after sj in the following.3.3 Estimation of Achievable Optimal DelayGiven the terminal locations determined by the 
oorplanning or placement, thealgorithm �rst estimates, for each critical sink, the shortest path delay that can beobtained with bu�er insertion. Fig. 3.1 shows the bu�ered shortest path tree TBSPfor the given net S = fs0; s1; � � � ; s10g. Let l�0;i denote the length of the shortest pathfrom s0 to si. According to Eq. 3.1, the Elmore delay of si in TBSP , denoted by t�0;i,gives the smallest delay achievable with bu�er insertion:t�0;i = rdncb + tb + rb(c0l�0;i + ci) + r0l�0;i(c0l�0;i2 + ci) (3.4)We introduce criticality �i for each sink si to measure how di�cult the delaybound can be achieved: �i = t�0;idel(si) , i.e. the ratio of the achievable smallest delay t�0;ito speci�ed delay bound of si. If t�0;i << del(si), then �i ! 0. If t�0;i > del(si), �i > 1then the bound is too tight to be achievable for the given 
oorplan or placement. If8i 2 [1; n], t�0;i � del(si), then the algorithm continues phase 2 and 3, otherwise the
oorplanning or placement is timing infeasible. O(n) is su�cient for the calculationof t�0;i and �i for all the sinks.3.4 Construction of Initial Spanning TreeThe second term of Elmore delay t0;i in Eq. 3.1 has quadratical dependence onthe path length from s0 to si. For sinks with higher criticality �i � 1, l0;i should becloser to the shortest path length l�0;i.
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12 4. Multiple Objective Optimization in GSATable 3.1: Test ExamplesCircuit Blocks Nets Critical Pins Min. Area Min. Wireami33 33 153 33 1,156,449 31,098ami49 49 412 50 35,445,424 335,496sim66 66 306 66 2,312,898 62,196sim98 98 824 100 70,890,848 670,992Table 3.2: The Optimal Solution with and w/o DBMB-tree Estimationwithout Bu�er Insertion with Bu�er Insertion ImprovementCircuit Area Wire Aspect CPU Area Wire Aspect CPU Area WireName (times) (times) Ratio (sec.) (times) (times) Ratio (sec.) (%) (%)ami33 1.50 3.48 1.01 2278 1.11 3.06 0.61 3279 26.0 12.0ami49 1.26 5.60 0.60 2720 1.13 5.25 0.68 3961 10.3 6.25sim66 1.33 4.93 0.95 5927 1.16 4.13 1.27 6998 12.8 16.2sim98 1.31 8.73 0.91 6967 1.16 8.24 0.78 9060 11.5 5.63.7 Experiment ResultsWe apply DBMB spanning tree algorithm in general 
oorplanning based on GSAstochastic optimization. The system is implemented in C language and tested on SUNSPARC 20 workstation. Table 3.1 describes the characteristics of four test circuitsused in the experiment. sim66 and sim98 are generated from benchmark ami33 andami49 by doubling the blocks and netlist. The minimumarea and wire length for eachcircuit represent the lower bounds on the chip area and total wire length. When wesay area = 1:50, that means the area equals to one and half times of minimum areaachievable for that circuit. For each example, the same parameters are used for theGSA stochastic optimization. The results shown in table 3.2 demonstrate that, withbu�er insertion, the 
oorplanning can get signi�cantly better solution, in which thechip area and total wiring length can be improved up to 26% and 16:2% respectively.Fig. 3.7 and Fig. 3.8 show outputs of the placement with and without bu�er insertionfor circuit sim98 respectively.At each step of SA-based local search, the wiring cost for the new solution isupdated incrementally, therefore, the running time for the optimization with bu�erinsertion is comparable with that without bu�er insertion.4 Multiple Objective Optimization in GSAFor deep submicron technology, the optimization problem of 
oorplanning andplacement becomes more and more complicated, in which a good tradeo� amongmultiple con
icting objectives is hard to �nd.Traditional methods, based on weighted cost summation and user-de�ned con-straints, can not achieve the best tradeo� because of the di�culty to derive a set ofweight values or the satis�able bounds. [10] proposed a multi-dimension cost vectorto evaluate a solution by the cost value in each dimension explicitly, rather than bysingle aggregated cost value. A set of non-redundant solutions are searched without
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Figure 3.7: Placement of circuit sim98 with bu�er insertion. Achieve totalarea of 82,233,384 and total wire length of 5,528,974.1 in 9060 sec. on SunSPARC 20 workstation.
Figure 3.8: Placement of circuit sim98 without bu�er insertion. Achievetotal area of 92,867,011 and total wire length of 5,857,760.2 in 6967 sec. onSun SPARC 20 workstation.making any tradeo�. A desirable solution can be chosen from the output set of bestsolutions and the tradeo� is made only at that time. This methodology �ts in the Ge-netic Algorithm (GA) very well since GA maintains a set of non-redundant solutionsnaturally [10].However, the performance of GA highly depends on the quality of crossoveroperation which mimics the propagation and causes large jump in the search space.Most of crossover operations for building block placement studied so far are based onthe random process. Therefore the genetic algorithm jumps randomly for long timeto obtain good solutions.Contrast to GA, Simulated Annealing (SA) starts with an initial solution andsearches the local region exhaustively based on continuous small moves. But it takeslong time to cover a large solution space. In addition, the single best-so-far solutionpreserved during SA cannot represent the solution space with good tradeo�s amongmultiple objectives.



