
The UCSC Java Nanokernel
Version 0.2 API

UCSC-CRL-96-28

Bruce R. Montaguey
Computer Science Department

University of California, Santa Cruz
brucem@cse.ucsc.edu

9 December 1996

Abstract

The Application Program Interfaces (APIs) developed for the UCSC Java Nanokernel (JN) are described. These
APIs enable the execution of version 1.0.1 of the Java Virtual Machine (JVM). The implementation of these API’s
was independent of the Java Greenthreads API implementation. These APIs provide an interface to a small embedded
operating system developed at UCSC which runs on a ‘single-chip’ PC and provides a web server and web camera.
The function, arguments, and return values of each API are described.
keywords: Java, JavaOS, JN, API.

1 Introduction

This document describes version 0.2 of the Java Nanokernel (JN) Application Program Interface (API). The Java
Nanokernel is a small kernel implemented primarily to provide stand-alone support for version 1.0.1 of the Java
Virtual Machine (JVM). The JVM is a multithreaded interpreter which executes the Java programming language. As
originally implemented, the JVM depended on a multithreading C-runtime calledGreenthreads. The functions
described in this document were developed by linking Java without the Greenthreads library, and then guessing at the
missing routine’s functionality by inspecting the calls made to the missing routines in the JVM source. Since much of
the functionality is very conventional, this reverse engineering process produced a system that almost worked. The
initial implementation was done deliberately without inspection of the Greenthread source so as not to be unduly
biased by its implementation approach; when bringing up theJVM on the resulting system a few Greenthreads
routines were later examined to resolve specific compatibility issues. Naturally, the implementation of the JN API
routines differs from that of Greenthreads due to the different target environments – JN runs stand-alone on bare
hardware, while Greenthreads assumes it is running on top ofUnix or another Unix-level virtual-memory operating
system.

This API provides C ‘primitives’ that implement the concurrent programming mechanisms, low-level exception
handling mechanisms, and file handling mechanisms requiredby the JVM.

The routines documented here are intended to be called by C programs, specifically, the JVM Java Interpreter
itself. However, these routines have no specific dependencyon Java or the JVM, but are simply a particular interface
to a small embedded kernel.

JN requires a number of runtime routines (for instance, a version ofmalloc()). These runtime routines are not
described here.ySupported in part by a gift from National Semiconductor.

1

There are 4 classes of API functions:� Thread support.� Monitor support.� File support.� Exceptions (software interrupts, that is,signals).

The functions of each routine are listed in the following table. Routines marked with an‘*’ provide for
compatibility with Unix Java and have been stubbed (that is,they exist but have no contents). They are not needed by
non-Java programs that use this API.

It must be emphasized that the routines here are only compatible with version 1.0.1 of the JVM. We have made
no attempt to maintain compatibility with later releases ofthe JVM. Additionally, we have made no attempt to assure
the functional compatibility of these APIs with the completerequirements of the JVM, specifically, we have not
performed any complete coverage tests or attempted to validate the functionality of the API routines described in this
paper. Although we have a simple test harness, our primary approach has been to ensure execution of 2 specific Java
programs, namely a simple web server and a camera server.

2

sysThreadBootstrap *- Turn Unix process into first thread.
sysThreadInitializeSystemThreads *- Start clock, idle, garbage thread.

sysThreadSingle - Run exclusive (disable concurrency).
sysThreadMulti - Enable concurrency.

sysThreadCreate - Create a new thread.
sysThreadInit *- Must call at start of new thread.
sysThreadExit *- Terminate thread.
sysThreadSelf - Obtain caller’s thread ID.
sysThreadYield - Non-preemptive CPU yield.

sysThreadSuspend - Suspend a given thread.
sysThreadResume - Resume a suspended thread.

sysThreadSetPriority - Set thread’s priority.
sysThreadGetPriority - Get thread’s priority.

sysThreadGetBackPtr - Get thread context’s ‘cookie’.
sysThreadSetBackPtr - Set thread context’s ‘cookie’.

sysThreadCheckStack - Return 1 if stack has space.

sysThreadPostException - Trigger an exception in a thread.

sysThreadStackBase - Return thread’s stack base.

sysThreadStackPointer - Get thread’s current stack pointer.

sysThreadEnumerateOver - Iterate a function over all threads.

sysThreadDumpInfo - Thread dump stub.

