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Abstract

Assume { Py : § € O} is a set of probability distributions with a common dominating measure
on a complete separable metric space Y. A state §* € O is chosen by Nature. A statistician
gets n independent observations Yi,....Y, from Y distributed according to Py«. For each
time t between 1 and n, based on the observations Yi,...,Y;_1, the statistician produces an
estimated distribution ]5,5 for Py», and suffers a loss L( Py, ]5,5) The cumulative risk for the
statistician is the average total loss up to time n. Of special interest in information theory,
data compression, mathematical finance, computational learning theory and statistical me-
chanics is the special case when the loss L( Py, ]3,5) is the relative entropy between the true
distribution Py« and the estimated distribution ]5,5. Here the cumulative Bayes risk from time
1 to n is the mutual information between the random parameter ©* and the observations
Yi,...,Y,.

New bounds on this mutual information are given in terms of the Laplace transform of
the Hellinger distance between pairs of distributions indexed by parameters in ©. From
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these, bounds on the cumulative minimax risk are given in terms of the metric entropy of ©
with respect to the Hellinger distance. The assumptions required for these bounds are very
general and do not depend on the choice of the dominating measure. They apply to both
finite and infinite dimensional ©. They apply in some cases where Y is infinite dimensional,
in some cases where Y is not compact, in some cases where the distributions are not smooth,
and in some parametric cases where asymptotic normality of the posterior distribution fails.
Using these bounds for cumulative relative entropy risk, we also examine the minimax risk
of this game at specific times ¢ for various loss functions L, including the relative entropy,
the squared Hellinger distance, and the [ distance.

1 Introduction

Much of classical statistics has been concerned with the estimation of probability distribu-
tions from independent and identically distributed observations drawn according to these
distributions. If we let Py« denote the true distribution generating the observations and P,
the estimated distribution obtained after seeing ¢ — 1 independent observations, then the
success of our statistical procedure can be defined in terms of a loss function that measures
the difference between the true distribution P« and the estimated distribution ]5,5. One such
loss function has proven to be of importance in several fields, including information theory,
data compression, mathematical finance, computational learning theory, and statistical me-
chanics. This is the relative entropy function. Further, in these fields, special importance
is given to the cumulative relative entropy loss suffered in a sequential estimation setting,
in which there are n total observations, but these observations arrive one at a time, and at
each time t a new, refined estimate P, is made for the unknown true distribution Py, based
on the ¢t — 1 previous observations. This is the setting that we study in this paper.

The average of the cumulative loss over all sequences of n observations generated ac-
cording to the true distribution is the (cumulative relative entropy) risk. For a given family
{Py : 0 € O} of distributions, two types of risk are of interest in statistics. One is the mini-
max risk, which is the minimum worst-case risk over possible true distributions Py, where
6* € O, and the minimum is over all possible sequential estimation strategies. The other is
the Bayes risk, which is the minimum average-case risk over possible true distributions Py«
drawn according to a prior distribution g on ©, and the minimum is again over all possible
sequential estimation strategies. For cumulative relative entropy loss, the Bayes risk has a
fundamental information theoretic interpretation: it is the mutual information between a
random variable representing the choice of the parameter 8* of the true distribution, and
the random variable given by the n observations [37, 27, 18]. This provides a beautiful
connection between information theory and statistics.

This connection also extends to other fields, as is discussed in [18, 8]. In data compression,
the cumulative relative entropy risk is the redundancy, which is the expected excess code
length for the best adaptive coding method, as compared to the best coding method that has
prior knowledge of the true distribution [18, 41, 44]. The minimax risk is called “information”
channel capacity [21], p. 184. In mathematical finance and gambling theory, the cumulative
relative entropy risk measures the expected reduction in the logarithm of compounded wealth
due to lack of knowledge of the true distribution [9, 18]. In computational learning theory,



this risk is the average additional loss suffered by an adaptive algorithm that predicts each
observation before it arrives, based on the previous observations, as compared to an algorithm
that makes predictions knowing the true distribution [34, 35]. Here we assume that the
observation at time ¢ is predicted by the “predictive” probability distribution ]5,5, formed
by the adaptive algorithm using the previous ¢ — 1 observations, and that when this ¢th
observation arrives, the loss is the negative logarithm of its probability under P, Finally, in
statistical mechanics, the Bayes risk can be related to the free energy [45, 46].

In this paper, we provide upper and lower bounds on the Bayes risk for cumulative
relative entropy loss in the form of Laplace integrals of the Hellinger distance between pairs
of distributions in {P : § € ©}. We illustrate these bounds in a number of special cases,
then use them to characterize the asymptotic rate of the minimax risk in terms of the metric
entropy of {F; : 6 € O} under the Hellinger distance. The methods used here have the
advantage of simplicity, with proofs amounting to little more than simple applications of
Jensen’s inequality. The results are also quite general. The bounds apply to both finite and
infinite dimensional ©. They apply in some cases where the space of observations is infinite
dimensional, in some cases where it is not compact, in some cases where the distributions
are not smooth, and in some parametric cases where asymptotic normality of the posterior
distribution fails. The bounds are also fairly tight. However, in smooth parametric cases,
our general bounds are too crude to give the precise estimates of the low order additive
constants that were obtained by Clarke and Barron [18, 19].

The paper is organized as follows. In sections 2 and 3 we give precise definitions of the
risks that we evaluate, and discuss the conditions required for our bounds to hold. Here we
also compare our bounds to those obtained previously by other authors. The bounds are
given in section 4, followed by examples in sections 5 and 6 showing how they can be applied.
Then in section 7 we give the characterization of the minimax risk. In sections 8 and 9 we
illustrate further applications of our results by showing how they can be used to give bounds
on the asymptotic rates for the minimax relative entropy risk at specific time ¢, as opposed
to the cumulative risk. These results are then used further to obtain similar bounds for the
risk under other loss functions, including the Hellinger and [, distance. Here the results are
not as sharp as one can obtain by other methods, such as those of Le Cam [15, 42], Birgé
[11, 12], Hasminskii and Ibragimov [32], and Wong and Shen [55], but these applications
nevertheless illustrate the general utility of the method. Finally, we discuss some possible
further work in section 10.

2 Basic definitions, notation and assumptions

The following notation and assumptions will be used throughout the paper.

Let Y be a complete separable metric space. All probability distributions on Y discussed
in this paper are assumed to be defined on the o-algebra of Borel sets of Y. Let © be a
set, and for each § € O, let Py be a probability distribution on Y. We assume that for any
0 # 0* € O, the distributions associated with 6 and * are distinct in the sense that there
is a Borel set S C Y such that Py(S) # Pp«(S). In addition, we assume there is a fixed
o-finite measure v on Y that dominates Py for all § € O (i.e. for any Borel set S C Y,
v(S) = 0 implies Py(S) = 0). We will also make (implicitly) the assumption that any other



distribution ) on Y mentioned in the results below is also dominated by . None of our
results depend on the choice of the dominating measure v, hence for any distribution (), the
Radon-Nikodym derivative % will be abbreviated simply as d@), following the convention
in Le Cam’s text [42]. Furthermore, all integrals in the results below are assumed, without
specific notation, to be taken with respect to the measure v, unless otherwise indicated.
Thus for a function f on Y and distribution ) on Y, the expectation of f is denoted

[ sa@ = [ sy

Hence, in the special case that Y is countable and v is the counting measure, for a probability
mass function ¢) on Y

[ 140 = 3 Q)i ().

yeYy

We will also need to treat probability distributions over ©, which we will refer to as prior
distributions. As each § € O is associated with a distinct distribution Py on a complete
separable metric space, we can define prior distributions on @ with respect to the Borel sets
of the topology of weak convergence of the Py measures. We assume that the set {P; : § € O}
is itself measurable w.r.t. this topology. All prior distributions ¢ on © used in this paper
are assumed to be Borel distributions of this type, and suprema over priors are also assumed
to be only with respect to Borel distributions of this type. Further discussion of these issues
can be found in the appendix of [25].

Finally, for integer or real-valued functions f and g, we say f ~ ¢ if lim,,_, ;i(%)l =1, and
f=<gifliminf, ;l(%)l > 0 and limsup,,_, ;l%)l < o0o. All logarithms are natural logarithms
unless otherwise specified. We assume throughout that 0log 0 = 0log £ = 0, where x is any
nonnegative finite number. We will also employ functions taking values in the extended
reals [—oo, +00], and and in particular use the extended log function obtained by defining
log0 = —oo and log co = co. Expectations over extended real-valued functions are defined
whenever they do not take both the value +o0c with positive probability and the value —oo
with positive probability. The expectation is +oc if this value has positive probability, and
similarly for —oc.

3 Statement of the problem: the game of estimating a
probability distribution

We view the problem of estimating a probability distribution from the set of distributions
{Py : € O} as a game in which Nature plays against the statistician. First Nature picks
6 € ©. We refer to 6% as the (true) state of Nature. Then for some n > 1, a sequence Y =
Yi,..., Y, of i.i.d. random variables are observed, each distributed according to Py«. The
particular sequence of values observed for these random variables is denoted y” = y1,...,y,.
For each time ¢ between 1 and n, the statistician forms an estimate p, = pt(yt|yt_1) for the
unknown distribution Ps«, based on the values y'™! = yy,...,y,—1. In particular, for every ¢
and every y'~!, P, is a distribution over Y called the predictive distribution at time t, and



the set of all such predictive distributions, for all ¢ and y'~! is called the (predictive) strategy

of the statistician, and denoted simply as P. Note that in this formulation, the statistician
does not estimate the parameter §* itself, but rather the distribution it represents. This
allows the statistician, if necessary, to use predictive distributions that are not in the set
{P@ : 0 € @}

Let L be a function that maps from pairs of distributions on Y into [0, oc]. We call L the
loss function. Specific loss functions we will consider include the KL-divergence or relative

entropy, defined by
dP

L(P.Q) = Dia(PIIQ) = [ dPlos 7o,

the (squared) Hellinger distance, defined by

LPQ) = Dhy(P.Q) = [ (VP - iQ)

and the L; distance

LPQ) =P~ @ll= sup | [ far - [ 1dQ| = [ 1ar - dql.

For technical reasons, we will also consider the family of loss functions defined by the a-
affinities, a > 1, defined by

L(P.Q) = pa(P.Q) = [(dP)"(dQ)'~

All of these loss functions are in the family of functions investigated by Csiszar, known as
f-divergences, and all f-divergences are easily seen to be independent of the dominating
measure [22]. The bulk of the paper is devoted to the relative entropy loss, so this loss is
assumed unless otherwise specified.

For a fixed choice of loss function L., if the statistician uses the strategy ]5, then the risk
(to the statistician) at time t, when §* is the state of Nature, is given by

P07 = [ AP (P ).

The subscript L is omitted when the loss function is the relative entropy, here and in subse-
quent notation. The cumulative risk for the first n observations is

nPL ZrtPL

The bulk of this paper discusses cumulative risk, which is henceforth referred to simply as
risk, while the risk at time ¢ is referred to as the instantaneous risk. For the relative entropy
loss, the cumulative risk has a particularly simple interpretation. For any strategy ]5, define
the distribution P on Y™ by

HI5 (yely'™!



