
UCSC Java Network
Computer Procedures1

UCSC-CRL-96-30
Copyright (C) 1996 UCSC

Bruce R. Montague2, Elizabeth A. Baldwin3, and Mike R. Allen4
Computer Science Department

University of California, Santa Cruz

10 Dec 1996

1This work was supported in part by a gift from National Semiconductor.2brucem@cse.ucsc.edu3libby@cse.ucsc.edu4mallen@cse.ucsc.edu

Abstract

This document describes how to work with the UCSC Java and JN source. Although intended primarily for developers,
this document is of use to anyone interested in the UCSC Java system or JN. This document primarily discusses
operational procedures, such as how to write a UCSC Java application, and how to compile and build the system.
Code internals are not described.
keywords: JAVA, JN, procedures.

Contents

1 Introduction 3
1.1 Overview 3
1.2 What is JN and UCSC Java? 3

1.2.1 The National Semiconductor NS486 3
1.2.2 The Java Virtual Machine 3
1.2.3 JavaOS 4
1.2.4 The Java Nanokernel 4

2 Setting up the Hardware 6

3 Development Cycle Procedures 7
3.1 The Development Cycle 7

3.1.1 Using theuart printf function . 8
3.1.2 Obtaining a Crash Dump 8
3.1.3 Checking Out a Version for Editing 9
3.1.4 Editing 9
3.1.5 Compiling and Linking 9
3.1.6 Booting 10
3.1.7 Running JAVA 11
3.1.8 Bringing up the WebServer 11
3.1.9 Exercising the Connectix Camera 11

3.2 Downloading Java Code 12
3.2.1 Adding a New File to the RAM Disk 12
3.2.2 Creating a New RAM Disk 12
3.2.3 The Java CLI 15

3.3 Running the JAVA Test Harness 15
3.3.1 Adding Test Programs to the Java Test Harness 16
3.3.2 Simple Java Test Programs 17
3.3.3 JN Java Utility Programs 17

3.4 Using the Debugger 19
3.5 Standard Development Aids (DOS user-commands) 20
3.6 Integration 21
3.7 JavaCam 21

3.7.1 Unpacking and Compiling the Java Files 21
3.7.2 Starting theClassLoaderServer . 22
3.7.3 Starting a JavaCam client 22
3.7.4 Other helpful hints 23

1

4 System Programming 24
4.1 Adding a new C test program 24
4.2 Adding a new C file 24
4.3 Writing a C device-driver 24
4.4 Adding a new API (system function) 25
4.5 Adding a new Native Method 25
4.6 Using MiniEdit 26

5 The Source 27
5.1 The Source Tree 27
5.2 Searching Source Files 28

6 Backup Procedures 29
6.1 Backups 29

6.1.1 To Make a Backup 29
6.1.2 To Restore a Backup 29

7 Networking 30
7.1 JN Networking 30

7.1.1 Testing Network Connectivity 30
7.1.2 Changing Network Configuration 30
7.1.3 Current Subnet Information 31

7.2 DOS Networking 32
7.2.1 Using the Net from DOS 32
7.2.2 Setting up the KA9Q NOS 32

7.3 Using the Sniffer 34
7.3.1 Running the Analyzer 34
7.3.2 Other Useful Sniffer Utilities 36

2

Chapter 1

Introduction

1.1 Overview

This document describes how to work with JN and UCSC Java. Although intended primarily for developers, it is of
use to anyone interested in JN and UCSC Java.

1.2 What is JN and UCSC Java?

The Java Nanokernel (JN) is a small kernel that has been designed specifically to support the Java virtual machine (the
JVM). JN currently runs only on custom National Semiconductor 486 evaluation boards, although an earlier version
ran under a CR32 (National Semiconductor Compact Risc) simulator.

1.2.1 The National Semiconductor NS486

The NS486 is essentially a 486 PCmotherboard on a chip. It consists of a 486SX core and a UART (serial ports),
a PCMCIA interface (smart card), a PC/104 interface (the industrial/embedded system version of the ISA bus), an
enhanced parallel port (high-speed/bidirectional), a DRAM controller, DMA controller, 2 peripheral interrupt con-
trollers, multiple real-time clocks, a clock-calendar, anLCD controller, and a synchronous serial interface. All these
devices are on the CPU chip. Additional devices can be external to the chip.

The layout of the registers for these devices in x86 I/O spaceis under program control via abus interface controller.
Thus, most components needed to create a system other then the DRAM and connector glue are on the chip. To achieve
this, the NS486 does not support virtual memory via page tables (itdoes have segmentation, however), does not support
floating-point, and does not support Virtual 8086 mode, thatis, the NS486 boots in 32-bit protected mode. The NS486
only runs in 32-bit protected mode. It cannot run old 16-bit code, and thus it cannot run DOS. The NS486 is intended
to be used for embedded real-time applications, such as in industrial controllers, instrumentation, fax machines, and
network computers.

1.2.2 The Java Virtual Machine

The JVM is basically a single C switch statement, with the cases of the switch identified by the current Java opcode
(the Javabytecode). Since compiler writers have spent a lot of effort optimizing C switch statements, the JVM is
fairly efficient. Java code can call C subroutines. Such subroutines, callednative methods, are used to perform many
run-time tasks such as I/O and C-level thread support. Callsto native methods are performed by the Java run-time,
primarily performing I/O and supporting multiple threads concurrently. These calls effectively define an API required
to run the JVM.

Java has 2 levels of threading.High-level threading occurs at the Java interpreter level. At this level JVM context’s
are multithreaded by the interpreter.Low-level threading occurs at the Java C-runtime level. The Java C-runtime
implements the API (Application Programming Interface) supporting the JVM. The Java C-runtime must be multi-
threading so that low-level run-time activities can be maintained corresponding to each high-level thread. Examples

3

of such low-level activities are I/O management and high-level interpreter context. The original Java implementation
usedGreenthreads, a conventional multi-threading C runtime developed by Sun. Versions of Greenthreads existed
which used both the Unix and Win32 APIs to provide lower-levelsystem services.

1.2.3 JavaOS

The JavaOS, in the past known asKona, implemented as much of Greenthreads in Java as possible. A small set
of C routines remain which enable the JVM to runstand-alone, that is, without using the services of a lower-level
operating system. The remaining C code primarily handles interrupt linkage and physical memory access. In JavaOS,
even drivers are written in Java. Since memory protection ismanaged by the interpreter, JavaOS and application Java
threads are always in 486 Supervisor Mode, that is, JavaOS does not use hardware supported User Mode.

This approach resembles a stand-alone multi-threading Basic (such as that upon which RSTS/E was based). Other
systems that have used a similar approach in the past includeJOSS, MUMPS, and PICK. Although this approach
proved very convenient, this approach historically did notlend itself to high-performance real-time (especially with
regard to character interrupt devices, or the like). These systems have all become high-end interpretive languages
hosted on conventional kernels. Time will tell if the current cost of compute power has fallen to the point where this
approach is now effective.

1.2.4 The Java Nanokernel

JN is a small, conventional, event-driven soft–real-time kernel. Its overall design is ‘classic’ in that itsdeep structure,
or software architecture, resembles that of the low-level kernels of TSS, RSX, VMS, and WindowsNT. Although
the term is informal, JN is called ananokernel because it only contains the lowest-level functionality found in these
kernels. The JN nanokernel only provides 1 system service (API call). This service runs any specified subroutine as a
kernel subroutine, that is, serialized with respect to kernel activity. The subroutine thus runs as acritical section.

On top of the JN nanokernel areemulator services for the file, thread, synchronization, event, and network services
that were originally provided by a combination of Greenthreads and Unix (or Win32).

The emulator services were determined by linking Java without Greenthreads. Happily, the required API’s are for
the most part mundane, mapping almost directly to Java language synchronization functions or Unix I/O. Although
Greenthread source was occasionally checked to determine function semantics, JN is very much not simply a port of
Greenthreads. Most of the functionality was implemented byconsidering what the calling routine required, rather than
looking at the (dissimilar) Greenthreads implementation.Additionally, some functions were discarded as unneeded in
a stand-alone environment.

