UCSC Java Network
Computer Procedures

UCSC-CRL-96-30
Copyright (C) 1996 UCSC

Bruce R. Montagué, Elizabeth A. Baldwir?, and Mike R. Allen*
Computer Science Department
University of California, Santa Cruz

10 Dec 1996

' This work was supported in part by a gift from National Semigoctor.
’brucem@cse.ucsc.edu

libby@cse.ucsc.edu

‘mallen@cse.ucsc.edu

Abstract

This document describes how to work with the UCSC Java anaudi¢s. Although intended primarily for developers,
this document is of use to anyone interested in the UCSC Jatars or JN. This document primarily discusses

operational procedures, such as how to write a UCSC Javacapph, and how to compile and build the system.
Code internals are not described.

keywords: JAVA, JN, procedures.

Contents

1

Introduction

1.1 OVEIVIEW o o e e e e e e e e e e e

1.2 WhatisIJNand UCSC Java? i e e e e e e e e
1.2.1 The National Semiconductor NS486 ciiii o it e
1.2.2 TheJava VirtualMachine e e
1.2.3 JavaOsS e
1.2.4 TheJavaNanokernel e e e

Setting up the Hardware

Development Cycle Procedures

3.1 TheDevelopmentCycle e e
3.1.1 Usingthesart _ printf function.
3.1.2 ObtainingaCrashDump e
3.1.3 CheckingOuta VersionforEditing
3.1.4 Editing e e
3.1.5 CompilingandLinking e e
3.1.6 Booting e e
3.1.7 RunningJAVA . . . e
3.1.8 Bringingupthe WebServer L e
3.1.9 Exercisingthe ConnectixCamera iiiii v i e

3.2 DownloadingJavaCode e e e
3.2.1 AddingaNew Filetothe RAMDisk e
3.22 CreatingaNew RAMDiISK e
3.23 TheJdavaCLIl e e

3.3 Runningthe JAVA TestHarness e e
3.3.1 Adding Test Programs tothe Java TestHarness
3.3.2 SimpleJavaTestPrograms e e e
3.3.3 JINJava Utility Programs e e

3.4 Usingthe Debugger e e e

3.5 Standard Development Aids (DOS user-commands) o

3.6 Integration e e e e

3.7 JavaCam e e e
3.7.1 Unpacking and Compilingthe JavaFiles
3.7.2 Startingth€l assLoader Server
3.7.3 StartingaJavaCamclient. e
3.7.4 Otherhelpfulhints

AP Lwwww®

System Programming

4.1 Addinganew Ctestprogram o e e e e e e
4.2 Addinganew Cfile e
4.3 Writinga Cdevice-driver L e e
4.4 Addinganew API (system function) e
45 Addinganew Native Method Lo
4.6 UsingMiniEdit e

The Source
5.1 TheSourceTree o e e e e e
5.2 Searching Source Files e e

Backup Procedures

6.1 Backups e e e
6.1.1 ToMakeaBackup e
6.1.2 ToRestoreaBackup

Networking

7.1 JINNetworking e e e
7.1.1 Testing Network Connectivity o
7.1.2 Changing Network Configuration cu.
7.1.3 CurrentSubnetInformation

7.2 DOSNetworking o o e e e
7.2.1 Usingthe Net fromDOS e
7.2.2 Settingupthe KASQ NOS e e

7.3 Usingthe Sniffer e e
7.3.1 Runningthe Analyzer e
7.3.2 OtherUseful Sniffer Utilities

Chapter 1

Introduction

1.1 Overview

This document describes how to work with JN and UCSC Javahoiigh intended primarily for developers, it is of
use to anyone interested in JN and UCSC Java.

1.2 Whatis JN and UCSC Java?

The Java Nanokernell) is a small kernel that has been designed specifically tomtippe Java virtual machine (the
JVM). IN currently runs only on custom National Semiconduc&8 dvaluation boards, although an earlier version
ran under a CR32 (National Semiconductor Compact Risc)|siimu

1.2.1 The National Semiconductor NS486

The NS486 is essentially a 486 P@therboard on a chip. It consists of a 486SX core and a UART (serial ports),
a PCMCIA interface (smart card), a PC/104 interface (the itrthiembedded system version of the ISA bus), an
enhanced parallel port (high-speed/bidirectional), a IRéontroller, DMA controller, 2 peripheral interrupt con-
trollers, multiple real-time clocks, a clock-calendar,l8@D controller, and a synchronous serial interface. Allstne
devices are on the CPU chip. Additional devices can be extenle chip.

The layout of the registers for these devices in x86 1/O spaader program control viatausinterface controller.
Thus, most components needed to create a system other l@R#HM and connector glue are on the chip. To achieve
this, the NS486 does not support virtual memory via pageiidoes have segmentation, however), does not support
floating-point, and does not support Virtual 8086 mode, ihahe NS486 boots in 32-bit protected mode. The NS486
only runs in 32-bit protected mode. It cannot run old 16-bide, and thus it cannot run DOS. The NS486 is intended
to be used for embedded real-time applications, such aglirstrial controllers, instrumentation, fax machines, and
network computers.

1.2.2 The Java Virtual Machine

The JVM is basically a single C switch statement, with theesas the switch identified by the current Java opcode
(the Javabytecode). Since compiler writers have spent a lot of effort optimziC switch statements, the JVM is
fairly efficient. Java code can call C subroutines. Suchautimes, calledhative methods, are used to perform many
run-time tasks such as 1/0 and C-level thread support. @alt&tive methods are performed by the Java run-time,
primarily performing 1/0O and supporting multiple threadmcurrently. These calls effectively define an API required
to run the JVM.

Java has 2 levels of threadingigh-level threading occurs at the Java interpreter level. At thisli@vél context’s
are multithreaded by the interpreterow-level threading occurs at the Java C-runtime level. The Java Grnen
implements the API (Application Programming Interface) supipg the JVM. The Java C-runtime must be multi-
threading so that low-level run-time activities can be rneimed corresponding to each high-level thread. Examples

of such low-level activities are /0 management and higlellenterpreter context. The original Java implementation
usedGreenthreads, a conventional multi-threading C runtime developed by.Suersions of Greenthreads existed
which used both the Unix and Win32 APIs to provide lower-lesyedtem services.

1.2.3 JavaOS

The JavaOSs in the past known a&ona, implemented as much of Greenthreads in Java as possiblenah set

of C routines remain which enable the JVM to rstand-alone, that is, without using the services of a lower-level
operating system. The remaining C code primarily handlesrinpt linkage and physical memory access. In JavaOS,
even drivers are written in Java. Since memory protectionasaged by the interpreter, JavaOS and application Java
threads are always in 486 Supervisor Mode, that is, Java@S mmt use hardware supported User Mode.

This approach resembles a stand-alone multi-threadinig Bagch as that upon which RSTS/E was based). Other
systems that have used a similar approach in the past indl0&S, MUMPS, and PICK. Although this approach
proved very convenient, this approach historically did leoid itself to high-performance real-time (especiallytwit
regard to character interrupt devices, or the like). Thastesns have all become high-end interpretive languages
hosted on conventional kernels. Time will tell if the currenst of compute power has fallen to the point where this
approach is now effective.

1.2.4 The Java Nanokernel

JN is a small, conventional, event-driven soft—real-tiramiel. Its overall design is ‘classic’ in that disep structure,

or software architecture, resembles that of the low-level kernels of TSS, RSX, VMS] &findowsNT. Although
the term is informal, JN is called rsanokernel because it only contains the lowest-level functionalityrid in these
kernels. The JN nanokernel only provides 1 system servi€d ¢All). This service runs any specified subroutine as a
kernel subroutine, that is, serialized with respect to kernel activity. Themwtine thus runs asaitical section.

On top of the JN nanokernel agaulator services for the file, thread, synchronization, event, setd/ark services
that were originally provided by a combination of Green#ug and Unix (or Win32).

The emulator services were determined by linking Java witiBreenthreads. Happily, the required API's are for
the most part mundane, mapping almost directly to Java kEgeygynchronization functions or Unix I/O. Although
Greenthread source was occasionally checked to determitaéidn semantics, JN is very much not simply a port of
Greenthreads. Most of the functionality was implementeddnsidering what the calling routine required, rather than
looking at the (dissimilar) Greenthreads implementatidaditionally, some functions were discarded as unneeded in
a stand-alone environment.

