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1. Introduction 11 IntroductionMeasured Equation of Invariance(MEI) is a new concept in computational electromag-netics[MPCL92]. MEI is used to derive the local �nite di�erence (FD) like equation atmesh boundary where the conventional FD/FEM approach fails. It is demonstrated thatthe MEI technique can be used to terminate the meshes very close to the object boundaryand still strictly preserves the sparsity of the FD equations. Therefore, the �nal systemmatrix encountered by MEI is a sparse matrix with size similar to that of integral equationmethods, which results in dramatic savings in computing time and memory usage comparedto other known methods. It has been successfully used to analyze electromagnetic scatter-ing problems [MPCL92, HLM94, HM94, CHZ96, CHed], and microwave integrated circuits[PPM93a, PPM93b]. MEI concept has also been applied to IC interconnect parasitic ex-traction [HSD96] [SHD96], which is becoming more and more important with the increaseof clock rate and decrease of feature size.Recently, however, some papers[JL94] [JL95a] propose some doubts on the third postula-tion of the MEI coe�cients: invariant to excitations, which is one of the main topics of thispaper. It then results in some arguments [ML95, JL95b, Mei95, JL95c]. In fact, there is amistake in the derivation in paper [JL95a] as pointed by Mei [Mei95]. In their �nal operators(see Eq.9 and 10 in [JL95a]), they included the term (k b)�2 which is just the source of thedi�erence of two di�erent operators, but they omitted the term (k b)�1 in the derivation ofthe �nal operator. Although they have some doubts on MEI, they still admit in the papersthat MEI is an e�cient technique for the truncation of mesh boundaries [JL94].In this paper, we provided solid proof and reasonable comments on the method of MEI.2 Basic MEI ideaConsidering the EM scattering problem of a general cylinder (not necessary conducting,may be penetrable media [HLM94]) and several layers of 2D mesh around the cross-sectionof the cylinder shown in Fig.1. For the sake of convenience and without loss of generality,let the horizontal and vertical discretization step size the same and denoted as h.At the interior nodes of the mesh, the following 5-points �nite di�erence equation (FD)4Xi=0 ci�(�ri) = O(h4) (1)can be applied, where in Cartesian coordinate system and under uniform media assumption,c1 = c2 = c3 = c4 = 1; c0 = (kh)2 � 4, and �ri is the position vector of the ith node.On the truncated boundary nodes as shown in Fig.1, a di�erent type of relation hasto be applied, such as traditional E.W., M.W., and ABC's. Mei [MPCL92] postulated theexistence of the following linear equation for the truncated boundary nodes3Xi=0 ci�(�ri) = 0 (2)
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Figure 1: A general cylinder and its 2D mesh schemewhich is called MEI (Measured Equation of Invariance), and ci; i = 0; 1; 2; 3 are called MEIcoe�cients, which by Mei's postulation have three properties (i) location dependent, (ii)geometric speci�c, (iii) invariant to the excitation. Among them, the third one, invarianceto excitation is the base of the method of MEI.3 Theorems on MEIAssume that: potential or �eld function � in an open region outside an object satis�esthe partial di�erential equation (PDE) L� = 0, where L is a partial di�erential operator, and� may be expressed as �(�r) = R� s(�r0)G(�r; �r0)d�0 = $[s(�r0)], where �r; �r0 stand for �eld andsource points respectively, � for the boundary of the object, s for the source distribution, Gand $ for Green's function and integral operator.First we will prove the theorem that states the MEI coe�cients are independent of sourcedistributions with error bounded by O(h2).The proof begins with de�nitions of some concepts.De�nition 1. Let C denote the continuous function space consisting of the continuousfunctions de�ned on the boundary � of the cylinder.For any excitation, the induced source distribution s(l) (l is the length along the boundary�) is always a continuous function, so s(l) 2 C.The potential function �(�r) should satisfy Laplace equation for static problems andHelmholtz equation for dynamic problems, so its derivatives of the second order shouldbe continuous. According to the property of the Green's function G(�r; �r0), in fact, evenhigher order derivatives of the potential function �(�r) are continuous.