In this way we can identify prediction strategies with joint distributions on Y7,...,Y,,. Then

4Py
Z / AP (y' ™ / APy (1) log ~ d (y;)l
v dPi(yly'=)

= Dicr(Fg||P) (1)

by the chain rule for relative entropy (see e.g. [21], p. 23).

Of course the statistician seeks a strategy that minimizes risk. One approach is to assume
that Nature is a strategic adversary, and hence selects the worst case §* for any particular
strategy of the statistician. In this case, the best strategy for the statistician is one that
minimizes the worst-case risk, and the value of the game is the minimaz risk

MINIMaz

n,L = inf sup R, p ,(07).
' P 97 co

A strategy P that achieves this minimax value is called a minimaz strategy. For the instan-
taneous risk, the corresponding minimax value is

r?ﬁmmm inf sup r, 5 (07).
P g*ce
The other approach is the Bayesian approach, where one seeks to minimize the average
risk. Here we might imagine that Nature chooses §* at random according to a prior probabil-
ity distribution g on ©. Then the statistician seeks to minimize the average risk (according
to u), and the value of the game is the Bayes risk

Bayes __
Rn,mL -

A strategy P that achieves this value is called a Bayes strategy. For the instantaneous risk,
the corresponding value is

?izfs mf/ dp(0 tPL(g)‘

In the Bayesian approach there are two random variables, ©*, giving the choice of the state
of Nature, and Y = Y},...Y,, giving the sequence of observations. Their joint distribution
defines the behavior of Nature. The marginal distribution of Y, defined by

Moly™) = [ dn(07) P2 (y").

is of particular importance here. Breaking M, , down into a product of conditional distri-
butions, we can write

H PR (y '),

where

Mt,u(yt)

Bayes -
Pwy (yt|yt 1) = _Mt ) (yt—1)'
—Lp



The distributions Pt]iayes are called predictive posterior distributions. These form a Bayes

strategy for relative entropy loss, which we call Pf“yes. To see this, note that by (1), the

difference between the average cumulative risk for an arbitrary strategy P and the strategy
PBayes is
n

[ dn0) (Drn(PRNP) = Dicn (P

drn drn
M, :/d@*/dpzl—f—l 0
D) = o [ arg (1o T 1o
AM
- / M, log

= Dyr(M,,u||P) >0

It follows that the (cumulative) Bayes risk for relative entropy loss is given by

R = [ dpl07) D (P

M,,)=1(0%Y"),

the mutual information between the parameter ©* and the observations Y. (See [21], p
18, for general definition and discussion of the mutual information.)

It also turns out that for relative entropy loss, there is a simple, universal relationship
between the Bayes risk Rﬁiyes and the minimax risk R™"  This result can be obtained
with limited effort from the general results in an early paper of Le Cam [14]. Special cases of
the result were derived by Gallager [29] and Davisson and Leon-Garcia [23], and the general
result is given in [33].

Theorem 1 [33] N
anlnlmal’ Sup RBayeS

where the supremum is taken over all (Borel) probability measures on the parameter space
©. Moreover,

Ryt = inf sup R Bayes(e*).
H o pxc@ 7Py

Several authors have studied the Bayes risk RB‘“’“ or the equivalent mutual information
I{(©%Y"), for the case of a parametric family of dlstrlbutions {P; : 6 € O}. Early work by
Ibragimov and Hasminskii showed that 1(0*;Y"™) ~ (D/2)log n when Y is the real line and
the conditional distributions Py are a smooth family of densities indexed by a real-valued
parameter vector § in a compact set O of dimension D, and certain other conditions apply
[37]. In this case they were even able to estimate the lower order additive terms in this
approximation, which involve the Fisher information and the entropy of the prior. Further
related results were given by Efroimovich [27] and Clarke [17]. Clarke and Barron gave a
detailed analysis, with applications, of the risk of the Bayes strategy as a function of the true
state of Nature [18], discussing the relation of the Bayes risk to the notion of redundancy
in information theory, and giving applications to hypothesis testing and portfolio selection
theory. These results were extended to the Bayes and minimax risk in [19] (see also [7]).
Related lower bounds, which are often quoted, were obtained by Rissanen [51], based on
certain asymptotic normality assumptions. Further extensions of this work are given by



Yamanishi [56, 58, 57]. Amari has developed an extensive theory that relates the risk when
0~ is the true state of Nature to certain differential-geometric properties of the parameter
space O in the neighborhood of #* involving Fisher information and related quantities [2, 3]
(see also [60, 40]).

Some authors have also looked at the value of the relative entropy risk in nonparametric
cases as well, e.g. [6, 10, 52, 59, 55]. Also, the issue of consistent estimation of a general
probability distribution with respect to relative entropy is addressed in [1, 41]. However, in
the nonparametric case, more extensive work has been done in bounding the risk for other
loss functions (see e.g. [24, 38]). While this work is too extensive to summarize here, we
do note that some authors have also taken the general approach that we take here in using
notions of metric entropy (defined below), and specifically using the Hellinger distance in
obtaining these bounds (e.g. [42, 11, 12, 32, 54, 13, 10]). The only authors we have found
who have applied this methodology to the relative entropy risk are Wong and Shen [55] (see
Corollary 1, p. 360) and Barron and Yang [10]. This work is somewhat complementary to
ours, in that it treats instantaneous risk, whereas we focus on cumulative risk. The tools
that Wong and Shen employ are considerably more sophisticated, involving bracket entropy
methods from empirical processes, and it appears that the boundedness assumptions they
make (e.g. in Theorem 6) are a bit stronger than ours (see the discussion of integrable
envelop functions at the end of section 4.2 below). Different assumptions, and different
methods (using Fano’s inequality) are used to obtain related general results in [10].

In this paper we describe a new approach, employing the Hellinger metric and certain
Laplace integrals, to bounding both the Bayes and minimax risks for the cumulative relative
entropy loss, and the instantaneous minimax risk for all three losses mentioned above.

The assumptions required for these general bounds are fairly mild. No special assump-
tions are needed for the lower bounds on the risk. To describe the assumptions needed for
the upper bounds, recall that for a > 1, p,(P,Q) = [(dP)*(dQ)'~=. Hence, at time ¢ = 1,
i.e. when no observations have been made and the statistician must use some fixed a priori
estimate P for the true distribution Py« if the loss function is L = py4) for A > 0 then the
instantaneous minimax risk is the same as the cumulative risk for n = 1, and is given by

rminimax — Rminimax — lf}f sup (dPe*)l-I-/\(dp)_A.

Lp14a Lp14a P g

For a prior distribution ¢ on O, the corresponding Bayes risk is

17“’7pl+>\ 17“’7pl+>\

TBayeS _ RBayes _ H}f/ dﬂ(e*)/(dpg*)l-l_/\(dp)_/\
P Jo

For our upper bounds on the minimax risk we make the assumption that there exists A > 0

such that RT;?KL” < o0, and for the Bayes risk, that Rﬁif’pefﬂ < oo. We also give an

explicit formula for R?*¥** . Further discussion of these assumptions, including some simple

17“’7pl+>\
sufficient conditions for them to hold, and an artificial example in which they fail, is given

at the end of section 4.2.



4 Bounds on mutual information and relative entropy
distance to a mixture

Since we can obtain the minimax risk as a supremum of Bayes risks, we now focus our
attention on the Bayes risk. As noted above, the Bayes risk Rﬁiyes is the mutual information
I{(©*,Y") between the random variable ©* giving the choice of §* according to the prior u
and the observations Y. We now give general bounds on this mutual information. In
addition, since the risk for a particular state of Nature 8 using the Bayes strategy Pf“yes is

Rn7PdBayeS(0*) - DI(L(PHW;“ Mn7/~")7

where M, ,, = [ P7du(0), we will seek bounds for this quantity as well. The latter bounds
actually address the general problem of bounding the relative entropy distance from an n-fold
product distribution to a mixture of such distributions.

In obtaining these bounds, we use several notions of “distance” between probability
distributions based on the a-affinities. One such family of distances are the I-divergences
introduced by Renyi [49]. For any real o # 1, and distributions P and @, the [-divergence
of order « is defined by

1

:a—l

L(Pl|Q)

log | (dP)*(dQ)"". (2)

For 0 < a < 1, a related set of distances is defined by

Da(P,Q) = ﬁ (1 - /(dP>“(dQ>1‘“) = ﬁ/ (adP + (1 — 0)dQ — (dP)*(dQ)' ™) .
(3)

Since azr + (1 — a)y — a®*y'™* > 0 for any x,y > 0 and 0 < a < 1, the integrand is
everywhere nonnegative in the rightmost definition of D,, showing that D, (P, Q) > 0. (This
is essentially Holder’s inequality.) Since —logx > 1—u, it follows that [,(P||Q) > D, (P, Q),
and hence I,(P||Q) > 0 as well. Since —logx ~ 1 — x for x near 1, these quantities are
similar when the a-affinity [(dP)*(d@Q)'~* is close to 1. Finally, for the case a = 1, we
define

DA(P.Q) = B(PIIQ) = DruPlIQ) = [ (d@ 4P~ dPlog %) | ()

Since log » < z — 1, it follows that y — 2 — xlog £ > 0 for all z,y > 0, hence the integrand
in the rightmost expression is everywhere nonnegative. It can be shown that both D, (P, Q)
and I,(P||Q) are increasing in « for a > 0.

One important special case of the above distances is the squared Hellinger distance

Diu(P,Q) = Dip(P,Q) = [(VaP = \[dQ)*

Unlike the other distances and divergences discussed above, the distance Dy (P, @), i.e. the
squareroot of the above defined D%, is a metric, since it is symmetric and satisfies a triangle
inequality. This metric has been used to give bounds on the risk of estimation procedures in
statistics by many authors, including Le Cam [42], Birgé [11, 12], Hasminskii and Ibragimov
[32], and van de Geer [54].



4.1 Basic bounds

Our main theorem gives bounds on 1(©*;Y") and Dy (Pj||M,, ) in terms of the logarithms
of two Laplace transforms of the I divergence, one at the value a = 1 (the relative entropy)
and the other at some o between 0 and 1.

Theorem 2 Let u be any prior measure on © and let 0 < a < 1. For each § € © let (Yy be
an arbitrary conditional distribution on'Y given 0 and ()} be the n-fold product of QQy. For
every n > 1,

RBayes

IA

_/ d,u log/ d,u —nl a)Ia(Pgx||P5)
®

1o y)

< _/ dp (0 log/ d/~‘ e~ (FoxllQz)

2. For any v > 0 there exists a subset ©. of © with measure at least 1 — 2e™" under the
prior p such that for all 0* € O,

_log/ d,u —n (1—a)la(Pex||Ps) _ y < Rn PBayes(e*)
= Dgr(Pg||M, )
< —10g/ d/i —nly (Fp+]|Q) + .

