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these, bounds on the cumulative minimax risk are given in terms of the metric entropy of �with respect to the Hellinger distance. The assumptions required for these bounds are verygeneral and do not depend on the choice of the dominating measure. They apply to both�nite and in�nite dimensional �. They apply in some cases where Y is in�nite dimensional,in some cases where Y is not compact, in some cases where the distributions are not smooth,and in some parametric cases where asymptotic normality of the posterior distribution fails.Using these bounds for cumulative relative entropy risk, we also examine the minimax riskof this game at speci�c times t for various loss functions L, including the relative entropy,the squared Hellinger distance, and the L1 distance.1 IntroductionMuch of classical statistics has been concerned with the estimation of probability distribu-tions from independent and identically distributed observations drawn according to thesedistributions. If we let P�� denote the true distribution generating the observations and P̂tthe estimated distribution obtained after seeing t � 1 independent observations, then thesuccess of our statistical procedure can be de�ned in terms of a loss function that measuresthe di�erence between the true distribution P�� and the estimated distribution P̂t. One suchloss function has proven to be of importance in several �elds, including information theory,data compression, mathematical �nance, computational learning theory, and statistical me-chanics. This is the relative entropy function. Further, in these �elds, special importanceis given to the cumulative relative entropy loss su�ered in a sequential estimation setting,in which there are n total observations, but these observations arrive one at a time, and ateach time t a new, re�ned estimate P̂t is made for the unknown true distribution P�� , basedon the t� 1 previous observations. This is the setting that we study in this paper.The average of the cumulative loss over all sequences of n observations generated ac-cording to the true distribution is the (cumulative relative entropy) risk. For a given familyfP� : � 2 �g of distributions, two types of risk are of interest in statistics. One is the mini-max risk, which is the minimum worst-case risk over possible true distributions P�� , where�� 2 �, and the minimum is over all possible sequential estimation strategies. The other isthe Bayes risk, which is the minimum average-case risk over possible true distributions P��drawn according to a prior distribution � on �, and the minimum is again over all possiblesequential estimation strategies. For cumulative relative entropy loss, the Bayes risk has afundamental information theoretic interpretation: it is the mutual information between arandom variable representing the choice of the parameter �� of the true distribution, andthe random variable given by the n observations [37, 27, 18]. This provides a beautifulconnection between information theory and statistics.This connection also extends to other �elds, as is discussed in [18, 8]. In data compression,the cumulative relative entropy risk is the redundancy, which is the expected excess codelength for the best adaptive coding method, as compared to the best coding method that hasprior knowledge of the true distribution [18, 41, 44]. The minimax risk is called \information"channel capacity [21], p. 184. In mathematical �nance and gambling theory, the cumulativerelative entropy risk measures the expected reduction in the logarithm of compounded wealthdue to lack of knowledge of the true distribution [9, 18]. In computational learning theory,2



this risk is the average additional loss su�ered by an adaptive algorithm that predicts eachobservation before it arrives, based on the previous observations, as compared to an algorithmthat makes predictions knowing the true distribution [34, 35]. Here we assume that theobservation at time t is predicted by the \predictive" probability distribution P̂t, formedby the adaptive algorithm using the previous t � 1 observations, and that when this tthobservation arrives, the loss is the negative logarithm of its probability under P̂t. Finally, instatistical mechanics, the Bayes risk can be related to the free energy [45, 46].In this paper, we provide upper and lower bounds on the Bayes risk for cumulativerelative entropy loss in the form of Laplace integrals of the Hellinger distance between pairsof distributions in fP� : � 2 �g. We illustrate these bounds in a number of special cases,then use them to characterize the asymptotic rate of the minimax risk in terms of the metricentropy of fP� : � 2 �g under the Hellinger distance. The methods used here have theadvantage of simplicity, with proofs amounting to little more than simple applications ofJensen's inequality. The results are also quite general. The bounds apply to both �nite andin�nite dimensional �. They apply in some cases where the space of observations is in�nitedimensional, in some cases where it is not compact, in some cases where the distributionsare not smooth, and in some parametric cases where asymptotic normality of the posteriordistribution fails. The bounds are also fairly tight. However, in smooth parametric cases,our general bounds are too crude to give the precise estimates of the low order additiveconstants that were obtained by Clarke and Barron [18, 19].The paper is organized as follows. In sections 2 and 3 we give precise de�nitions of therisks that we evaluate, and discuss the conditions required for our bounds to hold. Here wealso compare our bounds to those obtained previously by other authors. The bounds aregiven in section 4, followed by examples in sections 5 and 6 showing how they can be applied.Then in section 7 we give the characterization of the minimax risk. In sections 8 and 9 weillustrate further applications of our results by showing how they can be used to give boundson the asymptotic rates for the minimax relative entropy risk at speci�c time t, as opposedto the cumulative risk. These results are then used further to obtain similar bounds for therisk under other loss functions, including the Hellinger and L1 distance. Here the results arenot as sharp as one can obtain by other methods, such as those of Le Cam [15, 42], Birg�e[11, 12], Hasminskii and Ibragimov [32], and Wong and Shen [55], but these applicationsnevertheless illustrate the general utility of the method. Finally, we discuss some possiblefurther work in section 10.2 Basic de�nitions, notation and assumptionsThe following notation and assumptions will be used throughout the paper.Let Y be a complete separable metric space. All probability distributions on Y discussedin this paper are assumed to be de�ned on the �-algebra of Borel sets of Y . Let � be aset, and for each � 2 �, let P� be a probability distribution on Y . We assume that for any� 6= �� 2 �, the distributions associated with � and �� are distinct in the sense that thereis a Borel set S � Y such that P�(S) 6= P��(S). In addition, we assume there is a �xed�-�nite measure � on Y that dominates P� for all � 2 � (i.e. for any Borel set S � Y ,�(S) = 0 implies P�(S) = 0). We will also make (implicitly) the assumption that any other3



distribution Q on Y mentioned in the results below is also dominated by �. None of ourresults depend on the choice of the dominating measure �, hence for any distribution Q, theRadon-Nikodym derivative dQd� will be abbreviated simply as dQ, following the conventionin Le Cam's text [42]. Furthermore, all integrals in the results below are assumed, withoutspeci�c notation, to be taken with respect to the measure �, unless otherwise indicated.Thus for a function f on Y and distribution Q on Y , the expectation of f is denotedZ fdQ = ZY dQd� (y)f(y)d�:Hence, in the special case that Y is countable and � is the counting measure, for a probabilitymass function Q on Y Z fdQ = Xy2Y Q(y)f(y):We will also need to treat probability distributions over �, which we will refer to as priordistributions. As each � 2 � is associated with a distinct distribution P� on a completeseparable metric space, we can de�ne prior distributions on � with respect to the Borel setsof the topology of weak convergence of the P� measures. We assume that the set fP� : � 2 �gis itself measurable w.r.t. this topology. All prior distributions � on � used in this paperare assumed to be Borel distributions of this type, and suprema over priors are also assumedto be only with respect to Borel distributions of this type. Further discussion of these issuescan be found in the appendix of [25].Finally, for integer or real-valued functions f and g, we say f � g if limn!1 f(n)g(n) = 1, andf � g if lim infn!1 f(n)g(n) > 0 and lim supn!1 f(n)g(n) <1. All logarithms are natural logarithmsunless otherwise speci�ed. We assume throughout that 0 log 0 = 0 log x0 = 0, where x is anynonnegative �nite number. We will also employ functions taking values in the extendedreals [�1;+1], and and in particular use the extended log function obtained by de�ninglog 0 = �1 and log1 = 1. Expectations over extended real-valued functions are de�nedwhenever they do not take both the value +1 with positive probability and the value �1with positive probability. The expectation is +1 if this value has positive probability, andsimilarly for �1.3 Statement of the problem: the game of estimating aprobability distributionWe view the problem of estimating a probability distribution from the set of distributionsfP� : � 2 �g as a game in which Nature plays against the statistician. First Nature picks�� 2 �. We refer to �� as the (true) state of Nature. Then for some n � 1, a sequence Y n =Y1; : : : ; Yn of i.i.d. random variables are observed, each distributed according to P�� . Theparticular sequence of values observed for these random variables is denoted yn = y1; : : : ; yn.For each time t between 1 and n, the statistician forms an estimate P̂t = P̂t(ytjyt�1) for theunknown distribution P�� , based on the values yt�1 = y1; : : : ; yt�1. In particular, for every tand every yt�1, P̂t is a distribution over Y called the predictive distribution at time t, and4



the set of all such predictive distributions, for all t and yt�1, is called the (predictive) strategyof the statistician, and denoted simply as P̂ . Note that in this formulation, the statisticiandoes not estimate the parameter �� itself, but rather the distribution it represents. Thisallows the statistician, if necessary, to use predictive distributions that are not in the setfP� : � 2 �g.Let L be a function that maps from pairs of distributions on Y into [0;1]. We call L theloss function. Speci�c loss functions we will consider include the KL-divergence or relativeentropy, de�ned by L(P;Q) = DKL(P jjQ) = Z dP log dPdQ;the (squared) Hellinger distance, de�ned byL(P;Q) = D2HL(P;Q) = Z �pdP �qdQ�2 ;and the L1 distanceL(P;Q) = jjP �Qjj = supjf j�1 ����Z fdP � Z fdQ���� = Z jdP � dQj:For technical reasons, we will also consider the family of loss functions de�ned by the �-a�nities, � > 1, de�ned byL(P;Q) = ��(P;Q) = Z (dP )�(dQ)1��:All of these loss functions are in the family of functions investigated by Csisz�ar, known asf-divergences, and all f -divergences are easily seen to be independent of the dominatingmeasure [22]. The bulk of the paper is devoted to the relative entropy loss, so this loss isassumed unless otherwise speci�ed.For a �xed choice of loss function L, if the statistician uses the strategy P̂ , then the risk(to the statistician) at time t, when �� is the state of Nature, is given byrt;P̂ ;L(��) = ZY t�1 dP t�1�� L(P�� ; P̂t):The subscript L is omitted when the loss function is the relative entropy, here and in subse-quent notation. The cumulative risk for the �rst n observations isRn;P̂ ;L(��) = nXt=1 rt;P̂ ;L(��):The bulk of this paper discusses cumulative risk, which is henceforth referred to simply asrisk, while the risk at time t is referred to as the instantaneous risk. For the relative entropyloss, the cumulative risk has a particularly simple interpretation. For any strategy P̂ , de�nethe distribution P̂ on Y n by P̂ (yn) = nYt=1 P̂t(ytjyt�1):5



