
A General Minimax Result for Relative EntropyDavid Haussler�UC Santa CruzDecember 29, 1996University of California Technical Report UCSC-CRL-96-26Baskin Center for Computer Science and Computer EngineeringUC Santa Cruz, CA 96064Abstract: Suppose Nature picks a probability measure P� on a complete separable metric space X atrandom from a measurable set P� = fP� : � 2 �g. Then, without knowing �, a statistician picks a measureQ on X. Finally, the statistician su�ers a loss D(P� jjQ), the relative entropy between P� and Q. We showthat the minimax and maximin values of this game are always equal, and there is always a minimax strategyin the closure of the set of all Bayes strategies. This generalizes previous results of Gallager, and Davissonand Leon-Garcia.Index terms: minimax theorem, minimax redundancy, minimax risk, Bayes risk, relative entropy, Kullback-Leibler divergence, density estimation, source coding, channel capacity, computational learning theory1 IntroductionConsider a sequential estimation game in which a statistician is given n independent observations Y1; : : : ; Yndistributed according to an unknown distribution ~P� chosen at random by Nature from the set f ~P� : � 2 �gaccording to a known prior distribution � on �. For each time t between 1 and n, the statistician mustproduce an estimate P̂t for the unknown distribution ~P�, based on the previous t�1 observations Y1; : : : ; Yt�1.At the end of this time period, the statistician su�ers a cumulative relative entropy loss Pnt=1D( ~P�jjP̂t),which measures the quality of the sequential estimates made. Variants of this game have been studied byseveral authors (see e.g. [15, 9, 3, 4, 14]). If the observations are restricted to a �nite alphabet, then theactions of the statistician can be interpreted as adaptive source coding for an unknown source. For �xed�, the average loss su�ered is the redundancy [6, 3]. When we also average over the random choice of �according to the prior �, we get the risk for this game, which is then average redundancy. This risk is calledcumulative relative entropy risk in statistics.The product of the sequence of conditional distributions fP̂t(YtjY1; : : : ; Yt�1) : 1 � t � ng forms a jointdistribution Q on the n-fold product of the space of observations. Let us call this n-fold product space X.In this way, the actions of the statistician can be interpreted as choosing a joint distribution Q on the spaceX. Let P� = ~Pn� be the \true" joint distribution for the observations. Using the chain rule for relativeentropy, it is seen that the risk for this game reduces to R D(P�jjQ)d�(�) [3]. This leads us to a simpler,more general game: Nature picks a prior � on � and then picks a probability measure P� on a space X atrandom (according to �) from a set fP� : � 2 �g. Then, knowing � but not knowing �, a statistician picksa measure Q on X. Finally, the statistician su�ers a loss D(P�jjQ).We show that the minimax and maximin values of this game are always equal, and there is always aminimax strategy in the closure of the set of all Bayes strategies. This generalizes results of Gallager [11],and Davisson and Leon-Garcia [7], which were restricted to the case when the observations are chosen from�Supported by NSF grant IRI-9123692. Computer and Information Sciences, UC Santa Cruz, Santa Cruz, CA 95064. Emailaddresses: haussler@cse.ucsc.edu 1



