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FIGURE  18 MRI 2563 data set as rendered by permutation warping
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FIGURE  16 Data with Histogram equalization to Show Noise

FIGURE  17 8X magnification Zero Order Hold/Trilinear
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FIGURE  14 Volume Transforms with OS and SS Merged

FIGURE  15 Error for 45x45x45 rotations,
Top: Trilinear; Middle: Zero Order Hold; Bottom: Multipass.
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positing), shading, or reconstruction filters, shows that permutation warping achieves high effi-

ciency with flexibility on general machines. Special purpose machines cannot offer this flexibility

in shading, combining, and filter choices. Changing viewpoints has been thought to be inefficient,

and low quality filters in shearing methods with large memory requirements have been used for

efficiency or data duplication used for ray tracing, but we have shown efficiency with a zoh and

foh (trilinear filter) reconstruction filters. Our approach generalizes to higher order filters. A three

dimensional decomposition was introduced that generalizes the work in pure shears [24][31][27],

and improves our direct resampling approach [35]. Our implementation on the MasPar allows ren-

dering with changing viewpoints of five frames/second and two frames/second for higher quality

trilinear reconstruction on 1283 byte volumes. This improves on previous results

[4][6][17][27][28][29][32] because of the better filters used, and we discussed the filter differenc-

es.

Straight forward extensions to our techniques include coherency accelerations such as

adaptive ray termination and adaptive quadrature. Perspective projection can be added as a follow

on warp to our permutation warp for two passes versus four of Vezina et al. [32]. The MasPar im-

plementation can also be modified to up sample or down sample, least expensively as an up sam-

ple of the transformed image or down sample while warping. Our new three dimensional

decomposition will be useful for five pass pure shear and one shift multipass approaches versus

eight passes [27][37]. We are continuing to investigate our new decompositions’ utility for both

sequential and parallel algorithms. Data dependent optimization may be incorporated, similar to

Singh et al.’s parallel shear warp factorization [29], and we are working on data dependent optimi-

zations for variants of our permutation warping algorithms.
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total compositing time when  is  which equals . Com-

positing achieves linear speedup for .

Each stage PPS, VWS, and CS is  for , therefore linear speedup is

achieved over the fastest sequential algorithms which are  (Definition 1, Definition 4).

storage is used for optimal space complexity (Definition 3). The lower bound for computation on

an EREW PRAM is  for  inputs and the run time of the fastest algorithm  is  which

meets the lower bound (Definition 2). ■

The amount of parallelism for the volume rendering algorithm can be broken down into

four regions. The first region is parallel , or fewer processors than rays. Processors are as-

signed subcubes that they preprocess, warp, and composite. Each processor stays busy through

the parallel product calculations. Run time is . The second region is work efficient paral-

lel product  and , or more processors than rays with a bound. Now some

processors become idle during the final steps of compositing. When  half of the working

processors are idled upon each step. Run time is . This region is where our algo-

rithm is superior to known competitors, achieving linear speedup beyond the number of rays. The

third region is non work efficient because processors become idled during compositing and effi-

ciency starts to drop off of linear speedup, .

The fourth region is fully parallel with  providing the fastest algorithm possible, with

multiple processors per voxel, but compositing dominates so run time is , determined by

the number of sample points along a ray. Storage is  for all ranges , and communica-

tion is the same order as the computation.

7.0 Conclusions and Future Work

We presented an EREW PRAM algorithm for volume rendering, and demonstrated its efficiency

on a parallel machine. Our general reconstruction filter approach provides for time/quality trade-

offs not possible in previous data parallel approaches for improved parallel volume rendering. We

believe our algorithm can be ported to nearly all massively parallel general purpose computers. To

support this we have ported the algorithm to our UW-Proteus Supercomputer, and demonstrated a

speedup of 22 on 32 processors [38]. This fact, and the ability to change combining rules (com-
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proach [36][37][38]. A fully parallel compositing approach was developed in parallel by Ma et al.

[20].

FIGURE  12 Halving of Frames During Parallel Product for Compositing

Theorem 3: Parallel Volume Rendering is an optimal parallel algorithm by definition 1, 2, 3, 4,

and 5 for  processors on CREW and EREW PRAMs.

Proof: The preprocessing stage is point operations requiring only neighboring data for time

, for  sample points and  processors. ByTheorem 1 warping is calculable with exclu-

sive reads and is  for , our result in [35]. For  partitioning object space subcubes

are warped in data parallel or overlap fashion. If rigid body transforms are used the volumes’ ex-

tents remain constant with virtualization. The algorithm calculates compositing through a product

evaluation. A parallel product evaluation [16], is work efficient up to  proces-

sors in the view depth dimension, FIGURE 6 and FIGURE 12 byTheorem 2. The subframes are

combined through a parallel product evaluation, starting with  samples at each

processor, halved at each increment, FIGURE 12, where  is the number of rays in the image.

For  each processor remains busy for all compositing and time is

. For , processors are idled at some point during composit-

ing. Two terms are, one, for all processors busy which equals , and, two, for when some

processors are idled. The subframes are halved until there is one sample in the subframe. There

are  remaining composites, enough single sample composites to combine all

samples. The time for compositing the subframes is  for . The
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(See FIGURE 11.) The time complexity is the depth of the tree which is . If done sequential-

ly there are  compositing evaluations or . ■

FIGURE  11 Fully Parallel Compositing

Constant factors for additions and multiplications using binary tree compositing are

( ) multiplications and ( ) additions to take , and  to  when  is a

power of two. The most efficient sequential method, ignoring data dependent optimizations is

back-to-front where no incremental transparency or opacity updates are performed giving

( ) multiplications and ( ) additions. (See our work in [36] for details.)