The upper bound of part (1.) is similar to results given in [6], and is mentioned there
for the case P = (). To the best of our knowledge, the lower bound, and the results in part
(2.), are new.

The proof is given in a series of lemmas and calculations. We prove the upper bounds of
both parts of the theorem first, then the lower bounds. In establishing the bounds in part
(2.), we will show that there is a set of p-measure at most e™ on which the lower bound
fails, and similarly for the upper bound. Hence both bounds hold on the complement of the
union of these two sets, which has p-measure at least 1 — 2e77.

We begin with the upper bounds. This requires the following lemma which has been
previously utilized in the framework of Statistical Physics [53].

Lemma 1 Let P = P(w) be a measure on a set W and QQ = Q(v) be a measure on a set V.
For any real-valued function u(w,v),

— [ dQ@)log [ dP(w)e ™) < —log [ dP(w)eh )

Proof: First note that by Holder’s inequality, for any real-valued functions u; and uy and
0<a<l,

/ dP(w)eozul( +(1—a)us( / dP )oz( g(w))(l—a)
w

< (/W dP(w)eu1<w>)“ (/W dp(w)eu2(w))(1 2)

10



Taking logs, this shows that log [y dP(w)e™™¥) is convex in u. The result then follows by
applying Jensen’s inequality. O

We also use this simple lemma, suggested to us by Meir Feder. Let P = P(v,w) be
a measure on the product space V x W, with conditional distribution P(v|w) on V and
marginal distribution P(w) on W.

Lemma 2 For any random variables W and V' and nonnegative function f(v,w) such that
foW dP(Uv w)f(vv w) = 1;
1.
dP 1 <0
[ dP(o,w)log f(v,0) <

2. For any v > 0,
Pr (w : / dP(v|w)log f(v,w) > ’y) <e?
\74

Proof: For the first part, [, dP(v,w)log f(v,w) = —oo < 0 if f(v,w) = 0 on a set of
positive measure. Otherwise, note that by Jensen’s inequality

/VXWdP(U,w) log f(v,w) < log dP(v,w) f(v,w) = 0.

VxW

Here we employ the convention that Olog0 = 0. For the second part, the case where
f(v,w) = 0 for a set of v positive measure under the conditional distribution of V' given w
is similarly trivial, and otherwise note that

Pr(w: [ dP@olw)iog f(o,0) = )

Pr (w : ey PEIos ) 5 )
o [ ap(uyel s
w

< e /W dP(w) /V dP(v]w) (v, w)

IA

The first inequality follows from Markov’s inequality and the second from Jensen’s inequality.
O
In establishing the upper bounds, we use Lemma 2 with V =Y" W =0 and f(v,w) =
I
%' Here we assume all y” such that dM, , = 0 have been removed from the
domain of f, so that f is finite. The conditions of the lemma are satisfied, since this function

is nonnegative and

f@dﬂ
du(67)d Py / /d — 1
L du(0)dP () dMW .

since M, . (y") = [o du(6%) Pj(y™). Employing Lemma 2 with this choice of f, the following
chain of inequalities holds for all §* except for a set of y-measure at most e™".

dPp.

dM,,,

Dgr( Py

M,,) = /Y Py log

11



dP2 du(0)dQ?
_ / Py [ log B g Jo 0)dQ;
v Jo dpu(0 )dQE dMy,
dPL
f@ dﬂ( )dQn

— dPen*log/d/,L dpé
0*

dQn

< [ drpioe

where the first inequality follows from Lemma (2) part (2.) and the second one from Lemma
(1). The last equality follows from the fact that the KL divergence is additive over the
product of independent distributions (see e.g. [21], p. 23). Note that by our convention that
0log 0 = 0, for each 6%, the set of y™ such that dPji(y™) = 0 can simply be removed in the first
equality above and then reintroduced in the exponent of the second to the last inequality,
thus avoiding any division by zero for these cases. Similarly, if [g d/,L(é)ng(y”) = 0 for a set
of y™ of positive measure with respect to Pj., then all upper bounds from the second line on
are infinite, and the result holds trivially. Otherwise a set of y” of measure zero on which
Jo d/,L(é)ng(y”) = 0 can be ignored, avoiding any division by zero in this regard. Since
D, = I, this establishes the upper bound of part (2.) of Theorem 2.

The upper bound of part (1.) of Theorem 2 is established in a very similar manner. Here
we note that

v ) APy
[(0%Y") = /@d/,e(e)/yndPg*long
L

dpy, dp(0)dQ?
_ /du(e*)/ dpe 1og—€+1ogM
o M) Jy o du(0)dQ: dM,,

d P}
< [du(o) [ appiog—
0 v O du(0)dQ:

where the inequality follows from Lemma 2 part (1.). The remainder of the proof consists
of the identical chain of inequalities as in the proof above of the upper bound of part (2.),
except that we take expectation over §* and we do not have the term +~.

We turn now to the lower bounds. Here we use the following lemma, which is new, as far
as we can tell. Let P = P(v,w) be a measure on the product space V x W, with conditional
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distribution P(v|w) on V' and marginal distribution P(w) on W. For any 0 < A < 1, define!

1MW, V) = —/VXWdP(U,w*)log /W dP(w) (%)A

Note that I™M(W; V) = I(W;V), the mutual information between W and V.

Lemma 3 Whenever [y dP(w)dP(v|w) > 0 for all v, and 0 < A <1,

1.
INW; V) = I(W; V) <0

Pr{w* : dP(v|w") > 0 and
/VdP(v|w*) (log /W dP(w)% — log /W dP(w) (%) ) > <e .

Proof: This follows from Lemma 2 using the function

S dP(w) 558 P =1 (v]w) fy dP(w)dP(v]w)

flo,w™) = =
dP(v|w dP(w)dP*(v|w
S dP(w) (G |w*)) Jw dP(w)dP(v|w)
The conditions of the lemma are satisfied, since f is nonnegative, f(v,w*) = 0 when

dP(v|w*) =0, and

R e e
. AP (w|w®) [y dP(w)d P (v]w)
- // dP(w")dP(v]w) T dP(w)dP>(v|w)
/ Jy dP(w)dP* (v]w") [y dP(w)dP(v]w)
fy dP(w)d P (v]w)

://dP VAP (v|w)

v|w A dP(w)dPA (v]w) .
TFor any w, Sy dP(w) (dcgj((mlw*))) - Sy P = 0or = % only if [, dP(w)dP(vjw) = 0,
which happens only if dP(v|w) = 0 for all but a set of w of measure zero. Using the convention that

—0log0 = —Olog% = 0, the set of such v contribute nothing to I(A)(W; V), and hence can be ignored.
A

Furthermore, [, dP(w) ( dP(( ||;U*))) = oo only if P(v|w*) =0 or [, dP(w)dP*(v|w) = co. However, by

similar reasoning, for each individual w* the set of all v such that P(v|w*) = 0 can be ignored when evaluating

T (W; V), and it is not possible that fW dP(w)dP*(v|w) = oo, since S dP(w)dP(v|w) = dP(v) < oo and

for 0 < A <1, [, dP(w yd P (v|w (fW dP(w)dP (v|w))>\ by Jensen’s inequality. Thus T (W; V) is

well-defined.

13



O

Now note that if {y” : [g du(0 )dP”( ") =0} has positive measure under the distribution
Pj. then Dk (P; o) = 00. Hence the lower bound holds trivially. Otherwise a set of
such y" of measure zero can be ignored, and using part (2.) of Lemma 3 with W = ©

and V' = Y” we can show that the following inequalities hold except on a set of #* with
p-measure at most e77.

- dPr
Dip(PLl|M,,) = — / dPL log / Au(0) L
0*
> Pl d (9) 4y
> —log [ du(f) dPe*( 5)

= —10g/®d/~t( )/ Pi)'” (dP”) -
M (an >]

= —log/ d/,L((g)e_”lc’gfy(dpe*)1%(5”3@)A —
o)

— —10g/®d/,L(é)e_n/\Il—k(PéHPQ*) — 7.

As in the proof of the upper bound, to avoid division by zero, and apply Lemma 3, we can
remove the set of y™ such that dPj(y") = 0 from the first line, and reintroduce them in the
fourth line. Setting o = 1 — A, this establishes the lower bound of part (2.).

As with the upper bound, the lower bound of part (1.) is established easily by removing
the —v terms and taking expectation over #* in the above chain of inequalities, using part
(1.) of Lemma 3 in line 2. This establishes the lower bounds, and completes the proof of
Theorem 2. O

A few brief comments about Theorem 2 are in order. First, note that if in part (2) we let
~ grow with n in a suitable way, we obtain bounds which asymptotically hold for almost all
0* € ©. An even stronger result is obtained when we chose y(n) such that 3°° e™(" < co.
This holds for example, if we let v(n) grow faster than logn. Then, the first Borel-Cantelli
lemma shows that for g almost all § € O, the bounds will be violated only a finite number
of times as n — oo.

It should also be noted that in the important special case when P = (), the upper bound
of part (2) of the theorem holds with v = 0, since we can omit the first few steps of its
derivation in this case, where ~ is introduced. Thus both this strengthened upper bound
and the given lower bound hold on a set of measure 1 — e™” in this case.

Finally, we note that part (2) is related to part (1) in the same way that the strong
redundancy-capacity theorem of universal coding in [44] is related to the usual theorems
concerning average redundancy.

It is possible to state a variant of Theorem 2 using the the D, distances. Here we also
make use of a particular choice for the family of distributions )4 that appear in Theorem 2.
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Another possible choice is explored in Theorem 3 below. We will need the following definition.
For each 0 < a < 1 and = > 0 define
balir) = (1 —a)(x—loga —1)

a+ (1 —a)y —al-

(6)

Define b,(0) = oo. It is easily verified that b, () is strictly decreasing in x, approaches 1 as
r — o0, and approaches co as * — 0. Let

B.(©)= sup b, (dpe*(y)) .

YEY, 0% 00 dPy(y)

Clearly this constant does not depend on the choice of the dominating measure v.

Corollary 1 For every 0 < a <1 andn > 1,

_/ d,u log/ dlu —n (1-c) (PQ*,Pé) RBayes
(€]

IA

1o y)
< _/ d,u 0* log/ d,u —nBaq( )DQ(PQ*,P(;)‘

2. For any v > 0 there exists a subset ©. of © with measure at least 1 — 2e™" under the
prior p such that for all 0* € ©,,

—log/ d,u —nl o) (PQ*,Pé)_/_}/

IA

RnJDMBayes(e*)

= Dgr(FPg||M,,,)

< —10g/ dﬂ(é)e_nBa(G)Da(PQ*vpé)_I_,y‘
®

Proof. Since [,(P||Q) > D.(P,Q), the lower bounds follow directly from the lower
bounds of Theorem 2. For the upper bounds, we will need the following lemma, which is a
simple extension of Lemma 4.4 of [11].

