The UCSC Java Nanokernel
Version 0.2 API

UCSC-CRL-96-28

Bruce R. Montagué
Computer Science Department
University of California, Santa Cruz
brucem@cse.ucsc.edu

9 December 1996

Abstract

The Application Program Interfaces (APIs) developed fer tHCSC Java Nanokernel (JN) are described. These
APIs enable the execution of version 1.0.1 of the Java Mifechine (JVM). The implementation of these API’s
was independent of the Java Greenthreads APl implememntdtiese APIs provide an interface to a small embedded
operating system developed at UCSC which runs on a ‘singiig-2C and provides a web server and web camera.
The function, arguments, and return values of each API agerited.
keywords: Java, JavaOsS, JN, API.

1 Introduction

This document describes version 0.2 of the Java NanokeNglApplication Program Interface (API). The Java
Nanokernel is a small kernel implemented primarily to pdavstand-alone support for version 1.0.1 of the Java
Virtual Machine (JVM). The JVM is a multithreaded intergeetvhich executes the Java programming language. As
originally implemented, the JVM depended on a multithragdt-runtime calledsreenthreads. The functions
described in this document were developed by linking Javhoui the Greenthreads library, and then guessing at the
missing routine’s functionality by inspecting the callsdeao the missing routines in the JVM source. Since much of
the functionality is very conventional, this reverse ermgiring process produced a system that almost worked. The
initial implementation was done deliberately without iaspion of the Greenthread source so as not to be unduly
biased by its implementation approach; when bringing uplifid on the resulting system a few Greenthreads
routines were later examined to resolve specific compéihdsues. Naturally, the implementation of the JN API
routines differs from that of Greenthreads due to the déffétarget environments — JN runs stand-alone on bare
hardware, while Greenthreads assumes it is running on tojmof or another Unix-level virtual-memory operating
system.

This API provides C ‘primitives’ that implement the concurt@rogramming mechanisms, low-level exception
handling mechanisms, and file handling mechanisms reghiréde JVM.

The routines documented here are intended to be called bp@tans, specifically, the IVM Java Interpreter
itself. However, these routines have no specific dependendava or the JVM, but are simply a particular interface
to a small embedded kernel.

JN requires a number of runtime routines (for instance, aigarofmal | oc() ). These runtime routines are not
described here.

tSupported in part by a gift from National Semiconductor.



There are 4 classes of API functions:

e Thread support.
o Monitor support.
o File support.

o Exceptions (software interrupts, that $gnals).

The functions of each routine are listed in the followingé&alRoutines marked with &ri’ provide for
compatibility with Unix Java and have been stubbed (thahisy exist but have no contents). They are not needed by
non-Java programs that use this API.

It must be emphasized that the routines here are only cobtpatith version 1.0.1 of the JVM. We have made
no attempt to maintain compatibility with later releasestaf JVM. Additionally, we have made no attempt to assure
the functional compatibility of these APIs with the complegguirements of the JVM, specifically, we have not
performed any complete coverage tests or attempted toatalttie functionality of the API routines described in this
paper. Although we have a simple test harness, our primamoaph has been to ensure execution of 2 specific Java
programs, namely a simple web server and a camera server.



sysThr eadBoot strap *- Turn Unix process into first thread.
sysThreadlnitializeSystenThreads *- Start clock, idle, garbage thread.

sysThreadSi ngl e - Run exclusive (disable concurrency).

sysThreadMul ti - Enabl e concurrency.

sysThreadCreate - Create a new thread.

sysThreadl ni t *- Must call at start of new thread.

sysThr eadExi t *- Term nate thread.

sysThr eadSel f - Obtain caller’s thread ID.

sysThreadYi el d - Non-preenptive CPU yield.

sysThr eadSuspend - Suspend a given thread.

sysThr eadResune - Resume a suspended thread.

sysThreadSetPriority - Set thread s priority.

sysThreadGetPriority - Get thread s priority.

sysThr eadGet BackPt r - Get thread context’s ‘cookie’.

sysThr eadSet BackPt r - Set thread context’s ‘cookie’.

sysThr eadCheckSt ack - Return 1 if stack has space.

sysThr eadPost Excepti on - Trigger an exception in a thread.

sysThreadSt ackBase - Return thread' s stack base.

sysThr eadSt ackPoi nt er - Get thread s current stack pointer.

sysThr eadEnuner at eOver - Iterate a function over all threads.

sysThr eadDunpl nf o - Thread dunp stub.