WaitToDie - First thread waits for all others.

sysMonitorInit - Initialize a semaphore.

sysMonitorEnter - P(). Enter a critical section.
sysMonitorExit - V(). Leave a critical section.
sysMonitorDestroy - V(). Leave a semaphore and determine

if its still being used.
sysMonitorEntered - True if caller owns the semaphore.

sysMonitorWait - Internal wait for a notify or a given time.
sysMonitorNotify - Unblock head of internal wait queue.
sysMonitorNotifyAll - Unblock all internal waiters.

sysMonitorSizeof - Obtain sizeof(semaphore).

sysMonitorDumpInfo - Dump semaphore and waiters.

3

sysInitFD - Set file descriptor.
sysOpenFD - Open or Create a file.
sysCloseFD - Close a file.
sysReadFD - Read a file.
sysWriteFD - Write a file.
sysLseekFD - Set current file position.
sysAvailableFD - Determine bytes till end of file.

sysInterruptsPending - Returns True if pending software interrupts
exist for a thread (delivery may have been
disabled by "intrLock()").

intrEnableDispatch - Specify a software interrupt handler for
a particular software interrupt.

intrDisableDispatch - Specify that no handler exists for a
specific software interrupt (the system
default will be used).

intrLock - Disable software interrupts within the
thread.

intrUnlock - Enable software interrupts within the
thread.

nonblock_io *- Sets a file handle to support async I/O.

InitializeAsyncIO *- Obtains sufficient file descriptors and
inits a semaphore for each one.

InitializeSbrk *- Inits a semaphore used to protect calls
to "sbrk()" (real memory allocation).

intrInitMD *- Machine dependent signal initialization.

java_lang_Runtime_execInternal *- Run another Java Interpreter.
java_lang_UNIXProcess_destroy *- Terminate a Unix process.
java_lang_ProcessReaper_waitForDeath *- Obtain child process exit status.
java_lang_UNIXProcess_exec *- Execute a Unix process.
java_lang_UNIXProcess_waitForUNIXProcess *- Wait for child process to exit.
java_lang_UNIXProcess_fork *- Fork the Java Interpreter.

4

2 Thread Calls

This section describes Thread APIs. These APIs are rather conventional light-weight multithreading primitives.

int sysThreadBootstrap(Thrd **thrd);

This routine turns the executing Unix process into the initial thread, returning the thread ID of the new thread.
Under JN, this call simply returns the ID of the executing thread.

returns: return code, setsthrd to the thread ID of the new thread.
return val: SYS OK – Completed normally.

void sysThreadInitializeSystemThreads();

The internal threads used by the threading package are initialized. A clock thread, idle thread, ‘finalization’
thread, and garbage collection thread are created. Under JN, this call is not needed for correct execution. It is
included only to satisfy the reference of the Java Interpreter.

returns: none.

int sysThreadSingle();

Java threads can run exclusive by starting a critical section with sysThreadSingle() and ending the critical
section withsysThreadMulti(), that is, this routine disables active multithreading. Code that calls this routine
should always terminate the resulting critical section with asysThreadMulti() call.

This routine works by disabling the scheduler. Interrupts are not effected. No thread other than the invoking
thread will be run, not even the null thread. The invoking thread can continue to issue all JN API calls. If there are no
runnable tasks, the kernel waits for an event to ready the invoking thread.

returns: This call always returnsSYS OK.

void sysThreadMulti();

Java threads can run exclusive by starting a critical section with sysThreadSingle() and ending the critical
section withsysThreadMulti(), that is, this routine resumes active multithreading.

returns: There are no return values. It is a system error if this call does not match a preceding
sysThreadSingle() call.

int sysThreadCreate(long stack_size,
unsigned int flags,
void *(*start)(void *),
Thrd **thrd,
void *argument);

Creates a suspended new thread with a stack of the indicated size. The thread ID is returned via argumentthrd.
Thread execution will begin at addressstart, which should be the address of a C subroutine. A
sysThreadCreate() call should be followed by asysThreadResume()when the caller wishes to activate
the newly created thread.

