Timing-Driven Floorplanning
with Intermediate Buffer
Insertion

Maggie 7Z.-W. Kang
Wayne W.-M. Dai
Tom Dillinger
David LaPotin

UCSC-CRL-97-03
February 14, 1997

Baskin Center for
Computer Engineering & Information Sciences
University of California, Santa Cruz

Santa Cruz, CA 95064 USA

ABSTRACT

As the devices and lines shrink into the deep submicron range, it is more
effective to insert the intermediate buffers rather than to widen the wires.
Almost all existing timing driven floorplanning and placement algorithms and
tools don’t consider the option of buffer insertion, so many good solutions
with smaller area and better routability may be unnecessarily excluded. In
this paper, we propose a new methodology of floorplanning and placement
where buffered trees are used to estimate the wiring delay. Instead of treating
the delay as one of the objectives as done by most of the previous works, we
formulate the Delay Bounded Minimum Buffered Tree (DBMB-tree) as follows:
given a net and delay bounds associated with critical terminals, construct a
tree with intermediate buffers inserted to minimize the total wiring length
while satisfying the given delay bounds. Based on the Elmore delay model,
we propose an efficient algorithm to construct DBMB-tree for floorplanning
and placement. Experiment results show that using buffer insertion at the
floorplanning and placement stage yields significantly better solutions in terms
of both chip area and total wire length.

Existing multi-objective floorplanning tools use weighted cost summation
subject to user-defined constraints to evaluate the solution. It is difficult, if not
impossible, to derive a set of weight values from the vaguely defined multiple
objectives and the optimization results are very sensitive to the choice of the
weight values. Multi-dimension cost vector is introduced to represent the cost
value for each objective explicitly [10]. We define the acceptance function
in multiple dimensions based on the votes of invited experts, and order the
objectives by their sensitivities. Multiple objectives are introduced gradually
during the optimization process. The experiment results demonstrate the
efficiency of the approach.

Keywords: Floorplanning, Timing Constraints, Buffer Insertion, Total
Wiring Length, Delay Bounded Minimum Buffered Tree, Multi-Objectives,
Cost Vectors.

1. Introduction 1
1 Introduction

In high speed design, long lines should be treated as distributed RC delay lines and
the delay of the lines can be reduced by wire widening or intermediate buffer insertion.
Widening the wire makes it a more capacitive line with smaller line resistance. By
increasing the sizes of buffers at the source, the wire delay will be reduced. On the
other hand, the intermediate buffers decouple a large load that is off the critical path
or divide a long wire into short segments each of which has small line resistance,
making the delay of the line more linear with the length. As the devices and lines
shrink into the deep submicron range, it is more effective, both in terms of power and
area, to insert the intermediate buffer rather than to widen the wires.

Because floorplanning and placement have a significant impact on achievable
signal delay in timing driven layout design, many research centered on timing driven
floorplanning and placement. Almost all existing timing driven floorplanning and
placement algorithms don’t consider the option of buffer insertion. Only wire lengths
or Elmore delay of the lines are used to evaluate the delay. However, it is common
practice to insert buffers late at the routing stage. A large industry design may contain
as many as tens of thousands intermediate buffers. Therefore it is too conservative
to ignore the option of buffer insertion during floorplanning and many good solutions
with smaller area and better routability may be unnecessarily excluded.

To make the feasible solution space more realistic, in this paper, we propose a
new methodology of floorplanning and placement where buffered trees are used to
estimate the wiring delay. We formulate the Delay Bounded Minimum Buffered
Tree (DBMB-tree) as follows: given a net and delay bounds associated with critical
terminals, construct a tree with intermediate buffers inserted to minimize the total
wiring length while satisfying the given delay bounds. Based on Elmore delay model,
we propose an efficient algorithm to construct DBMB-trees for floorplanning and
placement. Experiment results show that using buffer insertion at the floorplanning
and placement stage yields significantly better solutions in terms of both chip area
and total wiring length.

The byproduct of this work is the explicit exploration of multiple objectives.
Buffer insertion added another competing criteria into the already complicated design
space. While a good tradeoff is searched for the competing objectives, such as chip
area, total wire lengths, and power consumption, some other constraints have to be
met such as delay bound, chip aspect ratio, total number of buffers, and legal buffer
locations.

Existing multi-objective floorplanning tools use weighted cost summation subject
to user-defined constraints to evaluate the solution. It is difficult, if not impossible,
to derive a set of weight values from the vaguely defined multiple objectives. The
optimization results are very sensitive to the choice of the weight values. Furthermore,
the constant weights may not be sufficient to keep the terms of the cost function
properly balanced throughout the optimization process. Finally, the reported single
solution with minimized aggregated cost value may not represent the best tradeoff
among multiple objectives. The inherent weight and constraint specification problems

2 2. Related Works and Overview of DBMDB

can be eliminated by explicit design space exploration [10]. Explicit design space
exploration is performed by using a multi-dimensional cost vector and searching for a
set of non-redundant solutions representing the best tradeoffs of the cost dimensions.
A desirable solution may be chosen from the set and only at that time the trade-offs
get made. This methodology fits in the Genetic Algorithm (GA) very well since GA
maintains a population of solutions [10]. However, GA has no explicit way to make
continuous local search but causes large jumps in the solution space. On the other
hand, Simulated Annealing (SA) generates a single sequence of solutions and searches
for an optimum solution along this search path.

We propose a new stochastic optimization method, named genetic simulated
annealing (GSA) [15]. GSA successfully combines the local stochastic hill climbing
features from simulated annealing and the global crossover operation from genetic
algorithm.

Multi-dimension cost vector is introduced to represent the cost value for each
objective explicitly. SA-based local search generates the single search path and
accept each solution along the path by the acceptance function based on its cost
and current temperature. The traditional acceptance function is one dimensional
and limits the explicit cost value representation in multiple dimensions. We define
the multi-dimension acceptance function based on the votes of invited experts. The
objectives are ordered by the sensitivity defined for each of them. Multiple objectives
are introduced gradually during the optimization process but not simultaneously. The
experiment results demonstrate the efficiency of the approach.