14 4. Multiple Objective Optimization in GSAA new stochastic optimization method, namd genetic simulated annealing (GSA)[15] combines the advantages of both SA and GA. It maintains the population ofsolutions, searches the local region continuously by SA-based small moves, and jumpsin the search space by crossover after the local search. Therefore GSA can search thesolution space both locally and globally within limited cpu time.We apply GSA to general 
oorplanning problem, in which multiple con
ictingobjectives are optimized explicitly. Using multi-dimension cost vector, solutions areevaluated by the cost value in each dimension directly and a set of solutions with besttradeo� among multiple objectives are preserved.SA-based local moves generate the single search path and search for optimumsolution along this path. The candidate solution is accepted by the function basedon the cost value and current annealing temperature. To support explicit multi-dimension cost representation, we de�ne the multi-dimension acceptance function, inwhich each dimension accepts the up-hill moves in that dimension with the adaptiveprobability and the solution is accepted based on the votes of experts from eachdimension. Therefore no tradeo� need to be made to determine the acceptance of anew solution.Furthermore the stochastic random search can fall into local minima easily becauseit is di�cult to make better tradeo�s among many objectives. We introduce thesensitivity for each objective and optimize the multiple objectives in order basedon their sensitivities, but not simultaneously. Experiment results demonstrate theproperly ordered optimization procedure for multiple objectives can improve theresults and speed up the process signi�cantly.4.1 Acceptance FunctionWithout resorting to a single-valued cost measure, the multi-dimension cost vectoris used to specify the \good" tradeo� and to compare the solutions. Given a set offeasible 
oorplanning realizations �, for solution x 2 �, c(x) = (x1; x2; � � � ; xn) is thecost vector in which xi is the cost value of ith objective and n the number of objectives.Similar with [10], a goal vector g = (g1; g2; � � � ; gn), in which 8i : 0 � gi � 1, isspeci�ed by users. There are two kinds of goals in g: gi = 0 means that the minimumcost value of ith objective is wanted; and gi > 0 gives the maximum value which canbe accepted. The vector g de�nes a set of satisfactory solutions:Sg = fx 2 � j 8i gi > 0 : xi � gig (4.1)Contrast to traditional user-de�ned bounds, the values speci�ed by gi > 0 are onlyused to guide the search process and need not be obtainable. Therefore they aresigni�cantly easier to be speci�ed than the traditional bounds.To compare the relative quality between two solutions x and y, we de�ne thatsolution x is preferable to y, written x � y as in [10].At each step of the SA-based local search, the new solution x0 is produced bychanging the small fraction of current solution x and is accepted based on the decision



4. Multiple Objective Optimization in GSA 15of committee, which consists of the invited experts. There is an expert for eachobjective, who votes on accepting the solution x0 according to the cost reduction ofthe corresponding objective. For ith objective, the expert votes to accept the solutionx0 if the following condition holds:(x0i � gi) _ (x0i � xi) _ (� � e��xi=T ) (4.2)where � is the random-generated 
oat number falling in [0; 1], and T is the currenttemperature. For objective gi = 0, �xi denotes the cost reduction of ith objective:�xi = xi � x0i. For gi > 0, �xi is the slack of ith objective: �xi = gi � x0i.The experts accept the hill-climbing moves (gi = 0 and �xi < 0) or the infeasiblemoves (gi > 0 and �xi < 0) with the probability de�ned by min f1; e��xi=Tg inEq. 4.2. Therefore the ability of escaping local minima of SA is conserved andthe given bound value gi > 0 need not be the strict bound but the guidance forthe stochastic optimization. Consequently each expert makes decision based only onthe cost value of single objective and no tradeo� need to be made among di�erentcompeting objectives. GSA accepts the new solution x0 if and only if each invitedexpert in the committee votes yes.4.2 Ordered Optimization of Multiple ObjectivesTo explain when the experts are invited to the committee, we de�ne the sensitivitySi, as the average percentage of changed cost value for ith objective over the m + 1times SA-based local search: Si = Pmi=1 jxi+1�xi jxim (4.3)Given m is large enough, we can discover which objective is most sensitive to thelocal operations in average. The more sensitive, the easilier the cost value of theobjective alternates with the local operations and thus the later the objective shouldbe considered.When more than two objectives are considered simultaneously, the random processcan easily fall into the local minima and it takes long time to reach better tradeo�s.To guide the random search and speed up the process, we optimize multiple objectivesin order.Initially the objective with lowest sensitivity is brought in and the correspondingexpert joins the committee. The new solutions accepted have better performance inthe objective under consideration and relative worse performance in others. When thesolution satis�es the user-de�ned goal for the objectives under consideration or thecost surfaces of objectives under consideration become 
at, a next new objective isbrought in and at the same time the corresponding expert joins the committee. Onceobjectives are brought in and the corresponding experts join the committee, they stayin the committee until the end. The algorithm terminates when the satis�ed solutionsare found or all objectives are brought in and their cost surfaces become 
at.