a �nite set of symbols. The proof of the general result closely follows that of Theorem 2, page 85 in [10],which is based on earlier results of Le Cam [2], with one fairly simple extension to handle the case whenfP� : � 2 �g is not uniformly tight (Lemma 4 below).In the source coding interpretation of this game, the minimax value is the capacity of the channel from �to X [7, 4]. A similar interpretation applies in computational learning theory, where the cumulative relativeentropy risk is interpreted as the average additional loss su�ered by an adaptive algorithm that predictseach observation before it arrives, based on the previous observations, as compared to an algorithm thatmakes predictions knowing the true distribution [12, 13]. Here, to get this interpretation, we assume thatthe observation at time t is predicted by the \predictive" probability distribution P̂t, formed by the adaptivealgorithm using the previous t � 1 observations, and that when this tth observation arrives, the loss is thenegative logarithm of its probability under P̂t. The game has interpretations in other �elds as well. Forexample, in mathematical �nance and gambling theory, the cumulative relative entropy risk measures theexpected reduction in the logarithm of compounded wealth due to lack of knowledge of the true distribution[1, 3].2 Preliminary De�nitionsWe �rst briey review some basic facts about probability measures on complete separable metric spaces;proofs of these can be found in e.g. [8]. Let (X; �) be a complete separable metric space and let A(X) be theset of all probability measures de�ned on the �-�eld generated by the open sets of X (i.e. the Borel subsetsof X). For any real-valued function f on X, jjf jj1 = supx jf(x)j, jjf jjL = supx6=y jf(x) � f(y)j=�(x; y), andjjf jjBL = jjf jj1 + jjf jjL. For any two probability measures P;Q 2 A(X), let�(P;Q) = supfj Z fdP � Z fdQj : jjf jjBL � 1g:It is known that �(P;Q) is a metric and (A(X); �) is a complete separable metric space. For measures Pand Pn, n � 1, we say Pn converges weakly to P , denoted Pn ! P , provided thatZ f(x)dPn(x)! Z f(x)dP (x)for every bounded continuous real-valued function f on X. Then Pn ! P i� �(Pn; P ) ! 0. Finally, aset of measures P � A(X) is uniformly tight i� for every � > 0 there is a compact set K � X such thatP (K) > 1 � � for all P 2 P. It is known that P is uniformly tight i� P is totally bounded with respect tothe metric �.Next, we look at how relative entropy and mutual information can be de�ned in the above setting. Forany measures P;Q 2 A(X), the relative entropy or Kullback-Leibler (KL) divergence between P and Q canbe de�ned by D(P jjQ) = supfEig2�(X) kXi=1 P (Ei) log P (Ei)Q(Ei) ;where �(X) is the set of all �nite partitions ofX into Borel sets. (Throughout the paper we de�ne 0 log0 = 0.)An equivalent de�nition (see [17]) isD(P jjQ) = Z �log dP (x)dQ(x)� dP (x);where dP and dQ are Radon-Nikodym derivatives with respect to a suitable dominating measure for P andQ. Let � be a set and P� be a measure in A(X) for every � 2 �. Each � is called a possible "state ofNature." We assume that P� = fP� : � 2 �g is a Borel subset of A(X). The set � inherits the metric � onA(X) in the obvious way: �(�1; �2) = �(P�1 ; P�2) for �1; �2 2 �. Let A(�) denote the set of all measures2



� de�ned on the Borel subsets of �. We will refer to these as priors. For any prior � 2 A(�), there is acorresponding measure P� 2 A(X) de�ned by lettingP�(S) = Z P�(S)d�(�)for all Borel sets S � X.For any prior � 2 A(�) and any measure Q 2 A(X), the cross information between � under prior � andX under measure Q is denoted by I(�;Q) = Z D(P�jjQ)d�(�);and the mutual information between � and X under the prior � is de�ned byI(�) = I(�; P�):3 ResultConsider the game in which �rst Nature chooses a state � 2 � at random according to a prior � 2 A(�),then without knowing �, a statistician chooses a measure Q 2 A(X), and �nally the statistician su�ers aloss D(P� jjQ). The average loss, or risk, of this game for the statistician is I(�;Q). Using the convexity of�log(x), it follows easily from Jensen's inequality thatI(�) � I(�;Q)for all Q 2 A(X). Hence for a given �, choosing Q = P� is the best strategy for the statistician (the Bayesoptimal strategy), and I(�) is the minimal (or Bayes) risk.LetM� = fP� : � 2 A(�)g, i.e. all measures on X that can be obtained as mixtures of the P� measures.This is the set of all Bayes strategies for the statistician. Let M� � A(X) be