JN is called ananokernel because:� There is really only 1 system service, that is, the JN API consists of a single entry point:thrd kcall().
This routine is passed the address of a subroutine and a single arbitrary argument. These values are placed in
a queue which is processed by the kernel. When the kernel reaches the corresponding location in the queue,
the designated subroutine, with the specified argument, is executed by the kernel as a critical section. The
subroutine executes to completion. The kernel executes allits required functionality in this manner. It is fair to
think of the nanokernel as an interrupt routine with a central work-loop in which interrupts are enabled and in
which subroutines are executed as specified by a subroutine ready queue. All enqueued subroutines are executed
to completion and cannot block. Hardware interrupts can occur when such a subroutine is running, but if an
interrupt routine has to do anything beyond a trivial amountof work, it explicitly queues a subroutine execution
to the kernel. When the nanokernel has nothing else to do, theinterrupt routine that constitutes the nanokernel
returns from the interrupt that invoked the nanokernel.� There is no uniformdevice database. No high-level hardware abstraction is provided by a standard kernel
hardware or driver model. Each driver is free to do as it desires with respect to data structures providing a model
of the hardware the driver is managing. There is, however, a standard model of how drivers interact with the
nanokernel itself.� All code, both JN nanokernel code and application code, runsat supervisor privilege.

4

� JN only support light-weight threads. JN has no memory management or other protection between threads.
Per-thread segment and mapping tables are not used.� All code is linked together in a single system image. There isno provision for loading C code on the fly. There
is only 1 segment table, the Global Descriptor Table (GDT), and all code is loaded into 1 flat 32-bit segment
which starts at address 0 and is mapped 1:1 with real physicalmemory addresses.� Services such as connecting driver interrupt routines to aninterrupt vector are not included in the nanokernel, but
are rather are performed by a specialembedded system linker which builds a complete system image, including
such data structures as the 486 IDT and GDT.

5

Chapter 2

Setting up the Hardware

The 2 UART ports on the evaluation board are markedUART andDEBUG. TheDEBUG cable is a straight-thru cable
and is connected to the PC’s COM1 port.

Note the serial mice on the PC’s are connected to COM2, which ismildly unusual, and can cause confusion.
The UART port markedUART is connected to the VT100 via a standard null modem cable. TheVT100’s need to

be manually set to 9600 baud for both transmit and receive (pressSET-UP, thenSETUP A/B (the 5 key), then use
the transmit and receive speed keys (the 7 and 8 keys) to set the VT100 baud rate). The bottom of a VT100 keyboard
has a command help/map. It is convenient to enable VT100 smooth scroll.

The 10-baseT Ethernet cables can be disconnected to and fromthe controller and network hub at any time. The
network hub is daisy-chained to the Baskin center 14 net hub (128.114.14.x) via a 10-baseT cross connector connected
to the network tap in the wall. The hub can be disconnected from the wall at any time, that is, the cable can be connected
and disconnected without any harm (unless of course you happen to be in the middle of a network operation). This
can be useful if you want to eliminate large random RIP routing protocol table update messages while debugging
networking code.

6

Chapter 3

Development Cycle Procedures

3.1 The Development Cycle

The following steps describe the typical development cycle, using a NS486 evaluation board and a DOS PC. Currently
all development is directly hosted on DOS. The free tools provided with the NS486 evaluation board are all DOS
based (the commercial versions are available in NT versions). Although the DOS tools can be made to run under
NT, the Metaware compiler requires the PharLap DOS extender,and running this under NT is excruciatingly slow,
even with 32 Mbytes. Additionally, the serial port throughput appears at least 2-3 times as fast under DOS when
downloading. Since the development cycle is fast and DOS specific, no routine use is made of the standard Baskin
center environment.

The following steps show how to build, link, load and run the master version on the PCmasterblend. Section
3.1.3 describes how to check out your own version of the system for editing. The commands which are batch files are
described in detail in Section 3.5. It is useful to know what the batch files do and their input files, as some of them
may need to be modified for use with a checked out version.

dos> b <-- pwb will start. Edit source files.
dos> nmaker <-- A "make" will compile all needed files.
dos> e <-- A link will be done, leaving the output

in file "\javanew.omf". Note that link
errors are not necessarily fatal.

dos> f <-- Change to \host and run the flashloader

dos> esp <-- Run the utility ESP3 (includes loading)

esp> go <-- At the ESP3 prompt
<-- JN output should appear on the VT100

connected to the board.
<-- At this point test output will occur on the VT100 screen.

Press RETURN on the VT100 2 times, when prompted at the
end of the output. If the VT100 appears frozen, press
"NOSCROLL" (the key on the bottom left).

VT100: -----------------------
RETURN
RETURN

top> j <-- At this point the JN top-level "top>" prompt will
appear. Type "h" for help, or "j" to start Java.

java> thttp <-- At this point the Java web server is running.
An "UnknownHostException" upon startup is
currently normal. The web server runs ‘‘forever’’.

java> wwwsimp ./index_tmp.html
<-- An alternate web server. A very simple

7

server. Serves up one file (the argument).

Whenever possible, upon booting JN, run theport read program on DOS as described below, so that any
diagnostic or crash output will be captured.

Execution of the DOS ESP3 program can occur at any time after JNis booted (the batch fileesp runs program
ESP3). To terminate ESP3, press Control-C or Control-Break. After a few seconds ESP3 will respond with a prompt.
At the prompt, enterquit.

3.1.1 Using theuart printf function

A C function and a UART driver have been implemented to allow output from the system to be sent to the PC’s monitor
(that is, the DOS terminal). Use the commanduart_printf in C code just as you would use aprintf statement.
To capture the output, after starting the system (after typinggo at ESP3 prompt, but before entering anything at the
VT100 terminal) press Control-C or Control-Break and wait for the ESP3 prompt. Enterquit to get back to the DOS
prompt. From the\host directory, enter the following:

dos> portread <filename.out>

A message will be returned to the screen confirming the port read and the output filename. If no file name is
specified the output will scroll off the screen. Now run the Java system in the normal way. To stop the output capture
at any time, hit the space bar or any other key except control-C. The output will be written to the specified file.

3.1.2 Obtaining a Crash Dump

If the system has crashed or appears hung, you may want to generate a crash dump. To get a crash dump you must run
portread on the DOS host as previously described. You can startportread at any time after JN boots, although
it is most useful to do so immediatly so that any crash messagewill be captured in the crash dump output file.

To generate a crash dump simply press the NMI switch on the NS486 motherboard. This switch is away from the
power LED and next to the board battery (which appears about the size and shape of a quarter). Once pressed, output
will appear on the DOS screen and be captured in the portread output file.

The crash dump output contains the PC at the time the NMI switchwas pressed, and much other information. A
complete crash dump may be quite large.

8

3.1.3 Checking Out a Version for Editing

The master copy of the system is kept on the PCmasterblend in the\master directory, and contains a working,
up-to-date version. This directory contains a complete package: all source files, object files, a flat source directory,
and all make and link specification files. The procedure to check out a version of the system is to create a new root
level directory and copy the entire\master directory to it. This can be done easily using thepkzip utility used
for making backups as described in Section 6. To use the existing batch files, copy each batch file which references
files in\master and replace\master with the new directory name. Note that the flashloader batch file (f) and the
ESP3 batch file (esp) do not reference the\master directory and do not need to be changed.

After you have modified the checked out version and tested it thoroughly, coordinate with the other developers to
integrate the new parts of the system into the master version. Build and test the new master version to verify that the
new changes are working correctly and have not broken anything (regression testing).