In this way we can identify prediction strategies with joint distributions on Y1; : : : ; Yn. ThenRn;P̂ (��) = nXt=1 ZY t�1 dP t�1�� (yt�1) ZY dP��(yt) log dP��(yt)dP̂t(ytjyt�1) = DKL(P n�� jjP̂ ) (1)by the chain rule for relative entropy (see e.g. [21], p. 23).Of course the statistician seeks a strategy that minimizes risk. One approach is to assumethat Nature is a strategic adversary, and hence selects the worst case �� for any particularstrategy of the statistician. In this case, the best strategy for the statistician is one thatminimizes the worst-case risk, and the value of the game is the minimax riskRminimaxn;L = infP̂ sup��2�Rn;P̂ ;L(��):A strategy P̂ that achieves this minimax value is called a minimax strategy. For the instan-taneous risk, the corresponding minimax value isrminimaxt;L = infP̂ sup��2� rt;P̂ ;L(��):The other approach is the Bayesian approach, where one seeks to minimize the averagerisk. Here we might imagine that Nature chooses �� at random according to a prior probabil-ity distribution � on �. Then the statistician seeks to minimize the average risk (accordingto �), and the value of the game is the Bayes riskRBayesn;�;L = infP̂ Z� d�(��)Rn;P̂ ;L(��):A strategy P̂ that achieves this value is called a Bayes strategy. For the instantaneous risk,the corresponding value is rBayest;�;L = infP̂ Z� d�(��)rt;P̂ ;L(��):In the Bayesian approach there are two random variables, ��, giving the choice of the stateof Nature, and Y n = Y1; : : : Yn, giving the sequence of observations. Their joint distributionde�nes the behavior of Nature. The marginal distribution of Y n, de�ned byMn;�(yn) = Z� d�(��)P n��(yn);is of particular importance here. Breaking Mn;� down into a product of conditional distri-butions, we can write Mn;�(yn) = nYt=1PBayest;� (ytjyt�1);where PBayest;� (ytjyt�1) = Mt;�(yt)Mt�1;�(yt�1) :6



The distributions PBayest;� are called predictive posterior distributions. These form a Bayesstrategy for relative entropy loss, which we call PBayes� . To see this, note that by (1), thedi�erence between the average cumulative risk for an arbitrary strategy P̂ and the strategyPBayes� isZ� d�(��) �DKL(P n�� jjP̂ )�DKL(P n�� jjMn;�)� = Z� d�(��) ZY n dP n��  log dP n��dP̂ � log dP n��dMn;�!= ZY n dMn;� log dMn;�dP̂= DKL(Mn;�jjP̂ ) � 0:It follows that the (cumulative) Bayes risk for relative entropy loss is given byRBayesn;� = Z� d�(��)DKL(P n�� jjMn;�) = I(��;Y n);the mutual information between the parameter �� and the observations Y n. (See [21], p.18, for general de�nition and discussion of the mutual information.)It also turns out that for relative entropy loss, there is a simple, universal relationshipbetween the Bayes risk RBayesn;� and the minimax risk Rminimaxn . This result can be obtainedwith limited e�ort from the general results in an early paper of Le Cam [14]. Special cases ofthe result were derived by Gallager [29] and Davisson and Leon-Garcia [23], and the generalresult is given in [33].Theorem 1 [33] Rminimaxn = sup� RBayesn;� ;where the supremum is taken over all (Borel) probability measures on the parameter space�. Moreover, Rminimaxn = inf� sup��2�Rn;PBayes� (��):Several authors have studied the Bayes risk RBayesn;� , or the equivalent mutual informationI(��;Y n), for the case of a parametric family of distributions fP� : � 2 �g. Early work byIbragimov and Hasminskii showed that I(��;Y n) � (D=2) log n when Y is the real line andthe conditional distributions P� are a smooth family of densities indexed by a real-valuedparameter vector � in a compact set � of dimension D, and certain other conditions apply[37]. In this case they were even able to estimate the lower order additive terms in thisapproximation, which involve the Fisher information and the entropy of the prior. Furtherrelated results were given by Efroimovich [27] and Clarke [17]. Clarke and Barron gave adetailed analysis, with applications, of the risk of the Bayes strategy as a function of the truestate of Nature [18], discussing the relation of the Bayes risk to the notion of redundancyin information theory, and giving applications to hypothesis testing and portfolio selectiontheory. These results were extended to the Bayes and minimax risk in [19] (see also [7]).Related lower bounds, which are often quoted, were obtained by Rissanen [51], based oncertain asymptotic normality assumptions. Further extensions of this work are given by7



Yamanishi [56, 58, 57]. Amari has developed an extensive theory that relates the risk when�� is the true state of Nature to certain di�erential-geometric properties of the parameterspace � in the neighborhood of �� involving Fisher information and related quantities [2, 3](see also [60, 40]).Some authors have also looked at the value of the relative entropy risk in nonparametriccases as well, e.g. [6, 10, 52, 59, 55]. Also, the issue of consistent estimation of a generalprobability distribution with respect to relative entropy is addressed in [1, 41]. However, inthe nonparametric case, more extensive work has been done in bounding the risk for otherloss functions (see e.g. [24, 38]). While this work is too extensive to summarize here, wedo note that some authors have also taken the general approach that we take here in usingnotions of metric entropy (de�ned below), and speci�cally using the Hellinger distance inobtaining these bounds (e.g. [42, 11, 12, 32, 54, 13, 10]). The only authors we have foundwho have applied this methodology to the relative entropy risk are Wong and Shen [55] (seeCorollary 1, p. 360) and Barron and Yang [10]. This work is somewhat complementary toours, in that it treats instantaneous risk, whereas we focus on cumulative risk. The toolsthat Wong and Shen employ are considerably more sophisticated, involving bracket entropymethods from empirical processes, and it appears that the boundedness assumptions theymake (e.g. in Theorem 6) are a bit stronger than ours (see the discussion of integrableenvelop functions at the end of section 4.2 below). Di�erent assumptions, and di�erentmethods (using Fano's inequality) are used to obtain related general results in [10].In this paper we describe a new approach, employing the Hellinger metric and certainLaplace integrals, to bounding both the Bayes and minimax risks for the cumulative relativeentropy loss, and the instantaneous minimax risk for all three losses mentioned above.The assumptions required for these general bounds are fairly mild. No special assump-tions are needed for the lower bounds on the risk. To describe the assumptions needed forthe upper bounds, recall that for � > 1, ��(P;Q) = R (dP )�(dQ)1��. Hence, at time t = 1,i.e. when no observations have been made and the statistician must use some �xed a prioriestimate P̂ for the true distribution P�� , if the loss function is L = �1+� for � > 0 then theinstantaneous minimax risk is the same as the cumulative risk for n = 1, and is given byrminimax1;�1+� = Rminimax1;�1+� = infP̂ sup�� Z (dP�� )1+�(dP̂ )��:For a prior distribution � on �, the corresponding Bayes risk isrBayes1;�;�1+� = RBayes1;�;�1+� = infP̂ Z� d�(��) Z (dP�� )1+�(dP̂ )��:For our upper bounds on the minimax risk we make the assumption that there exists � > 0such that Rminimax1;�1+� < 1, and for the Bayes risk, that RBayes1;�;�1+� < 1. We also give anexplicit formula for RBayes1;�;�1+� . Further discussion of these assumptions, including some simplesu�cient conditions for them to hold, and an arti�cial example in which they fail, is givenat the end of section 4.2. 8



4 Bounds on mutual information and relative entropydistance to a mixtureSince we can obtain the minimax risk as a supremum of Bayes risks, we now focus ourattention on the Bayes risk. As noted above, the Bayes risk RBayesn;� is the mutual informationI(��; Y n) between the random variable �� giving the choice of �� according to the prior �and the observations Y n. We now give general bounds on this mutual information. Inaddition, since the risk for a particular state of Nature �� using the Bayes strategy PBayes� isRn;PBayes� (��) = DKL(P n�� jjMn;�);where Mn;� = R P n� d�(�), we will seek bounds for this quantity as well. The latter boundsactually address the general problem of bounding the relative entropy distance from an n-foldproduct distribution to a mixture of such distributions.In obtaining these bounds, we use several notions of \distance" between probabilitydistributions based on the �-a�nities. One such family of distances are the I-divergencesintroduced by Renyi [49]. For any real � 6= 1, and distributions P and Q, the I-divergenceof order � is de�ned by I�(P jjQ) = 1�� 1 log Z (dP )�(dQ)1��: (2)For 0 < � < 1, a related set of distances is de�ned byD�(P;Q) = 11� � �1 � Z (dP )�(dQ)1��� = 11� � Z ��dP + (1 � �)dQ� (dP )�(dQ)1��� :(3)Since �x + (1 � �)y � x�y1�� � 0 for any x; y � 0 and 0 � � � 1, the integrand iseverywhere nonnegative in the rightmost de�nition of D�, showing that D�(P;Q) � 0. (Thisis essentially H�older's inequality.) Since � log x � 1�x, it follows that I�(P jjQ) � D�(P;Q),and hence I�(P jjQ) � 0 as well. Since � log x � 1 � x for x near 1, these quantities aresimilar when the �-a�nity R (dP )�(dQ)1�� is close to 1. Finally, for the case � = 1, wede�ne D1(P;Q) = I1(P jjQ) = DKL(P jjQ) = Z  dQ� dP � dP log dQdP ! : (4)Since log z � z � 1, it follows that y � x� x log yx � 0 for all x; y � 0, hence the integrandin the rightmost expression is everywhere nonnegative. It can be shown that both D�(P;Q)and I�(P jjQ) are increasing in � for � > 0.One important special case of the above distances is the squared Hellinger distanceD2HL(P;Q) = D1=2(P;Q) = Z (pdP �qdQ)2:Unlike the other distances and divergences discussed above, the distance DHL(P;Q), i.e. thesquareroot of the above de�nedD2HL, is a metric, since it is symmetric and satis�es a triangleinequality. This metric has been used to give bounds on the risk of estimation procedures instatistics by many authors, including Le Cam [42], Birg�e [11, 12], Hasminskii and Ibragimov[32], and van de Geer [54]. 9



4.1 Basic boundsOur main theorem gives bounds on I(��;Y n) and DKL(P n�� jjMn;�) in terms of the logarithmsof two Laplace transforms of the I divergence, one at the value � = 1 (the relative entropy)and the other at some � between 0 and 1.Theorem 2 Let � be any prior measure on � and let 0 < � < 1. For each � 2 � let Q� bean arbitrary conditional distribution on Y given � and Qn� be the n-fold product of Q�. Forevery n � 1,1. � Z� d�(��) log Z� d�(~�)e�n(1��)I�(P��jjP~�) � RBayesn;�= I(��;Y n)� � Z� d�(��) log Z� d�(~�)e�nI1(P�� jjQ~�):2. For any 
 > 0 there exists a subset �
 of � with measure at least 1 � 2e�
 under theprior � such that for all �� 2 �
� log Z� d�(~�)e�n(1��)I�(P�� jjP~�) � 
 � Rn;PBayes� (��)= DKL(P n�� jjMn;�)� � log Z� d�(~�)e�nI1(P��jjQ~�) + 
:The upper bound of part (1.) is similar to results given in [6], and is mentioned therefor the case P = Q. To the best of our knowledge, the lower bound, and the results in part(2.), are new.The proof is given in a series of lemmas and calculations. We prove the upper bounds ofboth parts of the theorem �rst, then the lower bounds. In establishing the bounds in part(2.), we will show that there is a set of �-measure at most e�
 on which the lower boundfails, and similarly for the upper bound. Hence both bounds hold on the complement of theunion of these two sets, which has �-measure at least 1� 2e�
 .We begin with the upper bounds. This requires the following lemma which has beenpreviously utilized in the framework of Statistical Physics [53].Lemma 1 Let P = P (w) be a measure on a set W and Q = Q(v) be a measure on a set V .For any real-valued function u(w; v),� ZV dQ(v) log ZW dP (w)eu(w;v) � � log ZW dP (w)eRV dQ(v)u(w;v):Proof: First note that by H�older's inequality, for any real-valued functions u1 and u2 and0 � � � 1, ZW dP (w)e�u1(w)+(1��)u2(w) = ZW dP (w)(eu1(w))�(eu2(w))(1��)� �ZW dP (w)eu1(w)�� �ZW dP (w)eu2(w)�(1��)10