The remainder of the paper is as follows. Section 2 reviews the related works on
interconnect optimization and intermediate buffer insertion, and overviews the under-
lying idea of our DBMB-tree algorithm. Section 3 describes the DBMB algorithm in
detail and presents the experiment results on general floorplanning using DBMB. The
Multiple objective optimization is discussed in Section 4, followed by the conclusion
in Section 5.

2 Related Works and Overview of DBMB

2.1 Related Works

Until recently, the minimum steiner tree has been used to construct the routing
since it has the smallest total wiring length. However, the source-to-sink path delay
in a minimum steiner tree may be too large to satisfy the required delay bound. A
number of algorithms have been proposed to make the trade-offs between the total
wiring length and the radius (the longest source-to-sink path length) of the tree [1,
5, 7,8, 11, 17]. The “Bounded-Radius Minimum Routing Tree (BRMRT)” [6] uses
parameter ¢ to specify the tradeoff between the minimum radius and the minimum
cost. Fig. 2.1 shows three interconnection trees for the same net with different €
value.

For deep submicron design, the path length is no longer accurate for the estimation
of the path delay. To directly optimize Elmore delay taking into account different

2. Related Works and Overview of DBMDB 3

@ (b) (©

Figure 2.1: (a) the shortest path tree (SPT) with ¢ = 0; (b) the minimum
cost spanning tree (MST) with € = oo; (c) a “tradeoff” between the two
constructions with 0 < € < oo

load capacitances of the sinks, several attempts have been made. With exponential
timing complexity, the branch and the bound algorithms [4, 3] provide the optimal
and near-optimal solutions that minimize the delay from the source to an identified
critical sink or a set of critical sinks. For a set of critical sinks, it minimizes the
linear combination of sink delays. It is very difficult to choose the proper weights, or
the criticality, for the linear combination. While [12] proposed a modified Dreyfus-
Wagner Steiner tree algorithm for minimizing the maximal source-to-sink delay, [20]
proposed an algorithm for maximizing the delay slack, differences between the real
delays and the given delay bounds, at sinks. The maximal source-to-sink delay is not
necessarily interesting when the corresponding sink is off the critical path. On the
other hand, there maybe more than one critical sinks in the same net, which associate
with multiple critical paths. In typical deep submicron designs, more than 60% of
the paths in a timing critical design may be critical [24].

Intermediate buffer insertion creates another degree of freedom for interconnect
optimization. Early works on fanout optimization problem focused on the construc-
tion of buffered trees in logic synthesis [2, 22, 23] without taking into account the
wiring effect. Recently, layout driven fanout optimization have been proposed [14,
25]. For a given steiner tree, a polynomial time dynamic programming algorithm
was proposed in [26] for the delay-optimal buffer insertion problem. Based on the
dynamic programming algorithm, [16] integrated wire sizing and power minimization
with the tree construction under a more accurate delay model taking signal slew into
account. Inspired by the same dynamic programming algorithm, simultaneous steiner
tree construction and buffer insertion algorithm was proposed by [19], and late the
work extended to include wire sizing [18]. In the formulation of the problem [19, 18],
the main objective is to maximize the required arrival time at the root of the tree,
which is defined as the minimum among the differences between the arrival time of
the sinks and the delay from the root to the sinks.

Because timing driven floorplanning and placement are usually iterated with the

static timing analysis tools, the critical path information is often available and the
timing requirement for critical terminals becomes more and more clear when the

4 3. Description of DBMB-tree Algorithm

iteration progresses. Therefore, it is sufficient to have delay bounded rather than
optimizing the delay as in [19, 18].

[27] proposed a Delay Bounded Minimum Steiner tree algorithm (DBMST) to
construct a low cost Steiner tree with bounded delay constraints. DBMST algorithm
consists of two phases: initialization of tree satisfying the given delay bounds and
iterative refinement of the topology to reduce the wiring cost while satisfying the delay
bounds associated with critical sinks. The Elmore delay at sinks are very sensitive
to the topology change and they have to be recomputed every time the topology is
changed. DBMST algorithm searches all possible topological update exhaustively at
each iteration and it is very time consuming.

Our DBMB-tree algorithm makes following two major contributions:

o Treating the delay bounds provided by static timing analysis tools as constraints

rather than formulating the delay into the objectives, as in [16, 26].

o Efficient buffer insertion and tree refinement algorithm which try to minimize
total wire length and the number of buffers.

2.2 Overview of DBMB-tree Algorithm
We formulate the Delay Bounded Minimum Buffered tree (DBMB-tree) as fol-

lows: given a signal net and the delay bounds associated with the critical terminals,
construct a tree with intermediate buffers inserted to minimize the total wiring length
while satisfying the given delay bounds. Based on Elmore delay model, we develop
an efficient algorithm for DBMB spanning tree construction.

Contrast to DBMST [27] which starts with max-delay-slack tree, DBMB-tree
algorithm begins with a routing tree which trades off the minimum total wiring length
and the minimum source-sink path length based on the criticality defined for critical
sinks.

For those sinks not meeting the delay bounds, the algorithm first applies buffer
insertion to reduce the Elmore delay of the sinks. Then for the sinks whose delay
bounds still can not be satisfied with intermediate buffer insertion, the algorithm
refines the topology of the tree by the cut-and-link operation to reduce the source-
to-sink path delay. The cut-and-link operation will not increase the Elmore delay
from the source to other sinks and minimize the increase in total wire length. If
necessary, the buffer insertion operation will be invoked for the second time. The
algorithm guarantees to find a feasible, hopefully optimal or near optimal, solution,
if one exists. The overall time complexity of the DBMB spanning tree algorithm is
O(n?), where n is the total number of terminals of the net.

3 Description of DBMB-tree Algorithm

3.1 Delay Model

Before discussing the DBMB-tree algorithm, we briefly review the Elmore delay
model. Elmore delay model is based on the first moment of the impulse response for

3. Description of DBMB-tree Algorithm 5

a distributed RC representation of the routing tree [13, 21] and it is widely used in
interconnect optimization [13].