The singleargument is passed on the new thread’s call stack to the routine at addressstart.
All thread’s contain acookie. Thecookie is an arbitrary pointer stored in the thread’s context. It isused by the

Java Interpreter to store a pointer to the ‘virtual thread’ inside the interpreter that corresponds to the real thread. It can
be set and obtained bysysThreadSetBackPtr() andsysThreadGetBackPtr().

5

New threads always start executing atNORM PRIORITY, that is, priority 5. Java thread priorities vary from 1
(lowest) to 10 (highest). The child’s priority can be altered bysysThreadSetPriority(). The Java Virtual
Machine always sets the priority of a newly created thread tothat of the creator, before it issues a
sysThreadResume(). Note that the parent of a thread can alter the priority of a newly created child before the
child ever executes, assysThreadCreate() does not block the parent. If the parent sets the priority of achild
higher than the parent itself, the child is eligible to run before thesysThreadSetPriority() in the parent
returns.

The only supportedflags value isTHR USER,which indicates that this is not a system thread.
return values:� SYS ERR – Couldn’t do it.� SYS OK – Normal completion.

void sysThreadInit(Thrd *thrd,
stackp_t stack);

A newly running thread under Unix Java must call this routine. It simply sets the thread package’s stack base
when running under Unix. Under JN this routine can be ignored.

returns: none.

void sysThreadExit();

This thread is called automatically when the initial threadfunction returns (i.e., the routine specified in the
sysThreadCreate() ‘returns’ to a call of this function. This function frees allthread resources and terminates
the thread. There are no return values and no errors returned).

Monitors that are owned by the thread are not automatically freed. RoutinesysMonitorDestroy() can be
called to force a given thread to release a given monitor.

This routine can be called directly, although the recommended means of terminating from a thread is to return
from the top level, that is, from the routine specified in thesysThreadCreate().

There is no way to force termination of an arbitrary thread via the API.
returns: none.

Thrd *sysThreadSelf();

Returns thethread ID of the executing thread. JN thread ID’s are simply pointers to the internal thread data
structure, which is a potential security risk.

returns: The thread ID is the only return value.

void sysThreadYield();

This call simply yields the processor. The running thread that makes this call goes ‘to the end of the line’ behind
other threads at the same priority level that are ready to execute, if any exist. If there are no other runnable threads,
the current thread continues executing.

This call implements non-preemptive ‘round-robin’ scheduling.
The thread is only rotated to the ‘end-of-the-line’ with respect to threads at its current priority level.
returns: There are no return values from this call.

6

int sysThreadSuspend(Thrd *thrd);

This call suspends the indicated thread, which may be that ofthe caller. If the indicated thread exists, it is placed
in aSUSPENDED state where it is never eligible for execution.

A sysThreadResume() call must be made to resume execution of the suspended thread. If the target thread
is the caller itself, the return fromsysThreadSuspend()will not occur until after asysThreadResume()
has reactivated the thread.

return values:� SYS ERR – It couldn’t be done.� SYS OK – Success.

int sysThreadResume(Thrd *thrd);

The indicated thread, which should beSUSPENDED, is resumed, that is, it is made eligible for execution. It is
not an error if the thread is not suspended - the call is simplyignored.

A thread is suspended by callingsysThreadSuspend().
return values: SYS OK – Success.

int sysThreadSetPriority(Thrd *thrd,
int priority);

The priority of the indicated thread is changed. The target thread need not be the caller. If the target thread is the
caller, the effect of the priority change occurs immediately, which may result in the caller losing control of the
processor.