Wi t ToDi e - First thread waits for all others.

syshWbnitorlnit - Initialize a senaphore.

syshbni t or Ent er - P(). Enter a critical section.

sysMoni t or Exi t - V(). Leave a critical section.

syshbni t or Dest r oy - V(). Leave a senmphore and detern ne
if its still being used.

syshbni t or Ent er ed - True if caller owns the semaphore.

syshboni t or Vi t - Internal wait for a notify or a given tine.

syshonitorNotify - Unbl ock head of internal wait queue.

syshoni torNotifyAll - Unblock all internal waiters.

syshbni t or Si zeof - Obtain sizeof (semaphore).

syshoni t or Dunpl nf o - Dunmp senmaphore and waiters.




syslnitFD
sysOQpenFD
sysC oseFD
sysReadFD
sysWiteFD
sysLseekFD
sysAvai | abl eFD

Set file descriptor.

Open or Create a file.
Close a file.

Read a file.

Wite a file.

Set current file position.
Determine bytes till end of file.

sysl nt errupt sPendi ng

i ntr Enabl eDi spat ch

i ntrDi sabl eDi spatch

i ntrLock

i ntrUnl ock

nonbl ock_i o
InitializeAsyncl O

InitializeSbrk

intrlinitwvD

Returns True if pending software interrupts
exist for a thread (delivery may have been
di sabl ed by "intrLock()").

Specify a software interrupt handler for
a particular software interrupt.

Specify that no handler exists for a
specific software interrupt (the system
default will be used).

Di sabl e software interrupts within the
t hr ead.

Enabl e software interrupts within the
t hr ead.

Sets a file handle to support async 1/QO
Obtains sufficient file descriptors and
inits a semaphore for each one.

Inits a semaphore used to protect calls
to "sbrk()" (real menory allocation).

Machi ne dependent signal initialization.

java_l ang_Runti me_execl nt er nal

java_l ang_UNI XPr ocess_destr oy

java_l ang_ProcessReaper _wai t For Deat h
java_l ang_UNI XProcess_exec

java_l ang_UNI XPr ocess_wai t For UNI XPr ocess
java_l ang_UNI XProcess_fork

- Run another Java Interpreter.

Termi nate a Uni x process.

Obtain child process exit status.
Execute a Uni x process.

Wait for child process to exit.
Fork the Java Interpreter.




2 Thread Calls

This section describes Thread APIs. These APIs are ratheentional light-weight multithreading primitives.

int sysThreadBootstrap( Thrd **thrd );

This routine turns the executing Unix process into the ahttiread, returning the thread ID of the new thread.
Under JN, this call simply returns the ID of the executing=td.

returns; return code, setshr d to the thread ID of the new thread.

return val: SYS_OK— Completed normally.

void sysThreadlnitializeSystenrhreads();

The internal threads used by the threading package aralin@d. A clock thread, idle thread, ‘finalization’
thread, and garbage collection thread are created. Undehi¥\all is not needed for correct execution. Itis
included only to satisfy the reference of the Java Integoret

returns: none.

int sysThreadSi ngl e();

Java threads can run exclusive by starting a critical seetith sysThr eadSi ngl e() and ending the critical
section withsysThr eadMul ti (), that is, this routine disables active multithreading. €dtht calls this routine
should always terminate the resulting critical sectiortveisys Thr eadMul ti () call.

This routine works by disabling the scheduler. Interrupésraot effected. No thread other than the invoking
thread will be run, not even the null thread. The invokinget can continue to issue all IN API calls. If there are no
runnable tasks, the kernel waits for an event to ready theking thread.

returns; This call always returnSYS_OK.

void sysThreadMul ti();

Java threads can run exclusive by starting a critical seetith sysThr eadSi ngl e() and ending the critical
section withsysThreadMul ti () , that is, this routine resumes active multithreading.

returns. There are no return values. Itis a system error if this calsdioot match a preceding
sysThr eadSi ngl e() call.

int sysThreadCreate( |ong st ack_si ze,
unsi gned int flags,
voi d *(*start)(void *),
Thrd **thrd,
voi d *argunent );

Creates a suspended new thread with a stack of the indidaedi$ie thread ID is returned via argumeitir d.
Thread execution will begin at addressar t , which should be the address of a C subroutine. A
sysThr eadCreat e() call should be followed by aysThr eadResune() when the caller wishes to activate
the newly created thread.