Given a signal net S = {sg, s1,---,s,} with s¢ the source and sy, --+, s, sinks,
routing tree T' rooted at the source sg, let e,, denote the edge from node v to its
parent node w in T'. The resistance and capacitance of edge e, are denoted by r,,
and ¢,,, respectively. Let T, denote the subtree of T' rooted at v, and let ¢; denote the
load capacitance of sink s;. We use C, to denote the tree capacitance of T,, defined
to be the sum of the load capacitances of the sinks and the capacitances of the edges
in T,. The Elmore delay along edge e,, equals to rwv(cg” + C,). Let ry denote the
on-resistance of the output driver at the source. Then 1, the Elmore delay from the
source to the sink s;, is:

to;=raCot+ S re(2 40 (3.1)

ewv€path(sg,s;) 2

Assume ry,, and ¢, proportional to the length of e,,,, scaled by the unit resistance
ro and unit capacitance c¢g, the first term r;Cy in Eq. 3.1 is linear with the total wire
length of the tree T', while the second term has quadratic dependence on the path
length from sg to s; and also depends on the capacitive load of the sinks in T

3.2 DBMB-tree Algorithm

We formulate the DBMB spanning tree problem as follows:
Input: A signal net S = {sg,s1, -, 8,}, where sq is the source and s;, ---, s, the
sinks. The geometric locations for each terminal of S and delay bound del(s;)
associated with each critical sink s;.

Output: Spanning tree T' rooted at sg which spans S and has intermediate buffers
inserted.

Objective: Minimize the total wiring length of 7.

Constraint: For each critical sink s;: to,; < del(s;), where g, is the Elmore delay
from the source to s;.

In the DBMB-tree algorithm presented here, we only consider non-inverting
buffers. The algorithm can be easily extended to handle the inverting buffers. Let t;,
rp and ¢, denote the internal delay, resistance and capacitance of the non-inverting
buffer respectively.

DBMB-tree construction consists of three phases:

1. Estimate the achievable optimal delay {7, for each critical sink s; € S. If

ds; € S 115, > del(s;), no buffered tree satisfying the delay bounds exists.

2. Construct an initial spanning tree T using Prim-Digkstra tradeoff algorithm
which obtains the good routing cost and good source-sink path length at critical
sinks simultaneously.

3. Refine T' by placing buffers or applying the cut-and-link operations. For each
critical sink s;, whose Elmore delay doesn’t meet the specified bound:

o Insert intermediate buffers if the reduced Elmore delay tgﬂ» < del(s;).

6 3. Description of DBMB-tree Algorithm

o Otherwise, disconnect s; and the subtree T; from T'. Select a sink s; € T
and connect s; to s;. Insert a buffer in edge ¢j; eliminating the effect of
topology changes to the Elmore delay from the source to the sinks other
than those in T;. Insert buffers at other edges if necessary. The Elmore
delay to; in the modified tree is guaranteed to be within the given bound
del(s;) while the increase of total wiring length is minimized.

Given a tree topology T', assume uniform wiring lines and only one buffer can be
placed at each edge e;;. Let d;; denote the length of edge e;;,. The Elmore delay
along edge e;; without buffer insertion is :

cod;
Uik = rodi (=5 + Cp) (3.2)

When a buffer is placed = away from s; on edge e, the edge delay is:

Co(d]‘ E— l’)

5 + Cr) +ro(co(djp —)+ Cr) + 1, (3.3)

Co
ti = rox(==+) +ro(djp — o)
where r, << rodj i, ¢ << codjp and t, << t;x. The optimal « value can be found
for the single buffer accordingly [9]. For the purpose of floorplanning, we assume the
buffer is placed immediately after s; in the following.

3.3 Estimation of Achievable Optimal Delay

Given the terminal locations determined by the floorplanning or placement, the
algorithm first estimates, for each critical sink, the shortest path delay that can be
obtained with buffer insertion. Fig. 3.1 shows the buffered shortest path tree Tgsp
for the given net S = {so, 51, "+, s10}. Let [§,; denote the length of the shortest path
from sg to s;. According to Eq. 3.1, the Elmore delay of s; in Tsp, denoted by {7,
gives the smallest delay achievable with buffer insertion:

COZSJ'
2

We introduce eriticality «; for each sink s; to measure how difficult the delay

té,i = rancy +tp + rb(col(*)ﬂ» +¢)+ rol(*m(+¢) (3.4)

to.i
del(s;
to specified delay bound of s;. Hg t%,i << del(s;), then a; — 0. If 5 > del(s;), oy > 1
then the bound is too tight to be achievable for the given floorplan or placement. If
Vi € [1,n], t5, < del(s;), then the algorithm continues phase 2 and 3, otherwise the
floorplanning or placement is timing infeasible. O(n) is sufficient for the calculation

of Iy and o; for all the sinks.

bound can be achieved: «a; = , i.e. the ratio of the achievable smallest delay ¢7 ;

3.4 Construction of Initial Spanning Tree

The second term of Elmore delay #p; in Eq. 3.1 has quadratical dependence on
the path length from sy to s;. For sinks with higher criticality a; ~ 1, ly; should be
closer to the shortest path length [5 ..

3. Description of DBMB-tree Algorithm 7

Figure 3.1: Shortest path tree with buffer insertion, which connects each sink
8; with source sg directly and places a buffer on each source-sink connection.

Instead of starting with extreme solutions with minimum total wiring lengths
or minimum path lengths, we combine Prim’s MST algorithm with Dijkstra’s SPT
algorithm and use criticality to make the tradeoff between both objectives. Initially
tree T' consists of only s and iteratively edge ¢;; and sink s; are added to T', where
s; €T and s; € S —T. s; and s; are chosen in such a way to minimize:

Oé]‘loﬂ' + di,j (35)

When for each s; € 5 : «; = 0, the algorithm is identical to Prim’s MST and
constructs T with minimum wiring length as in Fig. 3.2 (a). As a; increases, T' has
larger wiring length but smaller path length as in Fig. 3.2 (b). The algorithm is
identical to Dijkstra’s SPT when «; = 1 for each s; € S as in Fig. 3.2 (¢).