Lemma 4 For any distributions P and () on'Y and any 0 < a < 1,

Dxr(Pl|Q) < (sup ba (Zgg;)) Do(P,Q).

yeYy

Proof. If dP = dQ except on a set of zero measure (w.r.t. the dominating measure v),
then Dgp(P||@Q) = 0, and hence the result holds. So it suffices to consider the case where
Do(P,Q) > 0. Let S={y €Y :dP(y) =0}. Separating Y into S and ¥ — 5, and factoring
a dP out of the integrands in Equations (3) and (4) in the latter case, we have

Dir(P||Q) _ (1—a)fy_gdP (Zgl — log 7% “ 1) + [5d@Q
Da(P,Q) fr_gdP (a +(1—a)%2 — (42) _“) + [5dQ
dQ(y)
= sapbe (dP@)) |
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since b, > 1. O

The upper bounds of Corollary 1 follow from Theorem 2 and this lemma by setting
Qo =

Whenever dP; is uniformly bounded above zero and below infinity for all y and 6 for
some choice of the dominating measure, B,(0) is finite, and this corollary can be applied.
However, in some other cases B,(0) = oo for all 0 < o < 1, making the upper bound in the
above corollary useless. One case where this occurs is when there are § and 6* in O such that
Py is not dominated by Py. For example, if Y = {0, 1} and there is a §* such that P« (Y = 1)
is zero (or one) and there is also a § where Py(Y = 1) is not zero (or not one), then Py is
not dominated by Py». We can also have B,(0) = oo in cases where such lack of domination
does not occur. For example, if Y = {0,1}, © is the open interval (0,1), and P3(Y =1) =40,
then B,(0©) = oo not because there are two distributions that fail to mutually dominate
each other, but because infy ey g» geco ddPP—(()) = 0. Such cases can be handled by the results in
the following section.

4.2 Bounds for finite REZ%’;fH

Here we prove a version of Corollary 1 that can be used in cases when B,(©) = oo for all
0 < a < 1. This new theorem requires only the weaker assumption that the Bayes risk for

the (1 4+ A)-affinity loss at time 1, R?iypef .» discussed in section 3 above, is finite for some

A > 0. Recall that for a fixed prior u,
RYS, = inf [ du(0) [(ape) @)™

Using Jensen’s inequality, it can be verified that when R?iypefﬂ < 00, the minimizing ]5, ie.

the Bayes strategy, is the distribution U = U, defined by

(Jo du(07)dpy") ™
Chu ’

Cru= |, ( [ duto )dP;ﬁ)

[60]. Hence for each individual 6%, the risk of the Bayes strategy is

dU =

where

Bt (07) = [ (dPe) ()

=« /Y (d Py )1 ( /@ du(e*)dpgﬁ)_l“

and the Bayes risk is
BY = [ du0) [ (ape)t @)
o /d o / dp*lﬂ(/d o dPl*“) e
2 [ n0) [ (@rey ([ du(or)ar
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= O [ ([ dutoryari)

cyt
We have the following theorem.

Theorem 3 Let 0 < a <1 and 0 < XA < 1. Assume REZ%’;ZM < oo. Then for everyn > 1,

1.

_/ d,u 0* log/ d,u —nl a)Do(Pyx,Ps)

< RBayes
— n, [
< —/ Au(0°)log [ dyu(B)e™ o SRS 4 s o(1)

2. For any v > 0 there exists a subset ©. of © with measure at least 1 — 2e™" under the
prior p such that for all 0* € ©,,

(C]

S RnJDMBayes(a*)
= Dgr(Pp M7 )
< —10g/ dﬂ ~(nlogn) T Da(Pye ) + RLU}MPI+>\(0*) +y+ 0(1)7

where in each case for fired o and X, o(1) is a function f(n) such that f(n) — 0 and n — co.
Furthermore, the same results also hold replacing the quantity D, ( Py, P;) with 1,(Py«||P;).

Proof. That D can be replaced by [ follows from the fact that I,(P||Q) > D.(P, Q)

for all «, as pointed out in the proof of Corollary 1. To prove the result for D, we will need

a lemma?.

Lemma 5 Assume 0 < a <1 and A > 0. Let P, R and U be any distributions on Y. Let
ey = [dPYNU. Let Q = (1 — )R+ ¢U for some ¢ > 0 such that % < A2 and
€ < e /CU=) " Thep

2log L ;
fa(€)

2elog %
(1 —a)fa(e?)

AJ2
—|—6/C/\,

Dgr(P||Q) < o( P R) +

where
a+(1—a)y—at~™

]l -«

foz(x) =

2We recently noticed that a related result is given in [55], Theorem 5, although no explicit relationship
with the o affinities is given in the latter result.
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The proof of this lemma is given in the appendix.
Now let U, be the Bayes strategy as defined above. Since R?iypefﬂ < oo, U, is well-
defined. For each 0 € O, let
Q@ = (1 — G)Pg —|— GUM,

with € = n=2/. Tt is clear that fal€®) — == as ¢ — 0. Hence, by Lemma 5, for sufficiently
large n, for all 4

2log L 2¢log ¢ A
Drr(Pe||Q7) < < Pys, P5) + ———— /2 0"
wolPell@a) = ey Pl B+ g ey T e )
4logn Bi U000, (07) +0(1) .
= YAC _4/A)DQ(P9*,P§) + Hn since A <1

(L o0 =) )y Brtns (07 4001

al n

= logn

Since fo dp(0*)R1v,.p,,,(07) = R?iypefﬂ, the result then follows from Theorem 2. O
Note: no attempt has been made to optimize the constants in this theorem.

Now let?
S(0) :/ sup dPy.
Y

6co

We call supycq dPy the envelop function for ©. Note that S(0) is independent of the choice
of the dominating measure. Since for all A > 0,

(/ du(67) dPel*'"A) < sup dPy-,

0*€O

It follows that

RN 5
riz = o = ([ ([ aworan) 7)< e

for all A > 0. Hence, whenever © has an integrable envelop function, that is whenever
S(0) < oo, then RPW < oo, and the bounds in part (1) of Theorem 3 hold with A =1

Lipp14a
and R?iypefﬂ replaced with S?*(0©). It is clear that S(©) < oo whenever Y is finite, and
whenever Y is a bounded set in R* for some k& > 1 and the densities in {P; : § € O} are
uniformly upper bounded. Hence Theorem 3 always applies in these cases.
Theorem 3 also applies in many cases where S(0) is infinite; an example of such a case
is given in the following section. To characterize the types of @ and priors v not covered by

Theorem 3, let us define the function fg ,(A) for A > 0 by

1 ayes
fG),u()‘) = X 10g RlBiM%/PHA

31f supgcedPs is not measurable, then any measurable function that majorizes it can be used instead in

the definition of S(©).
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for A > 0 and
Bayes
f@,ﬂ,(o) = Rl,ﬂ,y Y

that is, the risk at time 1 for the relative entropy loss. It can be shown that for any © and p,
fo,u(A) is a nondecreasing function on [0, c0) taking values in [0, o0], and if fo () is finite
for any A > 0, then

y_ﬂ% fou(A) = fo,.(0).

Bayes
17“’7pl+>\

. d Bayes
ll_r}% fou(A) = A\ (Rlﬁ“’pl“)h:o '

It can be verified by direct calculation that the latter quantity is the mutual information

I{©*,Y), which is the same as RBaves

1,u
It is clear that whenever Rﬁiyes is infinite, then Rﬁiyes is infinite for all n > 1. Thus

there are only three possible cases for the pair (0, p):

To verify this last property, note that limy_o R = 1. Hence by I'hospital’s rule

1. fou(A) < oo for some A > 0. In this case Rﬁif/;fﬂ < oo and hence Theorem 3 applies

and may be used to get bounds on Rﬁiyes for all n.

2. fo,(0) = co. In this case Rﬁiyes = oo for all n and hence the problem of bounding
this quantity is trivial.

3. fo,(0) < oo but fo,(A) = oo forall A > 0. In this case we say that the pair (0, ) is
irregular. These are the only nontrivial cases where Theorem 3 does not apply.

While it would not be expected that irregular (0, 1) would show up much in practice, it
is possible to construct one.

Example 1 Let Y = {1,2,3,...}, © = {3,4,5,...}, and for each § € © and y € Y, define

Py(Y =y) to be 1 — @ ify =1, loé@ if y =10, and 0 otherwise. Let u(6) = @, where
c=32 #g% < 00. Then it can be shown that (O, p) is irreqular.

5 Examples

We now illustrate Theorems 2 and 3 by applying them to a few simple problems. We begin
with a classical case in which each point § € O is a vector of D real numbers, © is a compact
set and the prior p is specified as a density du(6). To apply Theorem 2, fix 6* € ©.,, where
6” is in the interior of ©. We assume that the prior dy is continuous and positive at §*. We
also assume that {F;} is a smooth family of probabilities such that the Fisher information
matrix at 6%, defined by J(6*), where

0

© 0
Ti(07) = [, dPeel 5108 dPu(y) 5108 APy oo

exists and is positive definite. In this case, we will focus on the bounds on the risk for
invividual 8%, rather than bounds on the mutual information. Even the simplest choice ) = P
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will be sufficient to obtain a useful bound in the smooth case. For large n, obviously the main
contributions to the inner expectations in Theorem 2 come from small neighborhoods of 6*.
Hence, under certain regularity conditions, Laplace’s method can be used to evaluate these
expectations asymptotically. We perform a Taylor expansion of the exponents in Theorem
2 to second order in the difference between § and 6 using the partial derivatives

0
6—02»[“(130* P9)|9=9* =0
and
& I, ( Py || P = aJ;; (0" 7
M a( o | 9)|9:9* =« u( )- ( )

Note, that these results are also valid for @ = 1. Hence, Laplace’s method would yield for
the lower bound

/@du<é>e—n<1—a>fa<Pe*HPé> = dp(0") /R df ¢~ 30 2y B=IDT D0 (1 4 o1,

A similar expression is obtained for the upper bound. By evaluating the Gaussian integrals
we get?

D n 1 D 1
— log — — log du(0*) + —log detJ(0") — — log ——— — 1) < ayes (07) <
5 log 5— — logdu(07) + 5 log detJ (67) — - 8 T a) v+o(l) < R, poaves(07) <
D n y 1 y
glog o log du(6) + §log detJ(07) 4 o(1).
Note that asymptotically the lower bound is optimized by setting o = % In this case, for

Dlog4
2
classical case, Clarke and Barron [18] have determined the exact answer to within o(1), and

it is

large n, both bounds differ by a constant approximately equal to for small 4. In this

RnJDMBayes(e*) = glog % — log du(07) + %log detJ(0") — g + o(1).
Thus our simpler methods do not give the best known additive constants in the bounds for
this classical case, but they do provide good bounds for large n.

As pointed out by Clarke and Barron [18], the scaling ~ % log n of the Bayes risk for the
smooth parametric families is strongly related to the asymptotic normality of the properly
normalized posterior distribution. It is interesting to look at nonregular families of probabil-
ities, for which the posterior fails to converge to a nontrivial limit. (For conditions that are
necessary for convergence, see [30]). As an example for such nonsmooth densities, we study

the following simple family on R
dPy(y) = e Mgy, O ER. (8)

Obviously, Dgr(Pg«||Ps) = 0o, whenever § > 6* and the Fisher information does not exist
for any #. Hence, the previous analysis is not applicable and we have to resort to the more

sophisticated upper bounds. Specializing to a = %, we easily find

Dy jy(Por, Py) = 2(1 — 7177071y
[1/2(P9* Pg) = |0 - 0*|

“Here we can set v = 0 in the upper bounds, as per the comments following Theorem 2.