Similar results for the associativity, as well as the logarithmic combine time of the ray

compositing,Theorem 2, can be found throughout the literature [28][12][8][9], and we do not

claim novelty, but we include it here for completeness.Theorem 3 results fromTheorem 1, Theo-

rem 2, andDefinitions 1 to 5, and the fact that we have developed a fully parallel compositing ap-
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Proof: As we showed in [35], a translation of all whole number grid positions will be the same,

and therefore their location will be rounded by the same amount in the orthogonal basis direc-

tions. If the grid positions were unique before they are unique after translation and rounding.■

Equiareal (including nonscaling affine) warps allow a one-to-one nonlinear processor as-

signment, and further, using this mapping insures that filtering takes place in local neighborhoods.

Theorem 1: two dimensional and three dimensional equiareal warps , defined by those trans-

forms whose , can be decomposed into pure shears. The sequence of shears followed

by rounding, , is one-to-one on the natural numbers and results in a point whose inversed

position is always within distance , or , providing for a processor assignment

on the EREW PRAM to calculate any two or three dimensional equiareal transform in constant

time

Proof: Similar to our Theorem 1 in [35], and as equiareal warps are decomposable to pure shears

which are essentially translations, from Lemma 1, the translation and rounding are one-to-one. A

succession of one-to-one transformations is also a one-to-one transformation. As the inverse

transform is linked to the forward transform used to compute the permutation warp, the error is

bounded by the number of translation and rounding steps, and given a finite number of these, they

are bounded within a constant distance. ■

Lemma 2: Compositing is associative .

Proof: Can be shown by algebraic reduction and induction. Essentially compositing is defined by

two equations  and  where . Compute for three images

with different associative groupings given in the lemma, and the resulting intensities will be

 and  that are the same. ■

Theorem 2: Parallel compositing is  and sequential compositing is , where W is

the number of sample points along a view ray.

Proof:  by Lemma 2 can be combined through any associativity. As-

sign two sample points to each processor, composite, and the number of points is halved. Contin-

ue this process of halving the number of sample points until the final ray intensity is calculated.
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6.0 Complexity Analysis

We now derive the communication, storage, and run time complexity for permutation warping for

data parallel volume rendering. We show that volume rendering is a member of Nick’s class, or is

ideally parallelizeable. First, some definitions:

Definition 1: Nick’s Class (NC) is the class of computable and efficiently parallelized algorithms,

defined as parallel algorithms that use a polynomial number of processors, , and take poly-

logarithmic time,  [9], where the input size is  and variables  and  are constants.

Definition 2: Optimal speedup. Linear speedup of the parallel program over the fastest known se-

quential program.

Definition 3: Optimal run time. A lower bound dependent upon the model of computation.

 on the PRAM for  processors.

Definition 4: Optimal space complexity.  on the order of the input size.

Definition 5: Optimal efficiency. Work efficiency, or time for the parallel algorithm times the num-

ber of processors equals the time for the fastest sequential algorithm.

Next we introduceLemma 1, Theorem 1, Lemma 2, andTheorem 2 to prove that our algo-

rithm has the properties of definitions 1 through 5, inTheorem 3.

Lemma 1: Arbitrary translation and rounding is one-to-one.

1283 19.9 19.2 35.3

2563 20.5 19.6 36.3

Hsu’s Zero Order
Hold [12]

1283 5.84 NA NA

TABLE  VIII Non Optimized: 4K Processor MP-2 Timings for 1283 Volume
Rendering, Seconds

Filter Mean Min Max

First Order Hold 1.124 0.8894 1.231

Zero Order Hold 0.5609 0.3383 0.7511

TABLE  VII Non-Optimized: Machine Size Speedup for 1K/16K MasPar MP-1

Filters vol size Mean Min. Max

O nk1( )

O n
k2log( ) n k1 k2

O Plog( ) P

O n( )
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For a scalability analysis, a more general implementation which works on any size vol-

umes, and doesn’t have the register optimization was used. TABLE VII and TABLE VIII give

speedup and timings in seconds for 16k processor MP-1, 1k processor MP-1, and 4k processor

MP-2. TABLE VII shows the speedup of the 16k processor machine over the 1k processor ma-

chine, which ideally would be 16 because of the additional processing power. Scalability studies

using fewer processors than are available are not instructive, and we are limited in the MasPar be-

tween a 1k and 16k processor machines available. The table shows that without much virtualiza-

tion, in 323 volumes, the speedup is about 10. With larger volumes the virtualization compensates

for overheads in the memory and the network, and the speedup approaches 16. As discussed in

our previous work [35], the permutation warping is used only for the trilinear interpolation, or first

order hold, and the near neighbor reconstruction, or zero order hold, is done using general com-

munication. What the speedup numbers show for the zoh is that because of the greater congestion

in the network, supralinear speedups are obtained, because the larger machine provides less virtu-

alization for a given volume size, resulting in proportionally less congestion. The algorithms do

provide linear speedup in problem size (number of voxels), shown by the run times (FIGURE 10,

TABLE VII, and TABLE V), and linear speedup in machine size (TABLE VII), empirically sup-

porting our claims of algorithm scalability. Scalability of other approaches, such as the multipass

shear warp, and line drawing are good, but sacrifice filter quality as shown in FIGURE 15. Scal-

ability of image order ray tracing approaches such as Hsu’s and Goel et al.’s are not competitive

and for a 1K to 16k Hsu’s algorithm yields only 5.8 versus our 20 fold speedup for zero order/near

neighbor resampling (16 would be linear). Goel et al. achieve speedups of 5.0 for 512/4096 pe’s

for 1283 data sets (8 would be linear), and speedups of 9.4 for 64/4096 pe’s for 643 data sets (64

would be linear) on the MasPar MP-1.

