
JN: An Operating System for an
Embedded Java Network Computer

UCSC-CRL-96-29

Bruce R. Montaguey
Computer Science Department

University of California, Santa Cruz
brucem@cse.ucsc.edu

9 December 1996

Abstract

The implementation of an embedded operating system ex-
plicitly designed to support the Java Virtual Machine on
the National Semiconductor NS486 embedded PC is de-
scribed. This system, the Java Nanokernel (JN), supports
an Internet web server written in Java and a web Camera
that can be controlled from a remote web browser. JN
in principle can currently run any Java program that does
not use a local display device. This paper is primarily a
system overview and a summary of lessons learned.
keywords: Java, JavaOS, embedded systems, soft–real-

time, OS implementation, kernel software architecture,
JN, TCP/IP, KA9Q, NS486SXF.

1 Introduction

This paper reviews lessons learned from implementing a
custom embedded operating system designed specifically
to support the Java Virtual Machine (JVM) on a small
‘single-chip’ embedded PC attached to the Internet. JVM
interprets Java, a multithreaded language that typically
runs on top of a host operating system [Gos95]. We use
the term JVM to refer to the Java Interpreter and its run-
time, that is, the complete body of code needed to execute
Java programs. The JVM is written entirely in C. Our cur-
rent system, the Java Nanokernel (JN), supports a simple
Web server written in Java and provides a Java interface
to a color Connectix camera.

JN is of interest because it is, to the best of our knowl-
edge, the first system designed and developed in an aca-
demic environment specifically to support Java. Indeed, it
may be the first OS other than JavaSoft’s JavaOS that has
been custom designed to run the complete JVM.ySupported in part by a gift from National Semiconductor.

The components of this system are shown in Figure 1.
The Java Nanokernel runs on evaluation boards assembled
by National Semiconductor for their NS486SXF part. Na-
tional describes this chip as a‘32-bit 486-class controller
with on-chip peripherals for embedded systems’[Nat96].

Above JN an application interface (API) has been im-
plemented which provides only: 1) those services that we
found necessary to run the JVM as an application; 2) ser-
vices necessary to port the KA9Q TCP/IP stack.

JavaSoft’s JavaOS currently implements as much func-
tionality as possible in interpreted Java [MKKS96]. Un-
like JavaOS, JN, its drivers, and the JN TCP/IP stack are
implemented in C. The JVM runs as an application thread.
However, unlike Java hosted on Unix or Windows, the
only functions included in JN are those required to run
Java threads.

JVM was originally written using a multi-threading C
runtime calledGreenthreads. This runtime coordinates
activities, such as I/O, between interpreted Java threads
and the host system. A large part of porting Java consists
of porting or reimplementing this Greenthreads function-
ality, which was not originally documented or specified.
Our initial approach to determining this functionality was
to link Java without Greenthreads, locate and inspect the
JVM calls to the missing routines, and guess at the re-
quired functionality. This reverse engineering approach
resulted in a system that almost worked and was not un-
duly tainted by the Greenthreads implementation. This
process also identified a few services that did require in-
specting the Greenthread source. We were thus able to im-
plement a small OS providing the Greenthread function-
ality without ever becoming expert in the existing Green-
threads implementation.

Our determination of this API was a significant part
of this effort; our document describing the resulting API
served as the initial basis for the corresponding JavaSoft

1

JN nanokernel

UART (interrupt), Ethernet, Camera (parallel port)

Drivers: clock, calendar, PCMCIA, UART (polled),

Java Threads
(Java Web Server)

Java JVM

APIs: Threads, Monitors, Files, Exceptions, Sockets

KA9Q TCP/IP Server Threads

Figure 1: Java Nanokernel and Components

specification.
The current system consists of the JN nanokernel; a

modified subset of the KA9Q TCP/IP stack; emulation
API’s providing the low-level system functionality re-
quired by both JVM and KA9Q; a simple utility suite
(including the ability to format and load a simple filesys-
tem onto a PCMCIA RAM disk); a modified JVM run-
time; a Java environment with all classes needed to run
both the Java compiler and compiled Java applications
that do not use the Abstract Windowing Toolkit (AWT);
a simple Java CLI (Command Line Interpreter, i.e., shell)
which uses a VT100 terminal connected via the UART;
a very simple Java editor and a simple Java Web server;
a test suite (consisting of low-level JN tests, TCP tests,
and Java tests); and drivers for the following: clock, cal-
endar, PCMCIA controller, NS16550 serial-port UART,
National Semiconductor AT/LANTIC Ethernet chip, and
a bidirectional parallel port supporting a 640x480 24-bit
Connectix Color QuickCam camera.

2 History

We did not set out to make a custom Java Network Com-
puter. Our interests included obtaining code fragments
of real system code to study alternative concurrent sys-
tem programming techniques,thin-OSsupport for high-
performance network servers, enhancing embedded com-
puting research capability, and investigating Java. Be-
cause the embedded processor market is an important
National Semiconductor market, National was interested
in evaluating Java’s effectiveness in embedded systems.
Thus, it was decided to obtain the JVM and implement a
small custom OS that would provide the minimal support
required to run the JVM stand-alone. This would pro-

vide a platform to evaluate Java interpreter size and per-
formance.

2.1 The NS CR32 Version

We initially obtained access to the Java sources from Sun,
removed Greenthreads, and compiled the JVM using gcc
under SunOS. The version of the JVM was a very early
version, Java Developer’s Kit (JDK) version 1.0.1, which
came with warnings from Sun that it was not yet easy to
port or understand.