Taking logs, this shows that log RW dP (w)eu(w;v) is convex in u. The result then follows byapplying Jensen's inequality. 2We also use this simple lemma, suggested to us by Meir Feder. Let P = P (v;w) bea measure on the product space V � W , with conditional distribution P (vjw) on V andmarginal distribution P (w) on W .Lemma 2 For any random variables W and V and nonnegative function f(v;w) such thatRV�W dP (v;w)f(v;w) = 1,1. ZV�W dP (v;w) log f(v;w) � 02. For any 
 > 0, Pr�w : ZV dP (vjw) log f(v;w) � 
� � e�
Proof: For the �rst part, RV�W dP (v;w) log f(v;w) = �1 < 0 if f(v;w) = 0 on a set ofpositive measure. Otherwise, note that by Jensen's inequalityZV�W dP (v;w) log f(v;w) � log ZV�W dP (v;w)f(v;w) = 0:Here we employ the convention that 0 log 0 = 0. For the second part, the case wheref(v;w) = 0 for a set of v positive measure under the conditional distribution of V given wis similarly trivial, and otherwise note thatPr�w : ZV dP (vjw) log f(v;w) � 
� = Pr �w : eRV dP (vjw) logf(v;w) � e
�� e�
 ZW dP (w)eRV dP (vjw) log f(v;w)� e�
 ZW dP (w) ZV dP (vjw)f(v;w)= e�
The �rst inequality follows fromMarkov's inequality and the second from Jensen's inequality.2 In establishing the upper bounds, we use Lemma 2 with V = Y n, W = � and f(v;w) =R� d�(~�)dQn~� (yn)dMn;�(yn) . Here we assume all yn such that dMn;� = 0 have been removed from thedomain of f , so that f is �nite. The conditions of the lemma are satis�ed, since this functionis nonnegative andZ��Y n d�(��)dP n��(yn)R� d�(~�)dQn~� (yn)dMn;�(yn) = ZY n Z� d�(~�)dQn~� (yn) = 1;since Mn;�(yn) = R� d�(��)P n��(yn): Employing Lemma 2 with this choice of f , the followingchain of inequalities holds for all �� except for a set of �-measure at most e�
.DKL(P n�� jjMn;�) = ZY n dP n�� log dP n��dMn;�11



= ZY n dP n�� 0@log dP n��R� d�(~�)dQn~� + log R� d�(~�)dQn~�dMn;� 1A� ZY n dP n�� log dP n��R� d�(~�)dQn~� + 
= � ZY n dP n�� log Z� d�(~�) dQn~�dP n�� + 
= � ZY n dP n�� log Z� d�(~�)elog dQn~�dPn�� + 
� � log Z� d�(~�)eRY n dPn�� log dQn~�dPn�� + 
= � log Z� d�(~�)e�DKL(Pn�� jjQn~� ) + 
= � log Z� d�(~�)e�nDKL(P�� jjQ~�) + 
;where the �rst inequality follows from Lemma (2) part (2.) and the second one from Lemma(1). The last equality follows from the fact that the KL divergence is additive over theproduct of independent distributions (see e.g. [21], p. 23). Note that by our convention that0 log 0 = 0, for each ��, the set of yn such that dP n��(yn) = 0 can simply be removed in the �rstequality above and then reintroduced in the exponent of the second to the last inequality,thus avoiding any division by zero for these cases. Similarly, if R� d�(~�)dQn~� (yn) = 0 for a setof yn of positive measure with respect to P n�� , then all upper bounds from the second line onare in�nite, and the result holds trivially. Otherwise a set of yn of measure zero on whichR� d�(~�)dQn~� (yn) = 0 can be ignored, avoiding any division by zero in this regard. SinceDKL = I1, this establishes the upper bound of part (2.) of Theorem 2.The upper bound of part (1.) of Theorem 2 is established in a very similar manner. Herewe note thatI(��;Y n) = Z� d�(��) ZY n dP n�� log dP n��dMn;�= Z� d�(��) ZY n dP n�� 0@log dP n��R� d�(~�)dQn~� + log R� d�(~�)dQn~�dMn;� 1A� Z� d�(��) ZY n dP n�� log dP n��R� d�(~�)dQn~�where the inequality follows from Lemma 2 part (1.). The remainder of the proof consistsof the identical chain of inequalities as in the proof above of the upper bound of part (2.),except that we take expectation over �� and we do not have the term +
.We turn now to the lower bounds. Here we use the following lemma, which is new, as faras we can tell. Let P = P (v;w) be a measure on the product space V �W , with conditional12



distribution P (vjw) on V and marginal distribution P (w) on W . For any 0 < � � 1, de�ne1I(�)(W ;V ) = � ZV�W dP (v;w�) log ZW dP (w) dP (vjw)dP (vjw�)!� :Note that I(1)(W ;V ) = I(W ;V ), the mutual information between W and V .Lemma 3 Whenever RW dP (w)dP (vjw) > 0 for all v, and 0 < � � 1,1. I(�)(W ;V )� I(W ;V ) � 02. Prfw� : dP (vjw�) > 0 andZV dP (vjw�)0@log ZW dP (w) dP (vjw)dP (vjw�) � log ZW dP (w) dP (vjw)dP (vjw�)!�1A � 
g � e�
:Proof: This follows from Lemma 2 using the functionf(v;w�) = RW dP (w) dP (vjw)dP (vjw�)RW dP (w) � dP (vjw)dP (vjw�)�� = dP ��1(vjw�) RW dP (w)dP (vjw)RW dP (w)dP �(vjw) :The conditions of the lemma are satis�ed, since f is nonnegative, f(v;w�) = 0 whendP (vjw�) = 0, andZV�W dP (v;w�)f(v;w�) = ZV�W dP (v;w�)dP ��1(vjw�) RW dP (w)dP (vjw)RW dP (w)dP �(vjw) (5)= ZV ZW dP (w�)dP (vjw�)dP ��1(vjw�) RW dP (w)dP (vjw)RW dP (w)dP �(vjw)= ZV RW dP (w�)dP �(vjw�) RW dP (w)dP (vjw)RW dP (w)dP �(vjw)= ZV ZW dP (w)dP (vjw)= 1:1For any v, RW dP (w)� dP (vjw)dP (vjw�)�� = RW dP (w)dP� (vjw)dP� (vjw�) = 0 or = 00 only if RW dP (w)dP (vjw) = 0,which happens only if dP (vjw) = 0 for all but a set of w of measure zero. Using the convention that�0 log0 = �0 log 00 = 0, the set of such v contribute nothing to I(�)(W ;V ), and hence can be ignored.Furthermore, RW dP (w)� dP (vjw)dP (vjw�)�� = 1 only if P (vjw�) = 0 or RW dP (w)dP �(vjw) = 1. However, bysimilar reasoning, for each individualw� the set of all v such that P (vjw�) = 0 can be ignored when evaluatingI(�)(W ;V ), and it is not possible that RW dP (w)dP �(vjw) =1, since RW dP (w)dP (vjw) = dP (v) <1 andfor 0 < � � 1, RW dP (w)dP �(vjw) � �RW dP (w)dP (vjw)�� by Jensen's inequality. Thus I(�)(W ;V ) iswell-de�ned. 13



2 Now note that if fyn : R� d�(~�)dP n~� (yn) = 0g has positive measure under the distributionP n�� then DKL(P n�� jjMn;�) = 1. Hence the lower bound holds trivially. Otherwise a set ofsuch yn of measure zero can be ignored, and using part (2.) of Lemma 3 with W = �and V = Y n, we can show that the following inequalities hold except on a set of �� with�-measure at most e�
.DKL(P n�� jjMn;�) = � ZY n dP n�� log Z� d�(~�) dP n~�dP n��� � ZY n dP n�� log Z� d�(~�) dP n~�dP n�� !� � 
� � log Z� d�(~�) ZY n dP n��  dP n~�dP n�� !� � 
= � log Z� d�(~�) ZY n (dP n��)1�� �dP n~� �� � 
= � log Z� d�(~�) �ZY (dP��)1�� (dP~�)��n � 
= � log Z� d�(~�)e�n logRY (dP��)1��(dP~�)� � 
= � log Z� d�(~�)e�n�I1��(P~�jjP��) � 
:As in the proof of the upper bound, to avoid division by zero, and apply Lemma 3, we canremove the set of yn such that dP n��(yn) = 0 from the �rst line, and reintroduce them in thefourth line. Setting � = 1� �, this establishes the lower bound of part (2.).As with the upper bound, the lower bound of part (1.) is established easily by removingthe �
 terms and taking expectation over �� in the above chain of inequalities, using part(1.) of Lemma 3 in line 2. This establishes the lower bounds, and completes the proof ofTheorem 2. 2A few brief comments about Theorem 2 are in order. First, note that if in part (2) we let
 grow with n in a suitable way, we obtain bounds which asymptotically hold for almost all�� 2 �. An even stronger result is obtained when we chose 
(n) such that P1n=1 e�
(n) <1:This holds for example, if we let 
(n) grow faster than log n. Then, the �rst Borel-Cantellilemma shows that for � almost all � 2 �, the bounds will be violated only a �nite numberof times as n!1.It should also be noted that in the important special case when P = Q, the upper boundof part (2) of the theorem holds with 
 = 0, since we can omit the �rst few steps of itsderivation in this case, where 
 is introduced. Thus both this strengthened upper boundand the given lower bound hold on a set of measure 1 � e�
 in this case.Finally, we note that part (2) is related to part (1) in the same way that the strongredundancy-capacity theorem of universal coding in [44] is related to the usual theoremsconcerning average redundancy.It is possible to state a variant of Theorem 2 using the the D� distances. Here we alsomake use of a particular choice for the family of distributions Q� that appear in Theorem 2.14