3. Theorems on MEI 3De�ning vector �� = (�(�r1); �(�r2); �(�r3); �(�r0)), here �ri is the position vector of the ithnode of MEI, thenDe�nition 2. Let � = f��; �(�r) = $[s(l)];8s(l) 2 Cg be the vector space consisting ofvectors �� produced by all source distributions.De�nition 3. 	 = f �c = (c1; c2; c3; 1); ci are any bounded complex numbersg be thespace of MEI coe�cients vectors, here the MEI coe�cient c0 has been normalized to 1.De�nition 4. If �c � �� =P3i=0 ci�(�ri) = 0, then �c is perpendicular to ��, denoted as �c ? ��.If 8�� 2 �; �c ? ��, then �c is perpendicular to the space �, denoted as �c ? �.If �c ? �, we say �c is independent of �. Since �c � �� = 0;8�� 2 �() �c ? �, so if we wantto prove �c is independent of space �, we only need to prove that 8�� 2 �; �c � �� = 0:However, in numerical analysis, we usually have j�c � ��j � " 6= 0;8�� 2 �, here " is generallya small quantity. In this case obviously, �c is not independent of space �, but we can say �c isindependent of space � with error bounded by ".For example, the FD equation (1) may be rewritten as �c � �� = O(h4), so we can say thecoe�cient vector �c = (k2h2 � 4; 1; 1; 1; 1) of the FD equation is independent of the space �with error bounded by O(h4).Let p = �c � �� as the projection from �c to ��, then p describes the coherence between �c and��. The smaller the projection p, the weaker the coherence between �c and ��.We can rewrite the MEI Eq.2 as�c � �� = 0; or �c ? ��; 8�� 2 � (3)which means �c is rigorously independent of the equivalent source distribution on the surfaceof the scattering cylinder, or independent of incident �eld because the current distributionis actually induced by the incident �eld.As mentioned above, the invariance to excitation is only a postulation or guess. Is therereally a MEI coe�cients vector �c that is rigorously independent of the excitation? Thequestion is answered by the following theorem.Theorem 1. Assume a vector �c� 2 	 is perpendicular to three linear independentvectors of the space �, i.e.�c� � ��m = 3Xi=0 c�i�m(�ri) = 0; m = 1; 2; 3 ��m 2 � (4)then, �c� � �� = 3Xi=0 c�i�(�ri) = O(h2) 8� 2 � (5)which means the MEI coe�cient vector �c� is independent of excitation with error boundedby O(h2).



4 3. Theorems on MEIProof: 8�� 2 �, de�ne the projection from �c� to �� asp = �c� � �� = 3Xi=0 c�i�(�ri) (6)The condition Eq.4 is just a system of linear algebraic equation with respect to the MEIcoe�cients c�1; c�2, and c�3264 �1(�r1) �1(�r2) �1(�r3)�2(�r1) �2(�r2) �2(�r3)�3(�r1) �3(�r2) �3(�r3) 375264 c�1c�2c�3 375 = �264 �1(�r0)�2(�r0)�3(�r0) 375 (7)whose solution can be easily expressed according to Gramm's rulec�i = DiD i = 1; 2; 3 (8)where D = ������� �1(�r1) �1(�r2) �1(�r3)�2(�r1) �2(�r2) �2(�r3)�3(�r1) �3(�r2) �3(�r3) ������� (9)D1 = � ������� �1(�r0) �1(�r2) �1(�r3)�2(�r0) �2(�r2) �2(�r3)�3(�r0) �3(�r2) �3(�r3) ������� (10)D2 = � ������� �1(�r1) �1(�r0) �1(�r3)�2(�r1) �2(�r0) �2(�r3)�3(�r1) �3(�r0) �3(�r3) ������� (11)D3 = � ������� �1(�r1) �1(�r2) �1(�r0)�2(�r1) �2(�r2) �2(�r0)�3(�r1) �3(�r2) �3(�r0) ������� (12)Therefore, the projection p can be expressed asp = �(�r1)c�1 + �(�r2)c�2 + �(�r3)c�3 + �(�r0)= �(�r1)D1 + �(�r2)D2 + �(�r3)D3 + �(�r0)DD= D4D (13)whereD4 = � ��������� �(�r1) �(�r2) �(�r3) �(�r0)�1(�r1) �1(�r2) �1(�r3) �1(�r0)�2(�r1) �2(�r2) �2(�r3) �2(�r0)�3(�r1) �3(�r2) �3(�r3) �3(�r0) ���������



3. Theorems on MEI 5= � ��������� �(�r0)� h�0t(�r0) + 0:5h2�00t (�r0) +O(h3) �(�r0) � h�0n(�r0) +O(h2)�1(�r0)� h�0t1(�r0) + 0:5h2�00t1(�r0) +O(h3) �1(�r0)� h�0n1(�r0) +O(h2)�2(�r0)� h�0t2(�r0) + 0:5h2�00t2(�r0) +O(h3) �2(�r0)� h�0n2(�r0) +O(h2)�3(�r0)� h�0t3(�r0) + 0:5h2�00t3(�r0) +O(h3) �3(�r0)� h�0n3(�r0) +O(h2)�(�r0) + h�0t(�r0) + 0:5h2�00t (�r0) +O(h3) �(�r0)�1(�r) + h�0t1(�r0) + 0:5h2�00t1(�r0) +O(h3) �1(�r0)�2(�r) + h�0t2(�r0) + 0:5h2�00t2(�r0) +O(h3) �2(�r0)�3(�r) + h�0t3(�r0) + 0:5h2�00t3(�r0) +O(h3) �3(�r0) ���������= � ��������� �h�0t(�r0) + 0:5h2�00t (�r0) +O(h3) �h�0n(�r0) +O(h2)�h�0t1(�r0) + 0:5h2�00t1(�r0) +O(h3) �h�0n1(�r0) +O(h2)�h�0t2(�r0) + 0:5h2�00t2(�r0) +O(h3) �h�0n2(�r0) +O(h2)�h�0t3(�r0) + 0:5h2�00t3(�r0) +O(h3) �h�0n3(�r0) +O(h2)h�0t(�r0) + 0:5h2�00t (�r0) +O(h3) �(�r0)h�0t1(�r0) + 0:5h2�00t1(�r0) +O(h3) �1(�r0)h�0t2(�r0) + 0:5h2�00t2(�r0) +O(h3) �2(�r0)h�0t3(�r0) + 0:5h2�00t3(�r0) +O(h3) �3(�r0) ���������= h4 ��������� �0t(�r0) �0n(�r0) �00t (�r0) �(�r0)�0t1(�r0) �0n1(�r0) �00t1(�r0) �1(�r0)�0t2(�r0) �0n2(�r0) �00t2(�r0) �2(�r0)�0t3(�r0) �0n3(�r0) �00t3(�r0) �3(�r0) ���������+O(h5) (14)where �0ti(�r0) = @@s�i(�r0), �0ni(�r0) = @@n�i(�r0), and s and n are the two orthogonal directionsas shown in Fig. 1. Similarly,D = � ������� �1(�r1) �1(�r2) �1(�r3)�2(�r1) �2(�r2) �2(�r3)�3(�r1) �3(�r2) �3(�r3) �������= � ������� �1(�r0)� h�0t1(�r0) +O(h2) �1(�r0)� h�0n1(�r0) +O(h2) �1(�r0) + h�0t1(�r0) +O(h2)�2(�r0)� h�0t2(�r0) +O(h2) �2(�r0)� h�0n2(�r0) +O(h2) �2(�r0) + h�0t2(�r0) +O(h2)�3(�r0)� h�0t3(�r0) +O(h2) �3(�r0)� h�0n3(�r0) +O(h2) �3(�r0) + h�0t3(�r0) +O(h2) �������= 2h2 ������� �0t1(�r0) �0n1(�r0) �1(�r0)�0t2(�r0) �0n2(�r0) �2(�r0)�0t3(�r0) �0n3(�r0) �3(�r0) �������+O(h3) (15)Therefore, the projectionp = h22 ��������� �0t(�r0) �0n(�r0) �00t (�r0) �(�r0)�0t1(�r0) �0n1(�r0) �00t1(�r0) �1(�r0)�0t2(�r0) �0n2(�r0) �00t2(�r0) �2(�r0)�0t3(�r0) �0n3(�r0) �00t3(�r0) �3(�r0) ���������������� �0t1(�r0) �0n1(�r0) �1(�r0)�0t2(�r0) �0n2(�r0) �2(�r0)�0t3(�r0) �0n3(�r0) �3(�r0) ������� = "h2 (16)
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Figure 2: Cylinder with a point chargewhere " is independent of h. The theorem is proved.It should be noted that in the proof, if ��1; ��2; ��3 =2 �, the conclusion is still right, whichmeans the MEI with O(h2) residue is not unique, or there are in�nite sets of MEI coe�cientsthat are independent of the excitation with error bounded by O(h2). However, it will beshown in next section that the residue of the consistent condition will be minimized if the MEIcoe�cients are determined by the metrons on the surface of the cylinder, i.e., ��1; ��2; ��3 2 �.This is necessary to ensure the accuracy of MEI solution.Now let's use a simple 2D