Our initial target system was the National Semiconduc-
tor CR32A, a RISC-like CPU that is a new member of Na-
tional’s CompactRisc family [Nat95]. The 16-bit version
of this CPU is currently used extensively to form custom
cores for special embedded processors. The 32-bit CR32
is expected to be likewise used across all National product
lines.

The initial JN kernel was designed and implemented
using the CR32 toolset available from National, which in-
cluded a gcc-derived C compiler, an assembler, a linker,
and a set of conventional embedded programming support
utilities. Because we did not have real hardware, JN ini-
tially ran under the CR32 simulator which is integrated
with the CompactRisc Debugger.

After approximately a 2 month effort in the spring of
1996, we had an API specification, a nanokernel design, a
version of the nanokernel implemented and running on the
CR32 simulator, about 25 simple test programs running
under the simulator, and a version of the JVM that would
compile and link. It took about another month to get our
first trivial Java program to run and produce output under
the simulator.

We had to modify JVM to eliminate dynamic linking
(all required code was linked in) and implemented a sim-

2

ple Java CLI (in Java) with required native methods. A
fair amount of run-time interface code was required, and
all JVM dependencies resulting from assuming a virtual
memory environment eliminated. Changes were made to
National’s C run-time, Java source, and the nanokernel as
needed. There was a small amount of assembler (on the
order of 2 pages), which was primarily used for context
switch, but the remainder of the system was implemented
in C. The initial file system used a preallocated array in
(simulated) RAM as its file storage space. Naturally, this
file system was volatile.

An interesting problem encountered in this original im-
plementation was that the single C switch statement which
forms the core of the JVM interpreter was too large to be
compiled by the CR32 C compiler. The Java interpreter
loop is essentially a single C switch statement which
switches on the current interpreted opcode to the code
block corresponding to the instruction. The CR32 com-
piler, in attempting to reduce the size of the address tables
associated with large switch statements, used 16-bit off-
sets in the statement’s jump tables. The JVM switch state-
ment, which contains a code case for every Java opcode,
generated output machine code which exceeded 32K in
size, resulting in a C switch statement that jumped back-
wards from the location of the switch statement!

Another problem, which was never solved, resulted
from Java’s need to support 64-bit integer operations. The
gcc-derived compiler supporting the CR32 did not support
64-bit integers, so this problem was ignored.

2.2 The NS486 Port

2.2.1 Motivation

At this point the system had out-paced the availability of
hardware. Running a simple Java‘hello, world’
program in the simulated CR32 environment was taking
6 to 8 hours. Although we had a CR32 CPU on a board
intended for use with logic analyzers, we did not have pe-
ripheral hardware. To continue the pace of development
over the summer of 1996, a decision was made to port to
a National NS486SXF preliminary evaluation board.

2.2.2 The NS486SXF

The NS486SXF is intended to be a ‘single-chip’ 32-
bit PC, that is, to reduce the motherboard part count
to a minimum [Nat96]. Peripheral chip logic incorpo-
rated directly on-chip includes a PCMCIA (removable
PC card) controller, a NS16550 UART serial port, an en-
hanced (bidirectional) parallel port, an LCD display con-
troller, infrared serial input and output control, a real-time
clock/calendar, a watchdog timer, programmable interval
timers, 2 PICs (peripheral interrupt controllers), a serial

high-speed synchronous bus interface (Microwire), a de-
gree of power management, 29 CPU pins that can be used
for arbitrary bidirectional I/O under software control, a
DMA controller, a DRAM controller, and a bus inter-
face unit. The bus interface unit can be used to control
the standard PC ISA bus or the embedded system vari-
ant of the ISA bus, PC-104. The bus interface unit is
programmable and the programmer has considerable con-
trol over the configuration of resources and the layout of
NS486 I/O space. For instance, the programmer can spec-
ify the location of device control registers and the inter-
rupt IRQ levels for many of the above on-chip controllers,
unlike many current systems which require manually set-
ting DIP switches on PC controllers or motherboards.

To make space for all these peripherals on the same
silicon as the CPU, the NS486SXF has no floating point
unit, does not have virtual memory or associated page ta-
bles (it does have segmentation, however), and does not
support Virtual 8086 Mode or 16-bit Real Mode, that is,
the NS486 cannot run 8086 code. This means that the
NS486SXF cannot run DOS or a standard PC BIOS. The
NS486 boots in flat 32-bit Protected Mode and is intended
to be used for embedded control applications using a con-
ventional commercial real-time OS. A number of popu-
lar real-time operating systems have been ported to the
NS486.

2.2.3 The NS486 Port

In preparation for working with real NS486 hardware, a
preliminary port of the CR32 system was made to 16-bit
8086 DOS using Borland Turbo-C and the TASM assem-
bler. This was primarily done due to the availability of
tools and to simply get started on an x86-affinity port. The
system compiled, linked, and ran the nanokernel.

The nanokernel was next ported, as soon as an NT
system was available, to flat 32-bit Microsoft C and the
MASM assembler. This port went fairly smooth, and
within about 3 weeks of starting x86-based work we had
a version of JN and the tests running on the NS486. This
system did not include JVM and thus could not run Java.
This port was significantly expedited by a suite of Na-
tional hardware test and ‘demonstration’ routines which
effectively could be used as a simple BIOS.

The NS486 evaluation board was supported with a suite
of free third-party x86 embedded system tools available
for evaluation. This software was 16-bit DOS based (al-
though the vendors had 32-bit versions of the software
available). We used the SSI embedded system linker and
remote debugger that was included in this kit for all sub-
sequent NS486 development. Initially we compiled JN on
the NT development system, transfered the resulting file
to the DOS machine hosting the NS486, downloaded the
file to the NS486, and executed JN.