We define slack for each sink s; as follows:
52’ = del(sz) — toﬂ' (36)

After the initial construction, if ¥Vs; € S: §; > 0, the algorithm has already found the
buffered spanning tree subject to the given constraints. Otherwise, continues phase 3
to reduce the Elmore delay at s; with no increase of Elmore delay at other sinks and
with minimal increase of the total wiring length.

The capacitances for all subtrees can be calculated by traversing the routing tree
in depth first order. The delays along all edges and the delay from the source to sinks,
which equals the added delay of edges along the source-sink path, can be computed
by traversing the routing tree in breadth first order. Therefore, the Elmore delays
and slacks of all the sinks can be calculated in O(n) time. The timing complexity of
this initialization is O(n?), due to the Prim-Dijstra’s tradeoff algorithm.

3.5 Intermediate Buffer Insertion

Given a routing topology T', for a critical sink s; whose Elmore delay doesn’t meet
the bound, we define the driving path pj{j for each sink s; € T":

8 3. Description of DBMB-tree Algorithm

Sy S10 Sy S10 Sy S10

@ (b) (©)

Figure 3.2: Prim-Digkstra tradeofl: when Vs; € S : «; = 0, the algorithm
is identical to Prim’s MST and constructs 7" with minimum wiring length
shown in (a). As «; increases, T' has larger wiring length but smaller path
length shown in (b), and the algorithm is identical to Dijkstra’s SPT when
a; =1 for each s; € S shown in (c).

pij = {ews | €wr € path(so, $;) N ey € path(se,s;) N no buffer on path(s,,s;)}
(3.7)
Let lf{j denote the length of pij. To calculate the driving path length for all other
sinks with respect to s;, first trace the path path(sg, s;) from s; to so and mark each
edge on this path. Then traverse T from sg; for each visited sink s,, lf{v
calculated based on lf{w and d,,, where s, is the parent of s, and d,,, the length of

€wy- The driving path length for s, is given by:

can be

lf{w +dyy if ewy € path(sg,s;) and no buf fer on ey,
o v if ey € path(sg,s;) and one buf fer on ey, (3.8)
CC lf{w if ey & path(sg, s;) and no buf fer on ey, '

0 if ey & path(sg,s;) and one buf fer on ey,

Therefore the driving path length of other sinks with respect to one particular sink
s; can be computed in linear time.

After inserting one buffer at edge e;;; in topology T', the reduction of Elmore delay
at s; 1s :

Atéi’ = TdACék + lij(ck + cjk — @) (3.9)

where ACSk equals to Cy + ¢ji, — ¢ if there is no buffer along the path path(so,s;)
as illustrated in Fig. 3.3 (a); it equals to 0, otherwise as illustrated in Fig. 3.3
(b). For a sink in T}, the buffer placed on edge ej; introduces a little delay penalty:
ty + 1o(Cr + ¢ji), where ¢, and 7y, the internal delay and the resistance of the buffer
respectively, are usually very small. Traversing T' from s, ACSk, thus Atéi can be
calculated in linear time.

To reduce the Elmore delay from the source to the critical sink s;, whose Elmore

delay doesn’t meet the bound, select an edge e;; with maximal téi» and insert one

3. Description of DBMB-tree Algorithm 9

Figure 3.3: Given the tree topology with a buffered edge €34, when a buffer is
placed on edge esg as shown in (a), the driving path for sg with respect to sink
s7 1s: p%s = {€a4, €47}. There is one buffer on path path(sg,ss), ACS =0,
thus the reduction of Elmore delay at s7: Atg% = (rosa + 147)(Co + cs9 —).
On the other hand, when a buffer is placed on edge ess as shown in (b), the
driving path for s; with respect to sink ss is: pg73 = {eo2, €23}. There is no
buffer on path path(se, s3), ACS® = Cs+ c36 — e, so the reduction of Elmore
delay at ss: Atg% = (rq+ roz + r23)(Cs + c36 —).

buffer on it. After the buffer insertion, the capacitances of subtrees rooted at the sinks
along the path path(sg, s;) can be updated in linear time. This process continues until
the Elmore delay from the source to s; satisfies the given bound or buffers have been
inserted to all unbuffered edges and the delay bound del(s;) still can’t be satisfied.

For each critical sink s;, lf{v and Atéi can be computed in O(n) time. There are
at most n — 1 buffers may be inserted and the update after each insertion take O(n)
time. So the overall complexity of total buffer insertion is O(n?).

3.6 Cut-and-link Operation

The Elmore delay to; in Eq. 3.1 depends on two factors: the subtree capacitance
driven by the source-sink path path(se,s;) and the path length lo;. Accordingly, two
approaches of reducing {; can be adopted: placing buffers in 7" to decouple the large
load from the source-sink path and modifying the tree topology to shorten /y;. When
the delay bound del(s;) can not be satisfied with buffer insertion in 7', the algorithm
refines the topology to decrease the source-sink path length /o ; to further reduce g ;.

To reduce the Elmore delay at s;, subtree rooted at s;, T;, is disconnected from 7.
A sink s; € T 1s selected and T; is re-connected by adding edge e;;. Such cut-and-link
operation is illustrated in Fig. 3.4. One buffer is placed at the new edge ej; and other
buffers may be placed if necessary as described in the last section. As the result, the

10 3. Description of DBMB-tree Algorithm

So S10 fg S10
S So Sg
S, S7
S3 S
Ss Se
@ (b)

Figure 3.4: Cut-and-link operation: disconnect subtree T%7 from T" and delete
edge eq4r in (a); select another sink sy and connect s; to s;. One buffer is
placed on the new connection in (b).

Elmore delay at s; satisfies the delay bound. To show the cut-and-link operation is
correct, we need to prove:

1. A sink s; € T exists such that after adding edge ej; and inserting buffers,

tgﬂ» < del(s;) in the new tree.

2. The Elmore delay from the source to other sinks will not be increased after the

topology change.