3.1.4 Editing

The editor ispwb (Programmer’s Workbench). It is not required, it is simply the default DOS editor distributed with
Microsoft’s MASM DOS assembler. Thepwb editor can keep a current edit context in dozens of files simultaneously,
and will maintain these contexts across editing sessions (and machine boots). Thus, it does not really matter from
which directorypwb is run.� To change to the build directory and startpwb (this will leave you ready for a compile and link in the build

directory when you exitpwb):

dos> b

This is a single-character user-defined DOS batch file, located in directory\bat.� To simply startpwb in the current directory:

dos> pwb

3.1.5 Compiling and Linking

The directory structure of the build kit follows Sun’s Java directory tree. The development directory is:

c:\master\j\build\ns486\java\java

To compile:� cd to the development directory, either manually or by using the following single-character custom command:

dos> c

If you have used the single-characterb command to invokepwb, you will already be in the build directory when
you exitpwb.� Compile vianmaker:

dos> nmaker

9

This is a Microsoft version ofmake. Beware that there is also annmake utility – they are not the same. Assure
thatnmaker completes successfully before continuing.

The output object files are placed in directory\master\obj_g. Delete all the object files in this direc-
tory to force a complete recompile. This can be accomplishedby nmaker clean in the build directory. The
makefile in the build directory controls the compile. The makefile also uses 3.arg files in the build directory
which contain C compiler options. These are not in the makefile because of DOS command line length limita-
tions. Default Metaware compiler arguments are also specified in the filec:\highc\bin\hc386set.cnf� Link via the single-character commande. The full command line is:

dos> elink386 @javanew.cmd

The commands controlling the link are not in the makefile, they are in the filejavanew.cmd. This was done
to get around linker, makefile, and DOS limitations.

The output of the link is filec:\javanew.omf. There is also a very useful map file, filec:\javanew.map.
Note that link errors are not necessarily fatal. there are currently 2 link errors, resulting from bugs in Metaware
libraries, which have to do with floating point to 64-bit integer conversion. We have been ignoring these link
errors.

3.1.6 Booting� Assure there is a current\javanew.omf file. This may require a build, that is, a compile and link.� cd \host. This directory contains SSI and National Semiconductor tools. This directory contains 2 download
utilities, theflashldr, andESP3, the Softprobe loader/debugger.� Run the flashldr:flashldr� Press theRESET button on the development board. This switch is adjacent to the green power LED on the
board. Assure the switch wired to theMONITOR jumper is in the leftmost position. This switch is simply glued
to the bottom of the board near the power connectors. When facing the switch, its pole should be in the position
towards the power connectors. Under normal circumstances,this switch should not be touched. If the board
does not have a switch, assure that jumperW6, the monitor jumper, is strapped. The above will cause theRESET
button to boot a small download utility from on-board flash memory that cooperates with theflashldr. The
operation of this download utility can be verified by, instead of executing theflashldr, executing program
c:\host\in_blast. If the board is awaiting theflashldr, and theDEBUG cable is connected to the PC
correctly, this program should outputA’s to the screen about twice a second.� Type: init. This will establish communication between theflashldr and the boot routine in the board’s
flash ROM. You must wait at this point until a message,target system on-line, is output.� Typedir. This is not essential, but is a good check that the board and theflashldr are running and commu-
nicating normally. A simple directory of the contents of flash memory will be displayed.� Run the board side of the SoftProbe load/debugger:boot ns96mon� exit the flashldr:quit� Run the SoftProbe loader/debugger:esp. This is a user-defined command that corresponds toesp3 -dev 1,
that is, it uses COM1 at 9600 baud.� Go to the ESP3 command line by pressing Escape twice.� Set the highest baudrate possible:set baud 115200� Load the executable:load "\javanew.omf"� Start the JN system:Go

10

3.1.7 Running JAVA

Currently, the first code in the downloaded JN system that executes consists of 2 ‘test’ screens which display output
from modified versions of the National Semiconductor hardware test suite. PressRETURN when prompted.

When JN comes up, the startup task presents a simple, old-fashioned, CLI using hierarchical menus. This very
simple CLI is mostly used for testing. At the top level of thismenu, Java can be started by simply typingj in response
to thetop> prompt.

An entire Java command line can be specified, that is, normal Java command line options such as-v and-t can
be specified:top> java -t.

3.1.8 Bringing up the WebServer

There are 3 web servers on the system. There is avery simple web server built into the{t}est option of the JN
CLI, there is a very simple web server written in Java, and a “real” web server written in Java. The simple Java web
server always responds to requests with the contents of a single file that is specified on the command line. Use the
{s} command (superdir) in the JN CLI or in response to the Javajava> prompt to inspect available files.

The simple Java web server can be started via:

java> wwwsimp ./index_tmp.html

Thewwwsimp Java web server uses a native method to determine current register contents from the NS486 board.

The real web server can be started as shown below.

java> thttp

It is configured to return the fileindex.html when no file is specified by the client. Currently it can also return
.gif, jpg, .html and plain text files.

3.1.9 Exercising the Connectix Camera

To obtain an image from the Connectix camera, first runthttp on the NS486 as previously described. Then, from a
Web browser on a workstation or PC, access one of the NS486 pages onhazelnut or vanilla. This can be done
via an existing link (for instance, seehttp://www.cse.ucsc.edu/research/embedded/java.html),
by entering the name of the NS486 machine (hazelnut or vanilla), or by entering the direct IP address of the
NS486 system (128.114.14.16 forhazelnut and 128.114.14.15 forvanilla).

The web page that is displayed currently contains links to a number of tests, one of which is an applet that controls
the camera and displays the acquired image in the browser.

11

3.2 Downloading Java Code

Java.class files can be downloaded to a JN system and placed on a RAM disk. This process allows Java code to be
developed and debugged in a traditional Unix or Windows environment, and then moved to a JN system that does not
have a network connection.

Note that the files to be downloaded do not have to be.class files, although this is the most common use of the
download procedure. Any file, including an ASCII.java file can be downloaded.

3.2.1 Adding a New File to the RAM Disk� Compile the Java file to produce a.class file. Currently, most such files are stored under directory/projects/pdebug/newCR/needclasses� Edit file class.list in directory/projects/pdebug/newCR/needclasses. This file is a control
file for a tar-like utility,vol_make.dec, which is used to transfer a set of files to the PCMCIA RAM disk
on the NS486 board. The format of theclass.list file consists of a control section for each directory
containing files to be placed on the RAM disk. Each section consists of anIN_DIR= command line specifying
the directory containing input files, anOUT_DIR= command line specifying the directory on the RAM disk
in which the files are to be placed, and a list of filenames foundin the input directory that are to be copied to
the RAM disk. Thevol_make.dec program is simple and fragile. All lines should be terminated with a
RETURN, and blank spaces should not extend after the last filename character.� Run the programvol_make.dec on a DEC Alpha platform such asgawain or lestrade. This program
will create a newvol.ram file ready to be downloaded to the NS486.

The binary is a DEC Alpha binary. Thevol_make program is sensitive to the ‘endianess’ of the processor
on which it runs. Compiling and running this program on a big-endian Sun platform will currently result in a
corruptvol.ram file. This is another ‘feature’ ofvol_make that should be enhanced.

It may be useful to delete filevol.ram before runningvol_make.dec.� Now create a new RAM disk image as specified in the following section.

3.2.2 Creating a New RAM Disk

To create a new RAM disk, first create avol.ram file containing the files to be placed on the RAM disk. This
procedure is described in the preceding section. This file must then be downloaded to the PCMCIA RAM disk on the
NS486 board as follows:� Useftp to move thevol.ram file from Unix directory/projects/pdebug/newCR/needclasses to

the DOS directoryc:\jn\util on the PC hosting the NS486. Alternatively, a floppy disk and Unix mtools
can be used. FTP is used as follows:

On the DOS PC:

dos> cd \ <-- Change to the root directory.
dos> nos <-- Bring up the KA9Q shell.

nos> cd \jn\util <-- Go to the utility directory. This directory
contains the last vol.ram file used.
It is important to perform this cd before
starting ftp (ftp output will go here).

nos> ftp gawain <-- Or some other machine in Baskin center.
At the username/password, supply your
username and password, etc..

ftp> cd /projects/pdebug/newCR/needclasses
ftp> binary
ftp> get vol.ram
ftp> quit