3

Porting the JVM and Java code to Microsoft C went
reasonably well until we realized that Microsoft C in
flat 32-bit mode did not provide floating-point emulation.
Java required support for both IEEE floating-point and 64-
bit integers. Rather than use a resident floating-point in-
struction trap handler, we obtained the 32-bit Metaware
High C/C++ compiler. This compiler was known to work
with the SSI toolset, explicitly supported in-line float-
ing point in flat 32-bit mode, and supported 64-bit inte-
ger operations. This compiler ran under DOS using the
PharLap DOS extender. Unfortunately, this combination
proved excruciatingly slow when running under NT, so we
adopted DOS as the development environment for the re-
mainder of the project. One unfortunate side effect of this
decision was that all the sources of the JVM (and all .h
include file references) had to be changed to 8-character
DOS filenames.

All development was performed using DOS and 2
33MHz 486 machines (essentially ‘surplus’ machines).
These machines were completely compatible with the free
evaluation software. As an aside, we later had the op-
portunity to compare our download times with a high-end
NT system using the 32-bit tools and found that its UART
performance at 115K baud was on the order of 2-3 times
as slow, leading to (for us) excruciating long download
times.

Once we adopted this toolset, the JVM port went rea-
sonably well. In around 2 weeks we had Java up and in an-
other month we had it reasonably solid. The biggest single
source change required to the JVM was explicitly initial-
izing around a dozen global variables scattered throughout
the source to zero, since JN does not pre-initialize such
memory. Thus, by the middle of August we had a sys-
tem that achieved our original goal of ‘providing the Java
prompt’. The simple CLI could be used to enter the name
of a class stored on the RAM disk, which would then be
loaded and interpreted by the JVM.

2.2.4 Adventures with TCP/IP

Since things seemed to be going well, it was decided to
add a TCP/IP stack for Internet connectivity and demo
the resulting system at an Embedded System trade show
in the middle of September 1996. To this end we obtained
another NS486 evaluation board and a $130 Linksys 8-
port network hub. We connected the 2 DOS development
machines and the 2 NS486 boards to this hub to form our
own small intranet.

Kona (later named JavaOS) had become available from
JavaSoft by this time [MKKS96]. As much of Kona as
possible was written in Java, including device drivers and
the TCP/IP stack. We started a side project to obtain
and evaluate the Kona code, with the intent of using the
TCP/IP stack written in Java on top of JN. However, the

initial Kona TCP/IP stack was still very preliminary, and
JavaSoft advised us to obtain the next release. The TCP/IP
stack was clearly changing rapidly and so, it appeared,
were details of the low-level hardware interface and driver
model that we would have to emulate. The most serious
problem was getting a device driver working for the Na-
tional DP83905 AT/LANTIC PC-104 Ethernet controller
we were using on the NS486 systems. No such driver ex-
isted in Kona. For all these reasons we abandoned the
attempt to use or leverage Kona code.

At this point we wanted to get Java TCP/IP applications
running in under a month. KA9Q is a shareware TCP/IP
stack freely available to educational institutions. KA9Q
was written by Phil Karn and originally used primarily for
amateur packet radio; it has also been used as a TCP/IP
stack for mobile laptop computers accessing the Internet
via a digital cellular system [Wad92] [Kar93]. KA9Q is
stable, has been in use since 1991, and has been widely
used as a non-commercial TCP/IP stack. KA9Q is written
in C and a number of variants (such as JNOS and TNOS)
are in use.

The KA9Q source was downloaded and KA9Q exe-
cutables installed on the development machines. KA9Q
provides a single DOS executable task that contains a
non-preemptive multi-threading kernel that runs on top of
DOS. Inside the single DOS executable run a number of
TCP/IP server threads. The resulting system includes a
simple CLI (shell), standard utilities such as Telnet and
FTP, and a simple API resembling UNIX sockets. This
socket API can be used by KA9Q threads running in the
DOS executable.

KA9Q has a simple non-preemptive voluntary-
dispatching kernel based onkwait() andksignal()
primitives, with different runtime semantics than the pre-
emptive JN provided the JVM. Another set of emulator
API’s was thus required to provide KA9Q look-alikeAPIs
on top of JN, thus enabling KA9Q server threads to run as
JN threads. This API also included support for the socket-
like API defined by KA9Q, allowing JN threads written in
C to use TCP/IP.

Porting a subset of KA9Q to JN closely resembled port-
ing the JVM. Required code was identified and extracted
from KA9Q. The API required to replace the KA9Q ker-
nel was determined by linking without the KA9Q kernel.
The functionalityof the API routines was determined both
by examining calls in the source code and by inspecting
the KA9Q kernel implementation. The KA9Q kernel it-
self was not ported.

All KA9Q functionality was removed except support
for the low-levelIP,ICMP, PING, ARP/RARP, andRIP
protocols; support for theTCP andUDP protocols; and
support for the corresponding socket APIs (connect(),
send(), recv(), etc). All built-in utilities (such as

4

ftp) were removed except for a minimal version of
ping.

All initial development was performed on our own in-
ternal 4-node network, off-line from our operational net-
work. The TCPping program (used to verify network
connection) worked about a week before the trade show,
a simple 1-page web server written in C worked 4-5 days
before the show, and the Java web server (which required
adding a Java native method interface to the socket-like
API functions) worked 2 days before show-floor setup
started. The Java web server was on the Internet at
the trade show in the middle of September in National’s
booth.