Recall the achievable smallest path delay estimated in Eq. 3.4, the {7, can be
obtained by directly connecting sg to s; and placing buffers on edge ep; and e¢;;.
According to phase 1, the Elmore delay at s; is less or equal to the given bound
del(s;), as illustrated by the same example in Fig. 3.5.

For each sink s; ¢ T;, the Elmore delay t&k will not be increased because the
source-sink path remains the same and the capacitance of subtree T}, will be reduced
or remains the same due to the buffer insertion on edge e;;. On the other hand, for
each sink s, € T}, t&k = tgﬂ» + t;k, t&k will not be increased because tgﬂ» is reduced
and the topology of T; remains the same. Therefore the cut-and-link operation will
not increase the Elmore delay at other sinks.

Let té,i denote the Elmore delay from the source to s; achieved by connecting s; to
s; and placing buffers on each unbuffered edge shown in Fig. 3.6 (b). The algorithm
chooses s; such that ¢} ; < del; and d;; is minimum.

To calculate tai, we define the smallest delay 1o ; as the Elmore delay from sq to
the sink s; in a given T" with one buffer inserted at each edge :
E— N Chj
to; = ton + dy +ri(cn; +njcy) + rhj(# +njcy) (3.10)
where s;, is the parent of s; in T and n; the number of children at s;. té,i can be
calculated accordingly:

3. Description of DBMB-tree Algorithm 11

Figure 3.5: s¢ is selected and connected to s;. The buffers are inserted on
edge eo7, €o1, o2 and ezg. The Elmore delay at s7: #f, < del(s7).

Sy Si0 Sy Si0

@ (b)

Figure 3.6: (a): Given the tree topology, assume inserting one buffer on each
edge, according to Eq. 3.10, o2 = foo + dy + ro(coz + 2¢3) + 7102(% + 2¢s)
where 2 is the number of children of s,. (b): 5 ; is the Elmore delay at s7 by
connecting sy to sy and inserting one buffer on each edge of T'. According

to Eq. 3.11, 13 7 = toz 4 (15 + ra7)es + dy + 1o(cor + C7) + o755 + C7).

. _ Ciq
thi =to;+ (ro +rnj)es + dy + (s + C) + rji(é +) (3.11)

All ¢y, thus té,i can be computed in linear time. For all critical sinks, the buffer
insertion and the cut-and-link operation in phase 3 can be done in O(n?) time.
Combining with the complexity of phase 1 and 2, overall DBMB-tree algorithm runs
in O(n?), which n is the number of terminals in the signal net.

12

4. Multiple Objective Optimization in GSA

Table 3.1: Test Examples

Circuit || Blocks | Nets | Critical Pins | Min. Area | Min. Wire
ami33 33 153 33 1,156,449 31,098
amiq9 49 412 50 35,445,424 335,496
sim66 66 306 66 2,312,898 62,196
s1m98 98 824 100 70,890,848 670,992

Table 3.2: The Optimal Solution with and w/o DBMB-tree Estimation

without Buffer Insertion with Buffer Insertion Improvement
Circuit Area Wire | Aspect | CPU Area Wire | Aspect | CPU | Area | Wire
Name || (times) | (times) | Ratio | (sec.) || (times) | (times) | Ratio | (sec.) | (%) (%)
ami33 1.50 3.48 1.01 2278 1.11 3.06 0.61 3279 || 26.0 | 12.0
ami49 1.26 5.60 0.60 2720 1.13 5.25 0.68 3961 10.3 | 6.25
sim66 1.33 4.93 0.95 5927 1.16 4.13 1.27 6998 || 12.8 | 16.2
sim98 1.31 8.73 0.91 6967 1.16 8.24 0.78 9060 || 11.5 5.6

3.7 Experiment Results

We apply DBMB spanning tree algorithm in general floorplanning based on GSA
stochastic optimization. The system is implemented in C language and tested on SUN
SPARC 20 workstation. Table 3.1 describes the characteristics of four test circuits
used in the experiment. sim66 and sim98 are generated from benchmark ami33 and
amid9 by doubling the blocks and netlist. The minimum area and wire length for each
circuit represent the lower bounds on the chip area and total wire length. When we
say area = 1.50, that means the area equals to one and half times of minimum area
achievable for that circuit. For each example, the same parameters are used for the
GSA stochastic optimization. The results shown in table 3.2 demonstrate that, with
buffer insertion, the floorplanning can get significantly better solution, in which the
chip area and total wiring length can be improved up to 26% and 16.2% respectively.
Fig. 3.7 and Fig. 3.8 show outputs of the placement with and without buffer insertion
for circuit sim98 respectively.

At each step of SA-based local search, the wiring cost for the new solution is
updated incrementally, therefore, the running time for the optimization with buffer
insertion is comparable with that without buffer insertion.

4 Multiple Objective Optimization in GSA

For deep submicron technology, the optimization problem of floorplanning and
placement becomes more and more complicated, in which a good tradeoff among
multiple conflicting objectives is hard to find.

Traditional methods, based on weighted cost summation and user-defined con-
straints, can not achieve the best tradeoff because of the difficulty to derive a set of
weight values or the satisfiable bounds. [10] proposed a multi-dimension cost vector
to evaluate a solution by the cost value in each dimension explicitly, rather than by
single aggregated cost value. A set of non-redundant solutions are searched without

4. Multiple Objective Optimization in GSA 13

Figure 3.7: Placement of circuit sim98 with buffer insertion. Achieve total
area of 82,233,384 and total wire length of 5,528,974.1 in 9060 sec. on Sun
SPARC 20 workstation.

Figure 3.8: Placement of circuit sim98 without buffer insertion. Achieve
total area of 92,867,011 and total wire length of 5.857,760.2 in 6967 sec. on
Sun SPARC 20 workstation.

making any tradeoff. A desirable solution can be chosen from the output set of best
solutions and the tradeoff is made only at that time. This methodology fits in the Ge-
netic Algorithm (GA) very well since GA maintains a set of non-redundant solutions
naturally [10].

