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ABSTRACT

The key to the method of measured equation of invariance (MEI) is the postulate:
“the MEI is invariant to the excitation”. In this paper, we proved that the MEI
is independent of the excitation with the error bounded by O(h?), where & is the
discretization step. We also proved that the consistent condition ||L¢ — M¢/h?|| = &,
where L is the partial differential operator, and M the equivalent MEI operator. If
the MEI coefficients C* (i = 1,...,4) are determined from the special distribution
named metrons on the boundary of the object, then ¢ = §.J(s), otherwise ¢ = J(s),
where J(s) is a functional of the source distribution s, and 6.J(s) is the perturbation
of the functional J(s). And finally we pointed out that the error between the accurate
solution and the solution of MEI is bounded by two terms, one is caused by the FD
approximation at interior nodes which is proportional to A%, another is caused by
MEI and is independent of h but proportional to 6.J(s) which ensured the accuracy
of MEI solution.

Keywords: Measured Equation of Invariance (MEI), postulates, error bound, sta-
bility, consistency condition, convergence property
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1 Introduction

Measured Equation of Invariance(MEI) is a new concept in computational electromag-
netics] MPCL92]. MEI is used to derive the local finite difference (FD) like equation at
mesh boundary where the conventional FD/FEM approach fails. It is demonstrated that
the MEI technique can be used to terminate the meshes very close to the object boundary
and still strictly preserves the sparsity of the FD equations. Therefore, the final system
matrix encountered by MEI is a sparse matrix with size similar to that of integral equation
methods, which results in dramatic savings in computing time and memory usage compared
to other known methods. It has been successfully used to analyze electromagnetic scatter-
ing problems [MPCL92, HL.M94, HM94, CHZ96, CHed], and microwave integrated circuits
[PPM93a, PPM93b]. MEI concept has also been applied to IC interconnect parasitic ex-
traction [HSD96] [SHD96], which is becoming more and more important with the increase
of clock rate and decrease of feature size.

Recently, however, some papers[J1.94] [JL.95a] propose some doubts on the third postula-
tion of the MEI coefficients: invariant to excitations, which is one of the main topics of this
paper. It then results in some arguments [ML95, JL95b, Mei95, JL95¢]. In fact, there is a
mistake in the derivation in paper [JL95a] as pointed by Mei [Mei95]. In their final operators
(see Eq.9 and 10 in [JL.95a]), they included the term (% b)~? which is just the source of the
difference of two different operators, but they omitted the term (k£ 5)™! in the derivation of
the final operator. Although they have some doubts on MEI, they still admit in the papers
that MEI is an efficient technique for the truncation of mesh boundaries [JL.94].

In this paper, we provided solid proof and reasonable comments on the method of MEI.

2 Basic MEI idea

Considering the EM scattering problem of a general cylinder (not necessary conducting,
may be penetrable media [HLM94]) and several layers of 2D mesh around the cross-section
of the cylinder shown in Fig.1. For the sake of convenience and without loss of generality,
let the horizontal and vertical discretization step size the same and denoted as h.

At the interior nodes of the mesh, the following 5-points finite difference equation (FD)

> cid(ri) = O(h") (1)

i=0
can be applied, where in Cartesian coordinate system and under uniform media assumption,
cp=cy=c3=cy=1,c0 = (kh)* — 4, and 7; is the position vector of the ith node.
On the truncated boundary nodes as shown in Fig.1, a different type of relation has
to be applied, such as traditional E.W., M.W., and ABC’s. Mei [MPCL92] postulated the

existence of the following linear equation for the truncated boundary nodes

ZQW@) =0 (2)



Figure 1: A general cylinder and its 2D mesh scheme

which is called MEI (Measured Equation of Invariance), and ¢;,7 = 0,1,2,3 are called MEI
coefficients, which by Mei’s postulation have three properties (i) location dependent, (ii)
geometric specific, (iii) invariant to the excitation. Among them, the third one, invariance
to excitation is the base of the method of MEI.

3 Theorems on MEI

Assume that: potential or field function ¢ in an open region outside an object satisfies
the partial differential equation (PDE) L¢ = 0, where L is a partial differential operator, and
¢ may be expressed as ¢(r) = [ s(7)G(r, 7" )dl” = £[s(")], where 7,7 stand for field and
source points respectively, I' for the boundary of the object, s for the source distribution, &G
and £ for Green’s function and integral operator.

First we will prove the theorem that states the MEI coefficients are independent of source
distributions with error bounded by O(h?).

The proof begins with definitions of some concepts.

Definition 1. Let (' denote the continuous function space consisting of the continuous
functions defined on the boundary I' of the cylinder.