The singlear gunrent is passed on the new thread’s call stack to the routine aeasslirart .

All thread’s contain aookie. Thecookieis an arbitrary pointer stored in the thread’s context. lised by the
Java Interpreter to store a pointer to the ‘virtual threadide the interpreter that corresponds to the real threaanl
be set and obtained I3y sThr eadSet BackPt r () andsysThr eadGet BackPtr ().



New threads always start executingN@RM PRI ORI TY, that is, priority 5. Java thread priorities vary from 1
(lowest) to 10 (highest). The child’s priority can be altbieysysThr eadSet Pri ori t y() . The Java Virtual
Machine always sets the priority of a newly created threatiabof the creator, before it issues a
sysThr eadResumre() . Note that the parent of a thread can alter the priority ofwyereated child before the
child ever executes, ay/sThr eadCr eat e() does not block the parent. If the parent sets the prioritydfitd
higher than the parent itself, the child is eligible to ruridve thesysThr eadSet Pri ori t y() in the parent
returns.

The only supportedll ags value isTHR USER,which indicates that this is not a system thread.

return values:

e SYS_ERR- Couldn'tdo it.

e SYS_OK-— Normal completion.

voi d sysThreadlnit( Thrd *thrd,
stackp_t stack );

A newly running thread under Unix Java must call this routihsimply sets the thread package’s stack base
when running under Unix. Under JN this routine can be ignored
returns: none.

void sysThreadExit();

This thread is called automatically when the initial thréadction returns (i.e., the routine specified in the
sysThreadCreat e() ‘returns’ to a call of this function. This function frees #firead resources and terminates
the thread. There are no return values and no errors returned

Monitors that are owned by the thread are not automaticeglgd. Routinsyshbni t or Dest r oy() can be
called to force a given thread to release a given monitor.

This routine can be called directly, although the recommeenaeans of terminating from a thread is to return
from the top level, that is, from the routine specified in fyss Thr eadCr eat e() .

There is no way to force termination of an arbitrary threaalthie API.

returns: none.

Thrd *sysThreadSel f();

Returns thehread ID of the executing thread. JN thread ID’s are simply pointetthé internal thread data
structure, which is a potential security risk.
returns. The thread ID is the only return value.

void sysThreadYield();

This call simply yields the processor. The running thread thakes this call goes ‘to the end of the line’ behind
other threads at the same priority level that are ready towgge if any exist. If there are no other runnable threads,
the current thread continues executing.

This call implements non-preemptive ‘round-robin’ schiaayt

The thread is only rotated to the ‘end-of-the-line’ withpest to threads at its current priority level.

returns; There are no return values from this call.



int sysThreadSuspend( Thrd *thrd );

This call suspends the indicated thread, which may be th#ieodaller. If the indicated thread exists, it is placed
in a SUSPENDED state where it is never eligible for execution.

A sysThr eadResune() call must be made to resume execution of the suspended thfé¢lae target thread
is the caller itself, the return fromys Thr eadSuspend() will not occur until after assysThr eadResune()
has reactivated the thread.

return values:

¢ SYS_ERR- It couldn’t be done.
e SYS_OK - Success.

int sysThreadResune( Thrd *thrd );

The indicated thread, which should BESPENDED, is resumed, that is, it is made eligible for execution. It is
not an error if the thread is not suspended - the call is sirgyigred.

A thread is suspended by callisys Thr eadSuspend() .

return values: SYS_OK — Success.

int sysThreadSetPriority( Thrd *thrd,
int priority );

The priority of the indicated thread is changed. The targetdd need not be the caller. If the target thread is the
caller, the effect of the priority change occurs immedigtehich may result in the caller losing control of the
processor.