JN is called ananokernel because:

e There is really only 1 system service, that is, the JN API csirsif a single entry pointt hr d kcal | ().
This routine is passed the address of a subroutine and aesngjtrary argument. These values are placed in
a queue which is processed by the kernel. When the kerndiesabe corresponding location in the queue,
the designated subroutine, with the specified argumentxasuéed by the kernel as a critical section. The
subroutine executes to completion. The kernel executésadtquired functionality in this manner. It is fair to
think of the nanokernel as an interrupt routine with a céntrark-loop in which interrupts are enabled and in
which subroutines are executed as specified by a subroetidy queue. All enqueued subroutines are executed
to completion and cannot block. Hardware interrupts caruoeden such a subroutine is running, but if an
interrupt routine has to do anything beyond a trivial amaafrwork, it explicitly queues a subroutine execution
to the kernel. When the nanokernel has nothing else to dantaeupt routine that constitutes the nanokernel
returns from the interrupt that invoked the nanokernel.

e There is no uniforndevice database. No high-level hardware abstraction is provided by a steshdernel
hardware or driver model. Each driver is free to do as it @ssivith respect to data structures providing a model
of the hardware the driver is managing. There is, howevetaadsard model of how drivers interact with the
nanokernel itself.

¢ All code, both JN nanokernel code and application code, atissipervisor privilege.

¢ JN only support light-weight threads. JN has no memory memant or other protection between threads.
Per-thread segment and mapping tables are not used.

¢ All code is linked together in a single system image. Theriprovision for loading C code on the fly. There
is only 1 segment table, the Global Descriptor Taléd®{), and all code is loaded into 1 flat 32-bit segment
which starts at address 0 and is mapped 1:1 with real physiealory addresses.

e Services such as connecting driver interrupt routines fat@nrupt vector are notincluded in the nanokernel, but
are rather are performed by a spe@abedded system linker which builds a complete system image, including
such data structures as the 486 IDT and GDT.

Chapter 2

Setting up the Hardware

The 2 UART ports on the evaluation board are markl&RT and DEBUG. The DEBUG cable is a straight-thru cable
and is connected to the PC’s COML1 port.

Note the serial mice on the PC’s are connected to COM2, whighil@#y unusual, and can cause confusion.

The UART port markedJART is connected to the VT100 via a standard null modem cable VIIH&®O0's need to
be manually set to 9600 baud for both transmit and receives§3ET- UP, thenSETUP A/ B (the 5 key), then use
the transmit and receive speed keys (the 7 and 8 keys) toes®fth00 baud rate). The bottom of a VT100 keyboard
has a command help/map. It is convenient to enable VT100 gnsoooll.

The 10-baseT Ethernet cables can be disconnected to andHeoontroller and network hub at any time. The
network hub is daisy-chained to the Baskin center 14 net h8.014.14.x) via a 10-baseT cross connector connected
to the network tap in the wall. The hub can be disconnected fre wall at any time, that is, the cable can be connected
and disconnected without any harm (unless of course youdmfipbe in the middle of a network operation). This
can be useful if you want to eliminate large random RIP rauprotocol table update messages while debugging
networking code.

Chapter 3

Development Cycle Procedures

3.1 The Development Cycle

The following steps describe the typical development cyusing a NS486 evaluation board and a DOS PC. Currently
all development is directly hosted on DOS. The free toolviged with the NS486 evaluation board are all DOS
based (the commercial versions are available in NT versioAthough the DOS tools can be made to run under
NT, the Metaware compiler requires the PharLap DOS exterashet,running this under NT is excruciatingly slow,
even with 32 Mbytes. Additionally, the serial port througih@ppears at least 2-3 times as fast under DOS when
downloading. Since the development cycle is fast and DOSifspeno routine use is made of the standard Baskin
center environment.

The following steps show how to build, link, load and run thaster version on the P@ast er bl end. Section
3.1.3 describes how to check out your own version of the sy$te editing. The commands which are batch files are
described in detail in Section 3.5. It is useful to know wiieg batch files do and their input files, as some of them
may need to be modified for use with a checked out version.

dos> b <-- pwb will start. Edit source files.
dos> nmaker <-- A "nmake" will conpile all needed files.
dos> e <-- Alink will be done, |eaving the output

in file "\javanew. onf". Note that I|ink
errors are not necessarily fatal.

dos> f <-- Change to \host and run the flashl oader
dos> esp <-- Run the utility ESP3 (includes | oading)
esp> go <-- At the ESP3 pronpt

<-- JN out put shoul d appear on the VT100
connected to the board.

<-- At this point test output will occur on the VT100 screen.
Press RETURN on the VT100 2 tines, when pronpted at the
end of the output. If the VT100 appears frozen, press
"NOSCROLL" (the key on the bottomleft).

VT100: --------mmmmmmmm oo

RETURN

RETURN

top> j <-- At this point the JN top-level "top>" pronpt wll
appear. Type "h" for help, or "j" to start Java.

java> thttp <-- At this point the Java web server is running.

An " UnknownHost Excepti on" upon startup is
currently normal. The web server runs ‘‘forever’’.

java> wwsinp ./index_tnp. htn
<-- An alternate web server. A very sinple

server. Serves up one file (the argunent)

Whenever possible, upon booting JN, run ther t .r ead program on DOS as described below, so that any
diagnostic or crash output will be captured.

Execution of the DOS ESP3 program can occur at any time aftes &idoted (the batch filesp runs program
ESP3). To terminate ESP3, press Control-C or Control-Breétiera few seconds ESP3 will respond with a prompt.
At the prompt, entequi t .

3.1.1 Using theuart printf function

A C function and a UART driver have been implemented to allompat from the system to be sent to the PC’s monitor
(that is, the DOS terminal). Use the commarat t _pri ntf in C code just as you would useai nt f statement.

To capture the output, after starting the system (aftemitygio at ESP3 prompt, but before entering anything at the
VT100 terminal) press Control-C or Control-Break and waitthe ESP3 prompt. Enteui t to get back to the DOS
prompt. From thé& host directory, enter the following:

dos> portread <fil enane. out >

A message will be returned to the screen confirming the pad @nd the output filename. If no file name is
specified the output will scroll off the screen. Now run thealaystem in the normal way. To stop the output capture
at any time, hit the space bar or any other key except coftrdlhe output will be written to the specified file.

3.1.2 Obtaining a Crash Dump

If the system has crashed or appears hung, you may want teegemecrash dump. To get a crash dump you must run
portread on the DOS host as previously described. You can ptart r ead at any time after JN boots, although
itis most useful to do so immediatly so that any crash messaéfbe captured in the crash dump output file.

To generate a crash dump simply press the NMI switch on theBR8#btherboard. This switch is away from the
power LED and next to the board battery (which appears alheusize and shape of a quarter). Once pressed, output
will appear on the DOS screen and be captured in the portregdtfile.

The crash dump output contains the PC at the time the NMI switthpressed, and much other information. A
complete crash dump may be quite large.

3.1.3 Checking Out a Version for Editing

The master copy of the system is kept on therRSt er bl end in the\ mast er directory, and contains a working,
up-to-date version. This directory contains a complet&kpge: all source files, object files, a flat source directory,
and all make and link specification files. The procedure teklmit a version of the system is to create a new root
level directory and copy the entilemast er directory to it. This can be done easily using fhlezi p utility used
for making backups as described in Section 6. To use theimxisatch files, copy each batch file which references
filesin\ mast er and replacé mast er with the new directory name. Note that the flashloader balet{ff) and the
ESP3 batch filedsp) do not reference themast er directory and do not need to be changed.

After you have modified the checked out version and testédwbioughly, coordinate with the other developers to
integrate the new parts of the system into the master ver&laild and test the new master version to verify that the
new changes are working correctly and have not broken amyifnegression testing).

3.1.4 Editing

The editor ispwb (Programmer’s Workbench). It is not required, it is simpleg thefault DOS editor distributed with
Microsoft's MASM DOS assembler. Thaab editor can keep a current edit context in dozens of files samebusly,
and will maintain these contexts across editing sessiomd i@achine boots). Thus, it does not really matter from
which directorypwb is run.

¢ To change to the build directory and stamb (this will leave you ready for a compile and link in the build
directory when you exipwb):

dos> b

This is a single-character user-defined DOS batch file, éacit directory\ bat .

o To simply startpwb in the current directory:

dos> pwb

3.1.5 Compiling and Linking

The directory structure of the build kit follows Sun’s Javgedtory tree. The development directory is:

c:\master\j\build\ ns486\java\java

To compile:

¢ cd to the development directory, either manually or by usiregftillowing single-character custom command:

dos> ¢

If you have used the single-charadbecommand to invokewb, you will already be in the build directory when
you exitpwb.

o Compile vianmaker:

dos> nnaker

This is a Microsoft version afnake. Beware that there is also amake utility — they are not the same. Assure
thatnmaker completes successfully before continuing.