For any excitation, the induced source distribution s(1) (! is the length along the boundary
I') is always a continuous function, so s(/) € C.

The potential function ¢(r) should satisfy Laplace equation for static problems and
Helmholtz equation for dynamic problems, so its derivatives of the second order should
be continuous. According to the property of the Green’s function G/(r,#), in fact, even
higher order derivatives of the potential function ¢(r) are continuous.
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Defining vector ¢ = (o(r1), #(72), #(r3), #(79)), here 7; is the position vector of the ith
node of MEI, then

Definition 2. Let ¢ = {¢,6(7) = £]s(1)],¥s(l) € C} be the vector space consisting of
vectors ¢ produced by all source distributions.

Definition 3. ¥ = { ¢ = (¢1,¢3,¢3,1),¢ are any bounded complex numbers} be the
space of MEI coefficients vectors, here the MEI coefficient ¢q has been normalized to 1.

Definition 4. If ¢- ¢ =32 ,cio(r;) =0, then ¢ is perpendicular to ¢, denoted as ¢ — ¢.
It Vo € &, ¢ — ¢, then ¢ is perpendicular to the space ®, denoted as ¢ — ®.

If ¢ — ®, we say ¢ is independent of ®. Since ¢- ¢ =0,V¢ € ® < ¢ — @, so if we want
to prove ¢ is independent of space ®, we only need to prove that Vo € ®,¢- ¢ = 0.

However, in numerical analysis, we usually have |¢-¢| < ¢ # 0,V¢ € @, here ¢ is generally
a small quantity. In this case obviously, ¢ is not independent of space ®, but we can say ¢ is

independent of space ® with error bounded by .

For example, the FD equation (1) may be rewritten as ¢ - ¢ = O(h?), so we can say the
coefficient vector ¢ = (k*h? —4,1,1,1,1) of the FD equation is independent of the space ®
with error bounded by O(h*).
~ Letp=c- ¢ as the projection from ¢ to ¢, then p describes the coherence between ¢ and
¢. The smaller the projection p, the weaker the coherence between ¢ and ¢.

We can rewrite the MEI Eq.2 as
c-6=0, or ¢—¢, Voed (3)

which means ¢ is rigorously independent of the equivalent source distribution on the surface
of the scattering cylinder, or independent of incident field because the current distribution
is actually induced by the incident field.

As mentioned above, the invariance to excitation is only a postulation or guess. Is there
really a MEI coefficients vector ¢ that is rigorously independent of the excitationl' The
question is answered by the following theorem.

Theorem 1. Assume a vector ¢ € W is perpendicular to three linear independent
vectors of the space @, i.e.

E*q;mzzchsm(fz)zov m:17273 qzmeq) (4)
then,
¢ b= Y coln) = 0() Voed 5)

which means the MEI coefficient vector ¢* is independent of excitation with error bounded

by O(h?).



4 3. Theorems on MFEI

Proof: V¢ € @, define the projection from & to ¢ as

p=c b= 2ol )
The condition Eq.4 is just a system of linear algebraic equation with respect to the MEI
1 s) | [ & ¢1(70)
Ga(r1)  d2(r2)  Ba(r3) G | =—1 ¢2(ro) (7)
¢a(r1)  @a(r2) @s(rs) | | Pa(r

whose solution can be easily expressed according to Gramm’s rule

coefficients ¢, ¢5, and ¢}

1) 6i(r2) ol

I 11
=PI 3
] B 1 1|

. D .
== =123 (8)
where
¢1(r1)  ¢1(ra)  é1(7s)
D= ¢3(r1) ¢2(T2) ¢2(73) (9)
¢3(r1)  @a(ra)  @a(7s)
¢1(r0)  ¢1(r2)  H1(73)
Dy = —| ¢2(70) ¢2(r2)  ¢a(r3) (10)
¢a(ro)  ¢3(r2)  Ba(rs)
¢1(r1)  ¢1(ro)  é1(r3)
Dy = —| ¢2(m1) ¢2(70)  ¢2(r3) (11)
¢a(r1)  ¢3(ro)  #a(rs)
¢1(r1)  ¢1(r2)  é1(ro)
Dy = —| ¢2(m1) ¢2(r2)  ¢2(r0) (12)
¢a(r1)  @3(ra)  #a(ro)
Therefore, the projection p can be expressed as
p = ¢(ri)e + ¢(r2)e; + ¢(r3)c; + (7o)
_ ¢(r) D1+ 6(r2) Da + ¢(73) D3 + ¢(r0) D
D
Dy
= 5 (13)
where
o(r1)  ¢(r2)  B(ra)  ¢(ro)
Dy = _ o1(r1)  ¢1(r2)  éu(r3)  1(ro)
Ga(r1)  @a(r2)  B2(r3)  @a(ro)
¢a(r1)  @s(r2)  #a(ra)  ¢a(ro)
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¢(7o) — hy(ro) + 0.5h%¢](r0) + O(h*)  @(r0) — he, (7o) + O(h?)