Another possible choice is explored in Theorem 3 below. We will need the following de�nition.For each 0 < � < 1 and x > 0 de�neb�(x) = (1� �)(x� log x� 1)�+ (1� �)x� x1�� : (6)De�ne b�(0) =1. It is easily veri�ed that b�(x) is strictly decreasing in x, approaches 1 asx!1, and approaches 1 as x! 0. LetB�(�) = supy2Y;�� ;�2� b�  dP��(y)dP�(y) ! :Clearly this constant does not depend on the choice of the dominating measure �.Corollary 1 For every 0 < � < 1 and n � 1,1. � Z� d�(��) log Z� d�(~�)e�n(1��)D�(P�� ;P~�) � RBayesn;�= I(��;Y n)� � Z� d�(��) log Z� d�(~�)e�nB�(�)D�(P�� ;P~�):2. For any 
 > 0 there exists a subset �
 of � with measure at least 1 � 2e�
 under theprior � such that for all �� 2 �
� log Z� d�(~�)e�n(1��)D�(P�� ;P~�) � 
 � Rn;PBayes� (��)= DKL(P n�� jjMn;�)� � log Z� d�(~�)e�nB�(�)D�(P�� ;P~�) + 
:Proof. Since I�(P jjQ) � D�(P;Q), the lower bounds follow directly from the lowerbounds of Theorem 2. For the upper bounds, we will need the following lemma, which is asimple extension of Lemma 4.4 of [11].Lemma 4 For any distributions P and Q on Y and any 0 < � < 1,DKL(P jjQ) �  supy2Y b�  dQ(y)dP (y)!!D�(P;Q):Proof. If dP = dQ except on a set of zero measure (w.r.t. the dominating measure �),then DKL(P jjQ) = 0, and hence the result holds. So it su�ces to consider the case whereD�(P;Q) > 0. Let S = fy 2 Y : dP (y) = 0g. Separating Y into S and Y �S, and factoringa dP out of the integrands in Equations (3) and (4) in the latter case, we haveDKL(P jjQ)D�(P;Q) = (1 � �) RY�S dP �dQdP � log dQdP � 1�+ RS dQRY �S dP �� + (1� �)dQdP � �dQdP �1���+ RS dQ� supy2Y b� dQ(y)dP (y)! :15



since b� � 1. 2The upper bounds of Corollary 1 follow from Theorem 2 and this lemma by settingQ� = P�. 2Whenever dP� is uniformly bounded above zero and below in�nity for all y and � forsome choice of the dominating measure, B�(�) is �nite, and this corollary can be applied.However, in some other cases B�(�) =1 for all 0 < � < 1, making the upper bound in theabove corollary useless. One case where this occurs is when there are � and �� in � such thatP� is not dominated by P�� : For example, if Y = f0; 1g and there is a �� such that P��(Y = 1)is zero (or one) and there is also a � where P�(Y = 1) is not zero (or not one), then P� isnot dominated by P�� : We can also have B�(�) =1 in cases where such lack of dominationdoes not occur. For example, if Y = f0; 1g, � is the open interval (0; 1), and P�(Y = 1) = �,then B�(�) = 1 not because there are two distributions that fail to mutually dominateeach other, but because infy2Y;��;�2� dP��(y)dP�(y) = 0. Such cases can be handled by the results inthe following section.4.2 Bounds for �nite RBayes1;�;�1+�Here we prove a version of Corollary 1 that can be used in cases when B�(�) = 1 for all0 < � < 1. This new theorem requires only the weaker assumption that the Bayes risk forthe (1 + �)-a�nity loss at time 1, RBayes1;�;�1+�, discussed in section 3 above, is �nite for some� > 0. Recall that for a �xed prior �,RBayes1;�;�1+� = infP̂ Z� d�(��) Z (dP��)1+�(dP̂ )��:Using Jensen's inequality, it can be veri�ed that when RBayes1;�;�1+� <1, the minimizing P̂ , i.e.the Bayes strategy, is the distribution U = U� de�ned bydU = �R� d�(��)dP 1+��� � 11+�C�;� ;where C�;� = ZY �Z� d�(��)dP 1+��� � 11+�[60]. Hence for each individual ��, the risk of the Bayes strategy isR1;U�;�1+�(��) = ZY (dP�� )1+�(dU)��= C��;� ZY (dP�� )1+� �Z� d�(��)dP 1+��� �� �1+�and the Bayes risk isRBayes1;�;�1+� = Z� d�(��) ZY (dP��)1+�(dU)��= C��;� Z� d�(��) ZY (dP�� )1+� �Z� d�(��)dP 1+��� �� �1+�16



= C��;� ZY �Z� d�(��)dP 1+��� � 11+�= C1+��;�We have the following theorem.Theorem 3 Let 0 < � < 1 and 0 < � � 1. Assume RBayes1;�;�1+� <1. Then for every n � 1,1. � Z� d�(��) log Z� d�(~�)e�n(1��)D�(P�� ;P~�)� RBayesn;�= I(��;Y n)� � Z� d�(��) log Z� d�(~�)e�(n logn) (1+o(1))4(1��)�� D�(P��;P~�) +RBayes1;�;�1+� + o(1)2. For any 
 > 0 there exists a subset �
 of � with measure at least 1 � 2e�
 under theprior � such that for all �� 2 �
� log Z� d�(~�)e�n(1��)D�(P�� ;P~�) � 
� Rn;PBayes� (��)= DKL(P n�� jjMn;�)� � log Z� d�(~�)e�(n logn) (1+o(1))4(1��)�� D�(P��;P~�) +R1;U�;�1+�(��) + 
 + o(1);where in each case for �xed � and �, o(1) is a function f(n) such that f(n)! 0 and n!1.Furthermore, the same results also hold replacing the quantity D�(P��; P~�) with I�(P��jjP~�).Proof. That D can be replaced by I follows from the fact that I�(P jjQ) � D�(P;Q)for all �, as pointed out in the proof of Corollary 1. To prove the result for D, we will needa lemma2.Lemma 5 Assume 0 < � < 1 and � > 0. Let P , R and U be any distributions on Y . Letc� = R dP 1+�dU��. Let Q = (1 � �)R + �U for some � > 0 such that log log(1=�)log(1=�) � �=2 and� � e��=(2(1��)). ThenDKL(P jjQ) � 2 log 1�f�(�2)D�(P;R) + 2� log 1�(1 � �)f�(�2) + ��=2c�;where f�(x) = � + (1� �)x� x1��1� � :2We recently noticed that a related result is given in [55], Theorem 5, although no explicit relationshipwith the � a�nities is given in the latter result. 17



The proof of this lemma is given in the appendix.Now let U� be the Bayes strategy as de�ned above. Since RBayes1;�;�1+� < 1, U� is well-de�ned. For each � 2 �, let Q� = (1 � �)P� + �U�;with � = n�2=�. It is clear that f�(�2)! �1�� as �! 0. Hence, by Lemma 5, for su�cientlylarge n, for all �DKL(P�� jjQ~�) � 2 log 1�f�(�2)D�(P�� ; P~�) + 2� log 1�(1� �)f�(�2) + ��=2R1;U�;�1+�(��)= 4 log n�f�(n�4=�)D�(P�� ; P~�) + R1;U�;�1+�(��) + o(1)n since � � 1= log n(1 + o(1))4(1 � �)�� D�(P�� ; P~�) + R1;U�;�1+�(��) + o(1)nSince R� d�(��)R1;U�;�1+�(��) = RBayes1;�;�1+�, the result then follows from Theorem 2. 2Note: no attempt has been made to optimize the constants in this theorem.Now let3 S(�) = ZY sup�2� dP�:We call sup�2� dP� the envelop function for �. Note that S(�) is independent of the choiceof the dominating measure. Since for all � � 0,�Z� d�(��)dP 1+��� � 11+� � sup��2� dP�� ;It follows that RBayes1;�;�1+� = C1+��;� =  ZY �Z� d�(��)dP 1+��� � 11+�!1+� � S1+�(�)for all � > 0. Hence, whenever � has an integrable envelop function, that is wheneverS(�) < 1, then RBayes1;�;�1+� < 1, and the bounds in part (1) of Theorem 3 hold with � = 1and RBayes1;�;�1+� replaced with S2(�). It is clear that S(�) < 1 whenever Y is �nite, andwhenever Y is a bounded set in Rk for some k � 1 and the densities in fP� : � 2 �g areuniformly upper bounded. Hence Theorem 3 always applies in these cases.Theorem 3 also applies in many cases where S(�) is in�nite; an example of such a caseis given in the following section. To characterize the types of � and priors � not covered byTheorem 3, let us de�ne the function f�;�(�) for � � 0 byf�;�(�) = 1� logRBayes1;�;�1+�3If sup�2�dP� is not measurable, then any measurable function that majorizes it can be used instead inthe de�nition of S(�). 18



for � > 0 and f�;�(0) = RBayes1;� ;that is, the risk at time 1 for the relative entropy loss. It can be shown that for any � and �,f�;�(�) is a nondecreasing function on [0;1) taking values in [0;1], and if f�;�(�) is �nitefor any � > 0, then lim�!0f�;�(�) = f�;�(0):To verify this last property, note that lim�!0RBayes1;�;�1+� = 1. Hence by l'hospital's rulelim�!0 f�;�(�) = dd� �RBayes1;�;�1+��j�=0 :It can be veri�ed by direct calculation that the latter quantity is the mutual informationI(��; Y ), which is the same as RBayes1;� .It is clear that whenever RBayes1;� is in�nite, then RBayesn;� is in�nite for all n � 1. Thusthere are only three possible cases for the pair (�; �):1. f�;�(�) <1 for some � > 0. In this case RBayes1;�;�1+� <1 and hence Theorem 3 appliesand may be used to get bounds on RBayesn;� for all n.2. f�;�(0) = 1. In this case RBayesn;� = 1 for all n and hence the problem of boundingthis quantity is trivial.3. f�;�(0) <1 but f�;�(�) =1 for all � > 0. In this case we say that the pair (�; �) isirregular. These are the only nontrivial cases where Theorem 3 does not apply.While it would not be expected that irregular (�; �) would show up much in practice, itis possible to construct one.Example 1 Let Y = f1; 2; 3; : : :g, � = f3; 4; 5; : : :g, and for each � 2 � and y 2 Y , de�neP�(Y = y) to be 1 � 1log � if y = 1, 1log � if y = �, and 0 otherwise. Let �(�) = c� log2 � , wherec = P1i=3 1i log2 i <1. Then it can be shown that (�; �) is irregular.5 ExamplesWe now illustrate Theorems 2 and 3 by applying them to a few simple problems. We beginwith a classical case in which each point � 2 � is a vector of D real numbers, � is a compactset and the prior � is speci�ed as a density d�(�). To apply Theorem 2, �x �� 2 �
, where�� is in the interior of �. We assume that the prior d� is continuous and positive at ��. Wealso assume that fP�g is a smooth family of probabilities such that the Fisher informationmatrix at ��, de�ned by J(��), whereJij(��) = ZY dP�� [ @@�i log dP�(y) @@�j log dP�(y)]j�=��;exists and is positive de�nite. In this case, we will focus on the bounds on the risk forinvividual ��, rather than bounds on the mutual information. Even the simplest choiceQ = P19



will be su�cient to obtain a useful bound in the smooth case. For large n, obviously the maincontributions to the inner expectations in Theorem 2 come from small neighborhoods of ��.Hence, under certain regularity conditions, Laplace's method can be used to evaluate theseexpectations asymptotically. We perform a Taylor expansion of the exponents in Theorem2 to second order in the di�erence between ~� and �� using the partial derivatives@@�i I�(P�� jjP�)j�=�� = 0and @2@�i@�j I�(P�� jjP�)j�=�� = �Jij(��): (7)Note, that these results are also valid for � = 1. Hence, Laplace's method would yield forthe lower boundZ� d�(~�)e�n(1��)I�(P��jjP~�) = d�(��) ZRD d� e�n2 �(1��)Pij(�i���i )Jij(��)(�i���i )(1 + o(1)):A similar expression is obtained for the upper bound. By evaluating the Gaussian integralswe get4D2 log n2� � log d�(��) + 12 log detJ(��)� D2 log 1�(1 � �) � 
 + o(1) � Rn;PBayes� (��) �D2 log n2� � log d�(��) + 12 log detJ(��) + o(1):Note that asymptotically the lower bound is optimized by setting � = 12 . In this case, forlarge n, both bounds di�er by a constant approximately equal to D log42 for small 
. In thisclassical case, Clarke and Barron [18] have determined the exact answer to within o(1), andit is Rn;PBayes� (��) = D2 log n2� � log d�(��) + 12 log detJ(��) � D2 + o(1):Thus our simpler methods do not give the best known additive constants in the bounds forthis classical case, but they do provide good bounds for large n.As pointed out by Clarke and Barron [18], the scaling � D2 log n of the Bayes risk for thesmooth parametric families is strongly related to the asymptotic normality of the properlynormalized posterior distribution. It is interesting to look at nonregular families of probabil-ities, for which the posterior fails to converge to a nontrivial limit. (For conditions that arenecessary for convergence, see [30]). As an example for such nonsmooth densities, we studythe following simple family on RdP�(y) = e�(y��)Ify>�g; � 2 R: (8)Obviously, DKL(P�� jjP�) = 1, whenever � > �� and the Fisher information does not existfor any �. Hence, the previous analysis is not applicable and we have to resort to the moresophisticated upper bounds. Specializing to � = 12, we easily �ndD1=2(P�� ; P�) = 2(1 � e�j���� j)I1=2(P�� jjP�) = j� � ��j:4Here we can set 
 = 0 in the upper bounds, as per the comments following Theorem 2.20