The output object files are placed in directdrymast er\ obj _g. Delete all the object files in this direc-
tory to force a complete recompile. This can be accomplighedmaker cl ean in the build directory. The
makef i | einthe build directory controls the compile. The makefilealses 3 ar g files in the build directory
which contain C compiler options. These are not in the makéficause of DOS command line length limita-
tions. Default Metaware compiler arguments are also sjgekifi the filec: \ hi ghc\ bi n\ hc386set . cnf

Link via the single-character commaed The full command line is:

dos> el i nk386 @ avanew. cnd

The commands controlling the link are not in the makefiley the in the filg avanew. cnd. This was done
to get around linker, makefile, and DOS limitations.

The output of the link isfile: \ j avanew. onf . There is also a very useful map file, fde\ j avanew. map.
Note that link errors are not necessarily fatal. there areeauly 2 link errors, resulting from bugs in Metaware
libraries, which have to do with floating point to 64-bit igex conversion. We have been ignoring these link
errors.

3.1.6 Booting

Assure there is a currehfj avanew. onf file. This may require a build, that is, a compile and link.

cd \ host . This directory contains SSI and National SemiconductolstoT his directory contains 2 download
utilities, thef | ashl dr , andESP3, the Softprobe loader/debugger.

Run the flashldrf | ashl dr

Press theRESET button on the development board. This switch is adjacenhéogreen power LED on the
board. Assure the switch wired to tMONI TORjumper is in the leftmost position. This switch is simply gtu
to the bottom of the board near the power connectors. Whengale switch, its pole should be in the position
towards the power connectors. Under normal circumstartbésswitch should not be touched. If the board
does not have a switch, assure that jumf#@rthe monitor jumper, is strapped. The above will causeREESET
button to boot a small download utility from on-board flashnneey that cooperates with thHd ashl dr. The
operation of this download utility can be verified by, ingtes executing thd | ashl dr, executing program
c:\host\in_bl ast. If the board is awaiting th&l ashl dr , and theDEBUG cable is connected to the PC
correctly, this program should outpés to the screen about twice a second.

Type: i ni t. This will establish communication between thieashl dr and the boot routine in the board’s
flash ROM. You must wait at this point until a messagatr get syst em on-1i ne, is output.

Typedi r . This is not essential, but is a good check that the boardraefd tashl dr are running and commu-
nicating normally. A simple directory of the contents of lasemory will be displayed.

Run the board side of the SoftProbe load/debuggeat ns96non
exit the flashldrqui t

Run the SoftProbe loader/debuggesp. This is a user-defined command that corresponésfi3 - dev 1,
that is, it uses COML1 at 9600 baud.

Go to the ESP3 command line by pressing Escape twice.
Set the highest baudrate possitdet baud 115200
Load the executabld:oad "\j avanew. onf "

Start the JN systenGo

10

3.1.7 Running JAVA

Currently, the first code in the downloaded JN system thatues consists of 2 ‘test’ screens which display output
from modified versions of the National Semiconductor hanmgast suite. Pre$2ETURN when prompted.

When JN comes up, the startup task presents a simple, ditbfesd, CLI using hierarchical menus. This very
simple CLI is mostly used for testing. At the top level of thienu, Java can be started by simply typjinig response
to thet op> prompt.

An entire Java command line can be specified, that is, noraval Sommand line options such-as and-t can
be specifiedt op> java -t.

3.1.8 Bringing up the WebServer

There are 3 web servers on the system. Therevayasimple web server built into thét } est option of the JN
CLlI, there is a very simple web server written in Java, andeal*rweb server written in Java. The simple Java web
server always responds to requests with the contents ofgéediite that is specified on the command line. Use the
{ s} command (superdir) in the JN CLI or in response to the Jaa> prompt to inspect available files.

The simple Java web server can be started via:

java> wwsinp . /index_tnp. htm

Thewwwsi mp Java web server uses a native method to determine currestiaregontents from the NS486 board.

The real web server can be started as shown below.

java> thttp

Itis configured to return the filendex. ht m when no file is specified by the client. Currently it can aldome
.gif,jpg,.htn and plain text files.

3.1.9 Exercising the Connectix Camera

To obtain an image from the Connectix camera, firsttrabt p on the NS486 as previously described. Then, from a
Web browser on a workstation or PC, access one of the NS486 padpaz el nut orvani | | a. This can be done
via an existing link (for instance, sdg t p: / / www. cse. ucsc. edu/ resear ch/ enbedded/ j ava. ht m),
by entering the name of the NS486 machihaZel nut orvani | | a), or by entering the direct IP address of the
NS486 system (128.114.14.16 foazel nut and 128.114.14.15 farani | | a).

The web page that is displayed currently contains links toralver of tests, one of which is an applet that controls
the camera and displays the acquired image in the browser.

11

3.2 Downloading Java Code

Java. cl ass files can be downloaded to a JN system and placed on a RAM dis& pfocess allows Java code to be
developed and debugged in a traditional Unix or Windowsremment, and then moved to a JN system that does not
have a network connection.

Note that the files to be downloaded do not have to tleass files, although this is the most common use of the
download procedure. Any file, including an ASCIjl ava file can be downloaded.

3.2.1 Adding a New File to the RAM Disk

o Compilethe Java file to produce al ass file. Currently, most such files are stored under directqryoj ect s/ pdebug/ new

o Edit filecl ass. |i st in directory/ pr oj ect s/ pdebug/ newCR/ needcl asses. This file is a control
file for a tar-like utility,vol _make. dec, which is used to transfer a set of files to the PCMCIA RAM disk
on the NS486 board. The format of tleé ass. | i st file consists of a control section for each directory
containing files to be placed on the RAM disk. Each sectiorsigtsof an N_DI R= command line specifying
the directory containing input files, &UT_DI R= command line specifying the directory on the RAM disk
in which the files are to be placed, and a list of filenames faartte input directory that are to be copied to
the RAM disk. Thevol _make. dec program is simple and fragile. All lines should be terminkbédth a
RETURN, and blank spaces should not extend after the lastfite character.

¢ Run the progranvol _nake. dec on a DEC Alpha platform such @amawai n orl est r ade. This program
will create a newvol . r amfile ready to be downloaded to the NS486.

The binary is a DEC Alpha binary. Theol _nmake program is sensitive to the ‘endianess’ of the processor
on which it runs. Compiling and running this program on a eigdian Sun platform will currently result in a
corruptvol . r amfile. This is another ‘feature’ ofol _nake that should be enhanced.

It may be useful to delete fitkeol . r ambefore runningrol _nake. dec.

o Now create a new RAM disk image as specified in the followirgjiea.

3.2.2 Creating a New RAM Disk

To create a new RAM disk, first createval . r amfile containing the files to be placed on the RAM disk. This
procedure is described in the preceding section. This filstiten be downloaded to the PCMCIA RAM disk on the
NS486 board as follows:

e Usef t p to move thevol . r amfile from Unix directory/ pr oj ect s/ pdebug/ newCR/ needcl assesto
the DOS directory: \ j n\ ut i | onthe PC hosting the NS486. Alternatively, a floppy disk antkwm ool s
can be used. FTP is used as follows:

On the DOS PC

dos> cd \ <-- Change to the root directory.
dos> nos <-- Bring up the KA9Q shell.
nos> cd \jn\util <-- Go to the utility directory. This directory

contains the last vol.ramfile used.

It is inportant to performthis cd before

starting ftp (ftp output will go here).
nos> ftp gawain <-- O sone other nachine in Baskin center.

At the usernane/ password, supply your

user name and password, etc..

ftp> cd /projects/ pdebug/ newCR/ needcl asses
ftp> binary

ftp> get vol.ram

ftp> quit

12

nos> exit

dos> cd \ host

After the new copy of/ol . r amis in directoryc: \ j n\ ut i | , boot IJN. This will usually require a new down-
load on JN.

Do not start Java. Using the JN CLI, you now need to initiattee RAM card, and then download the con-
tents ofvol . r amto the RAM card. The DOS executalbde\ j n\ uti | s\ vol _| oad cooperates with the
{v}ol | oad option of thefu}tility menu of the JN CLI. Althouglvol _| oad could be used to in-
crementally copy files to the RAM disk, in practice we havevalys been initializing the disk clean and then
loading an entire volume image — this simplifies the mainteraof thecl ass. | i st file.