_ | &ilro) = hiy(To) + 0.5h2¢ (o) + O(R®) - é1(To) — hyy(T0) + O(h?)
¢2(f0) - h¢t2(f ) + 0-5]12(/5;/2(7“0) + O(h?)) ¢2(f0) - hqﬁ%z(fo) + O(hZ)
¢3(f0) h¢t3(7 ) + 0. 5h2¢;/3(7"0) + O(h?)) ¢3(f0) - hgb%?)(fo) + O(hZ)

¢(70) + hoy(To) + 0.5h26 (7o) + O(h?)  ¢(7)

¢1(r) + hoyy (o) + 0.5h2¢ (7o) + O(h?)  é1(70)

$2(7) + hoiy (7o) + 0.5k (7o) + O(h?)  da(70)

¢3(7) + hois(ro) + 0. 5h2¢t3(r0) (hS) ps3(7o)
—hd}(ro) + 0.5k @) (ro) + O(R*)  —he(To) + O(h?)

_ —h¢i (7o) +0.5h% ¢4 (ro) + O(h°)  —hel,1(ro) + O(h?)
—hiy(ro) + 0. 5h2¢t2(r0) + O(hg) —hd5(T0) + O(hZ)
—he5(To) + 0.5R2¢15(70) + O(h?)  —h¢l5(r0) + O(h?)

hey(ro) + 0.5h%¢ (7o) + O(h?’) (7o)
héi(ro) + 0.5h% ¢ (7o) + O(R”) (7o)
hia(ro) + 0.5h% ¢ (7o) + O(R”)  ¢a(To)
hos(To) + 0.50°¢is(70) + O(h*)  ¢a(7o)
G iy b o)
= M alre) dalra) o) éalro) | T O (14)
¢is(T0)  Ps(To)  di5(To)  @a(ro
where ¢/.(7) = 885 (7o), & .(To) = % (7o), and s and n are the two orthogonal directions

as shown in Fig. 1. Similarly,

o1(r1)  o1(r2)  ¢1(73)
D = —| ¢(r1) ¢2(r2) ¢2(73)

@3(r1)  @3(ra)  @s(7s)
$1(r0) — hoyy(ro) + O(h?)  61(r0) — holy (7o) + O(h?) ¢4

= —| ¢a2(ro) = holy(ro) + O(h?*)  ¢a(r0) — hyy(r0) + O(h?) oy
¢3(r0) — hois(ro) + O(h?)  @3(ro) — hels(ro) + O(h?)  ¢3
P1(T0)  Bri(ro)  é1(ro)

= 207 ¢ly(Fo)  Bla(Fo)  Ga(T0) |+ O(A?)
¢t3(f) ¢n3(f0) ¢3(f0)

(16)



Figure 2: Cylinder with a point charge

where ¢ is independent of h. The theorem is proved.

It should be noted that in the proof, if ¢1, ¢y, @5 ¢ @, the conclusion is still right, which
means the MEI with O(%?) residue is not unique, or there are infinite sets of MEI coefficients
that are independent of the excitation with error bounded by O(h?). However, it will be
shown in next section that the residue of the consistent condition will be minimized if the MEI
coefficients are determined by the metrons on the surface of the cylinder, i.e., ¢1, ¢, d3 € .
This is necessary to ensure the accuracy of MEI solution.

Now let’s use a simple 2D electro-static example to verify the theorem 1. The structure
is shown in Fig. 2, which is a perfect conducting circular cylinder with a point charge ¢
outside it at a distance d. The radius of the cylinder is a. We have analytical solution for
the field distribution outside the cylinder. The outside field distribution is equivalent to the
field generated by ¢ and its image charge —¢ placed at p = a%/d in free space. Let ¢'* be the
field generated by the original charge ¢, ¢° be the field generated by induced charge on the
surface of the cylinder due to ¢, and ¢' be the total and actual field. Note that ¢* is actually
equivalent to the field generated by the image charge —¢. We have the exact solutions

P = — 28 n(r? — 2rdcost + d*) (17)
¢* = Xin(r* — 2rpcost + p*) (18)
o' = ¢ + ¢ = Pn(FEEE) (19)