To be compatible with Java,MIN PRIORITY is defined as 1,MAX PRIORITY is defined as 10, and
NORM PRIORITY is defined as 5. The highest priority thread is selected for execution. New threads are created
initially at NORM PRIORITY, that is, at priority 5.

Errors are considered fatal.
return values: SYS OK – Success.

int sysThreadGetPriority(Thrd *thrd,
int *priority);

The priority of the indicated thread is returned via thepriority argument.
Errors are considered fatal.
return values:
SYS OK – Success.

void *sysThreadGetBackPtr(Thrd *thrd);

Thecookie argument stored in the indicated thread’s context by asysThreadSetBackPtr() call is
returned. The Java Interpreter uses thecookie value to store within the thread a pointer to the high-level logical
‘virtual thread’ within the interpreter.

returns: The cookie value. There are no status return values.

7

void sysThreadSetBackPtr(Thrd *thrd,
void *new_cookie);

Thecookie field in the indicated thread’s context is set to thenew cookie argument. The Java Interpreter uses
thecookie value to store within the thread a pointer to the high-level logical ‘virtual thread’ within the interpreter.

returns: There is no return status. A bad thread pointer is considereda fatal error.

int sysThreadCheckStack();

This function returns a 1 if the amount of free space in the caller’s stack is greater than manifest constant
STACK REDZONE, otherwise it returns a 0.STACK REDZONE is set to 4K under JN, which is the same as under
Java Unix implementations.

returns:� 0 - No stack space left.� 1 - Stackspace is left.

void sysThreadPostException(Thrd *thrd,
void *exception);

This call posts an exception to a thread, that is, it triggersan exception handler to run in thread’s context. It is
not clear that Java has defined a standard portable method fordealing with this yet....

returns: none.

void *sysThreadStackBase(Thrd *thrd);

This call returns the base address of the stack for the indicated thread, that is, the address from which the stack
growsdown.

returns: The top stack address. There are no status return values. A bad thread address is considered a fatal
error.

void *sysThreadStackPointer(Thrd *thrd);

This call returns the current stack pointer of the indicatedthread, which can be that of the caller.
returns: The stack pointer. There are no status return values. A bad thread address is considered a fatal error.

int sysThreadEnumerateOver(int (*func)(Thrd *, void *),
void *arg);

This routine provides an iterator that applies a function toall threads. For each existing thread, the
application-supplied user function indicated by argumentfunc is called. The user function is supplied 2 arguments,
the address of the thread and the pass-through argumentarg.

The address of the thread is the thread ID, so the user function receives a different thread ID every time it is
called. The Java interpreter uses this in conjunction withsysThreadGetBackPtr() to locate application-level
context associated with each thread. Such context can be used, for instance, by the garbage collection mechanism to
track resource allocation.

8

In addition to the application-level context, thearg argument can be used to specify arbitrary arguments to the
user-level routine. This pointer can be used to point to whatever data, data structures, or command blocks that the
user desires.

returns:
If the application-supplied function (that is, the function supplied by the caller) does not returnSYS OK, the

enumeration stops. If this occurs,sysThreadEnumerateOver() returns the return code generated by the user
function. If all calls to the user function returnSYS OK, sysThreadEnumerateOver() returnsSYS OK.

void sysThreadDumpInfo(Thrd *thrd);

In JN this routine produces a dump of the thread control blocks.

9

3 Monitor Calls

Althoughmonitors are perhaps the most ubiquitous modern concurrent programming construct, monitor details often
vary. In this section, amonitor can be considered a critical section associated with two semaphores. One semaphore
guardsexternal entrance into the critical section, and the other, which starts with a value of 0 (unavailable), is used to
guardinternal access. To enter a critical section, a thread must use the external semaphore and
sysMonitorEnter(). Only one thread can be inside a critical section at a time. Once inside the critical section,
if the active thread must wait for some occurrence (an I/O completion or a change in the content of a data structure,
etc.), it usessysMonitorWait() to put itself on theinternal semaphore queue, while releasing its hold,
atomically, on the external semaphore. Thus an external thread that was forced to wait can enter the critical section.
Whenever a thread usessysMonitorExit() to leave the critical section, as with any semaphore operation,
another thread waiting on the external semaphore proceeds into the critical section.