This result clearly shows the di�erence from the smooth families. The distances D1=2 andI1=2 do not behave locally like a quadratic function for � close to ��, but have a linear scaling.Hence, a di�erent scaling of the risk at �� and the mutual information is also expected.An explicit result using Theorem 3 is easily obtained for the prior d�(�) = 12e�j�j. Notethat the envelope of � is not integrable, so we must obtain direct bounds on R1;�;�1+� ratherthan using S(�). To upper bound RBayes1;�;�1+� = infP̂ R� d�(��) R (dP��)1+�(dP̂ )�� it su�ces tochoose any distribution U and bound the expectation of c�(��) = R (dP��)1+�(dU)��. Herewe can set dU(y) = 12e�jyj. In this case we have c�(��) < e�j��j and R� d�(��)c�(��) <1 forall � < 1. To evaluate the bounds we use the fact that for a > 112 Z 1�1 d� e�j�j�aj���� j = e�j��j � e�aj��j2(a� 1) + e�j�� j + e�aj��j2(a+ 1) :Hence, for � = 12 , we getlog(n2 ) + j��j � 
 + o(1) � Rn;PBayes� (��) � log 4n log n(1 + o(1))� !+ e�j��j + j��j+ 
 + o(1):Hence, an asymptotic scaling � log n for the risk is observed. This gives a factor of twodi�erence compared to the risk of a smooth 1{dimensional family of densities.Finally, we will consider an example where both the parameter space and the space ofobservations are in�nite dimensional. We assume that an unknown real continuous function�(x) with 0 � x � 1 is corrupted by a Gaussian white noise process. The statistician observesn random functions Yt, t = 1; : : : ; n which, conditioned on �, are independent realizations ofthe process Y (x) = Z x0 �(z)dz + �W (x): (9)Here W (x) is a standard Wiener process with W (0) = 0 and covariance IE[W (x1)W (x2)] =min(x1; x2). In this case, it is easy to calculate the I-divergences explicitly for all �. Let P�be the measure corresponding to the random process Y (x) and let the dominating measure �be the Wiener measure. Then, from the Cameron{Martin formula [16], the Radon-Nikodymderivative is found to bedP�d� = exp[ 1� Z 10 �(x)dW (x)� 12�2 Z 10 �2(x)dx ]: (10)Inserting this into the de�nition of the I{divergences, we obtainI�(P��jjP�) = �2�2 Z 10 (�(x)� ��(x))2 dx: (11)For the case where the prior over the space of functions �(x) is a Gaussian measure (suchthat �(x) is a realization of a Gaussian random process) our bounds can be evaluated inclosed form. We will restrict ourselves to the case of the mutual information I(��;Y n) anduse the fact that for Gaussian processes and c > 0� Z� d�(��) log Z� d�(~�)e� c2 R 10 (~�(x)���(x))2dx = 12Xk "log(1 + c�k) + c�k1 + c�k # : (12)21



Here �k, k = 1; 2; : : : ;1 are the eigenvalues of the process on the interval [0; 1]. Specializingon the Wiener process, we get �k = 1�2(k� 12 )2 , for k = 1; 2; 3 : : : Using12 1Xk=1 log(1 + c�2(k � 12)2 ) = 12 log cosh(pc)and 12 1Xk=1 cc+ �2(k � 12)2 = pc4 tanhpcand setting � = 12 , we get12 log cosh(pn2� ) + pn8� tanh(pn2� ) � I(��;Y n) �12 log cosh(pn� ) + pn4� tanh(pn� ):Hence, asymptotically 3pn8 (1 + o(1)) � I(��;Y n) � 3pn4 (1 + o(1)):Notice that in the above examples, it was always the case that asymptotically, the bestbounds were obtained with the value � = 1=2. In general, for large n the value of the Laplacetransform Z� d�(~�)e�n(1��)I�(P�� jjP~�)in the lower bound of Theorem 2 is largely determined by those ~� such that I�(P�� jjP~�) isnear zero, i.e. such that P�� is close to P~�. The same also holds for the corresponding Laplacetransform Z� d�(~�)e�nI1(P�� jjP~�)in the upper bound. However, it can be shown that as the distributions P and Q get close,in the sense that dPdQ ! 1 uniformly, thenI1(P jjQ)(1� �)I�(P jjQ) ! 1�(1� �) :Hence we might expect to very often get the best asymptotic lower bound in Theorem 2 bychoosing � = 1=2, so as to minimize 1�(1��). This choice also has another desirable property,since, as mentioned above, for � = 1=2, the distance D� used in Corollary 1 and Theorem3 is then the squared Hellinger distance, which has some nice metric properties that we willexploit in applications of the bounds below. For these reasons, in what follows, we will forsimplicity restrict ourselves to the case � = 1=2, using the notationD1=2(P;Q) = D2HL(P;Q):22



6 Bounds on the cumulative risk for countable �Recall that we have assumed that for all distinct �; �� 2 �, the conditional densities dP�and dP�� di�er on a set of positive measure, and hence DHL(P�; P��) > 0. We can make thisassumption without essential loss of generality, since otherwise we can replace � by a set ofequivalence classes with the property that � � �� i� dP� = dP�� (except on a set of measurezero) in a natural way, without changing the risks we are interested in calculating.Suppose � is countable, say � = f�ig. Let H(��) = �Pi �(�i) log �(�i) denote theentropy of the random variable ��, distributed according to the prior measure �. Theentropy of �� may be in�nite. ThenCorollary 2 For all n, RBayesn;� = I(�;Y n) � H(��) andlimn!1RBayesn;� = H(��):Proof: Recall that RBayesn;� = I(��;Y n). If H(��) is in�nite then clearlylim supn!1 I(�;Y n) � H(��):Assume H(��) is �nite. LetH(��jY n) = � ZY n dMn;�(yn)Xi �(�ijyn) log �(�ijyn);the conditional entropy of � given Y n. Note that this quantity is nonnegative. When H(�)is �nite it is easily veri�ed thatI(��;Y n) = H(��)�H(��jY n)(see e.g. [21], p. 20), and thus lim supn!1 I(��;Y n) � H(��) in this case as well.For the lower bound, using Theorem 2 with � = 1=2 and Fatou's lemmalim infn!1 I(��;Y n) � lim infn!1 �Xi �(�i) logXj �(�j)e�n2D2HL(P�i ;P�j )� �Xi �(�i) lim infn!1 logXj �(�j)e�n2D2HL(P�i ;P�j )= �Xi �(�i) log �(�i)= H(��):2 This result generalizes the similar result in [19] (Corollary 1) by removing the additionalconditions assumed there. More general results, including the above corollary, follow fromresults in Pinsker's book [47] (see also [4]). Applying Theorem (1) and taking the supremumover � in Corollary (2), it follows that if � is �nite then for all n, Rminimaxn � log j�j andlimn!1Rminimaxn = log j�j. It also follows that if � is in�nite, then limn!1Rminimaxn =1.In the case that � is �nite, results of Renyi [50] show further that the di�erence I(��;Y n)�H(��) converges to zero exponentially fast in n. We also obtain this result as follows.23



Corollary 3 For all n,H(��)� I(��;Y n) � (j�j � 1) max1�i<j�j�j ZY qdP�idP�j!n :Proof: From Theorem 2I(��;Y n) � �Xi �(�i) logXj �(�j)�ZY qdP�idP�j�n= �Xi �(�i) log �(�i)�Xi �(�i) log 241 +Xj 6=i �(�j)�(�i) �ZY qdP�idP�j�n35� H(��)�Xi Xj 6=i �(�j)�ZY qdP�idP�j�n� H(��)� (j�j � 1) max1�i<j�j�j ZY qdP�idP�j!n ;where the second inequality follows from � log(1 + x) � �x. 2Assuming as above that the densities dP�i and dP�j are di�erent for j 6= i, an applicationof the Cauchy's inequality yields RY qdP�idP�j < 1 for j 6= i. Hence, the corollary showsexponential convergence.Finally, let us note that Theorem 2 and Corollary 1 can also be used to characterizethe mutual information between �� and Y n (Bayes risk) in the general case when � isuncountably in�nite but �nite dimensional. This was demonstrated in [36]. Here in thesequel, we focus instead on the minimax risk.7 Bounds on minimax risk using covering and packingnumbers, and metric entropyFor each ��; � 2 �, let h(��; �) = DHL(P�� ; P�):As mentioned above, we assume that for distinct states of Nature �; �� 2 �, the conditionaldistributions P� and P�� di�er on a set of positive measure. Under this assumption, (�; h)is a metric space. We show how bounds on the minimax risk can be obtained by looking atproperties of this metric space. These are the the packing and covering numbers, and theassociated metric entropy, introduced by Kolmogorov and Tikhomirov in [39] and commonlyused in the theory of empirical processes (see e.g. [26, 48, 31, 13]).For the following de�nitions, let (S; �) be any complete separable metric space.De�nition 1 (Metric entropy, also called Kolmogorov �-entropy [39]) A partition � of S isa collection f�ig of Borel subsets of S that are pairwise disjoint and whose union is S. Thediameter of a set A � S is given by diam(A) = supx;y2A �(x; y). The diameter of a partitionis the supremum of the diameters of the sets in the partition. For � > 0, by D�(S; �) we24



denote the cardinality of the smallest �nite partition of S of diameter at most �, or 1 if nosuch �nite partition exists. The metric entropy of (S; �) is de�ned byK�(S; �) = logD�(S; �):We say S is totally bounded if D�(S; �) <1 for all � > 0.De�nition 2 (Packing and covering numbers) For � > 0, an �-cover of S is a subset A � Ssuch that for all x 2 S there exists a y 2 A with �(x; y) � �. By N�(S; �) we denote thecardinality of the smallest �nite �-cover of S, or 1 if no such �nite cover exists. For � > 0,an �-separated subset of S is a subset A � S such that for all distinct x; y 2 A, �(x; y) > �.By M�(S; �) we denote the cardinality of the largest �nite �-separated subset of S, or 1 ifarbitrarily large such sets exist.The following lemma is easily veri�ed [39].Lemma 6 For any � > 0,M2�(S; �) � D2�(S; �) � N�(S; �) �M�(S; �):It follows that the metric entropy K� (and the condition de�ning total boundedness) can alsobe de�ned using either the packing or covering numbers in place of D�, to within a constantfactor in �.Kolmogorov and Tikhomirov also introduced abstract notions of the dimension and orderof metric spaces in their seminal paper [39]. These can be used to measure the \massiveness"of both spaces indexed by a �nite dimensional parameter vector and in�nite dimensionalfunction spaces. In the following, the metric � is omitted from the notation, being understoodfrom the context.De�nition 3 The upper and lower metric dimensions [39] of S are de�ned bydim(S) = lim sup�!0 K�(S)log 1�and dim(S) = lim inf�!0 K�(S)log 1� ;respectively. When dim(S) = dim(S), then this value is denoted dim(S) and called themetric dimension of S. Thus dim(S) = lim�!0 K�(S)log 1� :For totally bounded S, we say that S is �nite dimensional if dim(S) < 1, else it isin�nite dimensional. To measure the massiveness of in�nite dimensional spaces, includingtypical function spaces, further indices were introduced by Kolmogorov and Tikhomirov. Thefunctional dimension of S is de�ned similarly asdf(S) = lim�!0 logK�(S)log log 1� ;25