To solve this problem numerically, we need to first make circular meshes around the
cylinder as shown in Fig. 3. Here for the sake of simplicity, only uniform meshes are adopted.
We actually only need to get the field distribution (referred to as “scattering field”) generated



Figure 3: 2D cylinder mesh

by the charges induced by ¢, then by adding ¢™* we can get the total field ¢'. The scattering
field satisfies Laplace equation in circular coordinates,

¢ 196 1%
oz o Trage 0 (20)

while the boundary condition on the surface of the cylinder for the scattering field is
¢ = —¢™" = Zo—qln(a2 — 2adcosh + d*) (21)
s

Let h, and hg be the step size in the r and 6 directions. Using central difference to
approximate differential, we have FD relations for interior nodes as shown in Fig. 3

ZQW@) =0 (22)
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Clzl‘l‘%_;

C4:1—2—T
4 2
02263:(%)2 (3)

co = —2[1 + (%)%

h@’/’

For the boundary nodes, we use three metrons in the MEI procedure in section 2 to get
the MEI coefficients. We have three sets of metrons, (1) set A: on the surface of the cylinder,
ie., 1,cos(rl/L),sin(rl/L), where L is the perimeter of the cylinder, and [ is the length of
the arc from some starting point; (2) set B: just three point charge with unit charge, they
are put equal distance on the circle with radius a/2 with the same origin as the original
cylinder; (3) set C: even more general, three metrons put on the y-axis with equal distance.

After obtaining the MEI coefficients, we use the actual field distribution ¢* as in Eq. 19
to test the residue of the MEI equations with respect to the refinement times Fig. 4 to 6. In
the figures, we set radius to be a = 20, the distance d = 60. We refine the mesh uniformly
each time in both directions and keep mesh distance at boundaries the same all the time.
It can be seen that the residue of MEI equation decrease with refinement times (and hence
step size) quadratically (on the order of 2? ) for all three sets of metrons, even though set B
and set C are not on the surface of the cylinder. However, not all the three set metrons give
good accuracy of the solution. The reason will be seen in the following section.
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Theorem 2. The consistent condition of the MEI is

ILé — Mol = h? (24)

and the residue £ of the consistent condition is the perturbation of a functional J(s) if MEI
coefficients are obtained by using metrons set on the surface of objects

It can be easily derived from Eqs.(6)(16) that

[[Lo — Mo||
Tz (25)
and
H(ro)  ¢L(ro)  of(ro)  ¢(r0)
1(ro)  @ni(ro)  @fi(ro)  ¢1(ro)
12(T0)  Gnalro)  @(r0)  @a(7o) oi(ro)  @L(ro)  dY(r0)  B(r0)
1] ¢is(ro)  dna(ro)  ¢ls(ro)  s(7o) _¢| Pulro) &a(ro) i(ro)  61(7o) (26)
2 45151(7“0) ¢%1(T0) ¢1(fo) ;2(770) %2(%) ;/2(7?0) 452(%)
Dia(To)  dra(T0)  d2(70) t3(r0)  @hs(ro)  @is(ro)  @3(ro)
Gia(T0)  Pralro)  ¢3(7o)

where ¢ is independent of ¢. It is known that the real potential ¢ may be expressed as
é(r) = [rs(r")G(r,7)dl", where s stands for the source distribution on the surface of the
cylinder. Then the residue ¢ may be expressed as

Jrs(r)Gi(ro)dl” Jrs (’) n(ro)dl” [ s(r) G (ro)dl” Jp s(r*) Gi(ro)dT

7“0

== o3
o
N
3
[\]
AA/—\
=3I
o
=N e e’ e
R
[\]
—~

e
= SR i) dlatre) i) ealro) | 2
is(To)  @na(ro)  ¢i5(r0)  @a(7o)
It may also be expressed as a functional
e=J(s) = /F s(#)F(F, #)dI" (28)

So, generally the residue of the consistent condition of the MEI can be expressed as a
functional of the source distribution on the surface of the cylinder. It will be shown that the
residue will be greatly reduced if the MEI coefficients are determined from the metrons on
the surface of the cylinder.
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let T' = span{mq ('), ma(7"), ms(7)} be the subspace spanned by three metrons my(r'), mo(7)
and ms(r’) defined on the surface of the cylinder, then the potentials at the MEI nodes are
expressed as

oi(rs) = [ )G, )T (29)
r
where the subscripts ¢ and j stand for the ith metron and the jth MEI node respectively.
Define Ps as the projection of the real source s(7') to the metron subspace T', then s(7)

can be expressed as

s =Ps+ s (30)

where s is the distance (difference) between s and the subspace T

Substituting the Eqs.(29)(30) into Eq.(28) Or (27) and by using the properties of deter-
minant, it is easy to prove that

e=J(s)=J(Ps+és)=J(Ps)+ J(b6s) = J(6s) = 6] (31)

Since the main part of the residue ¢ being equal to zero, i.e., J(Ps) = 0, the residue
is greatly reduced. If the metrons are not chosen as the distributions on the surface of the
cylinder, the conclusion Eq.(31) is not valid. It will make serious error in the solution.