2.2.5 From Alpha to Beta

Although the system had performed the demo, it had been
a dirty port, typical ofdemoware. The AT/LANTIC Ether-
net controller’s interrupt routine was being called (polled)
by the clock interrupt, rather then generating interrupts it-
self, and there was no driver error handling. Only the code
paths in KA9Q used by the Java web server were work-
ing or had even been attempted. The web server itself
was a 100-line toy, replying to any TCP connection with
a simple Web page that included a dump of NS486 and
AT/LANTIC registers. Nonetheless, the KA9Q code had
been added to the system in around 3 weeks.

As a follow on, an additional month and a half was
spent enhancing TCP/IP support before it could be con-
sidered adequate. Most of this work went into the
AT/LANTIC driver, experimenting with interrupt modes,
handling error conditions, and the like. The final serious
TCP/IP bug proved to be a bug in the original KA9Q ver-
sion ofrecv(). In practice, KA9Q application threads
use an internal call that accesses input data directly within
network buffers and thus avoids a copy operation into user
buffer space (as it is running on DOS, KA9Q provides
no memory protection). It appears the Unix-compatible
recv() call had never been used, as it discarded all re-
ceived data after returning any portion of the data to the
caller!

The original KA9Q port used JN versions ofkwait()
and ksignal() and protected a few key KA9Q data
structures by using the JN call to disable the scheduler
(this call is also used by JVM when performing garbage
collection). KA9Q initialization had been replaced and
an additional thread had been added offloading TCP input
processing from the JN Ethernet driver. This thread was
aware of KA9Q internal data structures and capable of al-
locating KA9Q managed memory. This approach worked
essentially by accident, and because the system was not
stressed.

Correctly supporting a non-preemptive event-driven
multi-threaded system application, such as KA9Q, with

the preemptive JN was mildly interesting. The approach
adopted was to consider all TCP/IP code non-preemptive
real-time code and require akstart() API routine to
be called upon entrance to any such code, with a corre-
spondingkstop() routine called upon exit from such
code. Thekstart() routine indicates that, whenever
the calling thread is selected by the scheduler, schedul-
ing is disabled until the running thread explicitly blocks
via kwait(). Calling kstop() causes the thread to
revert to normal preemptive scheduling treatment. When
a non-preemptive thread blocks, preemptive threads may
run. Non-preemptive threads are selected based on pri-
ority as are all threads, but once selected non-preemptive
threads run until they explicitly yield. In practice, the 5
TCP server threads callkstart() once and never call
kend(), while kstart() and kend() are used to
bracket TCP/IP API code called by applications.

Another month was spent working with an interrupt
driven UART driver. This month (and the driver) was also
a familiarization exercise for someone new to the project
and driver programming. During this period significant
scaffolding for debugging drivers was developed. A real-
time event log was embellished and a crash dump routine
added. The event log provides a means to trace system
behavior over a reasonable period of time without unduly
effecting system timing, while the crash dump provides a
means of obtaining a formated system snapshot, includ-
ing log contents, in a DOS file for offline analysis. The
crash dump can be triggered by a Nonmaskable Interrupt
(NMI), in which case the PC location reported in the crash
dump can subsequently be examined using the SSI debug-
ger. This is useful when the system has hung.

While getting the TCP/IP stack to work reliably, low-
level native methods were developed to manipulate the
Connectix camera attached to the NS486 parallel port.
Java native methods were then defined to access these
functions. Once the TCP/IP stack was working reliably, it
was only a matter of a few days until the Connectix cam-
era was generating images, under control of a Java server
running on the NS486, and shipping the images to a Java
camera control application running on a Unix worksta-
tion.

3 System Size

The size of the initial system, in total lines of code, is
shown in Figure 2. The JN nanokernel size includes the
nanokernel work-loop, initialization, and assembler sup-
port routines, such as the primary interrupt routines.

The JN test/debug code and the hardware test code is
kept in the system image for convenience.

5

JN

Nanokernel

Lines of Code

Test/Debug

APIs
Drivers

7K
3K
4.5K
2.5K

TOTAL 45K

Hardware Tests/Initialization 8K

TCP/IP 19K

Figure 2: System Size - Lines of Code

4 System Software Architecture

JN is a soft–real-time kernel because the JVM API has no
hard–real-time requirements. Therefore, JN uses a classic
software architecture for a soft–real-time kernel. This ar-
chitecture has informally been called aCutler kernel, as
it is the architecture used by the successful line of ker-
nels implemented by teams lead by David Cutler, namely
RSX-11, VMS, and NT [Cus93]. This basic kernel soft-
ware architecture was used on earlier systems, includ-
ing the kernel of IBM’s massive mid-60’s TSS OS effort
[Com65]. The TSS system architect noted that the ba-
sic kernel model was adopted from IBM’s TSM supervi-
sor, which adopted the model from the Mercury Program-
ming System developed to support the soft–real-time re-
quirements of the project Mercury space program [Kin64]
[SH61].