To be compatible with Jav&] N.PRI ORI TY is defined as IMAX_ PRI ORI TY is defined as 10, and
NORMPRI CRI TY is defined as 5. The highest priority thread is selected fecatton. New threads are created
initially at NORMPRI ORI TY, that is, at priority 5.

Errors are considered fatal.

return values: SYS_OK — Success.

int sysThreadGetPriority( Thrd *thrd,
int *priority );

The priority of the indicated thread is returned via fixd or i t y argument.
Errors are considered fatal.

return values:

SYS_OK — Success.

voi d *sysThr eadGet BackPtr( Thrd *thrd );

Thecookie argument stored in the indicated thread’s context ByaThr eadSet BackPt r () call is
returned. The Java Interpreter usesdbekie value to store within the thread a pointer to the high-leggidal
‘virtual thread’ within the interpreter.

returns: The cookie value. There are no status return values.



voi d sysThreadSet BackPtr( Thrd *thrd,
voi d *new_cookie );

Thecookie field in the indicated thread’s context is set to tteev_.cooki e argument. The Java Interpreter uses
thecookie value to store within the thread a pointer to the high-leggidal ‘virtual thread’ within the interpreter.
returns; There is no return status. A bad thread pointer is considefathl error.

int sysThr eadCheckSt ack() ;

This function returns a 1 if the amount of free space in thkecalstack is greater than manifest constant
STACK_REDZONE, otherwise it returns a (STACK_REDZONE is set to 4K under JN, which is the same as under
Java Unix implementations.

returns:

¢ 0 - No stack space left.

¢ 1 - Stackspace is left.

voi d sysThreadPost Exception( Thrd *thrd,
voi d *exception );

This call posts an exception to a thread, that is, it trigg@rexception handler to run in thread’s context. It is
not clear that Java has defined a standard portable methdddting with this yet....
returns: none.

void *sysThreadStackBase( Thrd *thrd );

This call returns the base address of the stack for the itetidhread, that is, the address from which the stack
growsdown.

returns; The top stack address. There are no status return valuesd fhiead address is considered a fatal
error.

voi d *sysThreadStackPointer( Thrd *thrd );

This call returns the current stack pointer of the indicatedad, which can be that of the caller.
returns; The stack pointer. There are no status return values. A baddhaddress is considered a fatal error.

int sysThreadEnunerateQver( int (*func)( Thrd *, void *),
void *arg );

This routine provides an iterator that applies a functioaltdéhreads. For each existing thread, the
application-supplied user function indicated by arguniamc is called. The user function is supplied 2 arguments,
the address of the thread and the pass-through arguanent

The address of the thread is the thread ID, so the user funeaeives a different thread ID every time it is
called. The Java interpreter uses this in conjunction gite Thr eadGet BackPt r () to locate application-level
context associated with each thread. Such context can befoesénstance, by the garbage collection mechanism to
track resource allocation.



In addition to the application-level context, taeg argument can be used to specify arbitrary arguments to the
user-level routine. This pointer can be used to point to evetdata, data structures, or command blocks that the
user desires.

returns:

If the application-supplied function (that is, the functisupplied by the caller) does not rettB¥S_CK, the
enumeration stops. If this occussys Thr eadEnuner at eOver () returns the return code generated by the user
function. If all calls to the user function retuB¥S_CK, sysThr eadEnuner at eQOver () returnsSYS_CK.

void sysThreadDunpl nfo( Thrd *thrd );

In JN this routine produces a dump of the thread control tdock



3 Monitor Calls

Althoughmonitorsare perhaps the most ubiquitous modern concurrent prognagnconstruct, monitor details often
vary. In this section, aonitor can be considered a critical section associated with tw@phores. One semaphore
guardsexternal entrance into the critical section, and the other, whichtstaith a value of 0 (unavailable), is used to
guardinternal access. To enter a critical section, a thread must use temeksemaphore and
syshMbni t or Ent er () . Only one thread can be inside a critical section at a timeceGmside the critical section,
if the active thread must wait for some occurrence (an I/Opetion or a change in the content of a data structure,
etc.), it usesyshMboni t or Wi t () to put itself on thenternal semaphore queue, while releasing its hold,
atomically, on the external semaphore. Thus an externahththat was forced to wait can enter the critical section.
Whenever a thread ussgshMoni t or Exi t () to leave the critical section, as with any semaphore omerati
another thread waiting on the external semaphore procegalthie critical section.