electro-static example to verify the theorem 1. The structureis shown in Fig. 2, which is a perfect conducting circular cylinder with a point charge qoutside it at a distance d. The radius of the cylinder is a. We have analytical solution forthe �eld distribution outside the cylinder. The outside �eld distribution is equivalent to the�eld generated by q and its image charge �q placed at p = a2=d in free space. Let �in be the�eld generated by the original charge q, �s be the �eld generated by induced charge on thesurface of the cylinder due to q, and �t be the total and actual �eld. Note that �s is actuallyequivalent to the �eld generated by the image charge �q. We have the exact solutions�in = � "0q4� ln(r2 � 2rdcos� + d2) (17)�s = "0q4� ln(r2 � 2rpcos� + p2) (18)�t = �in + �s = "0q4� ln( r2�2rpcos�+p2r2�2rdcos�+d2 ) (19)To solve this problem numerically, we need to �rst make circular meshes around thecylinder as shown in Fig. 3. Here for the sake of simplicity, only uniform meshes are adopted.We actually only need to get the �eld distribution (referred to as \scattering �eld") generated
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Figure 3: 2D cylinder meshby the charges induced by q, then by adding �in we can get the total �eld �t. The scattering�eld satis�es Laplace equation in circular coordinates,@2�@r2 + 1r @�@r + 1r2 @2�@�2 = 0 (20)while the boundary condition on the surface of the cylinder for the scattering �eld is�s = ��in = "0q4� ln(a2 � 2adcos� + d2) (21)Let hr and h� be the step size in the r and � directions. Using central di�erence toapproximate di�erential, we have FD relations for interior nodes as shown in Fig. 34Xi=0 ci�(�ri) = 0 (22)



8 3. Theorems on MEI8>>>><>>>>: c1 = 1 + hr2rc4 = 1� hr2rc2 = c3 = ( hrh�r )2c0 = �2[1 + ( hrh�r)2] (23)For the boundary nodes, we use three metrons in the MEI procedure in section 2 to getthe MEI coe�cients. We have three sets of metrons, (1) set A: on the surface of the cylinder,i.e., 1; cos(�l=L); sin(�l=L), where L is the perimeter of the cylinder, and l is the length ofthe arc from some starting point; (2) set B: just three point charge with unit charge, theyare put equal distance on the circle with radius a=2 with the same origin as the originalcylinder; (3) set C: even more general, three metrons put on the y-axis with equal distance.After obtaining the MEI coe�cients, we use the actual �eld distribution �s as in Eq. 19to test the residue of the MEI equations with respect to the re�nement times Fig. 4 to 6. Inthe �gures, we set radius to be a = 20, the distance d = 60. We re�ne the mesh uniformlyeach time in both directions and keep mesh distance at boundaries the same all the time.It can be seen that the residue of MEI equation decrease with re�nement times (and hencestep size) quadratically (on the order of h2 ) for all three sets of metrons, even though set Band set C are not on the surface of the cylinder. However, not all the three set metrons givegood accuracy of the solution. The reason will be seen in the following section.