TABLE  VII Non-Optimized: Machine Size Speedup for 1K/16K MasPar MP-1

Filters vol size Mean Min. Max

Trilinear 323 9.88 9.19 14.4

643 14.5 13.6 21.5

1283 15.7 14.6 23.4

2563 15.8 14.8 23.8

Zero Order Hold 323 8.83 7.20 17.1

643 17.1 15.4 31.5
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linear reconstruction. Volumes of size 1283 can be rendered in 4.8 frames/second with a zoh and

2.0 frames/second with a trilinear filter.

If we are cautious, we may compare directly to other results researchers have obtained on

other data parallel machines, realizing that optimizations, generations, implementations, and test

cases may vary. The closest comparisons are to [10][12][27][28][32] who use similar voxel sizes

and architectures. Comparison of resampling times TABLE VI shows that our direct filters cost

more than some multipass forward algorithms [4][32] but are superior to others [27]. The forward

wavefront approach [4][28] trades view angle freedom for high performance and a slight speedup

over our work. Backwards or ray tracing approaches, such as Goel et al.’s [10], Hsu’s [12], and

Nieh et al.’s [23] (MIMD shared memory) are image order algorithms that aren’t scalable as

shown for the Hsu’s SIMD algorithm in TABLE VII. For similar algorithms, those with back-

wards viewing transforms, our permutation warping achieves up to a five times speedup depend-

ing on the machine and/or algorithm. We have through permutation warping provided improved

quality and view angle freedom for data parallel machine’s volume rendering algorithms.

a. Compositing done as part of volume reorganization plus stage II initialization overhead.
b. Goel et al.’s algorithm was assumed to scale linearly to 16k nodes for a speedup comparison.

TABLE  VI Rotation Only, From [32][27][12] Milliseconds

Computer vol size Time
Speedup

Permutation
Warp vs. Other

Vezina et al. [32] zoh 4 pass 16k pe MP-1 1283 49 0.241

16k pe MP-1 2563 390 0.243

Vezina et al. [32] foh 4 pass 16k pe MP-1 1283 139 0.277

16-k pe MP-1 2563 1107 0.278

Schröder et al. [27] foh 5
pass

64k pe CM-200 1283 268 1.320

32k pe CM-200 1283 511 2.516

16k pe CM-200 1283 1033 5.087

Hsu [12], segment ray casta 16k pe MP-1 128x128x112 238 1.172

Goel et al. [10]b no reorder-
ing

8k pe MP-1 1283 860/2 2.12

Goel et al. reordering 8k pe MP-1 1283 1700/2 4.19

Cameron et al. [4] 1k pe DAP 510 128x128x64 100 0.493
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FIGURE 10 and TABLE V give the mean run times across all angles for various volume

sizes. Note that the performance is tightly bounded and predictable. Communication congestion is

low for the data parallel permutation warp. Congestion is defined as conflicts within the intercon-

nection network which result in a delay in communication. See our discussion in [35]. There is no

congestion if a processor is available for every sample point. Using the rotation speed of 0, 0, 0

degrees in TABLE IV as zero congestion the congestion is 19% to 29% of the run time for permu-

tation warping, foh. The congestion is 40% to 43% for the backwards algorithm, or zoh, that is not

using the permutation assignment. The router start-up penalty and/or the rule overhead account

for the rest of the difference. The effectiveness of direct warps lies in the performance filter tun-

ability. The zero order hold takes from 73% (323 volumes) to 146% (2563 volumes) less time than

the first order hold, and can be used for interactive performance in viewing the larger volumes.

The trilinear interpolation, or first order hold, has comparable performance to the multipass warps

but is more accurate as we discussed in Section 4.0.

Our optimized implementation on the MasPar allows rendering with changing viewpoints

of 130 frames/second for 323 volumes to 322 images and 75 frames/second for higher quality tri-

TABLE  V Optimized: 16k Processor MP-1 Rendering and Warping only
Times in Seconds, for many volume sizes

Filter
vol
size

Mean
Rendering

 Time

Mean
Warping

Only Time

Trilinear 323 0.0133 0.0122

643 0.068.7 0.0667

1283 0.507 0.502

2563 3.998 3.977

ZOH 323 0.00768 0.00659

643 0.0304 0.0284

1283 0.208 0.203

2563 1.623 1.602
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FIGURE  10 Optimized 16K Processor MP-1, Run Times (Log) Versus
Volume Size (See TABLE V)

TABLE  IV Optimized: 16k Processor MP-1 1283 Rendering Times in
Seconds, Rotation on Multiple Axes

Filter
Rotation

Axes
0 20 40 60 80

FOH 0.434 0.482 0.496 0.505 0.533

0.434 0.485 0.494 0.498 0.537

0.435 0.499 0.508 0.512 0.543

, , and 0.434 0.502 0.508 0.521 0.607

ZOH 0.145 0.186 0.196 0.205 0.237

0.145 0.187 0.192 0.199 0.237

0.146 0.206 0.213 0.222 0.240

, , and 0.145 0.207 0.212 0.224 0.253
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The over operator can be done similarly using the Scan operator to create the proper transparency

at each processor, and then doing a parallel addition by ScanAdd.

We present two sets of run time measurements, optimized timings on the 16k machine and

non-optimized timings on the 1k and 16k MP-1 and 4k MP-2. We examine the effect of volume

size, machine size, and view angle on the run time. The comparisons done with other algorithms

use an optimized version of the program which uses power of two volume sizes, and explicit reg-

ister use in the MasPar MPL code. Measurements given are the average of multiple runs at each

angle. FIGURE 9 shows the run times to render a 1283 byte volume to a 1282 image versus resa-

mpling angle. The zero order hold is most efficiently calculated without using permutation warp-

ing, as we showed in [35]. TABLE IV shows FIGURE 9’s run times for some of the angles. The

rotation only times are given in FIGURE 9 and TABLE V also showing how the resampling for

warping takes the majority of the time. The warping time is shown in the figure a small fraction

below the run time. The many lines for each filter show rotation about , rotation about , rotation

about , and rotation about , , and . Each time represents rendering from the original data, and

not an incremental rotation. Run time is nearly constant for a wide choice of viewing angles, a de-

sirable property of our algorithm resulting from the communication efficiency.