Threads waiting on the internal semaphore are only reactivated by an explicitsysNotify() or
sysNotifyAll() operation. Essentially this is a semaphoreV() operation on the internal semaphore. An active
routine that completes an activity upon which some thread may be internally waiting issues these calls. These calls
simply move the thread waiting internally to the end of the external wait queue. When each waiting thread moves to
the head of the external wait queue, its execution resumes atthe point inside the critical section where it waited for
the needed resource or event.

A sysNotify() or sysNotifyAll() can only be performed by a thread that is inside the critical section.
Race conditions in whichsysNotify() is called before what should be the correspondingsysMonitorWait()
can thus be avoided by correct programming. However, a newlyactivated thread that has become unblocked should
always recheck the condition on which it was waiting. Such a thread cannot tell if asysNotify() or
sysNotifyAll() activated it, and in the case ofsysNotifyAll() the resource may not be available by the
time the thread actually resumes running in the critical section.

Java monitor structures are stored outside of the kernel in user-space (thus they are not secure). There are 2
types of monitors in Java,static monitors that are allocated once for permanent resources (such as the Java heap), and
dynamic monitors that are created on the fly, for instance to support asynchronized method. These dynamic monitors
are placed in a monitor cache, and can be destroyed when no longer needed. Since the monitor data structures are in
user space, JN simply keep track of the type of monitor; it is the responsibility of the Java Interpreter to free any such
monitors when they are no longer in use. SeesysMonitorDestroy().

int sysMonitorInit(Monitor *sem,
bool_t in_cache);

If thein cache flag is non-zero, the semaphore flags are markedSYS MON IN CACHE, indicating that this is
a dynamic monitor that will be deleted when no longer needed. Thesem argument points to a JNSem structure that
is to be initialized. This structure is allocated by the application. The application should be careful not to allocate this
structure as an automatic on the C stack and then continue to use it after returning from the function that allocated it.
In the Java Interpreter,sem is always internal to a Java Monitor structure.

This routine does not invoke the JN kernel; it simply performs data structure initialization.
returns: This function always returnsSYS OK;

int sysMonitorEnter(Monitor *sem);

If the critical section guarded by the semaphore indicated by sem is not in use, this call lets the calling thread
enter the critical section. Otherwise, the caller is blocked queued on the external waiting queue of the indicated
semaphore. This call must always be followed by asysMonitorExit() at the end of the critical section protected
by the semaphore.

A badsem address is considered a fatal error.
returns: This function always returnsSYS OK. This function only returns when the caller is allowed to proceed

within the critical section.

10

int sysMonitorExit(Monitor *sem);

This routine is called to exit a critical section controlledby the indicated semaphore. The caller must have
previously acquired the semaphore viasysMonitorEnter(). If any threads are blocked on the external wait
queue of the semaphore, one will be selected to proceed when the caller leaves the critical section. Any threads
waiting on the internal wait queue of the semaphore are unaffected.

If no threads are waiting on the semaphore, and the semaphoreis markedSYS MON IN CACHE, this call returns
with SYS DESTROY, indicating to higher-level routines that the semaphore data structure can be deallocated if need
be. To safely use monitors in such a fashion, either a safe programming convention can be used which assures there
can be no race condition (the monitor is only deleted when thelast thread using it receives aSYS DESTROY), or a
static monitor can guard entrance, exit, allocation, and deallocation of the code guarded by one or more dynamic
monitors.

returns:� SYS ERR – The caller does not own the indicated semaphore.� SYS DESTORY – The caller successfully exited the critical section, thein cache flag was non-zero on the
originalsysMonitorInit() call, and no other thread was unblocked to enter the criticalsection.� SYS OK – The caller successfully exited the critical section and another thread was unblocked to enter the
critical section.

int sysMonitorDestroy(Monitor *sem,
Thrd *thrd);

This routine is used when deleting a thread. This call does not deallocate the semaphore. Rather, it can be
considered a forcedsysMonitorExit() on a thread with respect to a given semaphore.