with similar upper and lower versions when this limit does not exist. Finally, the metricorder of S is de�ned as mo(S) = lim�!0 logK�(S)log 1� ;with similar upper and lower versions.Using the results given in the theorems from section 4, with � = 1=2, we can obtainbounds on the minimax risk Rminimaxn in terms of the metric entropy of the space (�; h). Forevery � > 0 let b(�) = supfDKL(P~�jjP��)D2HL(P~�; P��) : ~�; �� 2 � and D2HL(P~�; P��) � �g:Recall also that the minimax risk for time 1 and loss �1+� is denoted Rminimax1;�1+� .Lemma 7 Assume (�; h) is totally bounded. Then for all n � 1,1. Rminimaxn � sup��0 (� log 1M�(�; h) + e�n�22 !)� sup��0 minfK�(�; h); n�28 g � log 2and2. Rminimaxn � inf��0 nK�(�; h) + b(�)n�2o � inf��0 nK�(�; h) + b1=2(�)n�2o :Furthermore, for any � > 0 such that Rminimax1;�1+� <1Rminimaxn � inf��0(K�(�; h) + (1 + o(1))4�2n log n� ) +Rminimax1;�1+� + o(1);where in each case o(1) is a function f(n) such that f(n)! 0 as n!1.Proof: To establish the �rst inequality of part (1), let A = f�1; : : : ; �Mg be an �-separatedsubset of � of maximal size and let � be the discrete prior distribution on � that is uniformover the elements of A. Using Theorem 1 and Corollary 1 we haveRminimaxn � RBayesn;�� � Z� d�(��) log Z� d�(~�)e�nh2(��;~�)2= � 1M MXi=1 log 1M MXj=1 e�nh2(�i;�j )2� logM � log�1 + (M � 1)e�n�22 �� � log� 1M + e�n�22 � :26



Since this holds for all �, it follows thatRminimaxn � sup��0 (� log  1M�(�; h) + e�n�22 !) :To complete the proof of part (1), simply note that � log(x + y) � � log(2max(x; y)) =� log 2 + minf� log x;� log yg. It follows thatRminimaxn � sup��0 minflogM�(�; h); n�22 g � log 2:Since K2� = logD2� � logM�, replacing � with �=2, the second inequality follows.We now turn to the upper bounds in part (2). Let � = f�1; : : : ; �Mg be any partitionof � of diameter at most �. For any prior measure � on �, let �i = �(�i). Then we useTheorem 1 and the upper bound given in Theorem 2 as follows.Rminimaxn = sup� RBayesn;�� sup� �� Z� d�(��) log Z� d�(~�)e�nDKL(P~�jjP��)�= sup� 8<:�Xi �i Z�i d�(��)�i logXj �j Z�j d�(~�)�j e�nDKL(P~�jjP��)9=;� sup� (�Xi �i log ��ie�b(�)n�2�)= sup� (�Xi �i log �i)+ b(�)n�2= logM + b(�)n�2:The second inequality follows by ignoring all but the ith term in the inner sum wheneverthe index on the outer sum is i, and noting that because the diameter of �i is at most �,DKL(P~�jjP��) � b(�)h2(��; ~�) � b(�)�2for all ��; ~� 2 �i. The last equality follows from the fact that the entropy of a �nitedistribution is maximal for the uniform distribution. Since the particular partition ofdiameter � can be chosen arbitrarily in the above chain of inequalities, it follows thatRminimaxn � K�(�; h) + b(�)n�2 for any �. This establishes the �rst inequality of part(2). The second inequality follows since b(�) � b1=2(�) for all �. The third inequality,but with sup�RBayes1;�;�1+� in place of Rminimax1;�1+� , follows by an argument similar to that usedfor the �rst inequality, using Theorem 3. Since maximin � minimax always, we havesup�RBayes1;�;�1+� � Rminimax1;�1+� , and from this we obtain the result stated in the Theorem. 2The method used in obtaining the upper bound in the above result is a familiar one (seee.g. [5, 34]). The method for obtaining the lower bound by choosing a discrete prior on awell-separated set of � is also similar in many respects to standard lower bound methods,such as those that use Fano's inequality or Assouad's lemma (see e.g. [12, 10, 59]), but the27



method is particularly clean in the present framework, giving a fairly good match to theupper bound.In some cases K� may not be a continuous function of �, and even so it may not beobvious what kinds of asymptotic bounds on the risk Rminimaxn are implied by Lemma 7.For such cases we make the following de�nitions.Fix a totally bounded � and let fl(x) and fu(x) be any continuous, nondecreasing,unbounded functions on (0;1) such thatlim inf�!1 K�(�; h)fl(1=�) � 1 and lim sup�!1 K�(�; h)fu(1=�) � 1: (13)For every positive real n let �l(n) be the unique solution to the equation fl(1=�) = n�2, andlet �u(n) be the unique solution to the equation fu(1=�) = n�2. LetFl(n) = fl  1�l(n)! = n�2l (n) and Fu(n) = fu  1�u(n)! = n�2u(n): (14)Then we have the following lemma.Lemma 8 For every integer n � 1,1. lim infn!1 RminimaxnFl(n=8) � 1:2. If lim�!0 b(�) <1 then for any function h(n) such that h(n)!1 as n!1,lim supn!1 RminimaxnFu(nh(n)) � 1and if there exists � > 0 such that Rminimax1;�1+� <1 thenlim supn!1 RminimaxnFu(nh(n) log n) � 1:Proof: Using Lemma 7 and the de�nitions of fl and Fl, we havelim infn!1 RminimaxnFl(n=8) � lim infn!1 min�K�l(n=8); n8 �2l (n8 )�Fl(n=8)� min lim infn!1 K�l(n=8)Fl(n=8) ; lim infn!1 n8�2l (n8 )Fl(n=8)!� min lim infn!1 fl(1=�l(n=8))Fl(n=8) ; 1!= 1: 28



Now let N = N(n) = nh(n). Let lim�!0 b(�) = b <1. Then we also havelim supn!1 RminimaxnFu(nh(n)) � lim supn!1 K�u(N) + bn�2u(N)Fu(N)� lim supn!1  fu(1=�u(N))Fu(N) + bh(n)!= 1 + lim supn!1 bh(n)= 1:The last inequality follows similarly, using the last inequality of Lemma 7. 2Essentially, when Fl(n) and Fu(n log n) are close asymptotically, as can often be arranged,this lemma shows that asymptotic rates for Rminimaxn can be obtained by \solving" theequation K�(�; h) = n�2. This general approach was developed by Le Cam and Birg�e[42, 11, 12]. We illustrate it by applying the above lemma to all of the standard cases forthe asymptotic growth rate of the metric entropy K�(�; h).Theorem 4 Assume there exists � > 0 such that Rminimax1;�1+� <1.51. If � is �nite then Rminimaxn ! log j�j as n!1:2. If dim(�; h) = 0 then Rminimaxn 2 o(log n):3. If dim(�; h) = D where 0 < D <1 thenRminimaxn � D2 log n:4. If df(�; h) = � where 1 < � <1 thenlogRminimaxn � � log log n:5. If mo(�; h) = � where 0 < � <1 thenlogRminimaxn � �2 + � log n:6. If mo(�; h) =1 or (�; h) is not totally bounded, thenif Rminimax1 <1 then logRminimaxn � log n else Rminimaxn =1 for all n:5Actually, only the upper bounds in parts (2)-(5) require the assumption that there exists � > 0 suchthat Rminimax1;�1+� <1. 29



Proof: As mentioned after Corollary 2, part (1) follows from that Corollary and Theorem 1.Each of the results (2)-(5) follows easily from Lemma 8 by plugging in the appropriate ratesfor fl and fu, and solving for Fl and Fu. We illustrate this for parts (3) and (5); the otherparts are similar. For part (3), since dim(�; h) = D where 0 < D <1, we may choosefl(x) = fu(x) = D log x:Solving D log 1� = n�2, we �nd that�l(n) = �u(n) � sD2n log n;and hence by (14) Fl(n) = Fu(n) � D2 log n:From the lower bound of Lemma 8, it follows thatlim infn!1 RminimaxnD2 log n8 � 1:Let h(n) = log n. From the second upper bound of Lemma 8, it follows thatlim supn!1 RminimaxnD2 log(n log2 n) � 1:The result in part (3) follows.In part (5), since mo(�; h) = � where 0 < � < 1, for any 0 < � < � we can choosefl(x) = x��� and fu(x) = x�+�. Solving ���� = n�2, we �nd thatFl(n) = n ���2+��� and Fu(n) = n �+�2+�+�From the lower bound of Lemma 8, it follows that for all 0 < � < �,lim infn!1 Rminimaxn(n=8) ���2+��� � 1:Hence lim infn!1 logRminimaxn�2+� log n � 1:Now let h(n) = log n. Then from the second upper bound of Lemma 8, it follows that forall 0 < � < �, lim supn!1 Rminimaxn(n log2 n) �+�2+�+� � 1:Hence lim supn!1 logRminimaxn�2+� log n � 1:30



This establishes part (5).To verify part (6), �rst note that the minimax risk Rminimaxn is nondecreasing in n.Furthermore, if Rminimaxn is �nite, then it can grow at most linearly, as is seen in the followingseries of inequalities. Rminimaxn = infdist. R on Y n sup�2� DKL(P n� jjR)� infdist. Q on Y sup�2�DKL(P n� jjQn)= n infdist. Q on Y sup�2�DKL(P�jjQ)= nRminimax1Hence for any �, either Rminimaxn = 1 for all n or Rminimaxn is �nite and bounded bynRminimax1 for all n.If (�; h) is not totally bounded then M�0(�; h) is in�nite for some �0 > 0. In this casethe �rst lower bound from part (1) of Lemma 7 shows thatRminimaxn � n�202for all n � 1. HenceRminimaxn � n in this case. If (�; h) is totally bounded butmo(�; h) =1then Rminimax1 <1 and by the same reasoning as in the proof of part (5), for all � > 0,lim infn!1 Rminimaxn(n=8) �2+� � 1:This, combined with the fact that Rminimaxn � nRminimax1 , implies that logRminimaxn � log n.2 The above theorem does not give very precise bounds in the in�nite dimensional case.Indeed, not much more can be said using the fairly crude notions of metric order and func-tional dimension to measure the massiveness of in�nite dimensional �. To remedy this,below is a more re�ned result.Theorem 5 Assume there exists � > 0 such that Rminimax1;�1+� <1. Let l(x) be a continuous,nondecreasing function de�ned on the positive reals such that for all 
 � 0 and C > 01. limx!1 l(Cx(l(x))
)l(x) = 1and2. limx!1 l(Cx(log(x))
)l(x) = 1:Then 31