FIGURE  9 Optimized 16K Processor MP-1, Volume Rendering and
Warping Run Times, Nearly Constant Run Time Versus Angle
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approaches are repeated linear interpolations, the percent resolution error for the multipass warp

may be up to 132%, and the percent interpolation error is 11.1% compared to 44% and 3.7% for a

direct warp (approach as in Pratt [26]). Exact characterization of the multipass warp filtering error

is difficult because of repeated aliasing which causes the transfer function to be highly nonlinear.

FIGURE 16 shows the noise inherent in the MR angiography data, shown by the intensities scat-

tered throughout the volume. FIGURE 17 shows the 256x256x32 data rendered at 5122 zooming

(x8) in on the bifurcation of FIGURE 16. Fast traversal is possible with the zoh of FIGURE 17

(left) and a more accurate trilinear filter is used to render FIGURE 17 (right). The filter difference

on these medical images is readily apparent.

5.0 MasPar MP-1 Performance Study

Performance measurements were taken on the MasPar MP-1 and MP-2 [2]. The MasPar comput-

ers used for the performance study were 1024 and 16384 SIMD processor MP-1s and a 4096 pro-

cessor MP-2. The larger machine’s peak performance is 26,000 MIPS (32 bit integer) and 1,200

MFLOPS (32 bit floating point). The architecture supports frame buffers through VME frame

grabbers, HIPPI connection, or through MasPar Corporations’s frame buffer (not available at time

of study). Image display in the current implementation is done on the X host. The processors are

interconnected through a mesh with 23,000 Mbytes/second peak aggregate bandwidth and a mul-

tistage crossbar router with 1,300 Mbytes/second peak aggregate bandwidth. The array controller

provides a software accessible hardware timer that accurately captures the elapsed run time.

Our implementation in MPL, a C like parallel language, uses the slice and dice virtualiza-

tion discussed in Section 3.0. Only volumes with equal sides were used for the study, but this is

not a limitation of the algorithm. The neighboring processors do not need to be accessed in the re-

sampling step because of a one voxel overlap of volume storage on each processor. The overlap

allows a random access to replace a costly case decision in the SIMD language. The storage over-

lapping does not restrict the size of volumes that can be processed in practice, because dynamic

memory allocation has a small overhead and a  request of memory will use a  block.

Therefore a  request will use the same space as well as long as  is much less than . We

take advantage of the MasPar instruction ScanMax. Once each processor composites its subcube,

ScanMax composites across z in segments to complete each parallel product in one instruction.

2n 2n 1+

2n m+ m 2n
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FIGURE  8 Maximum Error in Reconstruction of Sphere

The mean error varies little with different view angles. The maximum error does vary with

view angle, with the largest errors resulting when view rays nearly glance off of the cube, or when

the rotation angle is greater for the sphere. FIGURE 15 reveals that rays passing near the edge of

the cube and sphere have more error for the multipass approach, that the multipass approach has

the greatest error in the cube resampling, and that error is evenly spaced across the rays for the tri-

linear reconstruction.

The trilinear is clearly better than shearing, but the zero order hold is the same as the trilin-

ear for the cube and worse than trilinear and shearing for the sphere. By assuming the resampling

TABLE  III Absolute summed error on rays for 45, 45, 45 degree rotation
(See FIGURE 15)

Cube Sphere

mean max mean max

zoh 48372 131070 3977 41886

multipass 65028 217719 802 10648

trilinear 48309 172078 259 3501
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FIGURE  7 Maximum Error in Reconstruction of Cube

TABLE  II Mean of the Measured Absolute Summed Error means over all
rays for the resampled cube and sphere, angles five to 45
degrees.

Cube
% worse

than
trilinear

Sphere
% worse

than
trilinear

zoh 48370 0% 4079 1468%

multipass 64068 32% 775 198%

trilinear 48385 0% 260 0%
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differencing each sample point for a rotated viewpoint with an analytically defined cube or

sphere. Absolute error values were summed on each view ray. We compare three filters: a zero or-

der hold (zoh), a first order hold (trilinear), and a multipass filter using linear interpolation.

FIGURE 7 and FIGURE 8 show the maximum error (intensity sums) for the three ap-

proaches versus rotation angle (degrees) about all axes simultaneously for resampling the cube

and sphere volumes. Maximum error is the summed intensities. The mean error for all rays in the

image remains the same for different view angles (angles five to 45 degrees) TABLE II. FIGURE

15 shows how error is placed in the image, with error ramped from the maximum errors in the

pseudo colored images with TABLE III showing the mean and max errors for the 45, 45, 45 de-

gree rotations. The range of error is from zero to 217719 (multipass shear filter highest error) for

the cube images and zero to 41886 for the sphere images (zoh filter highest error).

FIGURE  6 Steps of Virtual_Permutation_Volume_Render, Virtualized
Subvolumes to SubFrames to Final Image
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evaluation so they all remain busy. FIGURE 6 shows how the processors start with 1/4 of the

screen, then get 1/8, and finally 1/16. FIGURE 6 also shows how the permutation warp (Step 2)

computes a fully realigned volume that may be composited. Note especially how the view ray is

coincident with the volume edge after the warp, and therefore coincident with the samples. The

SS samples being calculated are unique, and in the EREW PRAM there will be no conflicts, but

because of virtualization processors may receive more than one message. The density of messages

across the network is the same if the slice and dice virtualization is used and communication re-

mains efficient. The aligned view volume in Figure 6 may contain many zero valued voxels de-

pending on the view, but the final compositing stage is less than 10% of the total calculation so the

effect is small. An alternative approach where the communication is done on the subcube/proces-

sor integer grid is also possible.