the closure of M� in thetopology of weak convergence, i.e. the topology of the metric �.Lemma 1 If � is totally bounded then M� is compact.Proof: We will use two properties of the metric �: For any P1; P2; Q1; Q2 2 A(X) and 0 � � � 1,�(�P1 + (1� �)P2; �Q1 + (1� �)Q2) � ��(P1; Q1) + (1� �)�(P2; Q2); (1)i.e. � is convex in both its arguments, and for any 0 � �0 � 1�(�P1 + (1� �)P2; �0P1 + (1� �0)P2) � 2j�� �0j: (2)Each of these are easily veri�ed.In a complete metric space, a set is compact i� it is closed and totally bounded. Hence it su�ces to showthat M� is totally bounded. Since � is totally bounded, for any � > 0 we can �nd �� = f�1; : : : ; �kg � �such that for all � 2 � there exists g(�) 2 �� with �(Pg(�); P�) � �, and such that g is measurable.Let A(��) be the set of all probability mass functions on �� and M�� = fP� : � 2 A(��)g. SupposeP� = R P�d�(�) 2 M�. Let P = R Pg(�)d�(�) 2 M��. Then by the convexity of �,�(P�; P ) � Z �(P�; Pg(�))d�(�) � �:It follows that for any P 2 M� these is a Q 2 M�� with �(P;Q) � �, and thus the same is true for M�.Hence, it su�ces to show that M�� is totally bounded. However, using (2), if f�ig and f�0ig are probabilitymass functions on �� with j�i � �0ij � �=k then�(Xi �iP�i ;Xi �0iP�i) � �:3



Thus since the k-dimensional simplex is totally bounded, so is M�� 2We de�ne the following values associated with the above game: The minimax value is de�ned byV = infQ2A(X) sup�2A(�) I(�;Q):The maximin value is de�ned by V = sup�2A(�) infQ2A(X) I(�;Q):The minimax-Bayes value is de�ned by V � = infQ2M� sup�2A(�) I(�;Q):This last value represents the smallest possible worst-case loss the statistician can guarantee if she restrictsherself to strategies that are in the closure of the set of Bayes strategies.Some obvious equalities are V = infQ2A(X) sup�2�D(P� jjQ)and V � = infQ2M� sup�2�D(P�jjQ);since for any choice of Q by the statistician, Nature maximizes the risk of the statistician by putting all theprobability in the prior � on the worst �, andV = sup�2A(�) I(�);since I(�) is the Bayes risk for prior �, as discussed above.The following lemma is a minor variant of the standard minimax theorem for �nite � from [10] (seeTheorem 1, page 82). We include the proof for completeness.Lemma 2 If � is �nite then V � � V .Proof: Suppose � = f�1; : : : ; �kg. LetS = f(D(P�1 jjQ); : : : ; D(P�k jjQ)) : Q 2M�g;and let co(S) be the convex hull of S. By Helley's theorem (see e.g. [10], Lemma 1, page 65), for every z 2co(S) there exist s1; : : : ; sk+1 2 S and �1; : : : ; �k+1 with �j � 0 andPk+1j=1 �j = 1 such that Pk+1j=1 �jsj = z.Let sj = (D(P�1 jjQj); : : : ; D(P�k jjQj)) for Qj 2 M� and Q = Pk+1j=1 �jQj 2 M�. By Jensen's inequality([5]), for all �, k+1Xj=1�jD(P�jjQj) � D(P�jjQ):Thus for all z 2 co(S) there exists s 2 S with si � zi for all i.For each real a let La = f(z1; : : : ; zk) : zi � a; 1 � i � kg. Let V = lubfa : La \ co(S) = ;g. From theobservations above, it follows that for every n � 1 there exists Qn 2M� such thatD(P�i jjQn) � V + 1n for all 1 � i � k:Thus V � � V . It su�ces to show V � V .Let L0V denote the interior of LV . Since L0V and co(S) are disjoint convex sets there exists a hyperplanethat separates them, i.e. there exist real pi, 1 � i � k, and c, such thatkXi=1 pizi � c for all z 2 L0V (3)4



and kXi=1 pizi � c for all z 2 co(S): (4)Each pi must be nonnegative, because if pi < 0 for some i then keeping z 2 L0V we can let zi !