12

nos> exit

dos> cd \host� After the new copy ofvol.ram is in directoryc:\jn\util, boot JN. This will usually require a new down-
load on JN.� Do not start Java. Using the JN CLI, you now need to initializethe RAM card, and then download the con-
tents ofvol.ram to the RAM card. The DOS executablec:\jn\utils\vol_load cooperates with the
{v}ol load option of the{u}tility menu of the JN CLI. Althoughvol_load could be used to in-
crementally copy files to the RAM disk, in practice we have allways been initializing the disk clean and then
loading an entire volume image – this simplifies the maintenance of theclass.list file.� Use the{c}onfig option to initialize the PCMCIA RAM disk. PCMCIA RAM disks are credit card sized
boards with an edge connector. They were originally based onJapanese ‘debt cards’, and look somewhat like
thick versions of the Xerox copy cards used at UCSC. The come in many types: RAM disks, moving head disks,
Ethernet controllers, modems, etc.. PCMCIA RAM cards and PCMCIA flash cards are not the same. RAM
cards contain conventional DRAM. Flash cards contain electrically erasable ROMs that can only be written
with special hardware (although this hardware is sometimesbuilt into the motherboard or controller). The RAM
disks are convenient because of their size, speed, and because the memory is battery-backed, that is, it does not
lose its contents when the power is turned off. PCMCIA RAM cards have a large lithium ‘hearing aid’ style
battery embedded in a corner. A small locking slider can be found on the card. Undoing this slider allows the
battery to be removed and replaced. Under normal circumstances, this should only need to be done about once
a year.

On the NS486 board the PCMCIA slot is located under the PC/104 controller. The card is directly under the
Ethernet cable on the boards we have. Under normal circumstances, there is no reason to remove the card,
however, no problems are caused by doing so. PCMCIA hardware is intended to be ‘hot swappable’. JN
currently assumes that a single board is simply left in place.

Initializing the card is effectively a JN file system format.To do this:

top> c <-- Use the {c}onfig submenu.

config> c <-- This is the {c}ard init option.
It will dismount the disk , initialize it,
and remount the new ‘clean’ disk.

config> x <-- Go back to the top level menu.� Copy the files in thevol.ram DOS file to the JN RAM disk:

JN:

top> u <-- use the {u}til submenu.

util> l <-- This is the "card_{l}oad" option.
At this point you will be prompted on the
JN VT100 to run VOL_LOAD on the DOS PC.

If you are still inside ESP3 on the PC, type Control-C or,
Control-Break. This will return you to the DOS prompt.

DOS:

dos> cd \jn\util
dos> vol_load

13

The files will be displayed on the VT100 as they are copied.

14

3.2.3 The Java CLI

The Java CLI is active when Java has been started and thejava> prompt is current. Typingh will result in the
following help display:

{h}elp - prints this menu

ChangePrio [new priority] (no arg gives current priority)
{j}n_stat - run jn_stat() (reports mem used, etc.)
{c}hecksum - run sysCollectChecksum()
{m}emory ck - run mem_fence_check()
lo{g}_dump - run log_dmp()
{s}uper_dir - Dir listing of all files
{l}s <file> - usage: l <filename>
t{y}pe <file> - Display file
d{u}mp <file> - Dump file contents (in hex)
{e}rase <file> - Delete file

These functions all use native methods to call native JN C functions.

3.3 Running the JAVA Test Harness

A number of Java test programs exist on the RAM card. These programs can be run interactively under a test harness.
The java programHarness can take an input file specifying which tests to run.

java> Harness [<input file>]

The input file must contain lines consisting of single characters in the first column, with the last line beingq (which
quits the harness). For example, an input file that runs tests1 and 2 would look like:

1
2
q

An input file which runs all tests once then quits is included on thevol.ram in the filejt.a.
If no input file is given it will print the menu shown below and require user interaction.

Enter the number of the area(s) would you like to test.
Enter "a" to run all tests. Include "i" to run sequence infinitely.

A) All Tests

1) Strings

2) Exceptions

3) Utilities

4) Threads and Synchronization (currently hangs)

5) I/O (not implemented)

6) Garbage Collection

I) Run Sequence in Infinite Loop

Q) Quit

Some sections are not yet implemented or are under development. Existing tests should not crash the system.
A bigger test harness calledBigHarness is in the making. The big harness will have a massive number oftests

and is meant to be loaded (into ram disk) only when needed.

15

3.3.1 Adding Test Programs to the Java Test Harness

The test harness consists of two files:

/projects/pdebug/newCR/needclasses/src/harness/Harness.java
/projects/pdebug/newCR/needclasses/src/harness/MenuHandler.java

Harness Test Files

Most of the test files used by the harness are in:/newCR/needclasses/src/harness/jt/, and are thus in
the java packagejt, which is necessarily imported intoMenuHandler.java.

Some of the test files are in the main source directory, so thatthey can be called from the command line as well as
from the java prompt without having to specify the package name.

Adding New Test Files to the Harness

To add a new test file to the harness it is necessary to do five things:� Add the line‘package jt;’ to the test’s source file and recompile it.� Copy the source and compiled code to the/projects/pdebug/newCR/needclasses/src/harness/jt/
directory.� Editsrc/harness/MenuHandler.java so the new test program is called. Put the program in the correct
test group (strings, exceptions, utilities, I/O, threads,or GC) or create a new group if necessary.

Since themain()methods of the test programs are called from another Java program, aString[] argument
must be hard-coded. Edit the local variableargStringArray if your program is expecting command line
arguments.

For example, in the fileMenuHandler.java:

argStringArray[0] = new String("first_arg_string");
argStringArray[1] = new String("256");
argStringArray[2] = new String("13.12");

ClassThatTakesThreeArgs.main(argStringArray);

Note: TheargStringArray is hard-coded to be of a certain size (32 arbitrarily). If thejava test program ex-
ecutesargs.length == some_const to check for argument length, it will always be 32. If the argument
length test is crucial to the test program create your ownString[] of the correct size.� Edit needclasses/class.list to include the new files. Some java programs compile into multiple
.class files so be sure to include all the files. Find theIN_DIR that names the location of the
/projects/.../harness/jt/ files and add the new files to this list.� Run the programvol_make.dec to create the newvol.ram. The program will fail on error. Some potential
annoying errors: including extra spaces at the end of a file name in theclass.list file or the user not having
read permissions on the source file. Do achmod g+r *.class on all class files so other users can make
newvol.ram files.

It is a good idea to run the java program alone and from the testharness on Solaris before trying it on JN. Currently the
java programs in JN can not “execute” any system programs, run anyawt library calls, and many other functions
which the new test file may use. The correct output on the Java system may be different from the correct output on a
Solaris host.

16

3.3.2 Simple Java Test Programs

The following simple Java programs are useful point tests:

GCTest <int1> <int2> <-- Fills up garbage collected heap
<int1> specifies the size of a block,
<int2> specifies the number of blocks.

CallGC <-- calls Garbage Collector - see it go!

Other <-- Sanity Check - prints 1 word to stdout.

jt.Game <-- Synchronized PingPong game - tests threads.

3.3.3 JN Java Utility Programs

ChangePrio

This program changes priority of the main/startup thread. The startup thread starts at Normal Priority (5). All threads
created by a thread, including those created by the startup thread, inherit the creating thread’s current priority. The
format ofChangePrio is:

ChangePrio [<new priority (1-10)>]

SetFlags

TheSetFlags utility alters global flags that control attributes of either JN or the JVM. These flags are used to control
features, such as whether tracing information is displayed. SetFlags has the following command line syntax:

SetFlags [options] <-- specifying no argument results in a menu.

Options:

show shows current value of all flags
-t tracing on
-tx tracing off
-tm Mtracing on
-tmx Mtracing off
-v verbose on (note: very annoying)
-vx verbose off
-u UniqueCLI on
-ux UniqueCLI off
-r RoundRobin Scheduling on
-rx RoundRobin Scheduling off

The initial flag state istracing off andRoundRobin Scheduling on.
Note that withRoundRobin off starvation is likely unless all thread control is explicit.Under Solaris, Java

runs withRoundRobin off, while under Win32, Java runs withRoundRobin on. JN can emulate either.