Threads waiting on the internal semaphore are only redetivay an explicisysNot i fy() or
sysNoti fyAl | () operation. Essentially this is a semaphd(g operation on the internal semaphore. An active
routine that completes an activity upon which some threag lbesinternally waiting issues these calls. These calls
simply move the thread waiting internally to the end of theeaxal wait queue. When each waiting thread moves to
the head of the external wait queue, its execution resuntée @ioint inside the critical section where it waited for
the needed resource or event.

AsysNotify() orsysNoti fyAl I () can only be performed by a thread that is inside the critieation.
Race conditions in whichysNot i f y() is called before what should be the correspondiggMoni t or Wi t ()
can thus be avoided by correct programming. However, a naetiyated thread that has become unblocked should
always recheck the condition on which it was waiting. Suchradad cannot tell if 3ysNot i fy() or
sysNoti fyAl' | () activated it, and in the case 8fsNot i f yAl | () the resource may not be available by the
time the thread actually resumes running in the criticatieac

Java monitor structures are stored outside of the kernedén-space (thus they are not secure). There are 2
types of monitors in Javatatic monitors that are allocated once for permanent resources @s the Java heap), and
dynamic monitors that are created on the fly, for instance to suppsyhahronized method. These dynamic monitors
are placed in a monitor cache, and can be destroyed when gerloreded. Since the monitor data structures are in
user space, JN simply keep track of the type of monitor; ihésresponsibility of the Java Interpreter to free any such
monitors when they are no longer in use. SgsMoni t or Destroy() .

int syshWonitorlnit( Mnitor *sem
bool _t in_cache );

If thei n_cache flag is non-zero, the semaphore flags are mafRé8.MONLI N_.CACHE, indicating that this is
a dynamic monitor that will be deleted when no longer needed. $amargument points to a JSemstructure that
is to be initialized. This structure is allocated by the &gion. The application should be careful not to allocais t
structure as an automatic on the C stack and then continwsetit after returning from the function that allocated it.
In the Java Interpretes,emis always internal to a Java Monitor structure.

This routine does not invoke the JN kernel; it simply perferdiata structure initialization.

returns; This function always returnSYS_CK;

int syshbnitorEnter( Mnitor *sem);

If the critical section guarded by the semaphore indicatesldmis not in use, this call lets the calling thread
enter the critical section. Otherwise, the caller is blatgaeued on the external waiting queue of the indicated
semaphore. This call must always be followed tsyas Moni t or Exi t () at the end of the critical section protected
by the semaphore.

A badsemaddress is considered a fatal error.

returns; This function always returnSYS_CK. This function only returns when the caller is allowed togaed
within the critical section.

10



int sysWonitorExit( Mnitor *sem);

This routine is called to exit a critical section controlleglthe indicated semaphore. The caller must have
previously acquired the semaphore siasMoni t or Ent er () . If any threads are blocked on the external wait
gueue of the semaphore, one will be selected to proceed Wakaralier leaves the critical section. Any threads
waiting on the internal wait queue of the semaphore are aotst.

If no threads are waiting on the semaphore, and the semaphmekedSYS_MON_I N_.CACHE, this call returns
with SYS_DESTROY, indicating to higher-level routines that the semaphotea daucture can be deallocated if need
be. To safely use monitors in such a fashion, either a safgrgnaming convention can be used which assures there
can be no race condition (the monitor is only deleted whenas$tgthread using it receivesS¥'S_DESTROY), or a
static monitor can guard entrance, exit, allocation, and deationaf the code guarded by one or more dynamic
monitors.

returns:

e SYS_ERR- The caller does not own the indicated semaphore.

e SYS_DESTORY — The caller successfully exited the critical section,ithecache flag was non-zero on the
originalsysMoni t or | ni t () call, and no other thread was unblocked to enter the crisieetion.

e SYS_OK - The caller successfully exited the critical section anotlaer thread was unblocked to enter the
critical section.

int syshboni tor Destroy( Mnitor *sem
Thrd *thrd );

This routine is used when deleting a thread. This call do¢sl@eallocate the semaphore. Rather, it can be
considered a forceslysMoni t or Exi t () on a thread with respect to a given semaphore.