�1 holdingthe other coordinates �xed, which contradicts (3). In addition, since we must haveP pi > 0, we can assumewlog that P pi = 1 (dividing pi and c byP pi if necessary).From (3) it follows that V =Pki=1 piV � c. From (4) it follows that for all Q 2M�,kXi=1 piD(P�i jjQ) � c � V:Hence V = sup�2A(�) infQ2M� kXi=1 �(�i)D(P�i jjQ) � infQ2M� kXi=1 piD(P�i jjQ) � V:2 The lemma below extends the above result to the case of in�nite �. This generalizes similar results ofGallager [11], and Davisson and Leon-Garcia [7]. As in the latter result, the proof closely follows that ofTheorem 2, page 85 in [10]. Again, we include it only for completeness1.Before we can prove the lemma, we need a few more preliminary de�nitions. A real-valued functionf on a topological space X is lower semicontinuous if for all real r, fx : f(x) > rg is open. Any lowersemicontinuous function de�ned on a compact set achieves its in�mum on that set, and if F is any set oflower semicontinuous functions, then g(x) = supff(x) : f 2 Fg is lower semicontinuous (see [10]). Finally,Posner has shown that the function D(P jjQ) is lower semicontinuous in both its arguments with respect tothe topology of weak convergence (or equivalently, w.r.t. the � metric) [18].Lemma 3 If P� is uniformly tight then V � = V = V , and moreover there exists a minimax strategy inM�, i.e. there exists Q0 2 M� such that V = sup�2A(�) I(�;Q0).Proof: It is obvious that V � � V , and it is easily veri�ed that V � V . These inequalities hold forany game. Thus it su�ces to show that V � � V and that there is a measure Q0 in M� such that V � =sup�2A(�) I(�;Q0). The latter is equivalent to showing there is aQ0 2M� such that infQ2M� sup�2�D(P�jjQ) =sup�2�D(P�jjQ0). To verify this claim, �rst note that if V � = 1 then any Q 2 M� will do for Q0. Sowlog, assume V � < 1. Since P� is uniformly tight, it is totally bounded, and hence M� is compact byLemma 1. Thus since sup�2�D(P�jjQ) is lower semicontinuous, it achieves its minimum over M� at someQ0 2M�. The claim follows.We now show V � � V . Suppose V < V �. For each � 2 �, let S�(V ) = fQ 2 M� : D(P�jjQ) > V g.Since D(P�jjQ) is lower semicontinuous in Q, S�(V ) is an open subset ofM� for every �. In addition, it iseasily veri�ed that for every Q 2M� there exists a � 2 � such that D(P�jjQ) > V : just �nd � such thatD(P�jjQ) > sup� D(P�jjQ)� (V � � V ) � infQ2M� sup� D(P�jjQ)� (V � � V ) = V:Hence fS�(V ) : � 2 �g is an open cover ofM�. Since M� is compact, there exists a �nite set�V = f�1; : : : ; �kg � �such that fS�1(V ); : : : ; S�k(V )g covers M�. Hence for every Q 2 M� there exists i, 1 � i � k, such thatD(P�i jjQ) > V , and hence max1�i�kD(P�i jjQ) > V . It follows thatinfQ2M� max1�i�kD(P�i jjQ) � V: (5)1The key here is that the convex closure of the set of measures P� forms an \essentially complete class", as de�ned inFerguson's text, and compactness of this set follows from Lemma 1. This, and the comments below, give us the set-up neededto apply Ferguson's theorem, which is based on [2]. 5



Let A(�V ) � A(�) be the set of all priors (probability mass functions) over �V and let M�V = fP� : � 2A(�V )g. It follows from (5) that infQ2M�V max1�i�kD(P�i jjQ) � V: (6)Since M�V =M�V , by Lemma 2infQ2M�V max1�i�kD(P�i jjQ) = sup�2A(�V ) infQ2M�V I(�;Q) (7)Since the Bayes optimal strategy for the statistician is mixture derived from a prior in A(�V ), we also havesup�2A(�V ) infQ2M�V I(�;Q) = sup�2A(�V ) infQ2A(X) I(�;Q) � sup�2A(�) infQ2A(X) I(�;Q) = V : (8)By (6), (7), and (8), it follows that for all V < V �, V � V . Hence V � � V . 2Our �nal lemma examines the case when P� is not uniformly tight.Lemma 4 If P� is not uniformly tight, then V =1.Proof: Since P� is not uniformly tight, there exists � > 0 such that for every compact K � X, there is ameasure P 2 P� such that P (K) � 1 � �. Let � = �=2. Then we can construct an in�nite sequence fXigof disjoint Borel subsets of X and a corresponding sequence fPig of measures in P� such that Pi(Xi) � �and Si = Sij=1Xi is compact for all i. The construction proceeds as follows: First let P1 be any measure inP� and X1 be any compact set such that P1(X1) � �. As mentioned above, a set of probability measureson X is uniformly tight i� it is totally bounded, so in particular, any single probability measure P in P�is tight in the sense that for any �0 > 0 there exists a compact K � X with P (K) > 1 � �0. So this �rstpart