However, the performance of GA highly depends on the quality of crossover
operation which mimics the propagation and causes large jump in the search space.
Most of crossover operations for building block placement studied so far are based on
the random process. Therefore the genetic algorithm jumps randomly for long time
to obtain good solutions.

Contrast to GA, Simulated Annealing (SA) starts with an initial solution and
searches the local region exhaustively based on continuous small moves. But it takes
long time to cover a large solution space. In addition, the single best-so-far solution
preserved during SA cannot represent the solution space with good tradeoffs among
multiple objectives.

14 4. Multiple Objective Optimization in GSA

A new stochastic optimization method, namd genetic simulated annealing (GSA)
[15] combines the advantages of both SA and GA. It maintains the population of
solutions, searches the local region continuously by SA-based small moves, and jumps
in the search space by crossover after the local search. Therefore GSA can search the
solution space both locally and globally within limited cpu time.

We apply GSA to general floorplanning problem, in which multiple conflicting
objectives are optimized explicitly. Using multi-dimension cost vector, solutions are
evaluated by the cost value in each dimension directly and a set of solutions with best
tradeoff among multiple objectives are preserved.

SA-based local moves generate the single search path and search for optimum
solution along this path. The candidate solution is accepted by the function based
on the cost value and current annealing temperature. To support explicit multi-
dimension cost representation, we define the multi-dimension acceptance function, in
which each dimension accepts the up-hill moves in that dimension with the adaptive
probability and the solution is accepted based on the votes of experts from each
dimension. Therefore no tradeoff need to be made to determine the acceptance of a
new solution.

Furthermore the stochastic random search can fall into local minima easily because
it is difficult to make better tradeoffs among many objectives. We introduce the
sensitivity for each objective and optimize the multiple objectives in order based
on their sensitivities, but not simultaneously. Experiment results demonstrate the
properly ordered optimization procedure for multiple objectives can improve the
results and speed up the process significantly.

4.1 Acceptance Function

Without resorting to a single-valued cost measure, the multi-dimension cost vector
is used to specify the “good” tradeoff and to compare the solutions. Given a set of
feasible floorplanning realizations II, for solution @ € II, ¢(x) = (@1, €2, -, @,) is the
cost vector in which z; is the cost value of 7" objective and n the number of objectives.
Similar with [10], a goal vector ¢ = (g1, g2, -, 9n), in which Vi : 0 < ¢g; < o0, is
specified by users. There are two kinds of goals in g: ¢; = 0 means that the minimum
cost value of 7' objective is wanted; and g; > 0 gives the maximum value which can
be accepted. The vector ¢ defines a set of satisfactory solutions:

Sy=Axzell|Vi g >0:2; <g¢g} (4.1)

Contrast to traditional user-defined bounds, the values specified by ¢; > 0 are only
used to guide the search process and need not be obtainable. Therefore they are
significantly easier to be specified than the traditional bounds.

To compare the relative quality between two solutions x and y, we define that
solution z is preferable to y, written x < y as in [10].

At each step of the SA-based local search, the new solution z' is produced by
changing the small fraction of current solution x and is accepted based on the decision

4. Multiple Objective Optimization in GSA 15

of committee, which consists of the invited experts. There is an expert for each
objective, who votes on accepting the solution #' according to the cost reduction of
the corresponding objective. For i* objective, the expert votes to accept the solution
¢ if the following condition holds:

(¢; < gi) V(2 S @) V (n < e 20T (4.2)

where 7 is the random-generated float number falling in [0, 1], and 7" is the current
temperature. For objective ¢; = 0, Az; denotes the cost reduction of i** objective:
Az, = x; — :1;; For ¢; > 0, Ax; is the slack of i** objective: Ax; = ¢; — :1;;

The experts accept the hill-climbing moves (¢g; = 0 and Az; < 0) or the infeasible
moves (¢; > 0 and Az; < 0) with the probability defined by min {1,e=4%/T} in
Eq. 4.2. Therefore the ability of escaping local minima of SA is conserved and
the given bound value ¢; > 0 need not be the strict bound but the guidance for
the stochastic optimization. Consequently each expert makes decision based only on
the cost value of single objective and no tradeoff need to be made among different
competing objectives. GSA accepts the new solution 2’ if and only if each invited
expert in the committee votes yes.

4.2 Ordered Optimization of Multiple Objectives

To explain when the experts are invited to the committee, we define the sensitivity
S;, as the average percentage of changed cost value for i'* objective over the m + 1
times SA-based local search:

> Iwi+1fﬂvi|
Sp="m (4.3)

m

Given m is large enough, we can discover which objective is most sensitive to the
local operations in average. The more sensitive, the easilier the cost value of the
objective alternates with the local operations and thus the later the objective should
be considered.

When more than two objectives are considered simultaneously, the random process
can easily fall into the local minima and it takes long time to reach better tradeoffs.
To guide the random search and speed up the process, we optimize multiple objectives
in order.

Initially the objective with lowest sensitivity is brought in and the corresponding
expert joins the committee. The new solutions accepted have better performance in
the objective under consideration and relative worse performance in others. When the
solution satisfies the user-defined goal for the objectives under consideration or the
cost surfaces of objectives under consideration become flat, a next new objective is
brought in and at the same time the corresponding expert joins the committee. Once
objectives are brought in and the corresponding experts join the committee, they stay
in the committee until the end. The algorithm terminates when the satisfied solutions
are found or all objectives are brought in and their cost surfaces become flat.

16 4. Multiple Objective Optimization in GSA

4.3 GSA with Multiple Objectives

Following is the outline of the new GSA algorithm with multiple objectives :

01: initialize-population(P),

02: initialize-committee(£),

03: initialize-solution(z),

04: repeat

05: SA-loop begins

06: ¢' = SA-search(z),

07: if (accept-solution(z')) then
08: update-population(P, x),
09: T

10: if (invite()) then update-committee(F),
11: else update-population(P, z'),
12: SA-loop ends

13: select x,,,x,, € P,

14: T. = crossover(xp,, Tp,),

15: T, = crossover(xp,, T,),

16: update-population(P, x.,),

17: update-population(P, x.,),

18: if (2., < @) then @ < x,,

19: else © + z.,,

20: until goal() or converge() or cpu-limit(),
21: reports P.