FIGURE  5 Spatial Volume Virtualization For a Variety of Architectures

4.0 Time/Quality Trade-offs

Multipass shears, [24][27][31][32], and direct warping, Section 2.0 [35], are not equivalent. A

shear filtering approach has more resolution error and interpolation error than a comparable direct

filter, because each resampling discards the prior data. We used two test objects to calculate the

reconstruction error: a cube of intensity 65535 and a sphere whose intensities are zero at the edge

and linearly ramp up to 65535 at the center. The sphere and cube were centered within 1283 vol-

umes of 16 bit voxels with a diameter/width of 64. A Sun Sparc 2 was used to calculate the com-

parison to ease implementation of the shearing approach. The errors were calculated by
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For arbitrary centered rotations the inverse  is easily calculated because rotation

 is orthogonal, meaning , and translations are inversed by negating their values,

. (EQ 10)

The rotation matrix and a translation matrix are given in (EQ 11) and (EQ 12), and the transpose

of (EQ 11) is composed with the translations for calculating the inverse with the minimum num-

ber of calculations.

(EQ 11)

(EQ 12)

3.0 Data Parallel Virtualization

When there are fewer processors than sampling points, we emulate  virtual processors on

physical processors. To virtualize we make an assignment of  processors to the  voxels. Object

space voxel points are assigned to processor id’s by an address tiling. A slice, row major ad-

dressed volume coordinate is transformed to a sliced and diced coordinate by permuting bits of

the address , where  is the slice,  is the row, ,  is the pro-

cessor, and  is the voxel address within a processor. Such virtualization is amenable to a wide

variety of architectures such as mesh [2], enhanced hypercube, and multistage interconnection

networks. FIGURE 5 shows how machines with 16 processors are virtualized into a three dimen-

sional volume. Each dimension gets approximately  divisions, for , , and  assignments

of processors in the , , and  dimensions respectively.

The algorithm is the same as that in FIGURE 3, except now processors have more points

to iterate over,  points each. In step 1, 2, and 3 a for loop is added to compute  points, and

during compositing the screen space assigned to each processor shrinks after each parallel product
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one shifting pass (due to ) versus the eight passes from [27], which we use in our permuta-

tion calculation. It could also be used for a three multipass warping provided the data could move

in two directions operating on scanframes, or a five pass three dimensional transform working on

scan lines improving Paeth [24], Tanaka et al.’s [31], and Schröder et al.’s [27] algorithms.

Most viewing transforms are rigid body transformations. As additional examples, we

show how arbitrary rotation, and then arbitrary translation and rotation are decomposed into

matrices. Reflection can be easily added. (EQ 7) shows 3D rotation as a concatenation of rotation

about each axis , , and  [FOLE90] p. 215.

(EQ 7)

This transformation is decomposed into pure shears. (EQ 8) gives a decomposition of , or

rotation about  by , into pure shear matrices. Rotation about  and  are done likewise with the

2D decomposition developed in (EQ 2), and 9 matrices result.This is how the solution was derived

prior to our derivation of the 5 pass given in (EQ 5).

(EQ 8)

After each shear operation the point coordinate being operated upon is rounded to an inte-

ger coordinate maintaining the one-to-one assignment. The operation for the right most matrix in

(EQ 8) results in . Because only one coordinate is affected, and no scal-

ing is used, rounding chooses a unique coordinate.

The inverse used in determining the reconstruction point is numerically stable. In fact

equiareal transformations are by definition invertible. For arbitrary centered rotation the transform

is a product of translation matrices, , and the rotation matrix, . We rotate about

the point  and center the rotation in the output about . The aggregate transfor-

mation given in (EQ 9) is decomposed using (EQ 5) and contracted into operations on single coor-

dinates, and used to calculate .

(EQ 9)

c21 1=

M

x y z
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. (EQ 1)

The other four equations are found by setting

(EQ 2)

The solution using ‘s as given is , , and

. A special case is rotation, where

, (EQ 3)

and  by insertion and reduction by the half angle formula,

, and . This derivation shows how to calculate the result giv-

en in [24] [31].

The same approach is used for three dimensional equiareal transforms solving a system of

ten equations with nine unknowns in (EQ 4) and (EQ 5),

(EQ 4)

. (EQ 5)

The system appears to be over constrained, but can in fact be solved. The symbolic solution from

Mathematica (TM) [39] is,

, , , ,

,

, , . (EQ 6)

As  is not specified, we assign it to be equal to one. The solution above allows direct so-

lution for a three pass nonscaling transform (EQ 5), or five single coordinate shears passes and
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volume rotation. There are no conflicts. Each line connects only two processors shown by the par-

allel nature of all of the lines. The object space processor bounding box is upright in the object

space, and the forward  warped version is also rotated in the screen space. The screen space pro-

cessor bounding box is upright in the screen space and rotated in object space. Of course, all pro-

cessors are both object space processors  and screen space processors  with .

This is shown by those processors who interpolate for themselves, the processors in the interior

where communications arcs are not drawn.

We have further qualified the transforms, , beyond our work in [35] that permutation

warping can be used for. They are the equiareal transforms defined by  (determinant).