If the specified thread owns the indicated semaphore, thiatiisside the critical section and not waiting, the
effect of this call is as ifysMoni t or Exi t () had been called by the specified thread. The thread releastslic
of the semaphore. If no other threads exist on any of the seanajs wait queuesSYS_DESTROY is returned,
potentially indicating that semaphore usage is completigtaat the application can deallocate the semaphore. If
other threads exist on the semaphore’s wait queb¥éS, OK is returned, and the head of the external wait queue is
unblocked to enter the critical section.

If the specified thread does not own the indicated semaptioss;all has no effect. Presumably, this is because
a thread never is terminated while in a wait state.

returns:

e SYS_OK - If the caller does not own the indicated semaphore, thisealno effect. If the caller owns the
semaphore, theysMoni t or Dest r oy () failed in the sense that the semaphore cannot be deleted — it
performed ssysMoni t or Exi t () function instead, releasing another thread to enter thiearsection.

e SYS_DESTROY — No threads are waiting on the semaphore, it can be removed.

bool _t sysMonitorEntered( Mnitor *sem);

This function returns True (1) if the caller owns the semaph(@ currently in the critical section). The return
type is defined as an integer flag.

11



returns:

¢ 1 —in the critical section controlled lsem

¢ 0—notin the critical section controlled lsem

int syshWonitorWait( Mnitor *sem
int mllis );

A thread inside a critical section uses this call to block amnit either an event or the specified number of
milliseconds. The caller waits on the semaphore’s intenzéi queue. After theysMoni t or Wai t () call, the
event is triggered by aysNot i fy() orsysNoti fyAl | () call. Such acall is issued by some other active
thread, which owns the semaphore at the time it performsakié/n

When activated by either a notification event or the passageandicated time interval, the thread is placed on
the semaphore’sxternal wait queue. This queue contains threads waiting to run, badime, in the critical section.

ThesysMoni t or Wai t () call places the calling thread on an the internal wait quesse@ated witlsem
The thread must have already entered the critical sectmayws Moni t or Ent er () . Typical reasons to use wait
include awaiting 1/0O completion, waiting for data to be @edn an input buffer, and so on.

Ifthem I | i s argument is specified &yS_TI MEQUT_I NFI NI TY, there is no timeout associated with the
wait.

The internal wait queue is not a counted semaphore, teysalot i f y() call or event completion that
precedes theysMoni t or Wi t () has no effect. For this reason, and also becawusesdNot i f yAl | () unblocks
all threads waiting on the semaphore’s internal queue, tieatgperforms @y sMoni t or Wai t () should not
assume that it has been correctly unblocked. Rather, itdlabways explicitly check that the condition on which it
has waited has actually occured, and if it has not, it shceikbue thesysMoni t or Wai t () call.

returns:

¢ SYS_ERR- The caller must own the indicated semaphore.

e SYS_(K - Normal completion, which indicates that the wait has caeteal. Either the event has occured or the
specified time interval has passed.

int syshWonitorNotify( Mnitor *sem);

The thread at the head of the semaphore’s internal wait gegue on the semaphore’s external wait queue.
Each semaphore has both an external and internal wait qliaeeexternal queue contains threads waiting to run in
the critical section controlled by the semaphore. The imdkequeue is used by threads which, while they were inside
the critical section, needed to block awaiting either amewee passage of a particular time interval.

syshMboni t or Noti fy() must be called by code that is inside the critical sectiois ¢dommon, for instance,
for code that entered the critical section and wrote some idéd a data structure, to callysMoni t or Noti fy()
before it callssysMoni t or Exi t () . Thus, a thread that entered the critical section to reaal fiatn the data
structure, but found none and thus caltsds Moni t or Wi t () , will be unblocked and can proceed.

returns:

e SYS_OK— Normal completion.

¢ SYS_ERR- The caller does not own the semaphore.

12



int syshWonitorNoti fyAl |l ( Mnitor *sem);

All threads waiting on a semaphore’s internal wait queuenaoged to the semaphore’s external wait queue. See
syshMboni tor Noti fy(). Thiscall isidentical taysMoni t or Not i f y() except that all threads on the internal
wait queue are unblocked. Each unblocked thread, as it ‘esiakithin the critical section, must recheck conditions
to see if it can proceed or if it should issue anothgsMoni t or Vi t () .

returns:

e SYS_OK - Normal completion.