20



This result clearly shows the difference from the smooth families. The distances D;/, and
I/, do not behave locally like a quadratic function for # close to 6%, but have a linear scaling.
Hence, a different scaling of the risk at §* and the mutual information is also expected.

An explicit result using Theorem 3 is easily obtained for the prior du(8) = %€—|0|‘ Note
that the envelope of © is not integrable, so we must obtain direct bounds on R, ,,,, rather

than using S(©). To upper bound Rﬁi?’;ﬁﬂ = infp fo dp(07) f(dPg*)1"'A(61ZIA3)_A it suffices to
choose any distribution U/ and bound the expectation of c\(6%) = [(dP)'**(dU)~*. Here
we can set dU(y) = %G_M. In this case we have ¢\ (0*) < eMNland [ du(0*)er(0*) < oo for

all A < 1. To evaluate the bounds we use the fact that for a > 1

o el gmaletl el ales
/ 40 e-ll—alo—e"] _ € L *e
2(a —1) 2(a+ 1)

_ 1
Hence, for o = 3, we get

dnlogn(l + o(1))
A

log(g) +107] — v+ o(1) < Rn7PMBayes(0*) < log ( ) + N 107 4+~ + o(1).
Hence, an asymptotic scaling ~ logn for the risk is observed. This gives a factor of two
difference compared to the risk of a smooth 1-dimensional family of densities.

Finally, we will consider an example where both the parameter space and the space of
observations are infinite dimensional. We assume that an unknown real continuous function
f(x) with 0 < & < 1is corrupted by a Gaussian white noise process. The statistician observes
n random functions Y;, ¢ = 1,...,n which, conditioned on 6, are independent realizations of
the process

Y(z) = / 0(2)dz + oW (2). 9)
0
Here W (z) is a standard Wiener process with W (0) = 0 and covariance IE[W (x1)W (22)] =

min(x1, 22). In this case, it is easy to calculate the I-divergences explicitly for all a. Let P
be the measure corresponding to the random process Y (x) and let the dominating measure v
be the Wiener measure. Then, from the Cameron—Martin formula [16], the Radon-Nikodym
derivative is found to be

%:exp[l/olﬁ(x)dW(x) 2;/0 02(2)dz ]. (10)

o
Inserting this into the definition of the I-divergences, we obtain

(a4

L (Prl|P) = 52 2/1 (0(z) — 6%(2))’ da. (11)

For the case where the prior over the space of functions #(x) is a Gaussian measure (such
that §(x) is a realization of a Gaussian random process) our bounds can be evaluated in
closed form. We will restrict ourselves to the case of the mutual information /(©*;Y™) and
use the fact that for Gaussian processes and ¢ > 0

- 2 )\
—/d/,c log/d/,c e2f€ ) de _ Rk
©

1—|—C)\k

1
5 > [log L+ eh) + (12)
k
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Here A, k = 1,2,..., 00 are the eigenvalues of the process on the interval [0, 1]. Specializing

on the Wiener process, we get A\, = m, for k=1,2,3... Using
2

1 & . .
2 kZ::l Og( + 7T2(k _ %)2) 5 0g Ccos (\/E)
and . .
¢ c
2 = Y tanh /¢
2{ c+mHk—1)2 1 Ve
and setting a = %7 we get

— log COSh(\Q/ﬁ) + é/—ﬁtanh(@) < IO Y™ <

o o 2

Hence, asymptotically

%(1 +o(1)) <I(0%Y") < %(1 +o(1)).

Notice that in the above examples, it was always the case that asymptotically, the best
bounds were obtained with the value & = 1/2. In general, for large n the value of the Laplace

/ dp()e= 1= Ia(For IFy)

transform

in the lower bound of Theorem 2 is largely determined by those 0 such that Io(Pys

P;) is

near zero, i.e. such that Py« is close to ;. The same also holds for the corresponding Laplace

/ dpu( ) Por1P5)
(C]

in the upper bound However, it can be shown that as the distributions P and () get close,
in the sense that 2 dQ — 1 umformly, then

transform

L(P]Q) 1
(1= ) L(PQ) " all—a)

Hence we might expect to very often get the best asymptotic lower bound in Theorem 2 by

choosing @ = 1/2, so as to minimize . This choice also has another desirable property,

1
a(l—a)
since, as mentioned above, for a = 1/2, the distance D, used in Corollary 1 and Theorem
3 is then the squared Hellinger distance, which has some nice metric properties that we will
exploit in applications of the bounds below. For these reasons, in what follows, we will for

simplicity restrict ourselves to the case o = 1/2, using the notation

Dip2(P.Q) = Dy (P, Q).

22



6 Bounds on the cumulative risk for countable O

Recall that we have assumed that for all distinct 8,6* € O, the conditional densities dF
and dPy« differ on a set of positive measure, and hence Dy ( Py, Pp«) > 0. We can make this
assumption without essential loss of generality, since otherwise we can replace © by a set of
equivalence classes with the property that § = 6% iff dPy = dPy« (except on a set of measure
zero) in a natural way, without changing the risks we are interested in calculating.

Suppose O is countable, say © = {0;}. Let H(O*) = — 3, u(0;)log u(6;) denote the
entropy of the random variable ©*, distributed according to the prior measure p. The
entropy of ©* may be infinite. Then

Corollary 2 For all n, RE* = 1(©;Y") < H(O") and

lim BB = H(O).

n—0oo

Proof: Recall that Rﬁiyes = [(O%Y"). If H(©") is infinite then clearly
limsup I(©;Y") < H(O™).

n—0oo

Assume H(O*) is finite. Let
HO ™) = = [ dMo(y") 3 u(01]y™) log (011",

the conditional entropy of © given Y. Note that this quantity is nonnegative. When H(©)
is finite it is easily verified that
1(O%Y")= HO") — HO"|Y")

(see e.g. [21], p. 20), and thus limsup,,_,., [(©*;Y") < H(O*) in this case as well.
For the lower bound, using Theorem 2 with o = 1/2 and Fatou’s lemma

liminf 1(©7Y") > hggglf—Zu(@)1ogzu<ej>e—%%f’9wf’%>

> - Z (0 hm mflog Z (0 —5D% 1 (Po; Fe;)
= —ZM ) log pi(0;)
= H(G)*)

O

This result generalizes the similar result in [19] (Corollary 1) by removing the additional
conditions assumed there. More general results, including the above corollary, follow from
results in Pinsker’s book [47] (see also [4]). Applying Theorem (1) and taking the supremum
over p in Corollary (2), it follows that if © is finite then for all n, R™""m% < log|0| and
lim,, o BT = Jog |@]. It also follows that if © is infinite, then lim, ., R™"™% = 0.

In the case that O is finite, results of Renyi [50] show further that the difference 1(©*; Y™)—
H(©*) converges to zero exponentially fast in n. We also obtain this result as follows.
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Corollary 3 For all n,

H(@ ) — [(@ ;Y”) < (|®| — 1 (1<£r<1;a2(|®|/ 1/dP€ d Py )

Proof: From Theorem 2

[(©7Y") > —ZM 10gZM (/Y\/M)n

= _Z/“L ) log 14(0; ZM )log 1—|—Z¢:M (/\/dpedpe)
> H(O7) =YY (b)) ( | apuar,)

i i
> [H(0%) — (0] - 1) (1<53?§|@|/ JdP, dpg)

where the second inequality follows from —log(1l + &) > —z. O
Assuming as above that the densities dFPy, and dP, are different for j # 7, an application

of the Cauchy’s inequality yields [y \/dPs dPy, < 1 for j # 1. Hence, the corollary shows

exponential convergence.

Finally, let us note that Theorem 2 and Corollary 1 can also be used to characterize
the mutual information between ©* and Y™ (Bayes risk) in the general case when O is
uncountably infinite but finite dimensional. This was demonstrated in [36]. Here in the
sequel, we focus instead on the minimax risk.

7 Bounds on minimax risk using covering and packing
numbers, and metric entropy

For each 6*,0 € O, let
h(0,0) = Dyr( Py, Pp).

As mentioned above, we assume that for distinct states of Nature 8,0* € O, the conditional
distributions Py and Py« differ on a set of positive measure. Under this assumption, (0, h)
is a metric space. We show how bounds on the minimax risk can be obtained by looking at
properties of this metric space. These are the the packing and covering numbers, and the
associated metric entropy, introduced by Kolmogorov and Tikhomirov in [39] and commonly
used in the theory of empirical processes (see e.g. [26, 48, 31, 13]).

For the following definitions, let (S, p) be any complete separable metric space.

Definition 1 (Metric entropy, also called Kolmogorov e-entropy [39]) A partition 11 of S is
a collection {m;} of Borel subsets of S that are pairwise disjoint and whose union is S. The
diameter of a set A C S is given by diam(A) = sup, 4 p(x,y). The diameter of a partition
is the supremum of the diameters of the sets in the partition. For ¢ > 0, by D.(S,p) we
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denote the cardinality of the smallest finite partition of S of diameter at most €, or co if no
such finite partition exists. The metric entropy of (S, p) is defined by

K.(S,p) =1logD.(5,p).
We say S is totally bounded if D.(5,p) < oo for all e > 0.

Definition 2 (Packing and covering numbers) For € > 0, an e-cover of S is a subset A C S
such that for all v € S there exists a y € A with p(x,y) < e. By N.(S,p) we denote the
cardinality of the smallest finite e-cover of S, or co if no such finite cover exists. For e > 0,
an e-separated subset of S is a subset A C S such that for all distinct x,y € A, p(x,y) > €.
By M.(S,p) we denote the cardinality of the largest finite e-separated subset of S, or oo if
arbitrarily large such sets exist.

The following lemma is easily verified [39].
Lemma 6 For any e > 0,
M26(57 P) S D26(57 P) S Nc(Sv P) S Me(Sv P)

It follows that the metric entropy K. (and the condition defining total boundedness) can also
be defined using either the packing or covering numbers in place of D,, to within a constant
factor in e.

Kolmogorov and Tikhomirov also introduced abstract notions of the dimension and order
of metric spaces in their seminal paper [39]. These can be used to measure the “massiveness”
of both spaces indexed by a finite dimensional parameter vector and infinite dimensional
function spaces. In the following, the metric p is omitted from the notation, being understood
from the context.