Use the{ c} onfi g option to initialize the PCMCIA RAM disk. PCMCIA RAM disks areedlit card sized
boards with an edge connector. They were originally basedapanese ‘debt cards’, and look somewhat like
thick versions of the Xerox copy cards used at UCSC. The comany types: RAM disks, moving head disks,
Ethernet controllers, modems, etc.. PCMCIA RAM cards and POM{sh cards are not the same. RAM
cards contain conventional DRAM. Flash cards contain Btadly erasable ROMs that can only be written
with special hardware (although this hardware is sometioadsinto the motherboard or controller). The RAM
disks are convenient because of their size, speed, anddsettsimemory is battery-backed, that is, it does not
lose its contents when the power is turned off. PCMCIA RAM edndve a large lithium ‘hearing aid’ style
battery embedded in a corner. A small locking slider can lumdébon the card. Undoing this slider allows the
battery to be removed and replaced. Under normal circurastrthis should only need to be done about once
ayear.

On the NS486 board the PCMCIA slot is located under the PC/16#¢dater. The card is directly under the
Ethernet cable on the boards we have. Under normal circuntessa there is no reason to remove the card,
however, no problems are caused by doing so. PCMCIA hardvgamgténded to be ‘hot swappable’. JN
currently assumes that a single board is simply left in place

Initializing the card is effectively a JN file system forma@t do this:

top> ¢ <-- Use the {c}onfig subnenu.
config> c <-- This is the {c}ard init option.
It will disnount the disk , initializeit,

and renount the new ‘clean’ disk.

config> x <-- o back to the top Ilevel nenu.

Copy the files in th&ol . r amDOS file to the JIN RAM disk:

JN:
top> u <-- use the {u}til subnenu.
util> | <-- This is the "card_{I}oad" option.
At this point you will be pronpted on the
JN VT100 to run VOL_LQAD on the DCS PC.
If you are still inside ESP3 on the PC, type Control-C or,

Control -Break. This will return you to the DOS pronpt.
DGs:

dos> cd \jn\util
dos> vol _| oad

13

The files will be displayed on the VT100 as they are copied.

14

3.2.3 The Java CLI

The Java CLI is active when Java has been started angdata> prompt is current. Typindy will result in the
following help display:

{h}elp - prints this menu

ChangePrio [new priority] (no arg gives current priority)
{j}n_stat - run jn_stat() (reports nemused, etc.)
{c}hecksum - run sysCol | ect Checksum()

{menory ck - run mem fence_check()

I o{g}_dunp - run | og_dnp()

{s}uper_dir - Dir listing of all files

{I'}s <file> - usage: | <filenane>

t{y}pe <file> - Display file

d{u}mp <file> - Dump file contents (in hex)

{e}rase <file> - Delete file

These functions all use native methods to call native JN Ctfans.

3.3 Running the JAVA Test Harness

A number of Java test programs exist on the RAM card. Thesgranas can be run interactively under a test harness.
The java progranidar ness can take an input file specifying which tests to run.

java> Harness [<input file>]

The input file must contain lines consisting of single checin the first column, with the last line beigdwhich
quits the harness). For example, an input file that runs leatsl 2 would look like:

1
2

q

An input file which runs all tests once then quits is includadirevol . r amin the filej t . a.
If no input file is given it will print the menu shown below anelquire user interaction.

Enter the nunber of the area(s) would you like to test.
Enter "a" to run all tests. Include "i" to run sequence infinitely.

A Al Tests

1) Strings

2) Exceptions

3) Uilities

4) Threads and Synchronization (currently hangs)
5) 1/0 (not inplenented)

6) Garbage Coll ection

1) Run Sequence in Infinite Loop

Q Qit

Some sections are not yet implemented or are under develapiresting tests should not crash the system.
A bigger test harness calld®i gHar ness is in the making. The big harness will have a massive numbtysté
and is meant to be loaded (into ram disk) only when needed.

15

3.3.1 Adding Test Programs to the Java Test Harness

The test harness consists of two files:

/ proj ect s/ pdebug/ newCR/ needcl asses/ src/ har ness/ Har ness. j ava
/ proj ect s/ pdebug/ newCR/ needcl asses/ src/ har ness/ MenuHandl er. j ava

Harness Test Files

Most of the test files used by the harness are inewCR/ needcl asses/ src/ harness/jt/,and are thus in
the java packaggt , which is necessarily imported infdenuHandl er . j ava.

Some of the test files are in the main source directory, sahiegtcan be called from the command line as well as
from the java prompt without having to specify the packagmea

Adding New Test Files to the Harness

To add a new test file to the harness it is necessary to do firgghi

o Addtheline’ package jt;’ tothe test’s source file and recompile it.

o Copythe source and compiled code toilpe oj ect s/ pdebug/ newCR/ needcl asses/ src/ harness/jt/
directory.

o Editsrc/ har ness/ MenuHandl er . j ava so the new test program is called. Put the program in the dorrec
test group (strings, exceptions, utilities, 1/0, threamC) or create a new group if necessary.

Since themai n() methods of the test programs are called from another Javagmg aSt ri ng[] argument
must be hard-coded. Edit the local variablegSt ri ngAr r ay if your program is expecting command line
arguments.

For example, in the fildenuHandl er . j ava:

argStringArray[0]
argStringArray[1]
argStri ngArray|[2]

new String("first_arg_string");
new String("256");
new String("13.12");

Cl assThat TakesThr eeAr gs. mai n(argStri ngArray);

Note: Thear gSt ri ngAr r ay is hard-coded to be of a certain size (32 arbitrarily). If jitnea test program ex-
ecutesar gs. | engt h == some_const to check for argument length, it will always be 32. If the argent
length test is crucial to the test program create your 8ivni ng[] of the correct size.

o Edit needcl asses/ cl ass. | i st to include the new files. Some java programs compile into iplelt
. ¢l ass files so be sure to include all the files. Find tHe DI Rthat names the location of the
/projects/.../harness/jt/ filesand add the new files to this list.

¢ Runthe programol _make. dec to create the newol . r am The program will fail on error. Some potential
annoying errors: including extra spaces at the end of a fiteeria thecl ass. | i st file or the user not having
read permissions on the source file. Dolarod g+r *. cl ass on all class files so other users can make
newvol . r amfiles.

Itis a good ideato run the java program alone and from thénestess on Solaris before trying it on JN. Currently the
java programs in JN can noéXecut e” any system programs, run amt library calls, and many other functions
which the new test file may use. The correct output on the Jzsterm may be different from the correct output on a
Solaris host.

16

3.3.2 Simple Java Test Programs
The following simple Java programs are useful point tests:
CCTest <intl> <int2> <-- Fills up garbage collected heap

<int1l> specifies the size of a bl ock,
<int2> specifies the nunber of bl ocks.

Cal | GC <-- calls Garbage Collector - see it go!
O her <-- Sanity Check - prints 1 word to stdout.
jt. Gane <-- Synchroni zed Pi ngPong gane - tests threads.

3.3.3 JN Java Utility Programs
ChangePrio

This program changes priority of the main/startup thredue $tartup thread starts at Normal Priority (5). All threads
created by a thread, including those created by the stantgiad, inherit the creating thread’s current priority. The
format ofChangePri ois:

ChangePrio [<new priority (1-10)>]

SetFlags

TheSet Fl ags utility alters global flags that control attributes of eitld&l or the JVM. These flags are used to control
features, such as whether tracing information is displaged Fl ags has the following command line syntax:

Set FI ags [options] <-- specifying no argunment results in a menu.
Opti ons:
show shows current value of all flags
-t tracing on
-tx tracing off
-tm M racing on
-t nx M racing off
-V verbose on (note: very annoyi ng)
- VX ver bose of f
-u Uni queCLl on
- ux Uni queCLI of f
-r RoundRobi n Schedul i ng on
-rx RoundRobi n Schedul i ng of f

The initial flag state i$ r aci ng of f andRoundRobi n Schedul i ng on.
Note that withRoundRobi n of f starvation is likely unless all thread control is explidiinder Solaris, Java
runs withRoundRobi n of f, while under Win32, Java runs witkoundRobi n on. JN can emulate either.

ThreadLister

Thr eadLi st er simply shows all live threads at the time of its executionisTit useful to determine if any threads
are still running after the main thread of a program exitsrrival Thr eadLi st er output on JN looks like:

17

java> ThreadLi ster
Thread Group: system Max Priority: 10
Thread: lIdle thread Priority: 0 Daenopn

Thread Group: main Max Priority: 10
Thread: main Priority: 5

The display indentation is meaningful. Any remaining thi®aill show up under Thread: main.
Thr eadLi st er can also be called within a Java application program asviclio

ThreadLi ster.listAll Threads(System out);

18

3.4 Using the Debugger

The SSI loader/debugger provides most of the conventiogtaligging capabilities. Several manuals can be found in
the Embedded Systems Lab.