If the specified thread owns the indicated semaphore, that is, is inside the critical section and not waiting, the
effect of this call is as ifsysMonitorExit() had been called by the specified thread. The thread releases control
of the semaphore. If no other threads exist on any of the semaphore’s wait queues,SYS DESTROY is returned,
potentially indicating that semaphore usage is complete and that the application can deallocate the semaphore. If
other threads exist on the semaphore’s wait queues,SYS OK is returned, and the head of the external wait queue is
unblocked to enter the critical section.

If the specified thread does not own the indicated semaphore,this call has no effect. Presumably, this is because
a thread never is terminated while in a wait state.

returns:� SYS OK – If the caller does not own the indicated semaphore, this call has no effect. If the caller owns the
semaphore, thesysMonitorDestroy() failed in the sense that the semaphore cannot be deleted – it
performed asysMonitorExit() function instead, releasing another thread to enter the critical section.� SYS DESTROY – No threads are waiting on the semaphore, it can be removed.

bool_t sysMonitorEntered(Monitor *sem);

This function returns True (1) if the caller owns the semaphore (is currently in the critical section). The return
type is defined as an integer flag.

11

returns:� 1 – in the critical section controlled bysem.� 0 – not in the critical section controlled bysem.

int sysMonitorWait(Monitor *sem,
int millis);

A thread inside a critical section uses this call to block andawait either an event or the specified number of
milliseconds. The caller waits on the semaphore’s internalwait queue. After thesysMonitorWait() call, the
event is triggered by asysNotify() or sysNotifyAll() call. Such a call is issued by some other active
thread, which owns the semaphore at the time it performs the notify.

When activated by either a notification event or the passage of the indicated time interval, the thread is placed on
the semaphore’sexternal wait queue. This queue contains threads waiting to run, one at a time, in the critical section.

ThesysMonitorWait() call places the calling thread on an the internal wait queue associated withsem.
The thread must have already entered the critical section viasysMonitorEnter(). Typical reasons to use wait
include awaiting I/O completion, waiting for data to be placed in an input buffer, and so on.

If themillis argument is specified asSYS TIMEOUT INFINITY, there is no timeout associated with the
wait.

The internal wait queue is not a counted semaphore, thus asysNotify() call or event completion that
precedes thesysMonitorWait() has no effect. For this reason, and also because asysNotifyAll() unblocks
all threads waiting on the semaphore’s internal queue, codethat performs asysMonitorWait() should not
assume that it has been correctly unblocked. Rather, it should always explicitly check that the condition on which it
has waited has actually occured, and if it has not, it should reissue thesysMonitorWait() call.

returns:� SYS ERR – The caller must own the indicated semaphore.� SYS OK - Normal completion, which indicates that the wait has completed. Either the event has occured or the
specified time interval has passed.

int sysMonitorNotify(Monitor *sem);

The thread at the head of the semaphore’s internal wait queueis put on the semaphore’s external wait queue.
Each semaphore has both an external and internal wait queue.The external queue contains threads waiting to run in
the critical section controlled by the semaphore. The internal queue is used by threads which, while they were inside
the critical section, needed to block awaiting either an event or passage of a particular time interval.

sysMonitorNotify()must be called by code that is inside the critical section. Itis common, for instance,
for code that entered the critical section and wrote some data into a data structure, to callsysMonitorNotify()
before it callssysMonitorExit(). Thus, a thread that entered the critical section to read data from the data
structure, but found none and thus calledsysMonitorWait(), will be unblocked and can proceed.

returns:� SYS OK – Normal completion.� SYS ERR – The caller does not own the semaphore.