¢ SYS_ERR- The caller does not own the semaphore.

int sysMonitorSizeof();

This routine is simply a cover function fei zeof ( Moni t or ) . Since semaphore data structures are allocated
at the user level, this call is used so that high-level ragican determine the size of the data structure they must
allocate.

voi d sysMonitorDunplnfo( Mnitor *sem);

This is a debug routine that dumps the owner of a semaphortharttireads on the semaphore’s wait queues.

13



4 FileCalls

JN files are simply in-memory queues (RAM files). They sharéUlle semantics. EachysOpenFD() returns a
unique file handle that has a unique position within the fileegrare simply byte-streams. Arbitrary byte substrings
can be read from and written to the file.

JN files need not be contiguous, that is, Unix sparse file seosaare supported.

JN files are implemented as queuesajments. A segment is a buffer descriptor. Although most segment
buffers are allocated from a fixed array, buffer segmentsbeavariable length and can thus be used to describe
prel oaded files that are linked into a single buffer in the system image.

Allfile 1/O is currently synchronous — it is just a buffer copyor from the appropriate location in the queue.

voi d syslnitFD( Cl assjava_io_Fil eDescriptor *fdptr,
int descr );

Set the file descriptorfsd field to 1 plus the value adescr . This call is simply used to reserve the first 3 file
descriptors that are used feot di n, st dout , andst der r . This function need not be called by a JN thread other
than the Java Interpreter.

returns. The file descriptof dpt r may be altered. There are no status return values.

int sysOpenFD( Cl assjava_io_Fil eDescriptor *fdptr,

const char *f nane,
int flags,
int node );

Open the file identified by nane using the specifiefil ags andnode. The file handle for the new file is
returned both in thédpt r file descriptor and as the return code.

Note that the caller must allocate the file descriptor. INd@scriptor structures consist only of a single integer
which contains the file handle.

The only flag currently supported @ CREAT, which causes a new file to be created.

Note this call can create and overwrite files.

returns:

¢ Upon success the file handle is returned. The file handle istager greater or equal to 0.

e -1 —This is the value 08YS_ERR, and is returned on error.

int sysC oseFD( C assjava_io_Fil eDescriptor *fdptr );

The specified file is closed.

Note that if real async 1/O is supported, multiple readery bmin the process of reading, so the file is simply
marked as closing, and the file is actually closed when thederiptor usage count falls to zero at the end of an 1/O.

returns:

¢ SYS_ERRoON error.

e SYS_CK on success.

14



int sysReadFD( Cl assjava_io_Fil eDescriptor *fdptr,
char *buf,
int nbytes );

The given number of byteapyt es, are read from the file designated by the handliedpt r into user buffer
buf . The bytes are read starting at the location at which the &ifedle is initially located. The current file position of
the handle is set to the location one byte past the last bgite re

returns:

e The number of bytes read are returned on success.

e SYS_ERR- (-1) is returned on failure.

int sysWiteFD( C assjava_io_Fil eDescriptor *fdptr,
char *buf,
int nbytes );

The given number of bytesbyt es, are written from the user bufféruf to the file designated biydpt r . The
bytes are written to the location at which the file handle igafly located. At the end of the write, the handle’s
current file position is set to the location one byte past dselbyte written.

returns:

e The number of bytes written are returned on success.

e SYS_ERR- (-1) is returned on failure.

int sysLseekFD( Cl assjava_io_FileDescriptor *fdptr,
| ong of f set,
| ong whence );

The current file position in the indicated file is set to thedliban specified by thef f set argument. The
whence argument indicates the interpretation of the offset:

o SEEKSET - The offset is absolute, that is, the exact file address.
¢ SEEK CUR - The offset is relative to the current file position.
¢ SEEKEND - The offset is relative to the end of the file.