1. If K�(�; h) � l�1�� then Rminimaxn � l(pn):2. If for some � > 0, K�(�; h) � �1��� l�1��then(a) If lim�!0 b(�) <1 then Rminimaxn � n�=(�+2) hl(n1=(�+2))i2=(�+2)else(b) lim infn!1 Rminimaxnn�=(�+2) [l(n1=(�+2))]2=(�+2) > 0and lim supn!1 Rminimaxnn�=(�+2) [l(n1=(�+2))]2=(�+2) (log n)�=(�+2) <1:Proof: Consider part (2) �rst. Since K�(�; h) � �1��� l �1�� we may choosefl(x) = ax�l(x) and fu(x) = bx�l(x)for suitable constants 0 < a � b. Solving fl(x) = n=x2, we �nd thatx �  Nl(N1=(�+2))!1=(�+2) ;where N = n=a. Here we use property (1) of l(x). Hence�l(n) �  l(N1=(�+2))N !1=(�+2) ;and thus by (14), and again using property (1) of l(x),Fl(n) � n�=(�+2) hl(n1=(�+2))i2=(�+2) :By similar reasoning Fu(n) � n�=(�+2) hl(n1=(�+2))i2=(�+2) :From the lower bound of Lemma 8, and property (1), it follows thatlim infn!1 Rminimaxnn�=(�+2) [l(n1=(�+2))]2=(�+2) > 032



From the second upper bound of Lemma 8, it follows that for any unbounded, increasingfunction g(n),lim supn!1 Rminimaxnn�=(�+2) [l((ng(n) log n)1=(�+2))]2=(�+2) (g(n) log n)�=(�+2) <1:Part (2b) follows easily from this, using property (2) of the function l(x). For part (2a), notethat from the �rst upper bound of Lemma 8, if lim�!0 b(�) <1 then the log n factors canbe removed from the lim sup above, yielding the desired result. Part (1) follows by a similarargument, essentially setting � = 0, and a = b = 1, so that most terms in the denominatorsof the expressions above go away, and tracking the lim inf and lim sup more precisely. 2Note that in �nite dimensional cases, we have K� � D log 1� = l(1� ), and part (1) of theabove theorem gives Rminimaxn � l(pn) = D2 log n, as obtained in the previous theorem. Part(1) generalizes this to in�nite dimensional cases of �nite functional dimension, in which, e.g.,K� � C �log 1��� for � > 1. Part (2) does the same for cases in which � has �nite metricorder.The above theorem is not applicable in all cases. In particular, it can be shown that thecondition that Rminimax1;�1+� < 1 in the above result and the preceding results of this sectioncannot be removed. For example, this condition is violated by the � de�ned in Example 1.In this case (�; h) is totally bounded and Rminimaxn � n, yet K� � (1=�)2, which would yieldvia Theorem 5 an estimated rate of pn for Rminimaxn . This is o� by a factor of pn. Ofcourse the lower bounds in Theorem 5 and the preceding results are valid in this and anyother case without any special assumptions, but in this case, we see that they are not tight.8 Bounds on instantaneous minimax risk for variousloss functionsHere we show how the results of the previous sections can be used to give upper and lowerbounds on the instantaneous minimax risk of estimating a probability distribution for variousloss functions, as de�ned in section 3. One way to do this is to use Fano's inequality, asdescribed in [10]. Here we look at a simple alternate approach.Recall that the instantaneous minimax risk at time t is denotedrminimaxt;L = infP̂ sup��2� ZY t�1 dP t�1�� L(P�� ; P̂t);for loss function L. The instantaneous Bayes risk under prior � is de�ned similarly by takingexpectation over �� instead of supremum, and denoted rBayest;�;L Below we will consider otherloss functions, but for now we assume that L(P;Q) = DKL(P jjQ) and omit the subscript L.While it is easily veri�ed that RBayesn;� = Pnt=1 rBayest;� , the exact relationship between theinstantaneous and cumulative minimax risks is less clear. However, Barron et al. [5, 18, 10]have shown the following.Lemma 9 [5] nXt=1 rminimaxt � Rminimaxn � nrminimaxn33



Proof: For the �rst inequality, simply note thatnXt=1 rminimaxt = nXt=1 infP̂ sup��2� ZY t�1 dP t�1�� DKL(P�� jjP̂t)= infP̂ nXt=1 sup��2� ZY t�1 dP t�1�� DKL(P�� jjP̂t)� infP̂ sup��2� nXt=1 ZY t�1 dP t�1�� DKL(P�� jjP̂t)= RminimaxnFor the second inequality, let � be any prior on �. Let Mn;� = R� P n� d�(�) be the Bayesmixture for �, and PBayest;� (ytjyt�1) be the posterior predictive distribution for each 1 � t � n.Fix n. For each yn�1, let the strategy Q� be de�ned by the predictive distributionsQn;� = 1n nXt=1PBayest;� :Then for all �� 2 �, the instantaneous risk of the strategy Q� at time n isrn;Q�(��) = ZY n�1 dP n�1�� DKL(P�� jjQn;�)� 1n nXt=1 ZY n�1 dP n�1�� DKL(P�� jjPBayest;� )= 1nDKL(P n��jjMn;�)= Rn;PBayes� (��)n ;where PBayes� is the Bayes strategy for the cumulative risk under prior �. Here the inequalityfollows from Jensen's inequality and the next equality from the chain rule for relative entropy(see e.g. [21], p. 23). It follows that the instantaneous minimax risk at time n isrminimaxn = infP̂ sup��2� rn;P̂ (��)� inf� sup��2� rn;Q�(��)� 1n inf� sup��2�Rn;PBayes� (��)= 1n infP̂ sup��2�Rn;P̂ (��)= Rminimaxn n :The penultimate equality follows the second part of Theorem 1. 2Using Lemma 8, the above lemma may be further re�ned to give the following rela-tionships between the cumulative and instantaneous minimax risks under relative entropyloss. 34



Lemma 10 Fix a totally bounded � and let fl(x) and fu(x) be any continuous, nondecreas-ing, unbounded functions on (0;1) such thatlim inf�!1 K�(�; h)fl(1=�) � 1 and lim sup�!1 K�(�; h)fu(1=�) � 1: (15)For every positive real n let �l(n) be the unique solution to the equation fl(1=�) = n�2, andlet �u(n) be the unique solution to the equation fu(1=�) = n�2. LetFl(n) = fl  1�l(n)! = n�2l (n) and Fu(n) = fu  1�u(n)! = n�2u(n): (16)Then for every integer n � 1:1. If rminimaxt < 1 for all t, Fl is di�erentiable and its derivative F 0l is nonincreasing,then lim supn!1 8rminimaxnF 0l (n=8) � 1:2. If lim�!0 b(�) <1 then for any function h(n) such that h(n)!1 as n!1,lim supn!1 nrminimaxnFu(nh(n)) � 1and if there exists � > 0 such that Rminimax1;�1+� <1 thenlim supn!1 nrminimaxnFu(nh(n) log n) � 1:Proof: The upper bounds follow directly from part (2) of Lemma 8, using the above resultthat Rminimaxn � nrminimaxn . For the lower bound, let G(n) = Fl(n=8) and g(n) = G0(n) =18F 0l (n=8). From part (1) of Lemma 8, and the above result that Pnt=1 rminimaxt � Rminimaxnwe have lim infn!1 Pnt=1 rminimaxtG(n) � 1:By the fundamental theorem of calculus G(n) = R n0 g(t)dt+G(0). Since g is nonincreasing,R n0 g(t)dt � Pnt=1 g(t). Since fl is unbounded, G is unbounded, and thus so is Pnt=1 g(t). Itfollows that lim infn!1 Pnt=1 rminimaxtPnt=1 g(t) � 1:Again, since Pnt=1 g(t) is unbounded, and since rminimaxt <1 for all t, this implies thatlim supn!1 rminimaxng(n) � 1:This gives the result. 2 35



In order to use the above lemma for other loss functions, such as squared Hellinger andL1 loss functions, we need only bound these loss functions in terms of the relative entropyloss. The following bounds are well known for any distributions P and Q on Y (see e.g. [42])D2HL(P;Q) � jjP �Qjj � 2DHL(P;Q) (17)In addition, using Lemma 4, it follows thatD2HL(P;Q) � DKL(P jjQ) � supy2Y b1=2 dP (y)dQ(y)!D2HL(P;Q) (18)Finally, using Lemma 5 with � = �n = 1n2=� logn , it can easily be shown that for any distributionU such that C = R (dP )1+�(dU)�� <1, there exists N � 1 such that for all n � N ,DKL(P jj(1� �n)Q+ �nU) � 8 log n� D2HL(P;Q) + 2Cn log�=2 n (19)Let rminimaxn;D2HL denote the instantaneous minimax risk for the squared Hellinger loss, andrminimaxn;jj�jj denote the instantaneous minimax risk for the L1 loss. The above inequalities implythe following relationships between these risks and the instantaneous minimax risk underrelative entropy loss, rminimaxn .Lemma 11 1. rminimaxnb1=2(�) � rminimaxn;D2HL � rminimaxn2. rminimaxn;D2HL � rminimaxn;jj�jj � 2rrminimaxn;D2HL3. If there exists 0 � � � 1 such that Rminimax1;�1+� <1 then there exists an N � 1 such thatfor all n � N , rminimaxn � 8 log n� rminimaxn;D2HL + 2Rminimax1;�1+�n log�=2 nProof: Most of these results follow directly from the corresponding inequalities above. Onlytwo of them require comment. For the second inequality in part (2), note thatrminimaxn;jj�jj = infP̂ sup��2� ZY n�1 dP n�1�� jjP�� � P̂njj� 2 infP̂ sup��2� ZY n�1 dP n�1�� DHL(P�� ; P̂n)� 2 infP̂ sup��2�sZY n�1 dP n�1�� D2HL(P�� ; P̂n)= 2sinfP̂ sup��2� ZY n�1 dP n�1�� D2HL(P�� ; P̂n)= 2rrminimaxn;D2HL :36



The �rst inequality comes from (17) and the second from Jensen's inequality.To see the inequality in part (3), for any 
 > 0, let U
 be a distribution such thatC
 = sup�2� Z (dP�)1+�(dU
)�� � Rminimax1;�1+� + 
:Then inf
>0 C
 = Rminimax1;�1+� : Now note that for all 
 > 0,rminimaxn = infP̂ sup��2� ZY n�1 dP n�1�� DKL(P�� jjP̂n)� infP̂ sup��2� ZY n�1 dP n�1�� DKL(P�� jj(1� �n)P̂n + �nU
)� 8 log n� infP̂ sup��2� ZY n�1 dP n�1�� D2HL(P�� ; P̂n) + 2C
n log�=2 n= 8 log n� rminimaxn;D2HL + 2C
n log�=2 n:The result follows. 2We illustrate this lemma �rst by giving a simple proof that when � is �nite, the instan-taneous minimax risk decreases exponentially in n for all of the above loss functions.Theorem 6 If � is �nite then there exist a > 0 and 0 < b < 1 such that for all n � 1,rminimaxn ; rminimaxn;D2HL � abn and rminimaxn;jj�jj � abn=2:Proof: Let � be the uniform distribution on �. By Corollary 3, there exist A > 0 and0 < b < 1 such that for all n RBayesn;� � log j�j �Abn:Since RBayesn;� = Pnt=1 rBayest;� , it follows thatrBayesn;� � 1Xt=n rBayest;� = log j�j �RBayesn�1;� � Abn�1:Thus if P̂ = PBayes� , the Bayes strategy for the uniform prior �, thenX��2� rn;P̂ (��)j�j � Abn�1:It follows that for all �� 2 � rn;P̂ (��) � j�jAbn�1:Let a = j�jA=b. Then rminimaxn � rn;P̂ � abn:The remaining inequalities follow from the bounds in parts (1) and (2) in Lemma 11, respec-tively. For the second bound we can replace the previous a with 2pa. 237