Here we develop a solution for any 3D transform of this type. The processor assignment is calcu-

lated by the transform . This permutation transforms points , whose coordinates are a

tuple of integers, to another point,  whose coordinates are also integers. An integer coordinate

field is mapped to another integer coordinate field, and the point  when inversed by  to

 is within ’s neighborhood. Obviously  and  are closely related. The distances

satisfy , , and , a working definition of a neighbor-

hood.

 is a concatenation of pure shear, translation, and round operators. Round-

ing is used to snap real values to integers. Shears are non angle preserving affine transforms. A

pure shear is nonscaling and preserves distance. Any affine transform, , with  is non-

scaling, or equiaffine. This includes shears, rotations, and translations, that are all isometries. By

allowing , reflections can also be calculated for equiareal transforms. An isometry is a

one-to-one and onto transform that preserves distances.

Next, we derive some new results that further define and clarify permutation warping for

two and three dimensional transforms. The general solution to a two dimensional equiareal trans-

form is calculated by solving a system of five equations with three unknowns. The unknowns are

the coefficients in the three pass shearing operation. The knowns are the components of the trans-

form matrix . An equiareal transform by definition has

T

π π′ π i j k, ,[ ] π′ i j k, ,[ ]=

T

det T( ) 1±=

π′ M π( )= pπ

p′π′

p′π′ T 1–

pπ′ T 1– p′π′( )= π M T

pπ′( )
x

pπx
– Cx< pπ′( )

y
pπy
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z

pπz
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T det T( ) 1=
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2.1) Calculating processor assignments ; the logical connection is shown by the
dotted line in FIGURE 4.

2.2) Calculating reconstruction point ; the inverse transform is shown by a

solid line and the point is shown as an asterisk (*).
2.3) Performing resampling of  and , reading the values of  and  of its neighbor-

ing processors. The number of neighbors used determines the filter order. FIGURE 4 shows possi-
ble neighbors of  as darkened cubes.

2.4) Sending resampled values to screen processors .

In Step 3, a parallel product evaluation combines resampled intensities and opacities. Bi-

nary tree combining computes products for any associative (not necessarily commutative) opera-

tor ,  [16][25]. Compositing ( ) is associative. Numerical integration is

also associative.

FIGURE  4 Transforms and Communications in Permutation Warping for a
Single Voxel

2.1 Processor Assignment by Permutation Warp

Paeth [24], Tanaka et al. [31], Schröder et al. [27], and we [35] have used pure shear matrix de-

composition of rotation to create efficient resampling algorithms. A pure shear is a non scaling

transform of a single coordinate. The technique is a refinement of multipass filtering where the

transform is restricted to rotation. We use the shears only to calculate the processor assignment,

and use a better filter. While Schröder and Salem used a one to one assignment [27] to calculate

multipass resampling, we are interested in calculating a direct one pass resampling. A permuta-

tion warp  calculates  given  and a transform . To understand why we go through

the extra work of calculating , FIGURE 13 shows communications taking place in parallel for a
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numbers) are assigned sample points  requiring  processors where  is typical-

ly  voxels. Our algorithm consists of the following three steps (as introduced in FIGURE 2):

FIGURE  3 Permutation Warping Parallel Volume Rendering Algorithm

In Step 1, processors classify and shade reading neighboring data as necessary.

In Step 2, each processor resamples the opacities, , and intensities, , to be aligned

with the view rays. If done in a straight forward fashion this would require many rounds of com-

munication, but we have developed a permutation warp that requires only one communication

[35]. We resample in the object space (OS) near where the points lie, and then send the resampled

data to its screen space position. The challenge to doing this is using a rule, , to calculate proces-

sor assignments for the viewing transform. For arbitrary equiareal view transformations there is

always a one-to-one mapping, and therefore no multipass resampling nor accumulated rounding

errors.

FIGURE 4 illustrates the transforms calculated by a single processor . The object space

and screen space are separated, the object space on the left and the screen space on the right. A

processor  does permutation warping by:

p x y z, ,[ ] ℜ∈ P S= S

n3

Permutation_Volume_Render( , , , , ) {

1.0) PPS, at each processor  calculate ,  in parallel.
2.0) VWS, Processor  does in parallel:

2.1) Calculate processor assignments

2.2) Calculate reconstruction point
2.3) Perform resampling of  and
2.4) send resampled values to SS processors

3.0) CS, calculate ray intensities  with parallel product.
}

I ray[ ] ← V Γ T classify shading

π αp I Sp

π
π′ M π( )=

pπ′ T 1– p′π′( )=

αp I Sp

π′
I ray

αp I Sp

M

π
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A network efficient parallel algorithm is themultipass forwards approach [4][6]-

[13][17][27][32][40]. Multipass forwards algorithms use a decomposition of the viewing trans-

form into shears for low network congestion, but they suffer from lower filter quality and view an-

gle restrictions. Of recent interest is the shear warp multipass forwards algorithm combined with

data dependent optimizations [17][29]. FIGURE 15 illustrates the sampling error for analytical

functions sampled by direct resampling and also by multipass resampling. The multipass resam-

pling errors are larger than the single pass resampling errors, and the multipass forwards filter dif-

ficulties are only compensated by restricting viewpoints and over sampling [17].

The forwards wavefront approach [4] works easily on SIMD machines with simple inter-

connection networks, such as a rings [28], and gives better filter quality than the multipass meth-

ods. Limitations are similar to the multipass forwards methods where view angles are restricted,

and the filter quality is not as good as a backwards viewing transform because of a post projection

resampling also used in the multipass forwards algorithms of [29] and [27]. Perspective projection

is not possible, and the technique suffers from network congestion as well [28].

Forwards splatting algorithms using Westover’s technique [7][22][33][34] have been de-

scribed as easily parallelizeable. Splatting techniques suffer from ordering noise because of the

unavoidable overlap in the splatted kernels. Similar to ray tracing, general viewpoints require ran-

dom accessing, in this case of the screen, resulting in congested writes. An implementation with-

out view angle freedom by Elvins [7] uses sequential compositing limiting speedup. Neumann

[22] has demonstrated an algorithm on mesh machines.