ThesysLseekFD() call can set the file position to beyond the current end ofditel to a negative file
location. This is not considered an error.

returns:

The new file location. ASYS_ERR (-1) is returned if the file descriptor is not valid.

int sysAvai | abl eFD( d assj ava_i o_Fil eDescriptor *fdptr,
| ong *pbytes );

The number of bytes which remain in the file between the ctifiierposition and the end of the file are returned
via argumenpbyt es.

returns:

A O is returned on any failure. A 1 is returned on success.

NOTE!! — These return values are not consistent with otheerrecode usageSYS_OK is defined as 0, and
SYS_TI MEQUT as 1. Note that O is returned afailure._.

15



5 Exception/Signal Calls

JN supports software interrupts. As with a real hardwarermpt, a software interrupt is a routine that is to be run
whenever some condition occurs. Each thread can estatdistvh set of software interrupt handlers. The conditions
that can cause a software interrupt are a fixed set.

When the system detects a software interrupt conditionyetgs a software interrupt notification to the thread.
If the thread has a handler for the software interrupt, thredhex will execute as soon as the thread becomes the
highest priority executable thread.

As with real interrupts, software interrupt handlers rurtba stack below the normal thread stack pointer.

int syslnterruptsPending();

Returns True (1) if the invoking thread has pending softviaterrupts. A thread may have pending software
interrupts since software interrupts are delivered ona-fine to the thread and execute to completion. In addition
the thread can disable delivery of software interrupts by r Lock() , for instance, if it is updating a memory
resident data base that an alarm handler will also update.

voi d intrLock(void);

This routine disables all software interrupt delivery te thvoking thread. Software interrupts are still queued to
the thread, however, their delivery is postponed until abr Unl ock() call occurs. Ani ntr Lock() call should
always be followed by annt r Unl ock() call.

Thei ntr Lock() call is typically used when a thread is going to perform anrapen, such as executing a
critical section, in which delivering a software interrugaiuld cause some concurrency problem. In this case,

i ntrLock() is used to defer software interrupts until thet r Unl ock() issued after exiting the critical section.
returns. None.

voi d i ntrUnl ock(void);

Enable all software interrupts. This routine is called ifteferring software interrupt delivery by a call to
i ntrLock() . Any pending software interrupts will be delivered to thestld that issues this call before the call
returns. Since software interrupts can queue to the theegiven thread software interrupt handler may execute
more than once. For instanceShG ALARMhandler may have a number Af ARMinterrupts to handle.

returns: None, however, if any pending software interrupts exiss tiall will not return until all software
interrupts have been handled, that is, after the threadidlraroutines have run and processed all pending software
interrupts.

voi d i ntrDi sabl eDi spatch( int interrupt );

Stubbed in JN. Unix-specific signal interface.

voi d i ntrEnabl eDi spatch( int interrupt );

Stubbed in JN. Unix-specific signal interface.

voi d Wi t ToDi e() ;

Stubbed in JN. JVM specific initialization.

16



int nonbl ock_i o( int desc,
int onoff );

Stubbed in JN. Unix-specific asynchronous 1/O control.

voi d InitializeAsyncl () ;

Stubbed in JN. Unix-specific I/O initialization.

voi d InitializeSbrk();

Stubbed in JN. Unix-specific memory initialization.

void intrlnitMX);

Stubbed in JN. Unix-specific initialization.

17



6 Unix Process Stubs

The routines in this section are all stubbed. They all arendéd to manipulate Unix processes.

H ava_l ang_Process *java_l ang_Runti ne_execl nt ernal (
H ava_l ang_Runtime *this,
HArrayOf Stri ng *cndarray,
HarrayOf String *envp );

Stubbed in JN.

void java_l ang_UN XProcess_destroy( Hj ava_l ang_UN XProcess *this);

Stubbed in JN.

void java_l ang_ProcessReaper_wait For Deat h(
H ava_l ang_UNI XProcess *this );

Stubbed in JN.

voi d java_l ang_UNI XProcess_exec(
H ava_l ang_UNI XProcess *this,
HArrayOf String *cndarray,
HArrayOf String *envp );

Stubbed in JN.

voi d java_l ang_UNI XPr ocess_wai t For UNI XPr ocess(
H ava_l ang_UNI XProcess *this );

Stubbed in JN.

long java_l ang_UN XProcess_fork( H ava_l ang_UN XProcess *this );

Stubbed in JN.

18