If the real source s is just a linear combination of the three metrons, in other words,
s € T, it is obvious that és = 0 and then ¢ = 0. This means the MEI rigorously simulated
the truncated boundary condition without any error. In fact, generally the real source s ¢ T,
and there must be a small residue ¢ = 6.J. The residue decreases with the decrease of the
difference é6s between the real source and the metron subspace T'. Therefore, we should
choose the metrons taking some physical concept into consideration, so as to minimize the
residue. Fortunately, the first several terms of the sinusoidal sequence are suitable metrons
for most problems.

It should be noticed that only three metrons are considered in the discussion above.
If the metron subspace is spanned by more metrons, i.e., T = span{my, ma,...,mz}, the
difference 6s and then the residue 6.J will be further decreased. For this situation, the
MEI coefficients will be obtained by a least square procedure. As discussed in [HML94],
piecewise functions are also a good choice of metrons for most problems, especially for three
dimensional problems where continuous functions are hard to be defined.

We also use the previous example to demonstrate this theorem. Note that in the above
example, we have three sets of metrons, with only one of them (set A) on the surface of the
cylinder. We can see from Fig 4 to 6 that the residue of set A is much smaller than that
of set B, and is two orders of magnitude smaller than that of set C. The residue of set B
is smaller than set C because metrons in set B can approximate the shape of surface better
than set C. This verifies theorem 2.

Theorem 3. If the PDE L¢ = 0 satisfies the condition of the mazimum theorem, and the
FD equations with the error bounded by O(h*) are applied to the interior mesh nodes, MEIs
to the truncated boundary nodes, then ||¢ — ¢'|| < &||6J|] + &%, where ¢ and ¢’ are the
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accurate solution and the approximate solution of MEI respectively, &1 and & are independent
of h.

It is well known that the consistent condition for the FD equation with error bounded by
O(h*) is ||Lé — Do|| = O(h*), where D is the finite difference operator. And the consistent

condition for MEI has been shown in theorem 2. It is straightforward to get the conclusion
¢ — &'l < &[0 T]] + E2h” (32)

according to maximum principle [Smi85, BL84].

This theorem states that the accuracy of the solution of MEI does not increase with the
decreasing of step size h, however, if metrons are chosen properly on the surface of object,
the MEI still ensures the accuracy of the solutions. According to Lax theorem [Smi85, BL84],
which essentially states the convergence property is equivalent to stability property given
that the consistent condition is satisfied. Therefore, this theorem somehow described the
convergence property of MEIL.

Fig. 7 shows the relative error of potential distribution between accurate solution and
MEI solutions with different step sizes. It can be seen that the error does not decrease when
step size decreases from 2 to 0.25. However, when the step size is 2 which means only two
layers of mesh are used outside the cylinder, the solution is already accurate enough with
0.2% relative error. On the other hand, if metrons are chosen improperly such as the metron
set B and C as mentioned above, the relative error will be orders of magnitude larger than
that by using the metron set A, as shown in Fig. 8, which also verifies conclusion of theorem
2. Furthermore, improperly chosen metrons (such as metron set C) will seriously degenerate
the solution as shown in Fig. 9.
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4 Conclusion

In this paper, we proved three theorems and got some important conclusions which gave
deep insight into Measured Equation of Invariance. The first theorem stated that the residue
of MEI equation is independent of excitation with error bounded by O(h?) where h is the
discretization step size. The second theorem stated that if metrons are set on the surface
of object, the residue of the consistent condition of MEI is proportional to the perturbation
of a functional with respect to the source distribution on the surface of object. The third
theorem stated that the error of the MEI solution does not decrease with the decreasing of
step size h, however, if metrons are chosen properly on the surface of object, the MEI still
ensures the accuracy of the solutions. Numerical experiments verified the three theorems
and showed that if properly metrons are chosen on the surface of object, MEI will achieve
enough accurate solution even with only two layers of mesh outside the object; on the other
hand, improperly chosen metrons will seriously degenerate the final solution. Besides, the
smaller the distance between the accurate source distribution and the subspace spanned by
the metrons, the better the solution, therefore, we should choose metrons with some prior
knowledge.
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