To view the current source code through the debugger usech Kk like bi gcopy4 to copy all of the source
files to a single directory. After loading (but before emergo), specify the directory containing the source code by
pulling down theConf i g menu in the ESP3 window and selectiigur ce fil e pat h. It will prompt for the
full path name of the directory containing the source code.

To view commands or data during execution it is necessargtta reak point before enteriggp. One way is
to break at a function call. At the ESP3 prompt tygeew sour ce to display the C source code in the debugger's
Sour ce window. Alternatively, entervi ew m x to display C source code and assembler. SelectSther ce
window by clicking the cursor on the window title bar. Hit AlG to get the prompt for the source code you want
to view and enter the function name. The code for the funatitnbe displayed in theSour ce window with code
addresses in the left column of the display. Click on the eslsliof the line you would like to break at, making sure
that it becomes highlighted. Confirm that the breakpointiieen set by pulling down tHeebug menu and selecting
Br eakpoi nt s. The address of breakpoints will be listed in a window.

When the breakpoint has been reached, continue or stepgtihexecution by selecting one of the commands
under theExecut e menu.

19

3.5 Standard Development Aids (DOS user-commands)

The directoryc: \ BAT is included in the DOS path and contains a number of conveaieammand files:

b -- Change to the build directory and start pwb.

bi gcopy4 -- Copy all .Cand .Hfiles in the source tree to \master\big_src
big_src -- cd to \naster\big_src

c -- cd to the build directory (pwb is _not_ started).

e -- Link the JN system using \verb+javanew. cnmd+ input file.

f -- cd to \host and run the flashload utility, using the input

file \verb+flsh.txt+. To run the |oader by hand use:

dos> cd \ host
dos> flashldr <-- The flashloader utility will start.

PRESS t he RESET button on the NS486 board.
(near the green power LED)

flash_cnd: init <-- Enter the "init" conmand.
<-- At this point a valid TARGET SYSTEM
ON- LI NE nessage nust appear.
flash_cnd: boot ns96mon <-- boots the "board" part of ESP3.
flash_cnd: quit

esp -- Start ESP3, the SoftProbe | oader/debugger using input file
\verb+espcomtext+. This batch file will set the baud rate and
load the .onf file. Wien the pronpt finally appears,
type ‘‘go’’. JN output will appear on VT100 w ndow.
To run ESP3 by hand use:

dos> esp <-- The full-screen interactive | oader/debugger
utility ESP3 will start. (rmust be in c:\host)

ESC

ESC <-- To exit the on-screen forms and get

to the command Iine.

esp> set baud 115200

esp> load "\javanew. onf" <-- At this point ESP3 will take
about 3 minutes to downl oad
the javanew file to the board.

esp> go <-- JN out put shoul d appear on the VT100
connected to the board.

new_vol -- cd to\jn\util, and run the vol _load utility. This is
the PC side of downl oading a vol.ramset of files to the
RAM di sk.
tall -- Touch all .Cand .Hfiles in the source tree so as to
update the last nodification tine.
t oi net -- cd to the directory contains the TCP/IP source.
tojnsrc -- cd to the directory containing the JN nanokernel source.

These command can all be executed directly at the DOS prompt.

20

3.6 Integration

Once new features have been added and debugged in a privétekimust be reintegrated with the master kit. Follow
this procedure to reintegrate with the master:

e Assure no one else is updating the master kit (currentlgasit er bl end).
o Make a. zi p of the master\(mast er) directory into backup directoryzi pfil es.
¢ Unzip the newly created zip file into another (new or cleang¢ctory tree.

o Copy your new files into the new directory tree. Note that giiesumes that you have kept track of which
files you have changed. If this is not the case, or possitmfigrror exists, the DO%c utility can be used to
determine which files in the 2 trees (your private tree andnhster) differ (use a variant of tieé gcopy batch
file).

¢ Rebuildall object files (that is, do a completeraker cl ean followed by annmaker).

¢ Run low-level N tests. At the JN CLI prompi:to invoke the test menu, followed Byto start saturation tests.
This test will run in an infinite loop, testing each JN API. Whewraps back to test 1, reboot.

¢ Run the Java Test harness. At the JN CLI prondpto start java. At thg ava> prompt,Harness 1 2 3
6.

o If the tests run, rename the new directdnyast er . Rename the oldast er . zi p filetool dmast . zi p.

¢ Update\ mast er\ doc\ | og. doc.

3.7 JavaCam

This section provides an overview in how to bring up the JaraGiles from scratch and get them working. Three
steps are necessary: unpacking and compiling the Javasfileting theCl assLoader Ser ver , and bringing up a
client program.

3.7.1 Unpacking and Compiling the Java Files

A GNU-ziped tar file of all necessary Java files is locatedpmn oj ect s/ pdebug/ . ht m / src/ qui ckcam t ar. gz.
To uncompress and untar the files, run the following serieofmands:

sundance > cd [new directory]
sundance > cp /projects/pdebug/.htm/src/quickcamtar. gz
sundance > zcat quickcamtar.gz | tar xf -

This will create the directorgui ckcamunder the current directory, and thei ckcamdirectory will contain
all the necessary Java files.

To compile the files, set yoBl. ASSPATH environment variable to include the newi ckcamdirectory and run
themake utility.

sundance > setenv CLASSPATH [new directory]/qui ckcam $CLASSPATH
sundance > make

You may want to include the ne@L ASSPATH setting in your. cshr c file, because it will be required for any of
the Java applications to run correctly.

21

3.7.2 Starting theCl assLoader Ser ver

Once the Java classes are compiled, be sure that the fotdiga are included in thel ass. | i st file as detailed
in section 3.2.1 above:

Unsupport edMbdeExcepti on. cl ass
Qui ckCanirest . cl ass

HexDunp. cl ass

Qui ckCam cl ass

Qui ckCanter ver. cl ass

Qui ckCantsocket . cl ass

Qui ckCanPar anet ers. cl ass

Qui ckCamAppl et . cl ass

Qui ckCamNet | mage. cl ass

Val ueBox. cl ass

| mgeCanvas. cl ass

Updat eabl el mageCanvas. cl ass
Qui ckCaml mageVant er . cl ass
Test Appl et . cl ass

Carer a. cl ass

Carmer aControl . cl ass
UnknownPar amet er Except i on. cl ass
TheCaner a. cl ass

TheCaner aControl . cl ass
Camer aControl | er Server. cl ass
Si mpl eCl assLoader . cl ass
Camer aSecur i t yManager. cl ass
Cl assLoader Server. cl ass
Diff.class

Si mpl eCl ass. cl ass

FI oor Token. cl ass

Qui ckCaml nput St ream cl ass
Wi ti ngRoom cl ass

Queue. cl ass

QueueEl enent . cl ass

Copyabl el nput St ream cl ass

Create a newol . r amfile, load it on to the NS486, start Java and then execute tfeimg command:

java > d assLoader Server

This starts the server that will accept JavaCam servletd {$h classes which implement t@aner aCont r ol
interface).

3.7.3 Starting a JavaCam client

Currently there are two main clients for JavaCdar i odi cDi spl ay and a couple variants, afii ckCanContr ol s.
Per i odi cDi spl ay asks fora JavaCa@aner aCont r ol servlet class on startup, sends that class tGtlessLoader Ser ver
and then continuously downloads pictures from the cant@rack CanmCont r ol s looks exactly like th&ui ckCamAppl et ,
except that it has an extra button used to specify wkigher aCont r ol servlet to send to the camera.

To bring up either client, at your UNIX prompt type the followg commands:

sundance > java Peri odi cDi spl ay
oR

sundance > java QuickCanControl s

If you get a message saying that Java cannot find these ¢lgese€L ASSPATHenvironment variable is probably
not set correctly. Check and make sure it includes the dirgcontaining these classes. NOTE TO WINDOWS NT
USERS: theCL. ASSPATH variable on NTmust include the drive letter (i.e. C:) in the path name.

Once started, thBer i odi cDi spl ay client will display a file selection window. SelectGamer aCont r ol
. ¢l ass file and presOK. That file will be sent to the NS486 and pictures should stppearing momentarily.

22

Per i odi cDi spl ay has a variant called@est Di spl ay. Test Di spl ay does not display the file selection win-
dow. Instead, it simply pickBer i odi cCamer aCont r ol . cl ass and sends it to the camera.