2.0 Permutation Warping

Our permutation warping solution is essentially a data parallel processor assignment technique

that provides a general approach for efficient parallel transform algorithms. Permutation warping

is better than prior parallel algorithms because it is memory efficient, processor efficient, general,

and accurate. The algorithm, FIGURE 3, calculates the same image as FIGURE 2, but gives spe-

cific memory layout and communication requirements necessary for the exclusive read exclusive

write parallel random access machine (EREW PRAM). Processors  (natural or wholeπ r s t, ,[ ] N∈



7

ing more processors than rays, so provides truly massive parallelism which other solutions have

not provided. We present algorithm analysis results, where the EREW PRAM (exclusive read ex-

clusive write parallel random access machine [9]) storage complexity is  for  samples;

run time is  for  processors when ; and run time is  for  sam-

ple points along a ray and .

1.1 Related Work

The array of output pixel intensities can be calculated many different ways indicated by the nu-

merous input variables: volume data, light sources, view transform, classification function, and

shading function. An illustrative categorization of possible algorithms is by viewing transform.

Existing parallel algorithms may be grouped into four categories determined by their viewing

transforms: backwards, multipass forwards, forwards splatting, and forwards wavefront. Aback-

wards viewing transform is ray tracing [8]. Nieh and Levoy [23], Chow and Ng [5], Yoo et al.

[41], Montani et al. [21], Neumann [22], Goel et al. [10], and Hsu [12] have developed backwards

(ray tracing) volume rendering algorithms for parallel computers. Nieh and Levoy use a shared

memory machine (Stanford DASH) where arbitrary memory requests are satisfied by the system.

Memory congestion and storage overhead are the primary disadvantages, but the architectural

strength of the DASH gives nearly linear speedup. Chow et al. used a processor assignment tech-

nique by iterative methods, which results in a variable run time and requires dynamic load balanc-

ing. Yoo et al. implemented a backwards algorithm on Pixel Planes 5, a distributed memory

machine, and because of network congestion elected to replicate the data set on every processor.

This results in high performance, but limits the amount of data that can be rendered. Montani et al.

encountered similar difficulties on the nCUBE, where clusters of processors get copies of the data

set, and data must also be sent on request resulting in both memory limitations and network con-

gestion. Goel et al.’s algorithm uses multiple passes of hypercube communication, and also idles

processors as compositing occurs. Hsu’s algorithm fully distributes the volume, but bottlenecks

result when going from the three dimensional frames to the two dimensional screen, preventing

linear speedup. Ourpermutation warping [37] approach computes a backwards mapping algo-

rithm with optimal storage and deterministic communication on shared or distributed memory

machines.

O S( ) S n3=

O S P⁄( ) P P O S Slog⁄( )= O Wlog( ) W

S Slog⁄ P S≤<
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and implemented. We have developed a superior approach, that does not use general communica-

tion, but uses a permutation of communication to solve the warping phase of the algorithm.

TABLE  I Terms in algorithm
 point in original volume space

 normal at point  in

 direction to eye at point  in

 direction to light source at point

 opacity at point  in

 shading intensity at point

 point in volume screen space

 opacity at point  in

 resampled shading intensity at point  in

 transform

 intensity of ray at point  in 2D image space  created from
intensities, and opacities along the  ray at all points .

 bounding hull of volume data

 bounding hull of transformed volume data

 bounding hull of 2D screen space image

Previous parallel volume rendering algorithms, described in Section 1.1, have restricted

platforms [17][22][23][29], data set sizes [17][21][29][41], filter quality

[4][6][17][22][27][28][29][32], view angle freedom, or correctness [7][22][33][34]. Users

shouldn’t have to sacrifice functionality to achieve higher performance with parallel computers.

Our permutation warping solution uses unrestricted viewpoints and filters, with efficient storage,

linear run-time speedup, and problem and generation scalability (for generation scalability see

[1]). Unrestricted viewpoints are achieved with provable one-to-one communication. For this rea-

son we call our algorithmpermutation warping for parallel volume rendering. This paper extends

our work on parallel image warping [35]. In this paper, we present new decompositions for our

permutation assignment, quantified error of competing multipass shears, provide a new virtualiza-

tion technique that keeps run time constant across view angle, develop the crucial parallel com-

positing needed for volume rendering, and show empirical results for the full volume rendering

algorithm, not just warping, on the MasPar MP-1 and MP-2 [2]. Our algorithm also scales to us-

p OS

Np p OS

Ep p OS

Lpγ p

αp p OS

I Sp p

p' SSfinal

αp' p' SSfinal

I S p' p′ SSfinal

T OS SSfinal→

I p'w
p'W SS

W p'w W∈

BV

BV′

BSS
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To briefly summarize the algorithm, the inputs to the algorithm are a scalar valued volume,

, of  points (or  for that matter), a set of light sources and their positions, , a

viewing transform matrix, , a classification function, used to convert  and derived values to

densities, , and a shading function, which calculates the lighting and illumination effects. The

PPS calculates normals , opacities , and initial shaded intensities . The VWS transforms

the initial shading intensities  and the opacities  to the three dimensional screen space by re-

sampling. The CS evaluates the view ray line integrals to get the two dimensional screen space

pixel intensities, . The final output is a two dimensional array of pixel values, . For a more

in depth discussion of volume rendering see Blinn [3], Kajiya and von Herzen [14], Levoy

[18][19], and our survey [36].

Transparency_Volume_Render( , , , , ) {

Step 1

Step 2

Step 3

}

FIGURE  2 Data Parallel Volume Rendering Algorithm

FIGURE 16 and FIGURE 17 show an example volume rendering of magnetic resonance

angiography images from data collected from a time of flight process that images human’s blood

flowing through the brain. The zoomed in views show a bifurcation in an artery using two differ-

ent qualities of filters. FIGURE 18 shows an example of volume rendering of magnetic resonance

imaging of the brain tissues and skull.