16 4. Multiple Objective Optimization in GSA4.3 GSA with Multiple ObjectivesFollowing is the outline of the new GSA algorithm with multiple objectives :01: initialize-population(P ),02: initialize-committee(E),03: initialize-solution(x),04: repeat05: SA-loop begins06: x0 = SA-search(x),07: if (accept-solution(x0)) then08: update-population(P , x),09: x x0,10: if (invite()) then update-committee(E),11: else update-population(P , x0),12: SA-loop ends13: select xp1; xp2 2 P ,14: xc1 = crossover(xp1, xp2),15: xc2 = crossover(xp2, xp1),16: update-population(P , xc1),17: update-population(P , xc2),18: if (xc1 � xc2) then x xc1,19: else x xc2 ,20: until goal() or converge() or cpu-limit(),21: reports P .Figure 4.1: Outline of GSA Algorithm with Multiple Objectives.At each iteration, the SA-based local search starts with the current solution x,and generates the new candidate x0 by applying moves, exchanges or rotations asin [15]. The new solution is accepted based on the votes of current committee E inaccept-solution(). If x0 is accepted, insert x into population P and continue the searchfrom x0. Otherwise, insert x0 into P and restart the search from x.When a solution y is inserted into P in update-population(), each individualsolution z 2 P is visited. If 9z 2 P and z � y, then y won't be added. Foreach z 2 P and y � z, delete z from P . If no solution preferable to y found in P , yis added into P .invite() decides when a new objective is brought in and at the same time thecorresponding expert joins the committee. At the end of SA search, two parentsolutions are chosen randomly from P and the crossover in [15] is applied to generatethe two child solutions xc1 and xc2. The next iteration starts with the new generation.When goal() detects that the satis�ed solutions have been found, or converge() detectsthe cost surfaces become 
at, or the CPU time exceeds the given limit cpu-limit(),the process terminates and the set of best solutions found so far in P is reported.



5. Conclusion 174.4 Experiment ResultsWe apply multi-dimension cost vector and multi-dimension acceptance functiondescribed above in the general 
oorplanning optimization based on GSA stochasticalgorithm. Given the goal vector g = (garea, gwire, gaspect), the chip area and totalwiring length are minimized while aspect ratio close to gaspect is desirable.For comparison, we also use SA with the cost function cost = area + � wire,subject to the given aspect ratio constraint gaspect. � is the weight value for totalwiring length, and the weight for area is normalized to 1:0 for simplicity.Both GSA and SA runs under SUN SPARC 20 workstation, using the same set ofannealing schedule within same cpu time. GSA reports the set of optimal solutions,in one pass, covering the large solution space, shown by the curve marked by \cost-vector" in Fig. 4.2. Three separate SA runs using di�erent weight value for � reportthree best-so-far solutions shown by the curve marked \cost-ratio" in Fig. 4.2. Wechoose � in large range and the three solutions reported by SA are very close to thesolutions found by GSA. Therefore without knowing the weight values for multipleobjectives, one pass GSA can achieve the set of optimal solutions including a widerange of tradeo� among the multiple objectives. Even with knowing the proper weightvalues, one pass SA can only �nd single solution for that particular weight.To demonstrate the optimal solution space is very sensitive to the optimization or-der for multiple objectives, three GSA processes running in the same environment arecompared using the same test circuit: ami98. Each process uses same set of stochas-tic parameters and runs in same cpu time, and optimizes the multiple objectives indi�erent order. The optimal solution spaces explored by the experiment are shownin Fig. 4.3, in terms of chip area and total wiring length. Clearly, properly orderedoptimization for multiple objectives can speed up the stochastic process signi�cantlyand explore the optimal solution space more e�ectively.5 ConclusionIn this paper, we propose a new methodology of 
oorplanning and placementwhere the intermediate bu�er insertion is used as another degree of freedom in delaycalculation. The timing constraints of a 
oorplan are evaluated many times duringour stochastic optimization process. The introduction of bu�er insertion increasesthe complexity of the evaluation signi�cantly due to the complexity of bu�ered treeconstruction and the complication of multi-objective optimization.An e�cient algorithm to construct a Delay Bounded Minimum Bu�ered (DBMB)spanning tree has been developed. One of the key reasons to make this tree construc-tion e�cient is that we treat the delay bounds as constraints rather than formulatingthe delay into the objectives as did in most of the previous works. In fact, our problemformulation is more realistic for the path based timing driven layout design. Bu�erinsertion adds another competing criteria into the already complicated design space,making the traditional approaches using weighted cost summation of multiple com-peting objectives even worse. However, it is not trivial to apply the explicit design
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