This kernel architecture can be considered aSerially-
Reusable Interrupt-Extension. Some of its characteristics
include:� The kernel is not reentrant. It can be thought of as a

single task that runs as an interrupt-enabled follow-
on extension to all interrupt routines. The kernel
runs from start to completion every invocation. Al-
though the kernel can be interrupted, the kernel can-
not block, and kernel CPU state is not saved across
kernel invocations. Rather, the kernel always starts
at a known code and stack location. The kernel uses
a single kernel stack (on a uniprocessor).� The kernel consists of a single work-loop driven by a
queue of control blocks which form a real-time sub-
routine or co-routine dispatch scheduler. Each con-
trol block contains the address of a routine which
the kernel must execute. Historically, these routines

have been calledfork routines in the Cutler kernels.
Other common names for such routines, especially as
found in I/O managers, includeSecond Level Inter-
rupt Handler (SLIH) and Deferred Procedure Call
(DPC). Since fork routines cannot block and must
have a bounded execution time, they have many char-
acteristics of routines written for a hard–real-time
environment. Neither the fork routines or the ker-
nel need to use explicit mutual exclusion to access
global data structures (on a uniprocessor), reducing
the need for explicit synchronization.� The kernel is activated by an interrupt, either hard-
ware or software. If an interrupt occurs when the
kernel is not active, the kernel is started at the end of
the interrupt routine, typically after the interrupt rou-
tine queues a control block designating a fork rou-
tine to handle the events triggered by the interrupt.
If the kernel is active when an interrupt occurs, the
interrupt routine simply queues a control block for
follow-on processing and returns from the interrupt
back into the kernel.� After executing all routines corresponding to con-
trol blocks, the process scheduler is run if a global
flag indicates that one of the routines has altered the
scheduling status of a process. The selected process
is then dispatched.

Although we adopted a well-known kernel architecture,
a full kernel was not implemented. We refer to the imple-
mented subset as ananokernel. Although the term has
been disparaged, we believe it is warranted [Lie96]. Al-
though similar to a microkernel, a nanokernel has the fol-
lowing identifying characteristics:

6

� There exists only one mandatory nanokernel API
routine: run a specified subroutine serialized in ker-
nel context, that is, as a fork routine. There are no
other API’s defined by the nanokernel. The specified
routine is required to meet a few minimal require-
ments. Any application thread can define and run
such a routine. There is no concept of protection or
security. Implementing such a routine defines a new
API routine available to all threads.

In the case of JN, the singlethrd kcall() API routine
runs a specified C subroutineas a kernel fork routine.
One argument, a void *, is passed to the fork routine
when it is called by the nanokernel work-loop. This
argument is often a pointer to a C structure contain-
ing arguments required by the routine.

In practice, we write fork routines routinely as part
of JN development. This leads to a style of system
programming in which the API is custom extended
for individual applications with the same degree of
difficulty as defining new application subroutines.� There is no general purpose I/O database or I/O man-
ager. A microkernel usually has a general scheme
for describing, locating, and managing devices and
device drivers. This is useful for supporting general
purpose I/O APIs that can be used with multiple de-
vice types. A nanokernel such as JN provides no de-
vice I/O management. There is no required driver
model. Device drivers are written as collections of
interrupt and fork routines. Although the kernel fork
mechanism is used to coordinate events, there are
no restrictions or requirements placed on a device
driver. Each device driver is free to do whatever it
needs – defining its own suspend queues, implement-
ing its own data structures, etc..� There is no generic name space support.� There is no implication that a message-based IPC
mechanism exists. Such mechanisms, intended to
provide a means of offloading kernel functionality to
user-level servers, are a hallmark of traditional mi-
crokernel architecture.� Construction of interrupt vectors and required mem-
ory management tables (e.g., the GDT and IDT) is
performed by the linker, not by API routines. There
are no API routines for connecting to an interrupt
vector or for constructing page table entries. The en-
tire system image is constructed by the linker, with
all required binary code linked into the single image.
There is no loader capable of dynamically loading
executable binary code.

� JN supports only light-weight threads. There are no
heavyweight processes, no memory protection, no
process specific page tables, and no concept of re-
sources private to a thread (other than the mandatory
thread stack and thread control block). There is also
no concept of thread hierarchy, that is, threads have
no parent-child relationship.

Although JN was not especially designed for small size,
the resulting nanokernel is quite small, consisting of some
2000 lines of C code. A small kernel-only system can be
built that does not include the Java JVM or the KA9Q
TCP stack.

The JN file system is very simple. Although it appears
to support a Unix-like directory structure, it is a flat file
system supporting long filenames which can contain the
‘/’ directory delimiter. Providing a hierarchical file system
is necessary because the hierarchical class structure of a
Java program must be directly expressed in the filenames
constituting the compiled Java program; each compiled
Java class must reside in its own.class file.

JN files are simply named queues that can reside in
either volatile RAM or persistent RAM on a PCMCIA
RAM card. An interesting feature of this file system is
that Unixsparse filesemantics are supported, that is, bytes
internal to a file that have not been written need not be al-
located.

The JN routines that manipulate thread context and es-
tablish initial stack frame contents are specific to the con-
ventions of a single compiler, currently the Metaware C
compiler.

4.1 The API

This section documents the API required by the JDK ver-
sion 1.0.1 of the JVM for which we built JN. A more com-
plete specification can be found in [Mon96].

The API is divided into 4 classes: threading, monitor,
file, and exception.

4.1.1 Thread APIs

The threading API routines are conventional. Thread pri-
orities range from 0 to 10, as defined by Java. Thread
stacks are fixed-size and cannot dynamically expand.

A sysThreadCreate()API routine creates a thread
in suspended state,sysThreadExit()can terminate any
thread, andsysThreadYield()rotates the threads at the
current priority level. Any thread can be removed from
scheduling consideration bysysThreadSuspend()and re-
stored to scheduling eligibility bysysThreadResume().
The unique integer thread ID of the caller can be obtained,
the priority of any thread can be set and read, and the stack
base and current stack pointer value obtained. This last

7

allows the JVM interpreter to check if a stack overflow is
likely to occur.