Figure 4.1: Outline of GSA Algorithm with Multiple Objectives.

At each iteration, the SA-based local search starts with the current solution =z,
and generates the new candidate ' by applying moves, exchanges or rotations as
in [15]. The new solution is accepted based on the votes of current committee £ in
accept-solution(). If ¢ is accepted, insert z into population P and continue the search
from #'. Otherwise, insert &' into P and restart the search from .

When a solution y is inserted into P in update-population(), each individual
solution z € P is visited. If 32 € P and z < y, then y won’t be added. For
each z € P and y < z, delete z from P. If no solution preferable to y found in P,y
is added into P.

invite() decides when a new objective is brought in and at the same time the
corresponding expert joins the committee. At the end of SA search, two parent
solutions are chosen randomly from P and the crossover in [15] is applied to generate
the two child solutions x., and z.,. The next iteration starts with the new generation.
When goal() detects that the satisfied solutions have been found, or converge() detects
the cost surfaces become flat, or the CPU time exceeds the given limit epu-limit(),
the process terminates and the set of best solutions found so far in P is reported.

5. Conclusion 17

4.4 Experiment Results

We apply multi-dimension cost vector and multi-dimension acceptance function
described above in the general floorplanning optimization based on GSA stochastic
algorithm. Given the goal vector ¢ = (Garear Guwires Gaspect)s the chip area and total
wiring length are minimized while aspect ratio close to gyspect 1s desirable.

For comparison, we also use SA with the cost function cost = area + X wire,
subject to the given aspect ratio constraint g,spect. A 1s the weight value for total
wiring length, and the weight for area is normalized to 1.0 for simplicity.

Both GSA and SA runs under SUN SPARC 20 workstation, using the same set of
annealing schedule within same cpu time. GSA reports the set of optimal solutions,
in one pass, covering the large solution space, shown by the curve marked by “cost-
vector” in Fig. 4.2. Three separate SA runs using different weight value for A report
three best-so-far solutions shown by the curve marked “cost-ratio” in Fig. 4.2. We
choose X in large range and the three solutions reported by SA are very close to the
solutions found by GSA. Therefore without knowing the weight values for multiple
objectives, one pass GSA can achieve the set of optimal solutions including a wide
range of tradeoff among the multiple objectives. Even with knowing the proper weight
values, one pass SA can only find single solution for that particular weight.

To demonstrate the optimal solution space is very sensitive to the optimization or-
der for multiple objectives, three GSA processes running in the same environment are
compared using the same test circuit: ami98. Fach process uses same set of stochas-
tic parameters and runs in same cpu time, and optimizes the multiple objectives in
different order. The optimal solution spaces explored by the experiment are shown
in Fig. 4.3, in terms of chip area and total wiring length. Clearly, properly ordered
optimization for multiple objectives can speed up the stochastic process significantly
and explore the optimal solution space more effectively.

5 Conclusion

In this paper, we propose a new methodology of floorplanning and placement
where the intermediate buffer insertion is used as another degree of freedom in delay
calculation. The timing constraints of a floorplan are evaluated many times during
our stochastic optimization process. The introduction of buffer insertion increases
the complexity of the evaluation significantly due to the complexity of buffered tree
construction and the complication of multi-objective optimization.

An efficient algorithm to construct a Delay Bounded Minimum Buffered (DBMB)
spanning tree has been developed. One of the key reasons to make this tree construc-
tion efficient is that we treat the delay bounds as constraints rather than formulating
the delay into the objectives as did in most of the previous works. In fact, our problem
formulation is more realistic for the path based timing driven layout design. Buffer
insertion adds another competing criteria into the already complicated design space,
making the traditional approaches using weighted cost summation of multiple com-
peting objectives even worse. However, it is not trivial to apply the explicit design

18 References

8.5 T T T T T T T
"cost-vector" —<—
"cost-ratio" -+~
8 - -
75 E
2 7k |
=
6.5 |]
6 - -
55
1.12 1.14 1.16 1.18 1.2 1.22 1.24 1.26 1.28

area

Figure 4.2: Multiple objective optimization for ami98: the set of solutions
marked by “cost-vector” is reported by one run of GSA using vector-valued
cost function to represent and evaluate solutions in each dimension explicitly.
Comparing to this, three runs of SA use the weighted cost summation
area + Awire and report three best-so-far solutions marked by “cost-ratio”,
in which the A is 1.0, 10.0 and 100.0 from left to right respectively. Fach
process uses the same cpu time and the same parameters for stochastic
search.

space exploration methodology to our Genetic Simulated Annealing (GSA) approach.
To support the multi-dimension cost representation, the acceptance function in mul-
tiple dimensions has to be provided to accept the candidate solutions along the single
search path generated by SA-based local moves. In the second part of the paper, we
define the acceptance function in multiple dimensions based on the votes of invited
experts and propose a method to introduce different objectives in order based on their
sensitivities. The efficient DBMB spanning tree algorithm together with the new mul-
tiple objective optimization method made our buffered tree based floorplanning and
placement more effective.

References

[1] C.J. Alpert, T. C. Hu, J. H. Huang, and A. B. Kahng. A direct combination of the
prim and dijkstra constructions for improved performance-driven global routing.

In Proc. of IEEE Intl. Symp. on Circuits and Systems, pages 1869—-1872, 1993.

References 19

8 T T T T T T T
"area-wire" —<—
"wire-area" -+--
"same-time" -&--
75 | i
SL]
8 6.5 |- T
£ .
8
o
Bl
6 N B B R O i
N
55 |- o i
o
e -+
5 1 | 1 1 1 L 1
1.1 1.15 1.2 1.25 1.3 1.35 14 1.45 15

area

Figure 4.3: Ordered Optimization of Multiple Objectives for ami98: three
GSA processes use the same parameters for stochastic search and run on
SUN SPARC 20 using the same cpu limit 740 sec. Given the goal vector: g
= (Garear Guires Gaspeet) = (0,0,0.9), the chip area and wire length are opti-
mized subject to the aspect ratio constraint. The objectives are optimized
in different orders: the “area-wire” curve is obtained by the optimization
in aspect ratio — area — wire length order; “wire-area” curve in aspect ra-
tio — wire length — area order; and “same-time” curve by simultaneous
optimization for each objective.