ThreadLister

ThreadLister simply shows all live threads at the time of its execution. This is useful to determine if any threads
are still running after the main thread of a program exits. NormalThreadLister output on JN looks like:

17

java> ThreadLister

Thread Group: system Max Priority: 10
Thread: Idle thread Priority: 0 Daemon
Thread Group: main Max Priority: 10

Thread: main Priority: 5

The display indentation is meaningful. Any remaining threads will show up under Thread: main.
ThreadLister can also be called within a Java application program as follows:

ThreadLister.listAllThreads(System.out);

18

3.4 Using the Debugger

The SSI loader/debugger provides most of the conventional debugging capabilities. Several manuals can be found in
the Embedded Systems Lab.

To view the current source code through the debugger use a batch file likebigcopy4 to copy all of the source
files to a single directory. After loading (but before enteringgo), specify the directory containing the source code by
pulling down theConfig menu in the ESP3 window and selectingSource file path. It will prompt for the
full path name of the directory containing the source code.

To view commands or data during execution it is necessary to set a break point before enteringgo. One way is
to break at a function call. At the ESP3 prompt typeview source to display the C source code in the debugger’s
Source window. Alternatively, enterview mix to display C source code and assembler. Select theSource
window by clicking the cursor on the window title bar. Hit ALT-G to get the prompt for the source code you want
to view and enter the function name. The code for the functionwill be displayed in theSource window with code
addresses in the left column of the display. Click on the address of the line you would like to break at, making sure
that it becomes highlighted. Confirm that the breakpoint hasbeen set by pulling down theDebug menu and selecting
Breakpoints. The address of breakpoints will be listed in a window.

When the breakpoint has been reached, continue or step through execution by selecting one of the commands
under theExecute menu.

19

3.5 Standard Development Aids (DOS user-commands)

The directoryc:\BAT is included in the DOS path and contains a number of convenience command files:

b -- Change to the build directory and start pwb.
bigcopy4 -- Copy all .C and .H files in the source tree to \master\big_src
big_src -- cd to \master\big_src
c -- cd to the build directory (pwb is _not_ started).
e -- Link the JN system using \verb+javanew.cmd+ input file.
f -- cd to \host and run the flashload utility, using the input

file \verb+flsh.txt+. To run the loader by hand use:

dos> cd \host
dos> flashldr <-- The flashloader utility will start.

PRESS the RESET button on the NS486 board.
(near the green power LED)

flash_cmd: init <-- Enter the "init" command.
<-- At this point a valid TARGET SYSTEM

ON-LINE message must appear.
flash_cmd: boot ns96mon <-- boots the "board" part of ESP3.
flash_cmd: quit

esp -- Start ESP3, the SoftProbe loader/debugger using input file
\verb+espcom,text+. This batch file will set the baud rate and
load the .omf file. When the prompt finally appears,
type ‘‘go’’. JN output will appear on VT100 window.
To run ESP3 by hand use:

dos> esp <-- The full-screen interactive loader/debugger
utility ESP3 will start. (must be in c:\host)

ESC
ESC <-- To exit the on-screen forms and get

to the command line.

esp> set baud 115200
esp> load "\javanew.omf" <-- At this point ESP3 will take

about 3 minutes to download
the javanew file to the board.

esp> go <-- JN output should appear on the VT100
connected to the board.

new_vol -- cd to \jn\util, and run the vol_load utility. This is
the PC side of downloading a vol.ram set of files to the
RAM disk.

tall -- Touch all .C and .H files in the source tree so as to
update the last modification time.

toinet -- cd to the directory contains the TCP/IP source.
tojnsrc -- cd to the directory containing the JN nanokernel source.

These command can all be executed directly at the DOS prompt.

20

3.6 Integration

Once new features have been added and debugged in a private kit, they must be reintegrated with the master kit. Follow
this procedure to reintegrate with the master:� Assure no one else is updating the master kit (currently onmasterblend).� Make a.zip of the master (\master) directory into backup directory\zipfiles.� Unzip the newly created zip file into another (new or clean) directory tree.� Copy your new files into the new directory tree. Note that thispresumes that you have kept track of which

files you have changed. If this is not the case, or possibilityof error exists, the DOSfc utility can be used to
determine which files in the 2 trees (your private tree and themaster) differ (use a variant of thebigcopy batch
file).� Rebuildall object files (that is, do a completenmaker clean followed by annmaker).� Run low-level JN tests. At the JN CLI prompt:T to invoke the test menu, followed byT to start saturation tests.
This test will run in an infinite loop, testing each JN API. Whenit wraps back to test 1, reboot.� Run the Java Test harness. At the JN CLI prompt:J to start java. At thejava> prompt,Harness 1 2 3
6.� If the tests run, rename the new directory\master. Rename the oldmaster.zip file to oldmast.zip.� Update\master\doc\log.doc.

3.7 JavaCam

This section provides an overview in how to bring up the JavaCam files from scratch and get them working. Three
steps are necessary: unpacking and compiling the Java files,starting theClassLoaderServer, and bringing up a
client program.

3.7.1 Unpacking and Compiling the Java Files

A GNU-ziped tar file of all necessary Java files is located in/projects/pdebug/.html/src/quickcam.tar.gz.
To uncompress and untar the files, run the following series ofcommands:

sundance > cd [new directory]
sundance > cp /projects/pdebug/.html/src/quickcam.tar.gz .
sundance > zcat quickcam.tar.gz | tar xf -

This will create the directoryquickcam under the current directory, and thequickcam directory will contain
all the necessary Java files.

To compile the files, set yourCLASSPATH environment variable to include the newquickcam directory and run
themake utility.

sundance > setenv CLASSPATH [new directory]/quickcam:$CLASSPATH
sundance > make

You may want to include the newCLASSPATH setting in your.cshrc file, because it will be required for any of
the Java applications to run correctly.

21

3.7.2 Starting theClassLoaderServer

Once the Java classes are compiled, be sure that the following files are included in theclass.list file as detailed
in section 3.2.1 above:

UnsupportedModeException.class
QuickCamTest.class
HexDump.class
QuickCam.class
QuickCamServer.class
QuickCamSocket.class
QuickCamParameters.class
QuickCamApplet.class
QuickCamNetImage.class
ValueBox.class
ImageCanvas.class
UpdateableImageCanvas.class
QuickCamImageWanter.class
TestApplet.class
Camera.class
CameraControl.class
UnknownParameterException.class
TheCamera.class
TheCameraControl.class
CameraControllerServer.class
SimpleClassLoader.class
CameraSecurityManager.class
ClassLoaderServer.class
Diff.class
SimpleClass.class
FloorToken.class
QuickCamInputStream.class
WaitingRoom.class
Queue.class
QueueElement.class
CopyableInputStream.class

Create a newvol.ram file, load it on to the NS486, start Java and then execute the following command:

java > ClassLoaderServer

This starts the server that will accept JavaCam servlets (that is, classes which implement theCameraControl
interface).

3.7.3 Starting a JavaCam client

Currently there are two main clients for JavaCam:PeriodicDisplay and a couple variants, andQuickCamControls.
PeriodicDisplayasks for a JavaCamCameraControlservlet class on startup, sends that class to theClassLoaderServer
and then continuously downloads pictures from the camera.QuickCamControls looks exactly like theQuickCamApplet,
except that it has an extra button used to specify whichCameraControl servlet to send to the camera.

To bring up either client, at your UNIX prompt type the following commands:

sundance > java PeriodicDisplay

OR

sundance > java QuickCamControls

If you get a message saying that Java cannot find these classes, yourCLASSPATH environment variable is probably
not set correctly. Check and make sure it includes the directory containing these classes. NOTE TO WINDOWS NT
USERS: theCLASSPATH variable on NTmust include the drive letter (i.e. C:) in the path name.

Once started, thePeriodicDisplay client will display a file selection window. Select aCameraControl
.class file and pressOK . That file will be sent to the NS486 and pictures should start appearing momentarily.

22

PeriodicDisplay has a variant calledTestDisplay. TestDisplay does not display the file selection win-
dow. Instead, it simply picksPeriodicCameraControl.class and sends it to the camera.