The JN scheduler can be disabled by a call tosys-
ThreadSingle()and later re-enabled by callingsysThread-
Multi(). These calls are used to eliminate all thread-based
concurrency when garbage collection is being performed
on the single Java Heap. They can also be used if a sin-
gle thread wants to eliminate any possibility of contention
while in some time-critical section of code. In this case,
preemptive context switching will not occur, although all
API calls will still work as normal.

There is a 1:1 correspondence between low-level JN
threads and high-level interpreted threads managed by the
JVM. Associated with each low-level JN thread is an in-
tegercookiefield that can be accessed bysysThreadSet-
BackPtr() and sysThreadGetBackPtr(). These APIs are
used by the JVM interpreter to link each high-level inter-
preted thread context to a low-level JN thread.

4.1.2 Monitor APIs

Java uses monitors as its fundamental concurrent pro-
gramming mechanism. Monitors are exposed to Java pro-
grammers viasynchronized methodsor synchronized ob-
jects.

A monitor, as defined by Greenthreads and imple-
mented in JN, can be considered a critical section associ-
ated with two semaphores. One semaphore guards exter-
nal entrance into the critical section, and the other, which
starts with a value of 0 (unavailable), guards internal ac-
cess. To enter a critical section, a thread specifies the ex-
ternal semaphore in asysMonitorEnter()API call. Only
one thread can be inside a critical section at a time. Once
inside the critical section, if the active thread must wait
for some occurrence (an I/O completion or a change in
the content of a data structure, etc.), it uses API routine
sysMonitorWait()to put itself on the internal semaphore
queue, while releasing its hold, atomically, on the exter-
nal semaphore. Thus an external thread that was forced
to wait can enter the critical section. Whenever a thread
usessysMonitorExit()to leave the critical section, as with
any semaphore operation, another thread waiting on the
external semaphore proceeds into the critical section.

Threads waiting on the internal semaphore are only re-
activated by an explicitsysMonitorNotify()or sysMoni-
torNotifyAll() call. Essentially this is a semaphoreV op-
eration on the internal semaphore. An active routine that
completes an activity upon which some thread may be in-
ternally waiting issues these API calls. These API rou-
tines simply move the thread waiting internally to the ex-
ternal wait queue. When each waiting thread moves to the
head of the external wait queue, its execution resumes at
the point inside the critical section where it waited for the
needed resource or event.

A sysMonitorNotify()or sysMonitorNotifyAll() can
only be performed by a thread that is inside the critical
section. Race conditions in whichsysMonitorNotify()is
called before what should be the correspondingsysMoni-
torWait()can be avoided by correct programming. How-
ever, a newly activated thread that has become unblocked
should always recheck the condition on which it was wait-
ing. Such a thread cannot tell if it has activated due to a
sysMonitorNotify(), a sysMonitorNotifyAll(), or the expi-
ration of a timeout specified in the originalsysMonitor-
Wait(). In case of timeout orsysNotifyAll(), the desired
resource may not be available when the thread actually
resumes running in the critical section.

JVM monitor structures are stored outside of the kernel
in user-space and thus are not, strictly speaking, secure
from the perspective of the operating system. In JN, of
course, no protection exists, so the issue is moot.

4.1.3 File APIs

The file API required by the JVM is a Unix subset. There
are open, close, read, write and lseek()calls similar to
their Unix counterparts. In addition, there is anavail-
able()call that can be used as an alternative tolseek()to
determine the number of bytes between the current file
position and the end of the file.

4.1.4 Exception APIs

The exception API routines provide support for per-task
software interrupt handlers, that is,signals. The signal set
is basically a subset of that provided by Unix. A software
interrupt handler can be specified for a particular software
interrupt, and the handler can be removed. The reception
of software interrupts can be enabled and disabled by the
intrLockandintrUnlockAPIs, and a thread can determine
if any software interrupts are pending.

Although these facilities are not heavily used, they con-
siderably complicate the nanokernel. Each thread actually
maintains 2 contexts, one the normal non-interrupt con-
text, and the other the software interrupt context. When a
thread is dispatched, if its interrupt-level context is valid,
that context is always executed in preference to the normal
context.

If a thread is executing normally and a software in-
terrupt is queued to the thread, the nanokernel saves the
normal-level context, decrements the stack by a small
pad, forms a pseudo-call frame for the designated inter-
rupt handler, and dispatches the software interrupt con-
text. The software interrupt handler thus runs with full
ability to perform all API calls as if it was executing nor-
mally, in fact, the interrupt handler code is externally in-
distinguishable from normal code. Upon completion of

8

the software interrupt routine, interrupted normal-level
execution continues.

5 Lessons Learned

5.1 Traditional OS Engineering Lessons
Revisited� Drivers. The drivers took longer to develop than the

kernel, especially the AT/LANTIC (Ethernet) driver.
This was largely because the kernel was a determin-
istic program that could be designed before program-
ming began, while the drivers, to a degree, were ini-
tially ‘exploratory’ tools used to determine actual
hardware operation by trial-and-error. This illus-
trates the importance of good data-sheets targeted at
the device driver programmer, in addition to conven-
tional data-sheets written for the hardware designer.

Driver development would be greatly facilitated by
including complete stand-alone code examples in
data-sheets. In our case, such information would
have benefited system development more than any
software engineering technique of which we are
aware, especially in the case of low-end PC de-
vices, which often trade low cost for driver complex-
ity. Data-sheets currently tend to informally mix En-
glish, flow-charts, and code fragments.� Kernel architecture. The serially-reusable interrupt-
extension kernel architecture (theCutler kernel)
works well. This architecture is well understood and
appropriate for a kernel such as JN. How such an
architecture compares with a reentrant semaphore-
based kernel architecture remains a question of in-
terest.