of the construction is possible. Now, assume we have completed the ith step of the construction. SinceP� is not uniformly tight and Si is compact, we can �nd Pi+1 2 P� such that Pi+1(Si) � 1 � �. But sincePi+1 (by itself) is tight, we can �nd a compact set K with Pi+1(K) > 1 � �. Let Si+1 = K [ Si, andhence Xi+1 = K � Si. Clearly Si+1 is compact and Pi+1(Xi+1) � �. Thus by induction, the construction ispossible.Now we make a few simple claims about the relative entropy of �nite distributions that are easily veri�ed.First, assuming that log denotes the natural logarithm, then for any �nite probability mass functions fpigand fqig, Xi pi log piqi � 0@ Xi:log(pi=qi)>0pi log piqi1A � 1e : (9)Second, if fqig is a probability mass distribution and fpig is any set of nonnegative numbers thenXi pi log piqi �  Xi pi! logXi pi: (10)The second claim follows directly from Jensen's inequality, and is a special case of the log sum inequality givenin [5]. The �rst claim follows from the fact that x logx � �1=e for all nonnegative x, and the observationthat Xi:log(pi=qi)<0pi log piqi = Xi:log(pi=qi)<0 qi�piqi log piqi� :Returning to our construction, for each n � 1 let fEjg be the �nite partition of X obtained by Ej = Xj,1 � j � n, and En+1 = X � Sn, and let Q = 1nPni=1 Pi. Then using the de�nitions and the above claimsand construction, V = sup�2A(�) I(�; P�)� supn 1n nXi=1D(PijjQ)6



� supn 1n nXi=1 n+1Xj=1 Pi(Ej) log Pi(Ej)Q(Ej)� �1e + supn 1n nXi=1 Pi(Ei) log Pi(Ei)Q(Ei)� �1e + supn 1n  nXi=1 Pi(Ei)! log nXi=1 Pi(Ei)� �1e + supn � log(�n)= 1:2 Putting these lemmas together, we haveTheorem 1 V � = V = V , and moreover there exists a minimax strategy in M�, i.e. there exists Q0 2 M�such that V = sup�2A(�) I(�;Q0).Proof: If P� is uniformly tight the result follows from Lemma 3. Otherwise, V =1 by Lemma 4. However,since we always have V � � V � V , in this case these values are trivially all equal, and since the minimaxvalue is in�nite, any strategy is minimax. 24 DiscussionHere we show that the minimax and maximin values for this game are equal, but we do not give generalbounds on this value. For the general source coding/cumulative relative entropy risk case in which P� is afamily of smooth parametric n-fold product distributions, bounds on the Bayes Risk and the minimax valueof the game that hold asymptotically for large n are given in [4]. These have a long history, also describedthere. Bounds on these quantities in a more abstract n-fold product setting are obtained in [14], using theresults of this paper. We are unaware of any general bounds for the case when the distributions in � arenot product distributions.In [16] it is shown that the minimax value of this game is nearly a lower bound on the loss that must besu�ered by the statistician for \most" states of Nature, where \most" is de�ned with respect to a limit ofpriors that achieve the maximin bound. Related results are given in [14]. Both [4] and [16] also investigatethe limiting value of this game in the above case as n ! 1. It is shown in [4] that in this limit Je�reys'prior achieves the maximin = minimax value asymptotically for smooth, parametric distributions. It wouldbe interesting to know the structure of the corresponding "asymptotically least favorable" prior in moreabstract settings.AcknowledgementsWe thank Andrew Barron, Robert Gallager and Neri Merhav for pointing out related work, and ManfredOpper and Nick Littlestone for valuable discussions.References[1] A. Barron and T. Cover. A bound on the �nancial value of information. IEEE Trans. on InformationTheory, 34:1097{1100, 1988.[2] L. L. Cam. An extension of Wald's theory of statistical decision functions. Annals of MathematicalStatistics, 26:69{81, 1955.[3] B. Clarke and A. Barron. Information-theoretic asymptotics of Bayes methods. IEEE Transactions onInformation Theory, 36(3):453{471, 1990. 7
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