Qui ckCantont r ol s opens a window that looks much the same as the applet. Befqueesting a picture,
though, you must select a servlet to send. Do this by pressat§end a CameraControl clasbutton, and picking a
Caner aControl . cl ass file from the file selection window. Currently, only tiéneCaner aCont r ol . cl ass
servlet speaks the protooQui ckCantCont r ol s is expecting. Once the servlet is sent, you may requestrpicas
normal.

3.7.4 Other helpful hints

¢ If you have a totally black picture, make sure the white aratbllevels are set correctly. A black level of 50
and a white level of 100 seems to work.

¢ Michael Allen’s thesis has a good explination of most of titeinals of JavaCam. Also, check bittip://www.cse.ucsc.edu/-
research/embeddedsrcjavacam for a quick overview of the pertinent classes involved.

¢ The native methods in the Java files are bound to the impleatiens inside ofjci np. ¢ in the JN source tree
(off the top of Mike’s head, the directory j9 sr c/ ns486/j aval/ qui ckcan qci np. c¢).

23

Chapter 4

System Programming

4.1 Adding a new C test program

The simplest means of adding a simple C test to verify a netesyinction is to modify file _chai n. c indirectory
c:\master\j\src\ns486\java\jn. Thet _chai n program has a very simple test harness that consists of a
simplef or loop. It can easily be modified to call a single routine.

Assure thatthéo_t est () routineinfilej n_cl i . ¢ has not commented out the callttest _mai n() . Thisis
sometimes done to save space by not including the test lsarfitlse test harness is not called, assure thathai n
is also included in theakef i | e and inj avanew. cnd.

4.2 Adding a new C file

We do not use the Sun Java makefile, which is complex and ntdlpger We use a simple makefile that runs under
DOSnmeaker . This file only performs compilation. Another fileavanew. cnd in the build directory, controls the
link.

o Modify file makefi | e indirectoryc: \ mast er\j\ bui | d\ ns486\j ava\j ava.

— Add the object file corresponding to the new C file to the ligtrosl byOBJ =.

— At the end of the makefile, add a rule to compile the new objéxt fihe makefile uses the very simple
approach of having a separate rule for each file. These ralesthe following format:

$(OBI_DI R\t _chain. obj: $(IJN_DIR)\t_chain.c
$(IJN.CC) $(IJN. DR\t _chain.c

individual rules can be customized. The rules differ defremadn whether the file is a JN file, a Java file,
or a network file.

— Assembler files (.asm) can be added in a similar manner. JNIluassembler filg,n_asm asm

¢ Modify file j avanew. cnd, in the same directory as the makefile. Add the output objkstyihich is found
in directoryc: \ mast er \ obj _g, to the list at the beginning of this file. Each object file iaqed on a unique
line in this file, asel i nk386 can only handle lines that are 128 characters long.

4.3 Writing a C device-driver

To add a device driver, do the following:

24

4.4
4.5

First, you need to determine what IRQs can be generated Qyattilsvare. In many cases, this will be given to

you, that is, the hardware will require a certain IRQ, peghap set by a jumper or switcmternal devices, that

is, devices actually on the NS486 CPU chip, can be set to sdl¢®Qs under program control as specified by
an interrupt controller register map. See pages 69-70 iNtB486 Data Sheet (the CPU Manual). This map
must be set up correctly to translate either internal (op)tevice interrupt requests or external IRQs to the
IRQss actually seen by the peripheral interrupt contrd#Cs). There is both a master and slave PIC. The
master PIC controls IRQs 0-7 and the slave IRQs 8-15.

Currently, filepi c. c loads the NS486 PIC map. The values placed inthe map are déefifikechs486¢f g. h.

Once an IRQ has been selected, thejfitsvanew. cnd in the build directory needs to be edited so that the
Interrupt Descriptor Table (IDT) is built to point the seled interrupt to the assembler interrupt handler.

First, identify thegat e section in the file where theNTnnn_GATE macros are defined. The interrupt will
need a gate. To identify the specific interrupt gate, the IR@trhe added to the base address of the respective
PIC. Currently, the master PIC is at 112. For instance, if IR®t® be used, the resulting interrupt gate will be

| NT115_GATE because 115 =112 + 3. The name of an assembler interruptdrandst also be selected.

After the gate has been defined it needs to be added to the H\ta theent ry = command. This command
contains a gate descriptor for every supported interrupt.ifistance, for an interrupt at 113, the line would be
113: 1 NT113_GATE.

Write a driver activation routine. This routine is respdnisifor setting up the hardware device and initializing
interrupts. This routine should setup the hardware byah#ing any required registers, and enable the PIC to
post an interrupt when the device is active at the select€ IRis last operation is performed via a call to

Pl C Enabl e() .

Modify routinei ni ti al _driver_activations() infilej n. c to execute the new driver activation rou-
tine by invokingt hr d_kcal | ().

Add an assembler interrupt routine. It is convenient to pubfthese in filej n_asm asmin the JN source
directory. These routines are simply interface glue. Arséng routine can be copied. The name of the C
routine called by the handler should be changed.

Write the C interrupt handler. This routine should manage divice hardware. When it is appropriate to
indicate to the PIC that the interrupt at the current IRQ isniésed, calPl C_EQ () with the IRQ.

The C interrupt handler can queue additional work routinesda processed by the kernel. Such a routine will
not run at interrupt level.

If the C interrupt handler has queued additional kernel waoinke C macroSW TCH _TO_KERNEL must be
invoked to execute the kernel. Executing this macro resuktentrol transferring out of the interrupt routine. If
the kernel does not need to be run, the C interrupt handlesicaply return.

Adding a new API (system function)

Adding a new Native Method

Write the Java code that contains the call to the native ntiegoa wish to define.
Compile the java code withavac.

Runj avah against the class file output from the previous compileah <cl ass>). This will producea C
header file €cl ass>. h) with a typedef for the class and a prototype for the nativéhoe.

Run thej avah command again with thest ubs option (avah - st ubs <cl ass>). This creates the
stub file kcl ass>. ¢) containing a_st ub routine that calls the native C routine. Because we are wgrki
in a DOS environment, you must edit one line in this file: cha#gncl ude <St ubPreanbl e. h> to
#i ncl ude <StubPrea. h>.

25

o Create the .c file which will contain the function definitiofhe convention is to use some variant of the class
name with the last three letters beiingp, for implementation.

¢ Include the filesSt ubPr ea. h and<cl ass>. h in your implementation file.

o Copy the java-compatible prototype for the native funcfimm the generated .h file. Use this in your function
definition with the following changes: remove tegt er n keyword; provide parameter names to the parameter
types. The first one will bé hi s (the object), and the subsequent ones will be whatever ngmesant for
the parameters in your C code.

e Editl i nker _m c. Add the name of thest ub routine to the table that is found in this file.

o Editnati vst. h. Add a prototype for the stub file. Since these are all the séim®can be done at any point
before a build.

¢ Depending on the class and function you are adding, it maypeogriate to create a new directory somewhere
in the JN source tree. For example, tlei native code isin thel i directory.

¢ Download the one .h file and two .c files and put them in the gppate directory.
¢ Modifythermakef i | e inthe build directory in 2 places to refer to the new .c fikesl(ass>. c and<nat i vei np>. c).

¢ The files in the make directory with the .arg extension canthe compiler’s include directories for different
functional groups of code. It may be appropriate to createva rarg file for the include directories for your
code. If so, create a macro in the makefile to reference theagyfile and use it in the compile command for
your files.

¢ Modify thej avanew. crrd file for linking the new .obj files.

e Create a newol . r amfile containing the Java code calling the native method, awehibad to the RAM card
(see section 3.2).

4.6 Using MiniEdit

The Java program/ M ni Edi t is a ‘toy’ emacs-style editor written in Java that runs on¥i€.00. It can be used
to edit files on the PCMCIA RAM disk. To invoke it on fifeoo:

java> ./MniEdit foo

Files with a name of starting withar d: will be found or created on the PCMCIA card.

26

Chapter 5

The Source

5.1 The Source Tree

\ mast er

\ mast er\ docs
\ master\obj _g - Object files resulting fromconpilation are placed here.

- The root of the Sun-like Java source tree.
\master\big_src - Acopy of all .c and .h file sources in the tree.
- Docurent ati on.

\master\javanew - The root of the Sun-defined source tree.

\master\j\buil d\ ns486\java\java

\ master\j\buil d\ ns486\j ava\j ava\ ccl ass

\ mast er\j\ns486\i ncl ude
\master\j\ns486\incl ude\sys <-- Default

<--

<-- The build directory.