Definition 3 The upper and lower metric dimensions [39] of S are defined by

dim(S) = lim sup &5;)
e—0 10g <

and (s
dim(S) = lim inf a l)’

=0 log -

respectively.  When dim(S) = dim(95), then this value is denoted dim(S) and called the
metric dimension of S. Thus

dim(S) = lim ICE(S;).
e=0 log =
For totally bounded S, we say that S is finite dimensional if dim(S) < oo, else it is
infinite dimensional. To measure the massiveness of infinite dimensional spaces, including
typical function spaces, further indices were introduced by Kolmogorov and Tikhomirov. The
functional dimension of S is defined similarly as

df(S) = lim 28R

0 loglog L’

25



with similar upper and lower versions when this limit does not exist. Finally, the metric

order of S is defined as

Y

mo(S) = lim log K(5)

e—0 log %

with similar upper and lower versions.

Using the results given in the theorems from section 4, with @ = 1/2, we can obtain
bounds on the minimax risk R7"™%* in terms of the metric entropy of the space (0, h). For

every € > 0 let
Drr(F|[Por) 5 2
b(e) = su 10,07 € O and Dy (P;, Ppx) < €}.
( ) p{ D%L(Pé,Pe*) HL( 4 4 ) }

Rmznzmax

Recall also that the minimax risk for time 1 and loss py4) is denoted R s

Lemma 7 Assume (0O, h) is totally bounded. Then for all n > 1,

1.
Rminimax > 1 1 _I_ —"2L2
" = U\ Mo e
ne’
> supmin{K.(0,h), —} —log2
e>0 8
and
2.

MINIMaz : 2 : 2
R’ < gg{lce(@, h) + b(e)ne*} < inf {K(©,h) + by j2(O)ne?} .

Furthermore, for any A > 0 such that RT;ﬁW;ax < o0

» 1 1))4enl
R;mmmax S igg {ICE(G),h) + ( ‘I’O( )) €&n Ogn} + Rmmzmal’ _|_0(1)7

A Lip14a
where in each case o(1) is a function f(n) such that f(n) — 0 as n — oo.

Proof: To establish the first inequality of part (1), let A = {61,...,00} be an e-separated
subset of © of maximal size and let i be the discrete prior distribution on © that is uniform
over the elements of A. Using Theorem 1 and Corollary 1 we have

Rminimax > RBayes
n

_ nh2(6*6)
2—/d/,e0*log/d/,c el
nh?(8;,6,)
——Zlog—Ze 2
log M — log (1 + (M —1)e %
| (i_|_ —"52)
og |47 te :
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Since this holds for all €, it follows that

) 1
Rmznlmax > _1 —T .
" —i;%?{ o8 (ME((E,h) e )}

To complete the proof of part (1), simply note that —log(x + y) > —log(2max(z,y)) =
—log2 + min{—log x, —log y}. It follows that

62

Rmmar > sup min{log M. (0, h), } — log 2.

e>0

Since Ky = log Dy, < log M., replacing ¢ with ¢/2, the second inequality follows.

We now turn to the upper bounds in part (2). Let II = {m,...,ma} be any partition
of O of diameter at most e. For any prior measure p on 0, let p; = p(m;). Then we use
Theorem 1 and the upper bound given in Theorem 2 as follows.

Rminimax

— sup RBayes

sup{—/@du(@*)log/@d/,L(é)e_”DKL(Pé”PQ*)}

_ Sup{ Z /Wd/“‘e 1gZ/M/ TQ) —nDKL(PéllPe*)}

Hi J

< sup {— Z ti log (/v%e_b(e)”g) }

I

= sup {— > pilog /,LZ'} + b(e)ne?
# i

= log M + b(e)ne

IA

The second inequality follows by ignoring all but the ith term in the inner sum whenever
the index on the outer sum is 7, and noting that because the diameter of 7; is at most e,

Dicr(P;||Pye) < b(e)h*(0%,0) < b(e)e?

for all 0*,5 € m;. The last equality follows from the fact that the entropy of a finite
distribution is maximal for the uniform distribution. Since the particular partition of
diameter ¢ can be chosen arbitrarily in the above chain of inequalities, it follows that
Rminimaz < K (@, h) + b(c)ne? for any ¢. This establishes the first inequality of part
(2). The second inequality follows since b(¢) < by/5(0) for all ¢. The third inequality,

but with sup, Rﬁi?’;ﬁﬂ in place of RT;?””” follows by an argument similar to that used

for the first inequality, using Theorem 3. Since maximin < minimax always, we have

Bayes MINIMaz
Sup,, Rl WP1EN — Rl PLEX )

The method used in obtaining the upper bound in the above result is a familiar one (see

and from this we obtain the result stated in the Theorem. O
e.g. [9, 34]). The method for obtaining the lower bound by choosing a discrete prior on a

well-separated set of # is also similar in many respects to standard lower bound methods,
such as those that use Fano’s inequality or Assouad’s lemma (see e.g. [12, 10, 59]), but the
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method is particularly clean in the present framework, giving a fairly good match to the
upper bound.

In some cases K. may not be a continuous function of €, and even so it may not be
obvious what kinds of asymptotic bounds on the risk R™"™% are implied by Lemma 7.
For such cases we make the following definitions.

Fix a totally bounded © and let fij(x) and f,(x) be any continuous, nondecreasing,
unbounded functions on (0, 00) such that

.. Kd0©,h) ) K:(O,h)
liminf ———= >1 and limsup ————= < 1. 13
oo fi(1/e) oo fu(l/€) (13)

For every positive real n let ¢(n) be the unique solution to the equation fi(1/¢) = ne?, and
let €,(n) be the unique solution to the equation f,(1/€) = ne?. Let

1
cu(n)

Fin) = fi [——) = neX(n) and Fu(n) = f. = né(n). (14)
() (=)

a(n)

Then we have the following lemma.

Lemma 8 For every integer n > 1,

1. o
liminf 22— > 1.

n—00 Fl(n/8) o

2. If lim.0b(€) < oo then for any function h(n) such that h(n) — 0o as n — oo,

MINIMaz

limsup ———— <1

and if there exists A > 0 such that RT;?KL” < oo then

MINIMaz

lim sup

n <1
n—oo. Fy(nh(n)logn) —

Proof: Using Lemma 7 and the definitions of f; and Fj, we have

MINIMaz min ICE . 7£62 n
1iminfR”7 > liminf ( 1(n/8)) 8 1(8))
ICE e E 2 E
> min (lim inf ~2%) liminf z€i(5)
>

min (hgr_l}(i)glf hld/aln/8)) ’(%(6;(78/)8)) : 1)

= 1.
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Now let N = N(n) = nh(n). Let lim.0b(¢) = b < oo. Then we also have

) Rminimax ) ICE (N)—|—bn62(N)
1 i/ B : u
TP Fu(nh(n)) = mmet Fu(N)
, ful/eu(N)) | b
<1
= lﬁﬁp( RN R
— 14 limsup——
- Hsveo’ h(n)
= 1.

The last inequality follows similarly, using the last inequality of Lemma 7. O
Essentially, when Fj(n) and F,(nlogn) are close asymptotically, as can often be arranged,
R;ninimax

this lemma shows that asymptotic rates for can be obtained by “solving” the

equation K.(0©,h) = ne*. This general approach was developed by Le Cam and Birgé
[42, 11, 12]. We illustrate it by applying the above lemma to all of the standard cases for
the asymptotic growth rate of the metric entropy K.(0,h).

Theorem 4 Assume there exists X > 0 such that RT;?YZ” < o0’

1. If © is finite then .
R — og |©] as n — oo.

2. If dim(0,h) = 0 then N
R ¢ o(logn).

3. Ifdim(O,h) = D where 0 < D < oo then

o D
anznzmax ~ glog n‘

4. If df(©,h) = 3 where 1 < 3 < oo then

log R™"™™* ~ 3loglog n.
5. If mo(0,h) = o where 0 < o < oo then
log RM™maT j - log n.

6. If mo(O,h) = oo or (0O,h) is not totally bounded, then

if RTM™M™ < oo then log R™™™ ~ logn else R™™™" = oo for all n.

5 Actually, only the upper bounds in parts (2)-(5) require the assumption that there exists A > 0 such

minimae
that Rl,p1+x < 00,
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Proof: As mentioned after Corollary 2, part (1) follows from that Corollary and Theorem 1.
Each of the results (2)-(5) follows easily from Lemma 8 by plugging in the appropriate rates
for f; and f,, and solving for F} and F,. We illustrate this for parts (3) and (5); the other
parts are similar. For part (3), since dim(0,h) = D where 0 < D < 0o, we may choose

filz) = fu(z) = Dlog .

Solving D log % = ne?, we find that

D
a(n) = e, (n) ~ wﬁlog n,

D
Fi(n) = F,(n) ~ glog n.

and hence by (14)

From the lower bound of Lemma 8, it follows that

MINIMaz

liminf 2— > 1.
n—-co D n -
- 5 log8

Let h(n) =logn. From the second upper bound of Lemma 8, it follows that

lim su L < 1.
i Dlog(nlog®n) —

The result in part (3) follows.
In part (5), since mo(©,h) = a where 0 < a < oo, for any 0 < § < a we can choose
filz) = 2% and f,(z) = 2°*%. Solving €**° = ne?, we find that

Fi(n) = nTtas  and Fu(n) = it

From the lower bound of Lemma 8, it follows that for all 0 < § < «,

Hence .
. . log R;nznlmax
liminf =—2——

! > 1.
n—>00 H—alogn

Now let h(n) = logn. Then from the second upper bound of Lemma 8, it follows that for
all 0 < 6 < a,

MINIMaz

lim sup - —— < 1.
n—00 (n 10g2 n) ﬁ
Hence | .
. O Rmznlmax
lim sup gan— <1.
n—oo 2—|——oz log n
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This establishes part (5).

To verify part (6), first note that the minimax risk R™"™% is nondecreasing in n.
Furthermore, if R™"™4¢ is finite, then it can grow at most linearly, as is seen in the following
series of inequalities.

Rrinimaz - — - pf sup Dz (Fy'||R)
dist. R on Yn 9€®
< inf  sup Der(PF|Q)
dist. @ on v 9e®
= n  inf sup D (FP|Q)
dist. @ on v 6e0
_ nR;ninimaac
Hence for any ©, either R™™™* = oo for all n or RI"™™™ js finite and bounded by

n R7mas for all n.
If (©,h) is not totally bounded then M., (0, h) is infinite for some ¢, > 0. In this case
the first lower bound from part (1) of Lemma 7 shows that

2
neg

Rminimax >
" - 2

foralln > 1. Hence R™™™%% < p in this case. If (0, k) is totally bounded but mo(0, h) = oo
then R7"M% < o0 and by the same reasoning as in the proof of part (5), for all a > 0,
Rminimax

hm iﬂfnia 2 .
B ()7

This, combined with the fact that R7"imer < p Riminimar implies that log R7"™ ~ log n.
O

The above theorem does not give very precise bounds in the infinite dimensional case.
Indeed, not much more can be said using the fairly crude notions of metric order and func-
tional dimension to measure the massiveness of infinite dimensional ©. To remedy this,
below is a more refined result.