In order to see how these results can be used to derive bounds on the instantaneousminimax risk for more general �, let us make the following de�nition. For any loss L, let usde�ne the best exponent for the instantaneous minimax risk byeL = supfx : lim supn!1 rminimaxn;Ln�x � 1g:Theorem 7 Assume there exists � > 0 such that Rminimax1;�1+� < 1. Then the bounds on eLgiven in the following table are valid.6size of � loss functionDKL D2HL jj � jj� is �nite eDKL =1 eD2HL =1 ejj�jj =1dim(�; h) = 0 eDKL � 1 eD2HL � 1 ejj�jj � 1=2dim(�; h) = D where 0 < D <1 eDKL = 1 eD2HL = 1 1=2 � ejj�jj � 1df(�; h) = � where 1 < � <1 eDKL = 1 eD2HL = 1 1=2 � ejj�jj � 1mo(�; h) = � where 0 < � <1 eDKL = 22+� eD2HL = 22+� 12+� � ejj�jj � 22+�mo(�; h) =1 eDKL = 0 eD2HL = 0 ejj�jj = 0(�; h) not totally bounded eDKL = 0 eD2HL = 0 ejj�jj = 0Proof: The results for �nite � follow directly from the previous theorem. The remainingresults follow from Lemma 10 and Lemma 11, and in each case the proof is analogous tothat of the corresponding result in Theorem 4. We give the derivation in two of the cases;the remaining derivations are similar.As in the proof of Theorem 4, if dim(�; h) = D where 0 < D < 1, we may choosefl(x) = fu(x) = D log x; and henceFl(n) = Fu(n) � D2 log n:From the lower bound of Lemma 10, it follows thatlim supn!1 16nrminimaxnD � 1:Let h(n) = log n. From the second upper bound of Lemma 10, it follows thatlim supn!1 2nrminimaxnD log(n log2 n) � 1:Hence eDKL = 1.Since rminimaxn;D2HL � rminimaxn , from the upper bound above we also havelim supn!1 2nrminimaxn;D2HLD log(n log2 n) � 1:6Actually, the upper bounds in the �rst column only require the weaker assumption that rminimaxt <1for all t, and in the case that � is �nite none of the results require any additional assumptions.38



Combining the lower bound above with part (3) of Lemma 11, we see thatlim supn!1 (128n log n)rminimaxn;D2HL�D + lim supn!1 32Rminimax1;�1+�D log�=2 n = lim supn!1 (128n log n)rminimaxn;D2HL�D � 1:Hence eD2HL = 1.Since rminimaxn;D2HL � rminimaxn;jj�jj , it follows thatlim supn!1 (128n log n)rminimaxn;jj�jj�D � 1:Since rminimaxn;jj�jj � 2qrminimaxn;D2HL , from the above upper bound for rminimaxn;D2HL we getlim supn!1 12  s 2nD log(n log2 n)! rminimaxn;jj�jj � 1:It follows that 1=2 � ejj�jj � 1.Skipping to the last line of the table, when mo(�; h) = � where 0 < � < 1, for any0 < � < � we can choose fl(x) = x��� and fu(x) = x�+�, yieldingFl(n) = n ���2+��� and Fu(n) = n �+�2+�+�From the lower bound of Lemma 10, it follows that for all 0 < � < �,lim supn!1 8rminimaxn���2+�+� (n=8)� 22+��� � 1:Now let h(n) = log n. Then from the second upper bound of Lemma 10, it follows that forall 0 < � < �, lim supn!1 nrminimaxn(n log2 n) �+�2+�+� � 1:Hence eDKL = 22+� . The bounds for eD2HL and ejj�jj in this case are then derived from theabove bounds in the same manner they were previously for the �nite dimensional case. 2Again, it is easy to see the assumption that Rminimax1;�1+� <1 cannot be removed from thistheorem. In particular, for the � of Example 1, it can be shown that mo(�; h) = 2, yeteD2HL; ejj�jj � 1 (too high for Theorem 7 to apply) and eDKL = 0 (too low).9 Example application of the minimax bounds: Non-parametric density estimationHere we give a brief, fairly classical example just to illustrate how one may apply the resultsgiven above. Let us assume that the statistician observes a set of n observations y1; : : : ; ynwhich are drawn independently from a density dP�(y), � 2 � on the interval [0; 1]. As in39



[59], let � be the Lipschitz class Fp;�(C;L) of densities satisfying supy2[0;1] jdP�(y)j � C andhaving derivatives dP (k)� (y) of order k � p with the Lipschitz condition on the p- th derivativejdP (p)� (y) � dP (p)� (y0)j � Ljy � y0j� for y; y0 2 [0; 1]. Since the functions in Fp;�(C1; L) areuniformly bounded, they have an integrable envelope function, and hence Rminimax1;�1+� <1 forall � > 0. Furthermore, since the functions in Fp;�(C1; L) are uniformly bounded, all Lqdistances (q � 1) are equivalent. As shown by Barron and Yang [10], a further restrictionto uniformly lower bounded densities also insures that the condition lim�!0 b(�) <1 holds,and makes the Hellinger distance equivalent to the Lq distances, without changing the metricentropy asymptotically. By a result of Clements [20], the metric entropy of � under L1distance is given by K�(�; L1) � �� 1p+� :Hence K�(�; h) � �� 1p+� :Thus from Theorem 5 we get Rminimaxn � n 12(p+�)+1 , and from Theorem 7 we get that thebest exponent for the instantaneous minimax risk is eDKL = 2(p+�)2(p+�)+1 when the loss is theKL{divergence, and the same when the loss is the squared Hellinger distance, while it iswithin a factor between 1=2 and 1 of this for the L1 loss. Sharper results are known (see e.g.[12, 32]).Since the metric entropies are known for many interesting classes of functions, manymore examples of this type are possible. Many such examples are given by Birg�e [11, 12]and Barron and Yang [10].10 DiscussionWe have shown that under relatively weak assumptions, (in particular, whenever there existsa distribution U and a � > 0 such that the (1 + �)-a�nity between P� and U is uniformlybounded for all � 2 �) one can obtain explicit bounds on the mutual information I(��;Y n)between the true parameter and the observations in terms of a Laplace transform of theHellinger distance in �, and from these one can obtain bounds on the cumulative minimaxrisk in estimating a distribution in � under relative entropy loss in terms of the metricentropy of � with respect to Hellinger distance. In fact, in each case only the upper boundsdepend on the assumptions; the lower bounds hold for any �. We also show by examplethat some assumptions are needed to get the type of general characterizations of the mutualinformation and minimax risk in terms of the Hellinger distance that we obtain. It remainsopen to get a useful characterization of these quantities for the cases where our assumptionsdo not hold.We also show how general bounds on instantaneous risk in estimating a distribution forvarious loss functions can be derived in a very simple manner from the bounds on cumulativerisk. While the resulting bounds may not always be as tight as those obtained by more directmethods for speci�c �, the approach taken here does have the advantage of giving a simple,uni�ed and general treatment to this problem, moreover, one in which no more sophisticatedmathematical methods than Jensen's inequality are needed to derive the results. In the40



future we hope to further explore the applications of these results to speci�c estimationproblems, such as the \concept learning" or \pattern classi�cation" problems examined incurrent machine learning and neural network research. Some initial results along these linescan be found in [46, 36] (see also [28, 43]).There are also several other directions for further research one might pursue. Apartfrom general tightening of the bounds, these include treating the case of nonindependentobservations, extending the results giving bounds for individual �� in Theorems 2 and 3to the case where P�� is not a distribution in � but is \close to" a distribution �, andgiving a more complete characterization of the mutual information I(��;Y n) in terms of themetric entropy properties of � for the in�nite dimensional case, as was done for the �nitedimensional case in [36].11 AppendixHere we give the proof of Lemma 5.Lemma 12 Assume 0 < � < 1 and � > 0. Let P , R and U be any distributions on Y . Letc� = R dP 1+�dU��. Let Q = (1 � �)R + �U for some � > 0 such that log log(1=�)log(1=�) � �=2 and� � e��=(2(1��)). ThenDKL(P jjQ) � 2 log 1�f�(�2)D�(P;R) + 2� log 1�(1 � �)f�(�2) + ��=2c�;where f�(x) = � + (1� �)x� x1��1� � :Proof. We use the easily veri�ed fact that for 0 < � < 1 and 0 < x < 1, f�(x) is positiveand decreasing in x. Let Y0 = fy : dP (y) = 0g. For y 2 Y � Y0, let S(y) = dQ(y)dP (y) andT (y) = dU(y)dP (y) . Then using Equations (3) and (4), and the de�nition of b�, we haveDKL(P jjQ) = ZY�Y0 dPb�(S)f�(S) + ZY0 dQ (20)Consider two cases for y 2 Y � Y0.1. S(y) > �2 or T (y) > �. Here we note that since S(y) = (1��)dR(y)+�dU(y)dP (y) � �dU(y)dP (y) =�T (y), in either case S(y) > �2. Henceb�(S(y)) � b�(�2) = �2 + 2 log 1� � 1f�(�2) � 2 log 1�f�(�2) (21)since b� is decreasing. 41



2. S(y) � �2 and T (y) � �. In this caseb�(S(y)) = S(y) + log 1S(y) � 1f�(S(y)) � log 1S(y)f�(S(y)) � log 1� + log 1T (y)f�(S(y)) � log 1�f�(�2) + log 1T (y)f�(S(y)) ;(22)where in the last inequality we use the fact that S(y) � �2 and f�(x) is decreasing inx for 0 < x < 1, and in the previous inequality we use the fact that S(y) � �T (y) andthat log(x) is increasing.Let W (�) = Zy:S(y)��2 and T (y)�� dP log 1T :From (20), (21), and (22) it follows thatDKL(P jjQ) � 2 log 1�f�(�2) ZY �Y0 dPf�(S) + ZY0 dQ+W (�) � 2 log 1�f�(�2)D�(P;Q) +W (�); (23)since D�(P;Q) = RY�Y0 dPf�(S) + RY0 dQ and 2 log 1�f�(�2) � 1.Note now thatD�(P;Q) = 11� � �1 � Z (dP )�((1 � �)dR+ �dU)1���� 11� � �1 � Z (dP )�((1 � �)dR)1���� 11� � �1 � Z (dP )�(dR)1���+ 11� � �1 � (1� �)1���= D�(P;R) + 11 � � �1� (1 � �)1���� D�(P;R) + �1 � �Hence DKL(P jjQ) � 2 log 1�f�(�2)D�(P;R) + 2� log 1�(1� �)f�(�2) +W (�) (24)Finally, note that T (y) � � implies that � �T (y)��=2 � 1 and log log(1=�)log(1=�) � �=2 implies thatlog 1
 � � 1
��=2 for all 
 � �. Hence when log log(1=�)log(1=�) � �=2,W (�) = Zy:S(y)��2 and T (y)�� dP log 1T� Zy:S(y)��2 and T (y)�� dP � �T ��=2 log 1T� ��=2 Zy:S(y)��2 and T (y)�� dP � 1T ��42
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