QuickCamControls opens a window that looks much the same as the applet. Before requesting a picture,
though, you must select a servlet to send. Do this by pressingtheSend a CameraControl classbutton, and picking a
CameraControl .class file from the file selection window. Currently, only theTheCameraControl.class
servlet speaks the protocolQuickCamControls is expecting. Once the servlet is sent, you may request pictures as
normal.

3.7.4 Other helpful hints� If you have a totally black picture, make sure the white and black levels are set correctly. A black level of 50
and a white level of 100 seems to work.� Michael Allen’s thesis has a good explination of most of the internals of JavaCam. Also, check outhttp://www.cse.ucsc.edu/-
research/embeddedsrcjavacam for a quick overview of the pertinent classes involved.� The native methods in the Java files are bound to the implementations inside ofqcimp.c in the JN source tree
(off the top of Mike’s head, the directory isj/src/ns486/java/quickcam/qcimp.c).

23

Chapter 4

System Programming

4.1 Adding a new C test program

The simplest means of adding a simple C test to verify a new system function is to modify filet_chain.c in directory
c:\master\j\src\ns486\java\jn. Thet_chain program has a very simple test harness that consists of a
simplefor loop. It can easily be modified to call a single routine.

Assure that thedo_test() routine in filejn_cli.c has not commented out the call totest_main(). This is
sometimes done to save space by not including the test harness. If the test harness is not called, assure thatt_chain
is also included in themakefile and injavanew.cmd.

4.2 Adding a new C file

We do not use the Sun Java makefile, which is complex and not portable. We use a simple makefile that runs under
DOSnmaker. This file only performs compilation. Another file,javanew.cmd in the build directory, controls the
link.� Modify file makefile in directoryc:\master\j\build\ns486\java\java.

– Add the object file corresponding to the new C file to the list defined byOBJ =.

– At the end of the makefile, add a rule to compile the new object file. The makefile uses the very simple
approach of having a separate rule for each file. These rules have the following format:

$(OBJ_DIR)\t_chain.obj: $(JN_DIR)\t_chain.c
$(JN_CC) $(JN_DIR)\t_chain.c

individual rules can be customized. The rules differ depending on whether the file is a JN file, a Java file,
or a network file.

– Assembler files (.asm) can be added in a similar manner. JN uses 1 assembler file,jn_asm.asm.� Modify file javanew.cmd, in the same directory as the makefile. Add the output object file, which is found
in directoryc:\master\obj_g, to the list at the beginning of this file. Each object file is placed on a unique
line in this file, aselink386 can only handle lines that are 128 characters long.

4.3 Writing a C device-driver

To add a device driver, do the following:

24

� First, you need to determine what IRQs can be generated by thehardware. In many cases, this will be given to
you, that is, the hardware will require a certain IRQ, perhaps as set by a jumper or switch.Internal devices, that
is, devices actually on the NS486 CPU chip, can be set to selected IRQs under program control as specified by
an interrupt controller register map. See pages 69-70 in theNS486 Data Sheet (the CPU Manual). This map
must be set up correctly to translate either internal (on chip) device interrupt requests or external IRQs to the
IRQss actually seen by the peripheral interrupt controller(PICs). There is both a master and slave PIC. The
master PIC controls IRQs 0-7 and the slave IRQs 8-15.

Currently, filepic.c loads the NS486 PIC map. The values placed in the map are definedin file ns486cfg.h.� Once an IRQ has been selected, the filejavanew.cmd in the build directory needs to be edited so that the
Interrupt Descriptor Table (IDT) is built to point the selected interrupt to the assembler interrupt handler.

First, identify thegate section in the file where theINTnnn_GATE macros are defined. The interrupt will
need a gate. To identify the specific interrupt gate, the IRQ must be added to the base address of the respective
PIC. Currently, the master PIC is at 112. For instance, if IRQ 3 is to be used, the resulting interrupt gate will be
INT115_GATE because 115 = 112 + 3. The name of an assembler interrupt handler must also be selected.

After the gate has been defined it needs to be added to the IDT table via theentry = command. This command
contains a gate descriptor for every supported interrupt. For instance, for an interrupt at 113, the line would be
113:INT113_GATE.� Write a driver activation routine. This routine is responsible for setting up the hardware device and initializing
interrupts. This routine should setup the hardware by initializing any required registers, and enable the PIC to
post an interrupt when the device is active at the selected IRQ. This last operation is performed via a call to
PIC_Enable().� Modify routineinitial_driver_activations() in file jn.c to execute the new driver activation rou-
tine by invokingthrd_kcall().� Add an assembler interrupt routine. It is convenient to put all of these in filejn_asm.asm in the JN source
directory. These routines are simply interface glue. An existing routine can be copied. The name of the C
routine called by the handler should be changed.� Write the C interrupt handler. This routine should manage the device hardware. When it is appropriate to
indicate to the PIC that the interrupt at the current IRQ is dismissed, callPIC_EOI()with the IRQ.

The C interrupt handler can queue additional work routines to be processed by the kernel. Such a routine will
not run at interrupt level.

If the C interrupt handler has queued additional kernel work, the C macroSWITCH_TO_KERNEL must be
invoked to execute the kernel. Executing this macro resultsin control transferring out of the interrupt routine. If
the kernel does not need to be run, the C interrupt handler cansimply return.

4.4 Adding a new API (system function)

4.5 Adding a new Native Method� Write the Java code that contains the call to the native method you wish to define.� Compile the java code withjavac.� Runjavah against the class file output from the previous compile (javah <class>). This will produce a C
header file (<class>.h) with a typedef for the class and a prototype for the native method.� Run thejavah command again with the-stubs option (javah -stubs <class>). This creates the
stub file (<class>.c) containing a stub routine that calls the native C routine. Because we are working
in a DOS environment, you must edit one line in this file: change #include <StubPreamble.h> to
#include <StubPrea.h>.

25

� Create the .c file which will contain the function definition.The convention is to use some variant of the class
name with the last three letters beingimp, for implementation.� Include the filesStubPrea.h and<class>.h in your implementation file.� Copy the java-compatible prototype for the native functionfrom the generated .h file. Use this in your function
definition with the following changes: remove theextern keyword; provide parameter names to the parameter
types. The first one will bethis (the object), and the subsequent ones will be whatever namesyou want for
the parameters in your C code.� Editlinker_m.c. Add the name of the_stub routine to the table that is found in this file.� Edit nativst.h. Add a prototype for the stub file. Since these are all the same, this can be done at any point
before a build.� Depending on the class and function you are adding, it may be appropriate to create a new directory somewhere
in the JN source tree. For example, thecli native code is in thecli directory.� Download the one .h file and two .c files and put them in the appropriate directory.� Modify themakefile in the build directory in 2 places to refer to the new .c files (<class>.c and<nativeimp>.c).� The files in the make directory with the .arg extension contain the compiler’s include directories for different
functional groups of code. It may be appropriate to create a new .arg file for the include directories for your
code. If so, create a macro in the makefile to reference the new.arg file and use it in the compile command for
your files.� Modify thejavanew.cmd file for linking the new .obj files.� Create a newvol.ram file containing the Java code calling the native method, and download to the RAM card
(see section 3.2).

4.6 Using MiniEdit

The Java program./MiniEdit is a ‘toy’ emacs-style editor written in Java that runs on theVT100. It can be used
to edit files on the PCMCIA RAM disk. To invoke it on filefoo:

java> ./MiniEdit foo

Files with a name of starting withcard: will be found or created on the PCMCIA card.

26

Chapter 5

The Source

5.1 The Source Tree

\master - The root of the Sun-like Java source tree.
\master\big_src - A copy of all .c and .h file sources in the tree.
\master\docs - Documentation.
\master\obj_g - Object files resulting from compilation are placed here.
\master\javanew - The root of the Sun-defined source tree.

\master\j\build\ns486\java\java <-- The build directory.
Contains the makefile.

\master\j\build\ns486\java\java\cclass <-- .h files are in these dirs.
... \cclass\java\io
... \cclass\java\lang
... \cclass\java\util
... \cclass\suntools\debug

\master\j\ns486\include <-- Default JN .h files for JN #include <>.
\master\j\ns486\include\sys <-- Default JN system .h files.