Cont ai ns the nakefile.

.h files are in these dirs.

\cclass\java\io

\ccl ass\java\l ang
\cclass\java\util

\ ccl ass\ sunt ool s\ debug

<-- Default

\master\j\src\ns486\java\incl ude

\'i net <--
\j avai <--
\jn <--
\runtinme <--
\ucsc <--
\master\j\src\share\java\cli <-- The
\'i ncl ude
\ I ang <--
\ net <--
\runtime <--
\util <--

\jnlutil

JN
JN

The
The
The
The

.h files for JN #include <>.
system.h files.

TCP stack source.

UCSC Java startup code.

JN nanokernel and drivers.
Java system specific runtine:

Sone native nethod stubs.

UCSC Java CLI.

The

The
Bui

1/0 signals.

conpiler, runtime, and comon t hreadi ng.
A few network conveni ence functions.
interpreter, class initializer, GC

It inutilities (zip).

Contains the vol _load utility used to
performthe DOS side of a RAMcard init.

O her directories of

\ bat

\ hi ghc

\'I |1 386eva
\masn61ll
\ nos

Cont ai ns
Cont ai ns
Cont ai ns
Cont ai ns
Cont ai ns

nt er est:
user - defi ned DOS conmands.
Met awar e Hl GHC conpi | er

t he
t he
t he
t he

SSI tools, that

is,

t he | oader/ debugger.

M crosoft assenbl er and PWB.

KA9Q execut abl e.

27

5.2 Searching Source Files

The most convenient way to search all source files is to uskdhdility after changing to th& mast er\ bi g_src
directory. This directory contains a copy of all source .d anfiles. To update the contents of thieg_sr c directory,
use the user-defined DOS commadridy_copy.

Thef g utility (fast grep) can be used similarly to Unix ep. The command g f oobar * will search all files

for foobar.
The bi g_sr c directory andbi g_copy were not defined primarily fof g. The SSI ESP3 debugger supports

source debugging on the target board, but all source mustdag¢dd in a single directory.

28

Chapter 6

Backup Procedures

6.1 Backups
6.1.1 To Make a Backup

dos> rem--- Renove all files from"\zipfiles".
dos> pkzip -ex -r -p \zipfiles\ucsc.zip \naster*.*
dos> pkzip -ex -r -p \zipfiles\jn.zip \jn*.*
dos> backup \zipfiles a: /s

6.1.2 To Restore a Backup

dos> rem-- Make a tenporary directory, cd to it..
dos> rem-- Restore all zip files:

dos> restore a: c:*.zip /s

dos> pkunzip -d \zipfiles\master.zip

dos> pkunzip -d \zipfiles\jn.zip

29

Chapter 7

Networking

7.1 JN Networking

7.1.1 Testing Network Connectivity
On a DOS machine running KA9Q, enteace mode:

dos> cd \
dos> nos

nos> trace pk0 0211

In this mode the DOS PC will act agdatascope, that is, all network packets that it processes will be digetl on
the screen and formated. Now bring up JN @mnchg the DOS machine by using the ping utility built into the JN CLI

top> u
util>n
net> p 128.114.14.12

If the ping does not work, the prompt will simply appear inwfeconds. If the ping does worky &t xx Msec
message will appear, indicating the number of Millisecomdgiired for the round trip to the designated machine.

7.1.2 Changing Network Configuration

The JN TCP/IP network configuration is managed by routiae_i ni t () infilei net mai n. c in the JN network-
ing directory,c: \ master\j\src\ns486\java\i net.

Currently, there are 7 #define’s anccBar * definitions needed to supply all the network informationuiegd
by a JN TCP/IP node. There are a number of such definitionsmras¢he head of file net mai n. c. Each such
section is enclosed in# f 0 conditional. One of these sections should be included irctinepilation be changing
the conditional to &i f 1. To support a new machine, or to locate an existing machireereew subnet, copy one of
the sections and customize it.

In addition to the required header, there are sections abdt®m of routinenet _i ni t () that predefine an
ar p table which provides IP address to Ethernet address ttarsiar the local subnet. In many casasp will
automatically manage this table, but it can be useful togfied it by hand, if known.

The information in thenet _i ni t () should be obtained from a file on the RAM card that could edsgledited.

For additional information on network setup, see also tiotiaeSetting up the KASQ NOS

30

7.1.3 Current Subnet Information

Maxwel |

Mast er bl end
Peet
Vanilla
Hazel nut

Madr one

128.
128.
128.
128.
128.

128.

114.
114.
114.
114.
114.

114.

14.
14.
14.
14.
14.

24.

12
13
14
15
16

58

The
The
Pak
The
The

The

secondary devel opnent DOS PC.
primary devel opment DOS PC.

Chan’s ol d 386.

primary NS486 devel opnment system
secondary NS486 devel opnent system

SUN SLC workstation in 320.

31

7.2 DOS Networking

Internet services are provided on the DOS PC'¥B®Q. This TCP/IP package is a single C program. It is public-
domain (for non-commercial purpose&A9Qdoes not run transparently on the PC’s. Rather, think of it gsezial
DOS shell that contains the basic TCP/IP utilities (pingye€lftp), and which allows user written TCP/IP applications
to be run from within it.

The JN TCP/IP stack is based on a customized sub3cA@f).

KA9Q will communicate with most PC Ethernet boards via theealbedpacket dri ver. This is a standard
DOS Ethernet driver that hardware vendors supply (usualljrée). It provides a common interface to packages such
asKA9Q A suitable packet driver must be installed (usuallgin aut oexec. bat orc: \ confi g. sys) before
KA9Q can run.

The KA9Qpackage consists of a single executable €ité, nos\ nos11a. exe. Additional information describ-
ing NOS can be found in text file: \ nos\ ka9qdocs. t xt .

The user of the DOS machine does not need to worry about usemar passwords. However, one can protect the
DOS PC from external access by specifying usernames and paissfor external users via the fite \ nos\ f t puser.

7.2.1 Using the Net from DOS

To access the Internet from the DOS development PC's:

dos> cd \
dos> nos

nos>

The batch file in the root directory is: \ nos. bat . Running this results in a change to the ‘NOS shell’. When
running the NOS shell the PC is on the Internet. You can exet@e/IP commands, such @s ng, ft p, and
t el net, and other machines (which know the machine’s passwordacesss the PC.

Obtain help via th&€ command. Additional help can be obtained by typing the nafrleac@mmand followed by
?. When you exit NOS the PC is no longer on the network. Starti@fNakes only seconds. Exit NOS vias>
exi t, which is immediate.

Useful NOS commands ap ng <nmachi ne_name>,ft p <machi ne_nane>,andt el net <machi ne_namne>.
Before downloading files to the PC vid p, it is useful to do acd under NOS to the target directory. If this is not
done, files obtained viat p get will be placed in thec: \ nos directory.

KA9Q can maintain multiple full-screen sessions, that is, it samultaneously support a number of on-going
t el net andf t p sessions. The F8 key can be used to switch between sessions.

A useful test of network connectivity can be performeddayng from NOS with the following format:

nos> pi ng arapaho 1 5000

This will send a 1 byte test message every 5 seconds.

7.2.2 Setting up the KA9Q NOS

All KA9Qfiles are located in directory: \ nos. A startup file,c: \ aut oexec. nos, specifies all options that can
readily be altered. This may be required if the kit is moved teew machine, or an existing machine moved to a new
subnet.

The options that usually make sense to change are ‘undé’riinth caret characters on the line below each line in
which they occur.

To getKA9Qto work on the Internet, it is typically only necessary todfye

e The machine’s IP address (assigned by whoever is in charte subnet to which the machine is attached).

32

¢ The subnet mask. This also is supplied by whoever is in chafrtfee subnet.

e The IP address of the Primary Domain Name server, and the Ifessldf the Secondary Domain Name server.
These will sometimes be the same IP address. This is thessddf@ server machine that contains a database
used to translate between mnemonic network names and éh#anpt notation names.

e The IP address of the Default Gateway, a.k.a., the DomaireBerhis is the address of a machine on the subnet
to which all packets, destined for somewhere beyond theetyubre sent.

Although the above items are usually sufficient to ‘get oméi, it may also be helpful to edit tree p commands
at the end of thaut oexec. nos file. These commands can be used to pre-specify, by hand,|btabia on the PC
containing the Ethernet to IP address mapping of the mastinehe local subnet. This can be useful when you do
not know what protocols are supported on the subnet.