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12 3. Theorems on MEITheorem 2. The consistent condition of the MEI isjjL��M�jj = "h2 (24)and the residue " of the consistent condition is the perturbation of a functional J(s) if MEIcoe�cients are obtained by using metrons set on the surface of objectsIt can be easily derived from Eqs.(6)(16) thatjjL��M�jjh2 = " (25)and" = 12 ��������� �0t(�r0) �0n(�r0) �00t (�r0) �(�r0)�0t1(�r0) �0n1(�r0) �00t1(�r0) �1(�r0)�0t2(�r0) �0n2(�r0) �00t2(�r0) �2(�r0)�0t3(�r0) �0n3(�r0) �00t3(�r0) �3(�r0) ���������������� �0t1(�r0) �0n1(�r0) �1(�r0)�0t2(�r0) �0n2(�r0) �2(�r0)�0t3(�r0) �0n3(�r0) �3(�r0) ������� = � ��������� �0t(�r0) �0n(�r0) �00t (�r0) �(�r0)�0t1(�r0) �0n1(�r0) �00t1(�r0) �1(�r0)�0t2(�r0) �0n2(�r0) �00t2(�r0) �2(�r0)�0t3(�r0) �0n3(�r0) �00t3(�r0) �3(�r0) ��������� (26)where � is independent of �. It is known that the real potential � may be expressed as�(r) = R� s(�r0)G(�r; �r0)d�0, where s stands for the source distribution on the surface of thecylinder. Then the residue " may be expressed as" = � ��������� R� s(�r0)G0t(�r0)d�0 R� s(�r0)G0n(�r0)d�0 R� s(�r0)G00t (�r0)d�0 R� s(�r0)G(�r0)d�0�0t1(�r0) �0n1(�r0) �00t1(�r0) �1(�r0)�0t2(�r0) �0n2(�r0) �00t2(�r0) �2(�r0)�0t3(�r0) �0n3(�r0) �00t3(�r0) �3(�r0) ���������= � Z� s(�r0) ��������� G0t(�r0) G0n(�r0) G00t (�r0) G(�r0)�0t1(�r0) �0n1(�r0) �00t1(�r0) �1(�r0)�0t2(�r0) �0n2(�r0) �00t2(�r0) �2(�r0)�0t3(�r0) �0n3(�r0) �00t3(�r0) �3(�r0) ��������� d�0 (27)It may also be expressed as a functional" = J(s) = Z� s(�r0)F (�r; �r0)d�0 (28)So, generally the residue of the consistent condition of the MEI can be expressed as afunctional of the source distribution on the surface of the cylinder. It will be shown that theresidue will be greatly reduced if the MEI coe�cients are determined from the metrons onthe surface of the cylinder.



3. Theorems on MEI 13let T = spanfm1(�r0);m2(�r0);m3(�r0)g be the subspace spanned by three metronsm1(�r0);m2(�r0)and m3(�r0) de�ned on the surface of the cylinder, then the potentials at the MEI nodes areexpressed as �i(�rj) = Z�mi(�r0)G(�rj; �r0)d�0 (29)where the subscripts i and j stand for the ith metron and the jth MEI node respectively.De�ne Ps as the projection of the real source s(�r0) to the metron subspace T , then s(�r0)can be expressed as s = Ps + �s (30)where �s is the distance (di�erence) between s and the subspace T .Substituting the Eqs.(29)(30) into Eq.(28) 0r (27) and by using the properties of deter-minant, it is easy to prove that" = J(s) = J(Ps+ �s) = J(Ps) + J(�s) = J(�s) = �J (31)Since the main part of the residue " being equal to zero, i.e., J(Ps) = 0, the residueis greatly reduced. If the metrons are not chosen as the distributions on the surface of thecylinder, the conclusion Eq.(31) is not valid. It will make serious error in the solution.If the real source s is just a linear combination of the three metrons, in other words,s 2 T , it is obvious that �s = 0 and then " = 0. This means the MEI rigorously simulatedthe truncated boundary condition without any error. In fact, generally the real source s =2 T ,and there must be a small residue " = �J . The residue decreases with the decrease of thedi�erence �s between the real source and the metron subspace T . Therefore, we shouldchoose the metrons taking some physical concept into consideration, so as to minimize theresidue. Fortunately, the �rst several terms of the sinusoidal sequence are suitable metronsfor most problems.It should be noticed that only three metrons are considered in the discussion above.If the metron subspace is spanned by more metrons, i.e., T = spanfm1;m2; :::;mkg, thedi�erence �s and then the residue �J will be further decreased. For this situation, theMEI coe�cients will be obtained by a least square procedure. As discussed in [HML94],piecewise functions are also a good choice of metrons for most problems, especially for threedimensional problems where continuous functions are hard to be de�ned.We also use the previous example to demonstrate this theorem. Note that in the aboveexample, we have three sets of metrons, with only one of them (set A) on the surface of thecylinder. We can see from Fig 4 to 6 that the residue of set A is much smaller than thatof set B, and is two orders of magnitude smaller than that of set C. The residue of set Bis smaller than set C because metrons in set B can approximate the shape of surface betterthan set C. This veri�es theorem 2.Theorem 3. If the PDE L� = 0 satis�es the condition of the maximum theorem, and theFD equations with the error bounded by O(h4) are applied to the interior mesh nodes, MEIsto the truncated boundary nodes, then jj� � �0jj � �1jj�J jj+ �2h2, where � and �0 are the