Because we used a traditional software architec-
ture, writing the kernel, seemingly among the harder
things we attempted, proved to be one of the eas-
ier aspects of the project. However, application of
this traditional architecture was greatly facilitated by
implementation experience; this was the eighth OS
implementation in which the principle implementor
was involved, and the fourth as principal architect.� Redundancy due to multiple software architectures.
Difficulties merging code from different software ar-
chitectures have recently been discussed within the
software reuse community [GAO95]. In our case,
we experienced redundant code problems such as the
following:

There are currently 3 memory managers: 1) JN main
memory and dynamic pool allocation (malloc()); 2)

the JVM garbage collected heap; and 3) KA9Q mem-
ory allocation, which provides a garbage collected
cache reflecting its use for, among other things, best-
effort reassembly of TCP segments.

As another example, redundant synchronization
mechanisms and corresponding API routines exist.
To support Java, JN provides Java-style monitor sup-
port (Enter, Exit, Wait, Notify, andNotifyAll), an ex-
plicit SuspendandResume, and the ability to define a
critical region by explicitly disabling and re-enabling
the scheduler (ThreadSingleand ThreadMulti). To
support KA9Q we added thekstart, ksignal, kwait,
andkend. Additional mechanisms used include the
kernel fork mechanism and routines to define criti-
cal sections by disabling interrupts. In practice, we
have 2 pairs of these hardware interrupt masking rou-
tines, one set of which is a cover function for the cor-
responding machine instructions, and the other set
which nests, that is, only re-enables interrupts when
all disables have been matched by a corresponding
enable. And of course, strictly speaking, one must
consider the interaction of all of these methods with
software interrupts and theLockandUnlockcalls...

It would be difficult to get rid of any of these routines
without significant source modifications and com-
mensurate re-testing. However, the API’s involved
in thread synchronization have clearly become dis-
tressingly redundant, and the idea of combining all
of these into a single mechanism all the more ap-
pealing. Additionally, these redundant mechanisms
clearly contribute to total system size.� Software Reuse is Difficult. The KA9Q source was
frozen, stable, and of high quality. In addition, Na-
tional had provided us with source for 2 drivers to
the Ethernet device used with the NS486 boards. Yet
more effort was spent establishing a robust TCP/IP
stack then any other single aspect of the system,
including implementing the kernel and porting the
JVM. This was due to 1) the size of the TCP/IP stack;
2) the software architecture mismatch, both with re-
spect to KA9Q and the National drivers; and 3) as-
sumptions regarding the quality of the reused source.
Not all source deserves to be reused, and this was es-
pecially true in regard to one of the drivers, but this
was not obvious from a simple preliminary examina-
tion of the source.� Situational awareness, that is,build plenty of scaf-
folding. Seeing what you are doing makes a tremen-
dous difference in system programming. A line ana-
lyzer (datascope) was extremely helpful in writing
the UART driver. Likewise, after we had TCP/IP

9

running, access to a Network General network an-
alyzer proved a useful tuning and debugging tool.

For debugging complex concurrent system problems,
event logs and crash dumps are both nearly essential.
Use of the SSI remote interactive debugger was very
useful for solving a few key problems (for instance,
when porting the TCP/IP assembler checksum code
from 16-bit to 32-bit code and neglecting to clear the
high 16 bits of the accumulator), but in general in-
teractive debugging was not used, as many problems
occured in heavily used code paths with timing de-
pendencies. Code that did not have timing dependen-
cies tended to be debugged using a polling version of
printf() on a debug serial port (such output was
both displayed on the monitor of the host DOS ma-
chine and captured in a DOS file). If we could add a
feature to the SSI debugger, it would have been data
watchpoints, that is, the ability to set a breakpoint
that would occur when a particular memory location
changed value.

To support the crash dump and on-line debugging,
format routines exist for all data structures, and these
format routines are kept linked into the kernel.� Software Estimation. Software estimation by anal-
ogy has been claimed to be as accurate as any other
technique for estimating development time and cost
[SSK96]. With respect to estimation by analogy, 2
months seems a typical development time for a ker-
nel such as JN, recognizing that driver development,
not the kernel itself, is likely to require consider-
ably more time. This reemphasizes a point Bill Wulf
made in his description ofCM-star, which was that
utility, driver, and application development was more
important to the success of the system than the oper-
ating system itself [Wul81].� Avoid using demo schedules to drive development.
For software above a certain size, demo driven de-
velopment leads to fragile non-engineering solutions
(demoware). The difference between a system be-
ing ‘up’, doing 1 thing, and the system being com-
plete needs constant emphasis. Some 20 years ago
Brooks made a famous observation that a factor of 9
exists between the effort required to write a program
for self-use versus the same program as a product
[Bro75]. The difference between demoware and a
robust engineered product seems at least this large, if
not greater.� Engineering requires testing. JN development would
have been extremely different without a test harness.
Around 100 tests exist, including Java and TCP tests.
All tests are always linked in and available. After a

new kernel rebuild, approximately 50 of these tests
are always immediately rerun. This test suite exer-
cises each API call.

This is an old lesson, but bears repeating since stu-
dents typically do not find test code of interest. Per-
haps it would be worth adopting a pedagogic attitude
that code that is written without corresponding test
code is not ever finished code.� Reading becomes more important than writing. Soft-
ware engineering in a project such as JN, in which
large existing programs are integrated, requires skill
at reading large bodies of code. However, student
training tends to emphasize writing code, rather than
reading code.� Assembler programming is still required. Even
though total assembler line count is small, under-
standing and getting this code correct is of critical
importance and often the cause of disproportionate
programming time.