Volume rendering is a trivial problem for parallelizing if multiple copies of the source vol-

ume are stored. But, this solution is very expensive for massive parallelism, as there must be a vol-

ume stored for each processor. It is also not clear how to scale to using more processors than there

are rays. Other parallel approaches that use approximations to the algorithm, such as multipass

shearing have been proposed, and implemented, with a degradation in the image quality, a three

times increase in the amount of required storage, and restriction in the scalability. Even brute

force techniques, that require general communication for volume redistribution have been tried

V S n3= S n1n2n3= Γ

T V

α

Np αp I Sp

I Sp αp

I p′W I ray

I ray[ ] ← V Γ T classify shading

PPS

Np normal V( )=

αp classify V Np,( )=

I Sp shadingNp Ep Lpγ αp I γ, , , ,( )=





p BV∈( )∀

VWS αp′ I S p', T αp I Sp,( )= p′ BV′∈( )∀

CS Ip'w
t l( )I S l( )α l( ) ld

p′1
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direction to the eye for several voxels along the view ray, . The function

 can calculate either surface analogies (flat, Gouraud, and Phong shading

[8]), or particle analogies (phase functions [3][14]). Lighting is a complex phenomenon, and there

are physically based models and empirical models, used for different effects. Shading classifies

densities into visual properties. Directional lighting effects result from the volume normals

calculated by approximating gradients at all points, , within the bounding box of the object space

(OS) volume, . A normal is a perpendicular vector to a surface, so may be understood as the di-

rection about which light reflects on a mirror, for example.

The second stage of the algorithm (VWS) computes the viewing transformation . Be-

cause voxels are discrete, transformation requires resampling. Spatial resampling is called warp-

ing [30]. The OS points  are transformed to screen space (SS) points . Warping and

resampling of the opacities and shading intensities creates SS opacities, , and intensities, .

The OS data consist of  sample points. The SS data is  rays of  sample points or  total

points in SS. Resampling is used in nearly all raster graphics applications to map geometry and

data to discrete pixel or ray positions. In volume rendering, there are literally volumes of resam-

ples to be performed.

The final stage of the algorithm (CS) combines SS intensities and opacities, creating a two

dimensional image . The intensities along view rays are attenuated by the transparency.

FIGURE 1 shows the line path  for a view ray, and summation of transmitted intensities along

is expressed as an integral. The transparency integral is (Step 3) in FIGURE 2, and simplified

evaluation is known as image compositing [25].

To understand our expression of the algorithm, some basic geometry review is required.

For each algorithm step, points lie in geometric spaces between which transforms are performed:

(Step 1) object space (OS) points , (Step 2) three dimensional screen space (SS) points , and

(Step 3) two dimensional screen space ( ) points . A point transformed from

 is transformed as . The domain of points in each space is defined by

bounding hulls , , and . Screen spaces are the geometric spaces in which the objects to be

rendered to a computer graphics screen are defined, and bounding hulls are the definitions of the

limits of these spaces.

w 1 2…W,=

ShadingE N Lγ α I Lγ, , , ,( )

Np

p
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αp′ I S p'

S r W S′ rW=

I ray[ ]
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p p′

SSfinal p′W
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1.0 Introduction

Volume rendering is memory and compute bound. Researchers have used parallelism to speedup

transparency volume rendering. The goal in parallelism is linear speedup and no storage over-

head. Linear speedup is parallel run time  on  processors that is a fraction of the best sequential

run time , or . The goal in storage efficiency is  storage with  sample points,

equivalent to the sequential algorithm’s storage. To understand how we have parallelized volume

rendering, we first introduce the single scattering volume rendering algorithm. FIGURE 1 shows a

two dimensional slice of a volume of varying density. Light sources illuminate particles that re-

flect light to the eye. Assuming low particle reflectivity, the transfer equation is easier to solve be-

cause only a single scattering (reflection) occurs [3][14][19].

FIGURE  1 Single Level Scattering Particle Model

FIGURE 2 gives the volume rendering algorithm with terms defined in TABLE I. Inputs

are sample points , a set of light sources , a viewing transformation , a classification function,

and a shading function. The algorithm is grouped into three steps: preprocessing stage (PPS), vol-

ume warping stage (VWS) and compositing stage (CS).

The first step (Step 1 of FIGURE 2) of the algorithm (PPS) classifies voxels to opacities

, and calculates shading intensities, . The intensities are attenuated by the opacity.

Opacities define how opaque or how much light is blocked in each part of the volume. The shad-

ing intensity, or amount of light reflected, depends upon the particle light interaction. FIGURE 1

shows the light source directions  used to calculate the illumination bouncing in the

tP P
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Running Head: Permutation Warping for Volume Rendering
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Abstract

In this paper we present a data parallel volume rendering algorithm with numerous advantages

over prior published solutions. Volume rendering is a three-dimensional graphics rendering algo-

rithm that computes views of sampled medical and simulation data, but has been much slower

than other graphics algorithms because of the data set sizes and the computational complexity.

Our algorithm usespermutation warpingto achieve linear speedup (run time is  for

processors when  for  samples), linear storage ( ) for large data sets, ar-

bitrary view directions, and high quality filters. We derived a new processor permutation assign-

ment of five passes (our prior known solution was eight passes), and a new parallel compositing

technique that is essential for scaling linearly on machines that have more processors than view

rays to process ( ). We show a speedup of  for a 16k processor over a 1k processor Mas-

Par MP-1 (  is linear) and two frames/second with a  volume and trilinear view reconstruc-

tion. In addition we demonstrate volume sizes of , constant run time over angles  to

degrees, filter quality comparisons, and communication congestion of just % to %.
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