\master\j\src\ns486\java\include
... \inet <-- The TCP stack source.
... \javai <-- The UCSC Java startup code.
... \jn <-- The JN nanokernel and drivers.
... \runtime <-- The Java system specific runtime: I/O, signals.
... \ucsc <-- Some native method stubs.

\master\j\src\share\java\cli <-- The UCSC Java CLI.
... \include
... \lang <-- The compiler, runtime, and common threading.
... \net <-- A few network convenience functions.
... \runtime <-- The interpreter, class initializer, GC.
... \util <-- Built in utilities (zip).

\jn\util - Contains the vol_load utility used to
perform the DOS side of a RAM card init.

Other directories of interest:
\bat - Contains user-defined DOS commands.
\highc - Contains the Metaware HIGHC compiler
\ll386eva - Contains the SSI tools, that is, the loader/debugger.
\masm611 - Contains the Microsoft assembler and PWB.
\nos - Contains the KA9Q executable.

27

5.2 Searching Source Files

The most convenient way to search all source files is to use thefg utility after changing to the\master\big_src
directory. This directory contains a copy of all source .c and .h files. To update the contents of thebig_src directory,
use the user-defined DOS commandbig_copy.

Thefg utility (fast grep) can be used similarly to Unixgrep. The commandfg foobar *will search all files
for foobar.

Thebig_src directory andbig_copy were not defined primarily forfg. The SSI ESP3 debugger supports
source debugging on the target board, but all source must be located in a single directory.

28

Chapter 6

Backup Procedures

6.1 Backups

6.1.1 To Make a Backup

dos> rem --- Remove all files from "\zipfiles".
dos> pkzip -ex -r -p \zipfiles\ucsc.zip \master*.*
dos> pkzip -ex -r -p \zipfiles\jn.zip \jn*.*
dos> backup \zipfiles a: /s

6.1.2 To Restore a Backup

dos> rem -- Make a temporary directory, cd to it...
dos> rem -- Restore all zip files:
dos> restore a: c:*.zip /s
dos> pkunzip -d \zipfiles\master.zip
dos> pkunzip -d \zipfiles\jn.zip

29

Chapter 7

Networking

7.1 JN Networking

7.1.1 Testing Network Connectivity

On a DOS machine running KA9Q, entertrace mode:

dos> cd \
dos> nos

nos> trace pk0 0211

In this mode the DOS PC will act as adatascope, that is, all network packets that it processes will be displayed on
the screen and formated. Now bring up JN andping the DOS machine by using the ping utility built into the JN CLI:

top> u
util> n
net> p 128.114.14.12

If the ping does not work, the prompt will simply appear in a few seconds. If the ping does work, artt xx Msec
message will appear, indicating the number of Millisecondsrequired for the round trip to the designated machine.

7.1.2 Changing Network Configuration

The JN TCP/IP network configuration is managed by routinenet_init() in file inetmain.c in the JN network-
ing directory,c:\master\j\src\ns486\java\inet.

Currently, there are 7 #define’s and 3char * definitions needed to supply all the network information required
by a JN TCP/IP node. There are a number of such definitions present at the head of fileinetmain.c. Each such
section is enclosed in a#if 0 conditional. One of these sections should be included in thecompilation be changing
the conditional to a#if 1. To support a new machine, or to locate an existing machine ona new subnet, copy one of
the sections and customize it.

In addition to the required header, there are sections at thebottom of routinenet_init() that predefine an
arp table which provides IP address to Ethernet address translation for the local subnet. In many casesarp will
automatically manage this table, but it can be useful to predefine it by hand, if known.

The information in thenet_init() should be obtained from a file on the RAM card that could easilybe edited.
For additional information on network setup, see also the sectionSetting up the KA9Q NOS.

30

7.1.3 Current Subnet Information

Maxwell -- 128.114.14.12 <-- The secondary development DOS PC.
Masterblend -- 128.114.14.13 <-- The primary development DOS PC.
Peet -- 128.114.14.14 <-- Pak Chan’s old 386.
Vanilla -- 128.114.14.15 <-- The primary NS486 development system.
Hazelnut -- 128.114.14.16 <-- The secondary NS486 development system.

Madrone -- 128.114.24.58 <-- The SUN SLC workstation in 320.

31

7.2 DOS Networking

Internet services are provided on the DOS PC’s byKA9Q. This TCP/IP package is a single C program. It is public-
domain (for non-commercial purposes).KA9Q does not run transparently on the PC’s. Rather, think of it as aspecial
DOS shell that contains the basic TCP/IP utilities (ping, telnet, ftp), and which allows user written TCP/IP applications
to be run from within it.

The JN TCP/IP stack is based on a customized subset ofKA9Q.
KA9Q will communicate with most PC Ethernet boards via the so-calledpacket driver. This is a standard

DOS Ethernet driver that hardware vendors supply (usually for free). It provides a common interface to packages such
asKA9Q. A suitable packet driver must be installed (usually inc:\autoexec.bat or c:\config.sys) before
KA9Q can run.

TheKA9Q package consists of a single executable file,c:\nos\nos11a.exe. Additional information describ-
ing NOS can be found in text filec:\nos\ka9qdocs.txt.

The user of the DOS machine does not need to worry about usernames or passwords. However, one can protect the
DOS PC from external access by specifying usernames and passwords for external users via the filec:\nos\ftpuser.

7.2.1 Using the Net from DOS

To access the Internet from the DOS development PC’s:

dos> cd \
dos> nos

nos>

The batch file in the root directory isc:\nos.bat. Running this results in a change to the ‘NOS shell’. When
running the NOS shell the PC is on the Internet. You can executeTCP/IP commands, such asping, ftp, and
telnet, and other machines (which know the machine’s password) canaccess the PC.

Obtain help via the? command. Additional help can be obtained by typing the name of a command followed by
?. When you exit NOS the PC is no longer on the network. Starting NOS takes only seconds. Exit NOS vianos>
exit, which is immediate.

Useful NOS commands areping <machine_name>,ftp <machine_name>, andtelnet <machine_name>.
Before downloading files to the PC viaftp, it is useful to do acd under NOS to the target directory. If this is not
done, files obtained viaftp get will be placed in thec:\nos directory.

KA9Q can maintain multiple full-screen sessions, that is, it cansimultaneously support a number of on-going
telnet andftp sessions. The F8 key can be used to switch between sessions.

A useful test of network connectivity can be performed byping from NOS with the following format:

nos> ping arapaho 1 5000

This will send a 1 byte test message every 5 seconds.

7.2.2 Setting up the KA9Q NOS

All KA9Q files are located in directoryc:\nos. A startup file,c:\autoexec.nos, specifies all options that can
readily be altered. This may be required if the kit is moved toa new machine, or an existing machine moved to a new
subnet.

The options that usually make sense to change are ‘underlined’ with caret characters on the line below each line in
which they occur.

To getKA9Q to work on the Internet, it is typically only necessary to specify:� The machine’s IP address (assigned by whoever is in charge ofthe subnet to which the machine is attached).

32

� The subnet mask. This also is supplied by whoever is in chargeof the subnet.� The IP address of the Primary Domain Name server, and the IP address of the Secondary Domain Name server.
These will sometimes be the same IP address. This is the address of a server machine that contains a database
used to translate between mnemonic network names and Internet 4-dot notation names.� The IP address of the Default Gateway, a.k.a., the Domain Server. This is the address of a machine on the subnet
to which all packets, destined for somewhere beyond the subnet, are sent.

Although the above items are usually sufficient to ‘get on thenet’, it may also be helpful to edit thearp commands
at the end of theautoexec.nos file. These commands can be used to pre-specify, by hand, a small table on the PC
containing the Ethernet to IP address mapping of the machines on the local subnet. This can be useful when you do
not know what protocols are supported on the subnet.

33

7.3 Using the Sniffer

The department has a Network General Distributed Sniffer System (DSS). The DSS Server is a PC attached to the14
subnet with 2 Ethernet connections: one for capturing traffic, and one for sending data to the Console program. The
user opens a Console to the Server, as described in the next section.