33

7.3 Using the Sniffer

The department has a Network General Distributed Sniffet&y (DSS). The DSS Server is a PC attached td the
subnet with 2 Ethernet connections: one for capturing traffind one for sending data to the Console program. The
user opens a Console to the Server, as described in the éginse

The most appropriate DSS application for network debuggiayg be the Analyzer. In addition to capturing frames
and interpreting headers, the Analyzer watches for cepgedefined conditions in the network traffic, such as slow
response time, misdirected packets, or network overloaé. default values for the trigger events are reasonable, but
may be redefined by the user. When the Analyzer detects rcert@nts, it displays the Symptoms and possibly a
Diagnosis. The Analyzer allows you to display sequencesashés over time, or to look at individual frames. All
headers, as well as packet data, from each frame may beyhksida hex values, ASCII, or interpreted according to
the protocol level.

7.3.1 Running the Analyzer

The Sniffmaster for X (smx) Console must be runsamdance (where the license manager is running), and is started
by running/ usr/ | ocal / smx/ bi n/ smx xsni f f mast er. The user must be added to grougc by a system
administrator in order to use this software. The next windowome up will prompt for the name of the Server to
connect to (currenthhoundl). If the connection is successful, a Console window will eomp with the DSS Main
Menu displayed. Use the arrow keys to highligital yzer and hit enter.

Problems with the Server

The Console may be unable to connect to the Server becausenar $roblems or network problems. If there is
a networking problem between the Server and the networkh®iQonsole and the Server, a system administrator
may need to check the cables and the Server Ethernet car@a@mns. If a Console connection had already been
established, but the Server encountered a problem duregayidon, a remote reboot may be required (Console window
may ask you to reboot the server). This can be done by pullavendhe X windowSystem menu and selecting
Remote Reboot. Wait 5 minutes before trying to establish a new connectiosdbectingSystem - New Connection

from the window menu.

Fonts

Although thesnx program is supposed to configure itself and set the propdrdath, so far it has not worked
correctly. You may have to copy the entire directénysr / | ocal / six/ X11/ R5f ont s to your local machine (to
the machine where your X server is running) andxgret f p+ <ful | - name- of - new f ont - di r >to include
the font path necessary for the display.

Console-Server Interface

The Console interface to the Server is through a VT100 teaifystyle display in the Sniffmaster window. The interface

is a hierarchical DOS program and you will navigate througdhrenus using the arrow and enter keys, PgUp, PgDn,
Home, etc. Most actions have a short help sentence whictaeppear the bottom the screen when they are selected.
Different menu items require different keys sequences tiwate or select them. Use the arrow keys to highlight
different items on the menu. If there are more options or ipatars to the item, they will appear in a new column
to the right of the selected item. Use the arrow key again teentbe cursor to those items, which may also have
additional parameters that appear to the right in a new colufoggled items are selected or deselected with the space
bar (check-mark means selected, x-mark means deselettigthlighting and hitting enter over some items results in
a pop-up list of possible values, or a prompt for a new value.

When the Console is in a certain state, numbers and a briefiggen appear in shaded boxes at the bottom of the
window. These refer to the Function keys used to select tidm.Function keys may change the state of the capture,
or result in a different data display. Some Function keys toggle between different displays, others requireEBE
key to return to the preceding state. Although the Servariate is not sophisticated or intuitive, with practice and
trial and error, navigating through the menus and settiagshecome an acquired taste.

34

Getting to the Sniffmaster Main Menu

If you are not at the main menu (yellow menu text in the uppeneowill say Mai n Sel ecti on Menu -
Rel ease 4. 0) and youwant to be, but don’t know how to get there from theenirmenu: seledExi t orRet ur n
to Mai n Menu from your current menu, if available. You may have to exitfronultiple levels to get back to the
main menu. If you find yourself at a DOS prompt, go to the roc¢ctory and typerenu to bring up the main menu.

Managing Host Names

When running the Analyzer, you may want the sniffer to alwdigplay a host by alphabetical name instead of by an
address. To add host names to the Analyzer name data baseh&d\nalyzer menu seleBi spl ay -> Manage
names -> Edit nanes and hitenter. The list of all station names will be display8dlect the type of address by
which you will identify the station. For example, to ideptd station by IP address, select the row for a new station at
thel P level. Be sure th&ave nanes menu item is selected (check-mark next to it) so that the rewes will be
saved when you exit the Analyzer.

Capturing Frames

From the Analyzer menu you will see a red box witB New Capt ur e in it. Hit the F10 key to start a new
capture. Théexpert Over vi ewwindow will immediately begin showing the traffic statigim a table, dividing
the traffic among network layers, Object/Symptoms, and Doags. Select a row which has values in it and hit enter
to see more detail. ThE2 key toggles between thexpert Overvi ewandd obal Stati stics window.
Thed obal Stati stics window shows a breakdown of the traffic by protocol familyg #wverage, current and
maximum bandwidth and frames/second, and also a breakdoWaRYIP traffic. The bar along the bottom shows the
current frames per second (solid line) and the maximum feapee second achieved (dotted line).

If a diagnoses appears, move to that column and hit enteiptaiimes for various details of the diagnoses. The
frames can not be viewed until the capture is stopped or sdgge After stoppingK10) or suspendingK9) the
capture, hit=3 to load the data through the display filter. Depending on ikpldy filter values, frame summary or
details will be displayed.

Display Filters

It may be useful to redefine the filter for the displayed pagkBtom the main Analyzer menu, sel&tspl ay - >

Fi | t er s to view the filter options in the column to the right of tRel t er s item. TheFi | t er s item itself can be
toggled on/off, so make sure there is a check mark next toyhuf want to apply the display filter. Continue moving
right with the arrow keys and select the type of filter you wblikke to define or modify. It is recommended to browse
through all the filter items when initially displaying dataarder to be aware of the type of filtering being done.

As an example, to display only those packets exchanged batiweo stations, select ti&t at i on Addr ess
item and continue to the right tdat ch 1. Select thé=r omandTo stations by hitting enter on these key words, and
then selecting the stations from the list that comes up. Ifgetiésired values for the options below #reomandTo
items as well. Make sure thdfat ch 1 is selected and the oth&ht ch definitions are deselected if you want to
apply only one address match. When you display the data agraiaturn from theDi spl ay Opt i ons menu, the
new display will include this filtering.

Saving/Loading Setup Files

The display filters and other capture parameters can be sagceloaded. One setup has been defined and saved as
an example. It specifies that frame summary, detail (inezgtion), and hex values be shown for all network layers.
To load this file, from the main Analyzer menu goRiol es -> Load -> Set ups and select th8ETUP3. ENS

file. Display configurations can be saved similarly by séterFi | es -> Save -> Setups.

Saving Data to a Text File

After you have run and then stopped the capture, you can savigame to a CSV (comma separated value) ASCII
file. The values saved are not the frame data but rather thefsdatistics, such as absolute and relative arrival times,

35

total size in bytes, bandwidth used, and header summaryn re Analyzer menu seleBi spl ay -> Print and
continue right to thé”r i nt options. Use the space bar to select the first and last framimbens you want to save.
SelectFi | e for the output andCSV for the format. After setting the options, returnto frei nt command and press
enter to save the data to a file. You will be asked to name theDi&a in this form can be most readily translated
into graphs or compiled into statistics. Refer to the Filari&fer Utility Section (Section 7.3.2) for information atho
downloading your file from the Server.

The frame contents can also be saved as plain text. S&8ledtn Text For mat instead ofCSVin thePr i nt
options menu. The plain text format saves all informatiooudtevery frame, including header interpretation and data,
and will create a large file if you have captured many frameéandy be more practical to view individual frames
through the Console instead of saving the data in a file.

7.3.2 Other Useful Sniffer Utilities
File Transfer Utility

Captured frame data may be saved to a comma separated v&n@ fi{e or to a plain text file. Data in CSV format
can be easily parsed and compiled into a form useful foriplg#tatistics. Seledti | e Transfer Utilityfrom

the main menu to put the Server in file transfer mode. Once éneeBhas entered this mode, you may copy files to
and from the Server. When the Server has confirmed that fitsfea mode has been entered, select (with the mouse)
theFile Transfer item under theSystem menu of the X-window menu. Select the activity you want tdqen (i.e.,
Copy File) and follow the directions of the subsequent menus.

Exit to the Operating System

Select the itenExit to the Operating Systemto get to the Server's DOS prompt. Several DOS utility
programs (such agdi r , copy, del) are on the Server, although the system was not intended usdxkat the DOS
level. However, accessing the Server through DOS may béelpen locating or deleting files. To get back to the
Main Menu from the DOS prompt, return to the root directorg @mtenrenu.

36