5.2 JAVA

We have no final results on the applicability of Java to
embedded systems. Clearly, a complete Java system with
TCP/IP support is not as small as a traditional embedded
system using Forth, Basic, or assembler.

It required considerable effort to get Java programs run-
ning on an embedded system. However, the effort was not
large compared to many industry projects. We found it
necessary to modify the JVM runtime, but this did not
prove overly burdensome. The portability of the JVM
based on JDK 1.0.1 could, however, be significantly en-
hanced. We have not attempted to keep up with the rapidly
changing Java source code. We continue to use the origi-
nal source derived from version 1.0.1 of the JDK.

We have not attempted to optimize the JVM for real-
time or embedded systems, that is, we are using Java ‘as
is’.

It is not clear at this time that Java is a portable soft–
real-time system. Clearly, Java code on different plat-
forms has different threading behaviors, since scheduling
behavior is not specified as part of the language. This
resembles the somewhat unfortunate ADA experience.
Multithreading Java code currently cannot be expected to
have the same behavior on Unix, MacOS, Windows, and
JN. A working program on one platform may deadlock on
another.

6 Conclusion

A working Java network computer with a custom Java op-
erating system has been implemented for a ‘single-chip’

10

32-bit PC, the NS486SXF. This system is used as a web
server and a web camera. The design and implementa-
tion of this system somewhat resembled a typical industry
implementation rather than a research project, largely be-
cause the requirements were predefined by the JVM. This
system is reasonably robust and can serve as a testbed for
future work. The JN kernel has now been stable with few
changes for a number of months.

We developed a Java API supporting the JVM and its
required concurrent programming runtime without requir-
ing any other system software, and can use this environ-
ment to run Java applications that do not use the AWT
window class.

We have shown it is possible to do TCP/IP network de-
velopment and related research and education for very low
cost.

The serially-reusable interrupt-extension kernel archi-
tecture is well understood and works well for a kernel
such as JN. However, driver development remains a dif-
ficult and time consuming task. When drivers and utilities
are considered, developing and maintaining even a mod-
est system such as JN approaches the limit of what can
reasonably be developed in a typical university research
environment.

Acknowledgments: I would like to express my grat-
itude for continuously support of this work to Profes-
sor Charlie McDowell of UCSC and Bijoy Chatterjee of
National Semiconductor. In addition, special thanks are
owed Elizabeth Baldwin and Mike Allen for much hard
implementation work.

References

[Bro75] Frederick P. Brooks. The Mythical Man-
Month: Essays on Software Engineering.
Addison-Wesley, 1975.

[Com65] Webb T. Comfort. A computing system de-
sign for user service. InProceedings of
the AFIPS Fall Joint Computer Conference,
pages 619–626. Spartan Books, 1965.

[Cus93] Helen Custer.Inside Windows NT. Microsoft
Press, 1993.

[GAO95] David Garlan, Robert Allen, and John
Ockerbloom. Architectural mismatch: Why
reuse is so hard.IEEE Software, 17(6):17–
26, November 1995.

[Gos95] James Gosling. Java intermediate bytecodes.
SIGPLAN Notices, 30(3):111–118, March
1995.

[Kar93] Phil Karn. The Qualcomm CDMA dig-
ital cellular system. In Proceedings
of the USENIX Mobile and Location-
Independent Computing Symposium, pages
35–39. USENIX Association, 1993.

[Kin64] H.A. Kinslow. The time-sharing monitor sys-
tem. InProceedings of the AFIPS Fall Joint
Computer Conference, pages 443–454. Spar-
tan Books, 1964.

[Lie96] Jochen Liedtke. Towards real microkernels.
Communications of the ACM, 39(9):70–77,
September 1996.

[MKKS96] Peter Madany, Susan Keohan, Douglas
Kramer, and Tom Saulpaugh. JavaOS: A
standalone Java environment. ‘http:// java.
sun. com/ products/ javaos/ javaos. white.
html’, December 1996.

[Mon96] Bruce R. Montague. The API of the
UCSC Java Nanokernel (JN). Computer Sci-
ence Technical Report UCSC–CRL–96–28,
UCSC, December 1996.

[Nat95] National Semiconductor. Prelimi-
nary CR32A Core Architecture Specification
Revision 1.0, October 1995.

[Nat96] National Semiconductor.NS486SXF Opti-
mized 32-bit 486-class Controller With On-
Chip Peripherals for Embedded Systems,
March 1996.

11

[SH61] Marilyn B. Scott and Robert Hoffman. The
Mercury programming system. InComput-
ers – Key to Total Systems Control: Proceed-
ings of the Eastern Joint Computer Confer-
ence (AFIPS), pages 47–53. Spartan Books,
1961. Part B of Project Mercury Real-Time
Computational and Data-Flow System.

[SSK96] Martin Shepperd, Chris Schofield, and Bar-
bara Kitchenham. Effort estimation using
analogy. InProceedings of the 18th Inter-
national Conference on Software Engineer-
ing, pages 170–178. IEEE Computer Society
Press, March 1996.

[Wad92] Ian Wade.NOSintro: TCP/IP Over Packet
Radio; An introduction to the KA9Q Network
Operating System. Dowermain, 1992. Dust-
jacket, annotated table of contents, and re-
lated links at ‘http:// www. netro. co. uk/
nosintro. html’.

[Wul81] William Allan Wulf. HYDRA/C.mmp, an Ex-
perimental Computer System. McGraw-Hill,
1981.

12