Theorem 5 Assume there exists A > 0 such that RT;?KL” < 00. Let l(x) be a continuous,
nondecreasing function defined on the positive reals such that for all v > 0 and C >0

1.
Jipg A0
and
- (Caflog(e)))
Jim, I(2) L
Then
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KO, h) ~ 1 (3) then RP™ma o (/).
@

ciom = (1))

2. 1If for some a > 0,

then

(@)

]f hmb(c) < 0o then R;ninimax = na/(a+2) {l(nl/(a"‘?))} 2/(a+2)

e—0
else
(b) —
lim inf L >0
n—00 na/(a+2) [l(nl/(a+2))]2/(a+2)
and o
. anlnlmafl?
lim sup

n—oo pof(at2) [l(nl/(oz+2))]2/(o‘+2) (log n)a/(=+2)
Proof: Consider part (2) first. Since K.(©,h) < (%)al (%) we may choose
filz) = ax®l(x) and f,(x) = ba®l(x)

for suitable constants 0 < a < b. Solving fi(z) = n/2?, we find that

N 1/(a+2)
o~ (iwem)

where N = n/a. Here we use property (1) of [(x). Hence

[N/ ety D)
q(n) ~ (T) 5

and thus by (14), and again using property (1) of I(z),

Fy(n) = no/e+2) [l(nl/(a+2))}2/(0l+2)‘

By similar reasoning

Fu(n) = noz/(oz-I—Z) {l(nl/(a+2))}2/(a+2) ‘
From the lower bound of Lemma 8, and property (1), it follows that

MINIMaz
Ry

>0

lim inf
n—00  af(a+2) [l(n1/(a+2))]2/(a+2)
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From the second upper bound of Lemma 8, it follows that for any unbounded, increasing
function g(n),

MINIMaz
Rn

lim sup Y er™) < o0
P G w42 [ (ng(n) log )Y+ T (g1 log )/ (o4

Part (2b) follows easily from this, using property (2) of the function [(x). For part (2a), note
that from the first upper bound of Lemma 8, if lim._,o b(¢) < oo then the logn factors can
be removed from the lim sup above, yielding the desired result. Part (1) follows by a similar
argument, essentially setting @ = 0, and @ = b = 1, so that most terms in the denominators
of the expressions above go away, and tracking the lim inf and lim sup more precisely. O

Note that in finite dimensional cases, we have K, ~ Dlogt = [(1), and part (1) of the
above theorem gives R7™m ~ [(\/n) = % log n, as obtained in the previous theorem. Part
(1) generalizes this to infinite dimensional cases of finite functional dimension, in which, e.g.,

K. ~C (log %)ﬁ for # > 1. Part (2) does the same for cases in which © has finite metric
order.

The above theorem is not applicable in all cases. In particular, it can be shown that the
condition that RT;?KL” < oo in the above result and the preceding results of this section
cannot be removed. For example, this condition is violated by the O defined in Example 1.
In this case (0, h) is totally bounded and R™"% ~ n yet K. ~ (1/¢)?, which would yield
via Theorem 5 an estimated rate of \/n for R™"™  This is off by a factor of \/n. Of

course the lower bounds in Theorem 5 and the preceding results are valid in this and any
other case without any special assumptions, but in this case, we see that they are not tight.

8 Bounds on instantaneous minimax risk for various
loss functions

Here we show how the results of the previous sections can be used to give upper and lower
bounds on the instantaneous minimax risk of estimating a probability distribution for various
loss functions, as defined in section 3. One way to do this is to use Fano’s inequality, as
described in [10]. Here we look at a simple alternate approach.

Recall that the instantaneous minimax risk at time ¢ is denoted

MIntmaz

7y = inf sup APV L( Py, ),
’ P greo JYIT!

for loss function L. The instantaneous Bayes risk under prior u is defined similarly by taking
expectation over ©* instead of supremum, and denoted rfiffs Below we will consider other
loss functions, but for now we assume that L(P, Q) = Dgr(P||Q) and omit the subscript L.

While it is easily verified that Rﬁiyes =D i rfiyes, the exact relationship between the
instantaneous and cumulative minimax risks is less clear. However, Barron et al. [5, 18, 10]

have shown the following.
Lemma 9 [5/
Zr;ninimax 2 R;ninimax 2 nr;ninimaac

t=1
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Proof: For the first inequality, simply note that

P)

n n
Z r;mnzmax — Z lnf sup dP@t*_lDI(L(Pe*
t=1 t=1 P greco v
n
= inf)_ sup APy Dy (P
P t=10"€0 vt
n
> infsup } | AP Dicr (P
- P (A =IC] t=1 Y-t

Rminimax
n

P)

P)

For the second inequality, let u be any prior on ©. Let M, , = [o Pydu(0) be the Bayes
mixture for p, and Ptiayes(yt|yt_1) be the posterior predictive distribution for each 1 <t < n.
Fix n. For each y"~', let the strategy @, be defined by the predictive distributions

1 - ayes
Qe = _Zptjity :
n =1
Then for all §* € O, the instantaneous risk of the strategy (), at time n is
Tn7QM((9*) = /yn—l dPen*_lDKL(Pg* an#)

1 n
- Z/ dP;;;_lD](L(Pg*
=1 /Y

n_

1
= gDI«'L(Pen* M,.,.)

RnJDMBayes (0*)

Y

PBaySS)

top

n

where Pf“yes is the Bayes strategy for the cumulative risk under prior u. Here the inequality
follows from Jensen’s inequality and the next equality from the chain rule for relative entropy
(see e.g. [21], p. 23). It follows that the instantaneous minimax risk at time n is

minimax . *
rn = inf sup r, p(0%)
P grco
< inf sup erM(@*)
K ogxco

1. .
gl%f ;*lé% RnJDMBayes(e )
1

—inf sup R, 5(07)

n P ¢9*co ’

MINIMaz
Ry

IA

n

The penultimate equality follows the second part of Theorem 1. O

Using Lemma 8, the above lemma may be further refined to give the following rela-
tionships between the cumulative and instantaneous minimax risks under relative entropy
loss.
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Lemma 10 Fix a totally bounded © and let fi(x) and f,(x) be any continuous, nondecreas-
ing, unbounded functions on (0,00) such that

.. KA(O,h) ) K(0,h)
Iiminf ———= > 1  and limsup ———= < 1. 15
oo fi(1/e) e—oo fu(l/e€) (15)

For every positive real n let €(n) be the unique solution to the equation fi(1/e) = ne*, and
let €,(n) be the unique solution to the equation f,(1/€) = ne*. Let

1
a(n)

Then for every integer n > 1:

):ne%<n> and Fu(n)qu( ! ):nqz(n). (16)

cu(n)

Fi(n) = fi (

1. If prinimas < o for all t, Iy is differentiable and its derivative F] is nonincreasing,
then

8rminimax

limsup ——— > 1.

n—00 F/(n/S) -
2. If lim.0b(€) < oo then for any function h(n) such that h(n) — 0o as n — oo,

"’ nr;ninimaac <1
el Fu(nh(n)) =

and if there exists A > 0 such that RT;?YZ” < oo then

MIntmaz

) nr
lim sup

I <1
noeo Fy(nh(n)logn) —

Proof: The upper bounds follow directly from part (2) of Lemma 8, using the above result
that Rmnmas > ppminimaz - For the lower bound, let G(n) = Fj(n/8) and g(n) = G'(n) =
LF{(n/8). From part (1) of Lemma 8, and the above result that Y j_, ryrmimes > prminimaer
we have

o ?:1 r;ninimax
By the fundamental theorem of calculus G'(n) = [ g(t)dt + G/(0). Since g is nonincreasing,
Jo g(t)dt > 577, g(t). Since f; is unbounded, ¢ is unbounded, and thus so is > i, g(¢). It
follows that o

. . 2?21 T,;nlnlmal’

liminf =—=/————

n—reo Z?:l g(t)

Again, since Y7, g(¢) is unbounded, and since r/""™% < oo for all ¢, this implies that

> 1.

limsup —— > 1.

This gives the result. O
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In order to use the above lemma for other loss functions, such as squared Hellinger and
Ly loss functions, we need only bound these loss functions in terms of the relative entropy
loss. The following bounds are well known for any distributions P and ¢ on Y (see e.g. [42])

Dy (P,Q) < ||P = Q|| < 2Dyr(P,Q) (17)
In addition, using Lemma 4, it follows that

DiulP.Q) < Dn(P1Q) < supbs (T2 Dis(P.0) 1)

Finally, using Lemma 5 with e = ¢, = m, it can easily be shown that for any distribution

U such that C = [(dP)**(dU)™* < oo, there exists N > 1 such that for all n > N,
20

nlog"/?n

8logn

Drr(Pl|(1 - )Q +¢U) < Dy (P,Q) + (19)

Let r?gﬁm” denote the instantaneous minimax risk for the squared Hellinger loss, and
" HL

MInImaz

roil™" denote the instantaneous minimax risk for the L; loss. The above inequalities imply
the following relationships between these risks and the instantaneous minimax risk under

MIntmaz

relative entropy loss, r7

Lemma 11 1. o
rmznzmal’ L L
e minitmaxr minitmaxr

I <
bia(0) = P =

Minimaz MInImaz Minimaz
r <r < 2./r
n,D% = Tl = n,D%

3. If there exists 0 < X < 1 such that R77™ < oo then there exists an N > 1 such that

Lp14a
for all n > N,
MINIMaT
MIntmaz < 810gn mingmaac 231701+>\
n — ,D
A PHL n logA/2 n

Proof: Most of these results follow directly from the corresponding inequalities above. Only
two of them require comment. For the second inequality in part (2), note that

i = intewp [ AP~ B
P g*co JY"!
< 2inf sup dP;*_lDHL(Pg*,pn)

P grc0 JYn-!

2inf sup \//Yn—l dPﬁ_lD%IL(Pg*,pn)

P §*co

IA

= 2¢ir}f sup dPE D%, (Pye, P,)

P grco JY"!

= 92 rminimax
= 5 .
n,D%
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The first inequality comes from (17) and the second from Jensen’s inequality.
To see the inequality in part (3), for any v > 0, let U, be a distribution such that

CW = sup (dP@)l—l—/\(dUw)_/\ S Rminimax T 5.

9c6 Lip14a
Then inf 5o C, = RT;?KL” Now note that for all v > 0,
r?mm” = inf sup AP} Dycr( Py pn)

P gre0 JY !
< inf sup AP} Dycp(Pos||(1 — en)pn + e, U,)

P gre0 JY !

8logn A 2C
< inf su AP D% (P, P) + —— 21—
- P e*e% yn-1 0 (o ) nlogA/2 n
_ 8 log N inimaz QCW
B N D nlog™?n’

The result follows. O
We illustrate this lemma first by giving a simple proof that when © is finite, the instan-
taneous minimax risk decreases exponentially in n for all of the above loss functions.

Theorem 6 [f O is finite then there exist a > 0 and 0 < b < 1 such that for all n > 1,

minimax minimax < ab™ and rminimax < Clbn/2

"n » DYy ||l

Proof: Let p be the uniform distribution on ©. By Corollary 3, there exist A > 0 and
0 < b < 1 such that for all n
RP4v > log [©] — Ab".