12

int sysMonitorNotifyAll(Monitor *sem);

All threads waiting on a semaphore’s internal wait queue aremoved to the semaphore’s external wait queue. See
sysMonitorNotify(). This call is identical tosysMonitorNotify() except that all threads on the internal
wait queue are unblocked. Each unblocked thread, as it ‘awakes’ within the critical section, must recheck conditions
to see if it can proceed or if it should issue anothersysMonitorWait().

returns:� SYS OK – Normal completion.� SYS ERR – The caller does not own the semaphore.

int sysMonitorSizeof();

This routine is simply a cover function forsizeof(Monitor). Since semaphore data structures are allocated
at the user level, this call is used so that high-level routines can determine the size of the data structure they must
allocate.

void sysMonitorDumpInfo(Monitor *sem);

This is a debug routine that dumps the owner of a semaphore andthe threads on the semaphore’s wait queues.

13

4 File Calls

JN files are simply in-memory queues (RAM files). They share Unix file semantics. EachsysOpenFD() returns a
unique file handle that has a unique position within the file. Files are simply byte-streams. Arbitrary byte substrings
can be read from and written to the file.

JN files need not be contiguous, that is, Unix sparse file semantics are supported.
JN files are implemented as queues ofsegments. A segment is a buffer descriptor. Although most segment

buffers are allocated from a fixed array, buffer segments canbe variable length and can thus be used to describe
preloaded files that are linked into a single buffer in the system image.

All file I/O is currently synchronous – it is just a buffer copyto or from the appropriate location in the queue.

void sysInitFD(Classjava_io_FileDescriptor *fdptr,
int descr);

Set the file descriptorsfd field to 1 plus the value ofdescr. This call is simply used to reserve the first 3 file
descriptors that are used forstdin, stdout, andstderr. This function need not be called by a JN thread other
than the Java Interpreter.

returns: The file descriptorfdptr may be altered. There are no status return values.

int sysOpenFD(Classjava_io_FileDescriptor *fdptr,
const char *fname,
int flags,
int mode);

Open the file identified byfname using the specifiedflags andmode. The file handle for the new file is
returned both in thefdptr file descriptor and as the return code.

Note that the caller must allocate the file descriptor. JN filedescriptor structures consist only of a single integer
which contains the file handle.

The only flag currently supported isO CREAT, which causes a new file to be created.
Note this call can create and overwrite files.
returns:� Upon success the file handle is returned. The file handle is an integer greater or equal to 0.� -1 – This is the value ofSYS ERR, and is returned on error.

int sysCloseFD(Classjava_io_FileDescriptor *fdptr);

The specified file is closed.
Note that if real async I/O is supported, multiple readers may be in the process of reading, so the file is simply

marked as closing, and the file is actually closed when the filedescriptor usage count falls to zero at the end of an I/O.
returns:� SYS ERR on error.� SYS OK on success.

14

int sysReadFD(Classjava_io_FileDescriptor *fdptr,
char *buf,
int nbytes);

The given number of bytes,nbytes, are read from the file designated by the handle infdptr into user buffer
buf. The bytes are read starting at the location at which the file handle is initially located. The current file position of
the handle is set to the location one byte past the last byte read.

returns:� The number of bytes read are returned on success.� SYS ERR – (-1) is returned on failure.

int sysWriteFD(Classjava_io_FileDescriptor *fdptr,
char *buf,
int nbytes);

The given number of bytes,nbytes, are written from the user bufferbuf to the file designated byfdptr. The
bytes are written to the location at which the file handle is initially located. At the end of the write, the handle’s
current file position is set to the location one byte past the last byte written.

returns:� The number of bytes written are returned on success.� SYS ERR – (-1) is returned on failure.

int sysLseekFD(Classjava_io_FileDescriptor *fdptr,
long offset,
long whence);

The current file position in the indicated file is set to the location specified by theoffset argument. The
whence argument indicates the interpretation of the offset:� SEEK SET - The offset is absolute, that is, the exact file address.� SEEK CUR - The offset is relative to the current file position.� SEEK END - The offset is relative to the end of the file.