[2] C. L. Berman, J. L. Carter, and K. . Day. The fanout problem: From theory to
practice. In Proc. 1989 Decennial Caltech Conf., pages 69-99, 1989.

[3] K.D. Boese, A. B. Kahng, B. A. McCoy, and G. Robins. Rectilinear steiner trees
with minimum elmore delay. In Proc. 31st ACM/IEEFE Design Automation Conf.,
pages 381-387, June 1994.

[4] K. D. Boese, A. B. Kahng, and G. Robins. High-performance routing trees with
identified critical sinks. In Proc. 30th ACM/IEEE Design Automation Conf.,
pages 182-187, June 1993.

[5] J. P. Cohoon and L. J. Randall. Critical net routing. In Proc. IEEE Intl. Conf.
on Computer Design, pages 174-177, 1991.

[6] J.Cong, A. B. Kahng, G. Robins, M. Sarrafzadeh, and C. K. Wong. Performance-
driven global routing for cell based ic’s. In Proc. IEEFE Intl. Conf. Computer Design,
pages 170-173, Cambridege, MA, October 1991.

[7] J. Cong, A. B. Kahng, G. Robins, M. Sarrafzadeh, and C. K. Wong. Provably
good performance-driven global routing. IEEFE Trans. Computer Aided Design,

20

3]

[9]

[10]

[11]

[12]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

References

pages 739-752, 1992.

Jason Cong, Kwok-Shing Leung, and Dian Zhou. Performance-driven interconnect
design based on distributed rc delay model. In Proc. 30th ACM/IEEE Design
Automation Conf., pages 606—611, June 1993.

Sanjay Dhar and Mark A. Franklin. Optimum buffer circuits for driving long
uniform lines. IEEFE Journal of Solid-State Circuits, 26(1):32-40, January 1991.

H. Esbensen and E. S. Kuh. An mem/ic timing-driven placement algorithm
featuring explicit design space exploration. In Proc. 1996 [EEE Multi-Chip Module
Conf., pages 170-175, Santa Cruz, CA, February 1996.

J. M. Ho, D. J. Lee, C. H. Chang, and C. K. Wong. Bounded-diameter spanning
tree and related problems. In Proc. ACM Symp. on Computational Geometry,
pages 276-282, 1989.

X. Hong, T. Xue, E. 5. Kuh, C. K. Cheng, and J. Huang. Performance-driven
steiner tree algorithms for global routing. In Proc. 30th ACM/IEEE Design
Automation Conf., pages 177-181, Baltimore, MD, June 1993.

Andrew B. Kahng and Gabriel Robins. On Optimal Interconnections for VLSI
Kluwer Academic Publishers, 101 Philip Drive, Assinippi Park, Norwell, MA
02061, 1995.

L. N. Kannan, P. R. Suaris, and H. G. Fang. A methodology and algorithms
for post-placement delay optimization. In Proc. ACM/IEEFE Design Automation
Conf., pages 327-332, 1994.

Seiichi Koakutsu, Maggie Kang, and Wayne W.-M. Dai. Genetic simulated an-
nealing and application to non-slicing floorplan design. In Proc. 5th ACM/SIGDA
Physical Design Workshop, pages 134-141, Virginia, USA, April 1996.

John Lillis, Chung-Kuan Cheng, and Ting-Ting Y. Lin. Optimal and efficient
buffer insertion and wire sizing. In Proc. IEEE 1995 Custom Integrated Circuits
Conf., pages 259-262, 1995.

Andrew Lim and Siu-Wing Cheng. Performance oriented rectilinear steiner trees.

In Proc. of 30th Design Automation Conf., pages 171-176, June 1992.

Takumi Okamoto and Jason Cong. Buffered steiner tree construction with wire
sizing for interconnect layout optimization. In Proc. 1996 IEEE/ACM Interna-
tional Conf. on Computer Aided Design, pages 44-49, San Jose, CA, Nov. 1996.

Takumi Okamoto and Jason Cong. Interconnect layout optimization by simulta-
neous steiner tree construction and buffer insertion. In Proc. 5th ACM/SIGDA
Physical Design Workshop, pages 1-6, Reston, Virginia, April 1996.

S. Prasitjutrakul and William J. Kubitz. A timing-driven global router for custom
chip design. In ITEFE Intl. Conf. on Computer Aided Design, pages 48-51, 1990.

Jorge Rubinstein, Paul Penfield, and Mark A. Horowitz. Signal delay in RC
tree networks. IEEFE Trans. on Computer-Aided Design, CAD-2(3):202-211, July
1983.

K. J. Singh and A. Sangiovanni-Vincentelli. A heuristic algorithm for the fanout
problem. In Proc. ACM/IEEFE Design Automation Conf., pages 357-360, 1990.

References 21

[23] H. J. Touati, C. W. Moon, R. K. Brayton, and A. Wang. Performance oriented
technology mapping. In Proc. 6th MIT VLSI Conf., pages 79-97, 1990.

[24] M.Y. Mike Tsai and R. S. Tsay. Ic layout shift at deep-submicron level. Electronic
Engineering Times, pages 820-866, October 1994.

[25] H. Vaishnav and M. Pedram. Routability-driven fanout optimization. In Proc.
ACM/IEEE Design Automation Conf., pages 230-235, 1993.

[26] L. P. P. P. van Ginneken. Buffer placement in distributed RC-tree networks for
minimal elmore delay. In Proc. International Symposium on Circuits and Systems,

pages 865-868, 1990.

[27] Qing Zhu. Chip and Package Co-Synthesis of Clock Networks. PhD thesis, Univ.
of California, Santa Cruz, Santa Cruz, CA, June 1995.