The most appropriate DSS application for network debuggingmay be the Analyzer. In addition to capturing frames
and interpreting headers, the Analyzer watches for certainpredefined conditions in the network traffic, such as slow
response time, misdirected packets, or network overload. The default values for the trigger events are reasonable, but
may be redefined by the user. When the Analyzer detects certain events, it displays the Symptoms and possibly a
Diagnosis. The Analyzer allows you to display sequences of frames over time, or to look at individual frames. All
headers, as well as packet data, from each frame may be displayed as hex values, ASCII, or interpreted according to
the protocol level.

7.3.1 Running the Analyzer

The Sniffmaster for X (smx) Console must be run onsundance (where the license manager is running), and is started
by running/usr/local/smx/bin/smx xsniffmaster. The user must be added to groupngc by a system
administrator in order to use this software. The next windowto come up will prompt for the name of the Server to
connect to (currentlyhound1). If the connection is successful, a Console window will come up with the DSS Main
Menu displayed. Use the arrow keys to highlightAnalyzer and hit enter.

Problems with the Server

The Console may be unable to connect to the Server because of Server problems or network problems. If there is
a networking problem between the Server and the network, or the Console and the Server, a system administrator
may need to check the cables and the Server Ethernet card connections. If a Console connection had already been
established, but the Server encountered a problem during execution, a remote reboot may be required (Console window
may ask you to reboot the server). This can be done by pulling down the X windowSystem menu and selecting
Remote Reboot. Wait 5 minutes before trying to establish a new connection by selectingSystem - New Connection
from the window menu.

Fonts

Although thesmx program is supposed to configure itself and set the proper font path, so far it has not worked
correctly. You may have to copy the entire directory/usr/local/smx/X11/R5fonts to your local machine (to
the machine where your X server is running) and runxset fp+ <full-name-of-new-font-dir> to include
the font path necessary for the display.

Console-Server Interface

The Console interface to the Server is through a VT100 terminal-style display in the Sniffmaster window. The interface
is a hierarchical DOS program and you will navigate through the menus using the arrow and enter keys, PgUp, PgDn,
Home, etc. Most actions have a short help sentence which appears near the bottom the screen when they are selected.
Different menu items require different keys sequences to activate or select them. Use the arrow keys to highlight
different items on the menu. If there are more options or parameters to the item, they will appear in a new column
to the right of the selected item. Use the arrow key again to move the cursor to those items, which may also have
additional parameters that appear to the right in a new column. Toggled items are selected or deselected with the space
bar (check-mark means selected, x-mark means deselected).Highlighting and hitting enter over some items results in
a pop-up list of possible values, or a prompt for a new value.

When the Console is in a certain state, numbers and a brief description appear in shaded boxes at the bottom of the
window. These refer to the Function keys used to select them.The Function keys may change the state of the capture,
or result in a different data display. Some Function keys maytoggle between different displays, others require theESC
key to return to the preceding state. Although the Server interface is not sophisticated or intuitive, with practice and
trial and error, navigating through the menus and settings can become an acquired taste.

34

Getting to the Sniffmaster Main Menu

If you are not at the main menu (yellow menu text in the upper corner will say Main Selection Menu -
Release 4.0) and you want to be, but don’t know how to get there from the current menu: selectExit orReturn
to Main Menu from your current menu, if available. You may have to exit from multiple levels to get back to the
main menu. If you find yourself at a DOS prompt, go to the root directory and typemenu to bring up the main menu.

Managing Host Names

When running the Analyzer, you may want the sniffer to alwaysdisplay a host by alphabetical name instead of by an
address. To add host names to the Analyzer name data base, from the Analyzer menu selectDisplay -> Manage
names -> Edit names and hit enter. The list of all station names will be displayed. Select the type of address by
which you will identify the station. For example, to identify a station by IP address, select the row for a new station at
theIP level. Be sure theSave names menu item is selected (check-mark next to it) so that the new names will be
saved when you exit the Analyzer.

Capturing Frames

From the Analyzer menu you will see a red box with10 New Capture in it. Hit the F10 key to start a new
capture. TheExpert Overview window will immediately begin showing the traffic statistics in a table, dividing
the traffic among network layers, Object/Symptoms, and Diagnoses. Select a row which has values in it and hit enter
to see more detail. TheF2 key toggles between theExpert Overview andGlobal Statistics window.
TheGlobal Statistics window shows a breakdown of the traffic by protocol family, the average, current and
maximum bandwidth and frames/second, and also a breakdown of TCP/IP traffic. The bar along the bottom shows the
current frames per second (solid line) and the maximum frames per second achieved (dotted line).

If a diagnoses appears, move to that column and hit enter multiple times for various details of the diagnoses. The
frames can not be viewed until the capture is stopped or suspended. After stopping (F10) or suspending (F9) the
capture, hitF3 to load the data through the display filter. Depending on the display filter values, frame summary or
details will be displayed.

Display Filters

It may be useful to redefine the filter for the displayed packets. From the main Analyzer menu, selectDisplay ->
Filters to view the filter options in the column to the right of theFilters item. TheFilters item itself can be
toggled on/off, so make sure there is a check mark next to it ifyou want to apply the display filter. Continue moving
right with the arrow keys and select the type of filter you would like to define or modify. It is recommended to browse
through all the filter items when initially displaying data in order to be aware of the type of filtering being done.

As an example, to display only those packets exchanged between two stations, select theStation Address
item and continue to the right toMatch 1. Select theFrom andTo stations by hitting enter on these key words, and
then selecting the stations from the list that comes up. Set the desired values for the options below theFrom andTo
items as well. Make sure thatMatch 1 is selected and the otherMatch definitions are deselected if you want to
apply only one address match. When you display the data again, or return from theDisplay Options menu, the
new display will include this filtering.

Saving/Loading Setup Files

The display filters and other capture parameters can be savedand reloaded. One setup has been defined and saved as
an example. It specifies that frame summary, detail (interpretation), and hex values be shown for all network layers.
To load this file, from the main Analyzer menu go toFiles -> Load -> Setups and select theSETUP3.ENS
file. Display configurations can be saved similarly by selecting Files -> Save -> Setups.

Saving Data to a Text File

After you have run and then stopped the capture, you can save the frame to a CSV (comma separated value) ASCII
file. The values saved are not the frame data but rather the frame statistics, such as absolute and relative arrival times,

35

total size in bytes, bandwidth used, and header summary. From the Analyzer menu selectDisplay -> Print and
continue right to thePrint options. Use the space bar to select the first and last frame numbers you want to save.
SelectFile for the output andCSV for the format. After setting the options, return to thePrint command and press
enter to save the data to a file. You will be asked to name the file. Data in this form can be most readily translated
into graphs or compiled into statistics. Refer to the File Transfer Utility Section (Section 7.3.2) for information about
downloading your file from the Server.

The frame contents can also be saved as plain text. SelectPlain Text Format instead ofCSV in thePrint
options menu. The plain text format saves all information about every frame, including header interpretation and data,
and will create a large file if you have captured many frames. It may be more practical to view individual frames
through the Console instead of saving the data in a file.

7.3.2 Other Useful Sniffer Utilities

File Transfer Utility

Captured frame data may be saved to a comma separated value (CSV) file or to a plain text file. Data in CSV format
can be easily parsed and compiled into a form useful for plotting statistics. SelectFile Transfer Utility from
the main menu to put the Server in file transfer mode. Once the Server has entered this mode, you may copy files to
and from the Server. When the Server has confirmed that file transfer mode has been entered, select (with the mouse)
theFile Transfer item under theSystem menu of the X-window menu. Select the activity you want to perform (i.e.,
Copy File) and follow the directions of the subsequent menus.

Exit to the Operating System

Select the itemExit to the Operating System to get to the Server’s DOS prompt. Several DOS utility
programs (such asdir, copy, del) are on the Server, although the system was not intended to beused at the DOS
level. However, accessing the Server through DOS may be helpful when locating or deleting files. To get back to the
Main Menu from the DOS prompt, return to the root directory and entermenu.

36