ThesysLseekFD() call can set the file position to beyond the current end of file,and to a negative file
location. This is not considered an error.

returns:
The new file location. ASYS ERR (-1) is returned if the file descriptor is not valid.

int sysAvailableFD(Classjava_io_FileDescriptor *fdptr,
long *pbytes);

The number of bytes which remain in the file between the current file position and the end of the file are returned
via argumentpbytes.

returns:
A 0 is returned on any failure. A 1 is returned on success.
NOTE!! — These return values are not consistent with other return code usage.SYS OK is defined as 0, and

SYS TIMEOUT as 1. Note that 0 is returned onfailure .

15

5 Exception/Signal Calls

JN supports software interrupts. As with a real hardware interrupt, a software interrupt is a routine that is to be run
whenever some condition occurs. Each thread can establish its own set of software interrupt handlers. The conditions
that can cause a software interrupt are a fixed set.

When the system detects a software interrupt condition, it queues a software interrupt notification to the thread.
If the thread has a handler for the software interrupt, the handler will execute as soon as the thread becomes the
highest priority executable thread.

As with real interrupts, software interrupt handlers run onthe stack below the normal thread stack pointer.

int sysInterruptsPending();

Returns True (1) if the invoking thread has pending softwareinterrupts. A thread may have pending software
interrupts since software interrupts are delivered one-at-a-time to the thread and execute to completion. In addition,
the thread can disable delivery of software interrupts byintrLock(), for instance, if it is updating a memory
resident data base that an alarm handler will also update.

void intrLock(void);

This routine disables all software interrupt delivery to the invoking thread. Software interrupts are still queued to
the thread, however, their delivery is postponed until anintrUnlock() call occurs. AnintrLock() call should
always be followed by anintrUnlock() call.

TheintrLock() call is typically used when a thread is going to perform an operation, such as executing a
critical section, in which delivering a software interruptcould cause some concurrency problem. In this case,
intrLock() is used to defer software interrupts until theintrUnlock() issued after exiting the critical section.

returns: None.

void intrUnlock(void);

Enable all software interrupts. This routine is called after deferring software interrupt delivery by a call to
intrLock(). Any pending software interrupts will be delivered to the thread that issues this call before the call
returns. Since software interrupts can queue to the thread,a given thread software interrupt handler may execute
more than once. For instance, aSIG ALARM handler may have a number ofALARM interrupts to handle.

returns: None, however, if any pending software interrupts exist, this call will not return until all software
interrupts have been handled, that is, after the thread’s handler routines have run and processed all pending software
interrupts.

void intrDisableDispatch(int interrupt);

Stubbed in JN. Unix-specific signal interface.

void intrEnableDispatch(int interrupt);

Stubbed in JN. Unix-specific signal interface.

void WaitToDie();

Stubbed in JN. JVM specific initialization.

16

int nonblock_io(int desc,
int onoff);

Stubbed in JN. Unix-specific asynchronous I/O control.

void InitializeAsyncIO();

Stubbed in JN. Unix-specific I/O initialization.

void InitializeSbrk();

Stubbed in JN. Unix-specific memory initialization.

void intrInitMD();

Stubbed in JN. Unix-specific initialization.

17

6 Unix Process Stubs

The routines in this section are all stubbed. They all are intended to manipulate Unix processes.

Hjava_lang_Process *java_lang_Runtime_execInternal(
Hjava_lang_Runtime *this,
HArrayOfString *cmdarray,
HarrayOfString *envp);

Stubbed in JN.

void java_lang_UNIXProcess_destroy(Hjava_lang_UNIXProcess *this);

Stubbed in JN.

void java_lang_ProcessReaper_waitForDeath(
Hjava_lang_UNIXProcess *this);

Stubbed in JN.

void java_lang_UNIXProcess_exec(
Hjava_lang_UNIXProcess *this,
HArrayOfString *cmdarray,
HArrayOfString *envp);

Stubbed in JN.

void java_lang_UNIXProcess_waitForUNIXProcess(
Hjava_lang_UNIXProcess *this);

Stubbed in JN.

long java_lang_UNIXProcess_fork(Hjava_lang_UNIXProcess *this);

Stubbed in JN.

18