. B .
Since Rﬁiyes =i i, it follows that

rBayes S Z rBayes _ log |®| . RBayes S Abn_l.
t=n

LaYS t#" n—l,p,

Thus if P = Pf‘”’es, the Bayes strategy for the uniform prior p, then

L
Z L() < ALY
ieo |9
1t follows that for all 8* € ©
o (0°) < 1O AB.
Let a = |©]A/b. Then

MIntmaz n
re <r,p< ab”.

The remaining inequalities follow from the bounds in parts (1) and (2) in Lemma 11, respec-
tively. For the second bound we can replace the previous a with 2\/a. O
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In order to see how these results can be used to derive bounds on the instantaneous
minimax risk for more general O, let us make the following definition. For any loss L, let us
define the best exponent for the instantaneous minimax risk by

er, = sup{x : limsup =L—— < 1}

n—00 n—% -

Theorem 7 Assume there exists X > 0 such that RT;?KL” < oo0. Then the bounds on ey,

given in the following table are valid.®

size of © ‘ loss function
Do [ Dh | T
O is finite €Dy, =00 | €py =0 e|l.| = o°
dim(©,h) =0 €py, > 1 €p2 . >1 el = 1/2
dim(0,h) = D where 0 < D < o0 €p,, = 1 ep2, = 1 12 <¢p <1
df(O,h) = 5 where 1 < 8 < o0 €p,, = 1 ep,, =1 12 <¢p <1
mo(0,h) = a where 0 <a < oo | epy, = 537 | €02, = 555 | 755 = M < 72a
mo(0,h) = oo €p,, =0 ep2, =0 e =0
(©,h) not totally bounded ep,, =0 epz, =0 e =0

Proof: The results for finite © follow directly from the previous theorem. The remaining
results follow from Lemma 10 and Lemma 11, and in each case the proof is analogous to
that of the corresponding result in Theorem 4. We give the derivation in two of the cases;
the remaining derivations are similar.

As in the proof of Theorem 4, if dim(©,h) = D where 0 < D < oo, we may choose
filx) = fu(x) = Dlog x, and hence

D
Fi(n) = F,(n) ~ Elog n.
From the lower bound of Lemma 10, it follows that

) 16nrminimax
limsup ——2—— > 1.

Let h(n) =logn. From the second upper bound of Lemma 10, it follows that

MIntmaz

) 2nr]
lim sup — < 1.
n—co D log(nlog”n)

Hence ep,, = 1.
minimar

Since r
n7D§{L

< pminimar from the upper bound above we also have

Minimaz

2nr
n,D%L

li <1.
Hae P D log(nlog®n) ~

6 Actually, the upper bounds in the first column only require the weaker assumption that #7*"7 < oo

for all ¢, and in the case that © is finite none of the results require any additional assumptions.
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Combining the lower bound above with part (3) of Lemma 11, we see that

(128n log n) mggm““’ 32R§mmmax (128n log n)rmiggmax
1 HL 1 — P DAL >,
TSP D D g2 P D =
Hence €2 = 1.
HL o
Since et < r;”fmm“x, it follows that
bl HL bl
(128nlog n)rmmﬂm”
Ii i > 1.
TP Y)) =

Since rp"" < 2, /™, from the above upper bound for r"75™*" we get
g W

7’L,||

Ii 1 2n MINImaz <1
11 su T .
noee! 2 Dlog(nlog®n) ) ™I =

It follows that 1/2 < ¢ < 1.
Skipping to the last line of the table, when mo(©,h) = a where 0 < a < oo, for any
0 < § < a we can choose fi(z) = 2*% and f,(x) = %%, yielding

Fl(n) = n2$;i6 and Fu(n) = n2$2i6

From the lower bound of Lemma 10, it follows that for all 0 < ¢ < a,

) 8r;ninimax
lim sup > 1.
n— 0o 2+a+5(n/8) 2+a 24¥a—10

Now let h(n) = logn. Then from the second upper bound of Lemma 10, it follows that for
all 0 < 6 < a,

MIntmaz
nr

lim sup L <1.

n—00 (n log n)2$:i§ -

Hence ep,., = 2_%& The bounds for €pz, and e in this case are then derived from the
above bounds in the same manner they were previously for the finite dimensional case. O
Again, 1t is easy to see the assumption that Ry < oo cannot be removed from this

theorem. In particular, for the ® of Example 1, it can be shown that mo(©,h) = 2, yet
epz L€ 2> 1 (too high for Theorem 7 to apply) and ep,., = 0 (too low).

9 Example application of the minimax bounds: Non-
parametric density estimation

Here we give a brief, fairly classical example just to illustrate how one may apply the results
given above. Let us assume that the statistician observes a set of n observations y,...,y,
which are drawn independently from a density dPs(y), § € © on the interval [0,1]. As in

39



[59], let © be the Lipschitz class F}, ,(C, L) of densities satisfying sup,¢p 7 [dPs(y)| < C and
having derivatives dPék)(y) of order & < p with the Lipschitz condition on the p- th derivative
|dP;p)(y) — dP;p)(y’)| < Lly — ¢'|* for y,y" € [0,1]. Since the functions in F,,(Ci, L) are
uniformly bounded, they have an integrable envelope function, and hence RT;?YZ” < oo for
all A > 0. Furthermore, since the functions in F, ,(Ci, L) are uniformly bounded, all L,
distances (¢ > 1) are equivalent. As shown by Barron and Yang [10], a further restriction
to uniformly lower bounded densities also insures that the condition lim._ b(¢) < oo holds,
and makes the Hellinger distance equivalent to the L, distances, without changing the metric
entropy asymptotically. By a result of Clements [20], the metric entropy of © under [,
distance is given by

Ko(©, L) = ¢ #a.

Hence )

K (O,h) < e wta.

Thus from Theorem 5 we get Rmmimes = nm, and from Theorem 7 we get that the
best exponent for the instantaneous minimax risk is ep,, = 2(2])(:13;)_1
KIL—divergence, and the same when the loss is the squared Hellinger distance, while it is
within a factor between 1/2 and 1 of this for the L; loss. Sharper results are known (see e.g.

12, 32]).

Since the metric entropies are known for many interesting classes of functions, many

when the loss is the

more examples of this type are possible. Many such examples are given by Birgé [11, 12]

and Barron and Yang [10].

10 Discussion

We have shown that under relatively weak assumptions, (in particular, whenever there exists
a distribution U and a A > 0 such that the (1 4+ A)-affinity between Py and U is uniformly
bounded for all # € ©) one can obtain explicit bounds on the mutual information /(0*;Y™)
between the true parameter and the observations in terms of a Laplace transform of the
Hellinger distance in ©, and from these one can obtain bounds on the cumulative minimax
risk in estimating a distribution in © under relative entropy loss in terms of the metric
entropy of © with respect to Hellinger distance. In fact, in each case only the upper bounds
depend on the assumptions; the lower bounds hold for any ©. We also show by example
that some assumptions are needed to get the type of general characterizations of the mutual
information and minimax risk in terms of the Hellinger distance that we obtain. It remains
open to get a useful characterization of these quantities for the cases where our assumptions
do not hold.

We also show how general bounds on instantaneous risk in estimating a distribution for
various loss functions can be derived in a very simple manner from the bounds on cumulative
risk. While the resulting bounds may not always be as tight as those obtained by more direct
methods for specific ©, the approach taken here does have the advantage of giving a simple,
unified and general treatment to this problem, moreover, one in which no more sophisticated
mathematical methods than Jensen’s inequality are needed to derive the results. In the
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future we hope to further explore the applications of these results to specific estimation
problems, such as the “concept learning” or “pattern classification” problems examined in
current machine learning and neural network research. Some initial results along these lines
can be found in [46, 36] (see also [28, 43]).

There are also several other directions for further research one might pursue. Apart
from general tightening of the bounds, these include treating the case of nonindependent
observations, extending the results giving bounds for individual §* in Theorems 2 and 3
to the case where Py« is not a distribution in © but is “close to” a distribution ©, and
giving a more complete characterization of the mutual information /(©*;Y™) in terms of the
metric entropy properties of © for the infinite dimensional case, as was done for the finite
dimensional case in [36].

11 Appendix
Here we give the proof of Lemma 5.

Lemma 12 Assume 0 < a <1 and A > 0. Let P, R and U be any distributions on Y. Let
cy = [dPYNU. Let Q = (1 — €)R + €U for some ¢ > 0 such that % < A2 and
€ < e /CU=) " Thep

1
€

2¢log L N
_ o e /2
T—a)f(e) O™

21lo
Drr(P||Q) < &

) D.(P, R) +

where
a+(1—a)y—at~™

]l -«

foz(x) =

Proof. We use the easily verified fact that for 0 < o < 1 and 0 < & < 1, f,(x) is positive

and decreasing in x. Let Yo = {y : dP(y) = 0}. Fory € Y — Y, let S(y) = Z%(% and

T(y) = %Eyy;. Then using Equations (3) and (4), and the definition of b,, we have

MﬂmmzﬁywwaM$+@m (20)

—10

Consider two cases for y € Y — Y.

1. S(?) > € or T(y) > e. Here we note that since S(y) = (I_E)d{j](Dy(LTdU(y) > er(y; =

eT'(y), in either case S(y) > ¢*. Hence

e +2logt—1 2logt

bo(S(y)) < bul(e') = —— < ¥

since b, is decreasing.
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2. S(y) < e and T'(y) < e. In this case

B S(y)—l—log%— 1 logﬁ log%—l—logﬁ 10g% log%
PO =) S R S AW S ) ZET

where in the last inequality we use the fact that S(y) < €* and f,(x) is decreasing in

x for 0 < x < 1, and in the previous inequality we use the fact that S(y) > €T'(y) and
that log(x) is increasing.

Let |
W(e) = / dPlog —.
() y:S(y)<e? and T(y)<e )

From (20), (21), and (22) it follows that

2log L
D( P £
x(P]|Q) < i)

) 21lo
since D, (P, Q) = fy_yo dPf,(S) + fYo dQ and fa(f2
Note now that

[, APRAS) + [ 4@+ Wie) <

o =

> 1.

~—

D.(P,Q) = 1ia (1 - /(dP)“((l — ¢)dR + edU)l—a)
< 1ia (1 - [tarya - e)dR)l—a)
= 1ia (1 - /(dP)“(dR)l‘“) + ia (1-(-o)
= Da(P,R) + ia (1—(1—e')
< D.(P,R)+ —
o 2log ! 2¢log L
Dir(Pl|lQ) < fa(GZSDa(P7 R)+ ———=— 4+ W(e) (24)

Finally, note that T'(y) < € implies that (T(Ey)) ’ > 1 and loig)(gl(/le/)e) < A/2 implies that

A
10%% < (%) 2 for all v <'e. Hence when %

W(e) = / AP log —
() y:S(y)<e? and T(y)<e T

< ap (£) 10p L

- /y:S(y)Se2 and T(y)<e (T) 8 T

A
y:S(y)<e? and T(y)<e T
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6A/z] P AU
y:S(y)<e? and T(y)<e

< & [aprar=

A2

= € Ch

The result follows then from Inequality (24). O
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