14 3. Theorems on MEIaccurate solution and the approximate solution of MEI respectively, �1 and �2 are independentof h.It is well known that the consistent condition for the FD equation with error bounded byO(h4) is jjL��D�jj = O(h4), where D is the �nite di�erence operator. And the consistentcondition for MEI has been shown in theorem 2. It is straightforward to get the conclusionjj�� �0jj � �1jj�J jj+ �2h2 (32)according to maximum principle [Smi85, BL84].This theorem states that the accuracy of the solution of MEI does not increase with thedecreasing of step size h, however, if metrons are chosen properly on the surface of object,the MEI still ensures the accuracy of the solutions. According to Lax theorem [Smi85, BL84],which essentially states the convergence property is equivalent to stability property giventhat the consistent condition is satis�ed. Therefore, this theorem somehow described theconvergence property of MEI.Fig. 7 shows the relative error of potential distribution between accurate solution andMEI solutions with di�erent step sizes. It can be seen that the error does not decrease whenstep size decreases from 2 to 0:25. However, when the step size is 2 which means only twolayers of mesh are used outside the cylinder, the solution is already accurate enough with0:2% relative error. On the other hand, if metrons are chosen improperly such as the metronset B and C as mentioned above, the relative error will be orders of magnitude larger thanthat by using the metron set A, as shown in Fig. 8, which also veri�es conclusion of theorem2. Furthermore, improperly chosen metrons (such as metron set C) will seriously degeneratethe solution as shown in Fig. 9.
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18 4. Conclusion4 ConclusionIn this paper, we proved three theorems and got some important conclusions which gavedeep insight into Measured Equation of Invariance. The �rst theorem stated that the residueof MEI equation is independent of excitation with error bounded by O(h2) where h is thediscretization step size. The second theorem stated that if metrons are set on the surfaceof object, the residue of the consistent condition of MEI is proportional to the perturbationof a functional with respect to the source distribution on the surface of object. The thirdtheorem stated that the error of the MEI solution does not decrease with the decreasing ofstep size h, however, if metrons are chosen properly on the surface of object, the MEI stillensures the accuracy of the solutions. Numerical experiments veri�ed the three theoremsand showed that if properly metrons are chosen on the surface of object, MEI will achieveenough accurate solution even with only two layers of mesh outside the object; on the otherhand, improperly chosen metrons will seriously degenerate the �nal solution. Besides, thesmaller the distance between the accurate source distribution and the subspace spanned bythe metrons, the better the solution, therefore, we should choose metrons with some priorknowledge.References[BL84] G. Birkho� and R.E. Lynch. Numerical solution of elliptic problems. Siam Press,Philadelphia, 1984.[CHed] Jun Chen and Wei Hong. An iterative algorithm based on measured equation ofinvariance for the scattering analysis of arbitrary multi-cylinders. IEEE Trans. onAP, to be published.[CHZ96] Z.N. Chen, Wei Hong, and W.X. Zhang. Electromagnetic scattering of a chiralcylinder - general case. IEEE Trans. on AP, July 1996.[HLM94] Wei Hong, Y.W. Liu, and K.K. Mei. Application of the measured equationof invariance to solve scattering problems invovling penetrable medium. RadioScience, April 1994.[HM94] Wei Hong and K.K. Mei. Application of the measured equation of invariance tothe scattering problem of an anisotropic mediumcylinder. In IEEE AP-S, Seattle,June 1994.[HML94] Wei Hong, K.K. Mei, and Y.W. Liu. On the metrons in the method of measuredequation of invariance. In The 10th Anniversary ACES Symposium, March 1994.[HSD96] Wei Hong, Weikai Sun, and Wayne Dai. Fast parameters extraction of multilayermulticonductor interconnects using geometry independent measured equation ofinvariance. In proceedings of IEEE MCM Conference, pages 105{110, February1996.[JL94] J. O. Jevtic and R. Lee. A theoretical and numerical analysis of the measuredequation invariance. IEEE Trans. on AP, pages 1097{1105, August 1994.
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