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Abstract: Suppose Nature picks a probability measure Py on a complete separable metric space X at
random from a measurable set Pg = {FPy : 6 € ©}. Then, without knowing 0, a statistician picks a measure
@) on X. Finally, the statistician suffers a loss D(Py||Q), the relative entropy between Py and ). We show
that the minimax and maximin values of this game are always equal, and there is always a minimax strategy
in the closure of the set of all Bayes strategies. This generalizes previous results of Gallager, and Davisson
and Leon-Garcia.

Index terms: minimax theorem, minimax redundancy, minimax risk, Bayes risk, relative entropy, Kullback-
Leibler divergence, density estimation, source coding, channel capacity, computational learning theory

1 Introduction

Consider a sequential estimation game in which a statistician 1s given n independent observations Y7,..., Y,
distributed according to an unknown distribution Ps chosen at random by Nature from the set {ﬁe 16 € 0}
according to a known prior distribution g on ©. For each time ¢ between 1 and n, the statistician must
produce an estimate Pt for the unknown distribution Pg, based on the previoust—1 observatlons Yi,..., Y 1.
At the end of this time period, the statistician suffers a cumulative relative entropy loss Y ,_, (]59||Pt),
which measures the quality of the sequential estimates made. Variants of this game have been studied by
several authors (see e.g. [15, 9, 3, 4, 14]). If the observations are restricted to a finite alphabet, then the
actions of the statistician can be interpreted as adaptive source coding for an unknown source. For fixed
6, the average loss suffered is the redundancy [6, 3]. When we also average over the random choice of 8
according to the prior p, we get the risk for this game, which is then average redundancy. This risk is called
cumulative relative entropy risk in statistics.

The product of the sequence of conditional distributions {P;(Y;|¥1,...,Yi_1) : 1 <t < n} forms a joint
distribution ) on the n-fold product of the space of observations. Let us call this n-fold product space X.
In this way, the actions of the statistician can be interpreted as choosing a joint distribution @) on the space
X. Let Py = ]59” be the “true” joint distribution for the observations. Using the chain rule for relative
entropy, it is seen that the risk for this game reduces to [ D(Py||Q)du(6) [3]. This leads us to a simpler,
more general game: Nature picks a prior g on © and then picks a probability measure Py on a space X at
random (according to y) from a set {Pp : 6 € ©}. Then, knowing p but not knowing @, a statistician picks
a measure ) on X. Finally, the statistician suffers a loss D(Py||@).

We show that the minimax and maximin values of this game are always equal, and there is always a
minimax strategy in the closure of the set of all Bayes strategies. This generalizes results of Gallager [11],
and Davisson and Leon-Garcia [7], which were restricted to the case when the observations are chosen from
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a finite set of symbols. The proof of the general result closely follows that of Theorem 2, page 85 in [10],
which is based on earlier results of Le Cam [2], with one fairly simple extension to handle the case when
{Py : 6 € ©} is not uniformly tight (Lemma 4 below).

In the source coding interpretation of this game, the minimax value 1s the capacity of the channel from ©
to X [7, 4]. A similar interpretation applies in computational learning theory, where the cumulative relative
entropy risk is interpreted as the average additional loss suffered by an adaptive algorithm that predicts
each observation before it arrives, based on the previous observations, as compared to an algorithm that
makes predictions knowing the true distribution [12, 13]. Here, to get this interpretation, we assume that
the observation at time ¢ is predicted by the “predictive” probability distribution P, formed by the adaptive
algorithm using the previous ¢ — 1 observations, and that when this ¢th observation arrives, the loss is the
negative logarithm of its probability under P;. The game has interpretations in other fields as well. For
example, in mathematical finance and gambling theory, the cumulative relative entropy risk measures the
expected reduction in the logarithm of compounded wealth due to lack of knowledge of the true distribution

1, 3.

2 Preliminary Definitions

We first briefly review some basic facts about probability measures on complete separable metric spaces;
proofs of these can be found in e.g. [8]. Let (X, p) be a complete separable metric space and let A(X) be the
set of all probability measures defined on the o-field generated by the open sets of X (i.e. the Borel subsets
of X). For any real-valued function f on X, ||f||cc = sup, |f(z)], ||f||lz = sup,», |f(z) — f(y)|/p(=,y), and
lfllz = ||flloc + ||f]|z- For any two probability measures P,Q € A(X), let

8(P,Q) = sup{l/fdP— /fdQI sz < 13-

It is known that 8(P, @) is a metric and (A(X), 5) is a complete separable metric space. For measures P
and P,, n > 1, we say P, converges weakly to P, denoted P,, — P, provided that

/f(x)dPn(x) —>/f(x)dP(x)

for every bounded continuous real-valued function f on X. Then P, — P iff 3(P,, P) — 0. Finally, a
set of measures P C A(X) is uniformly tight iff for every € > 0 there is a compact set K C X such that
P(K)>1—eforall P € P. It is known that P is uniformly tight iff P is totally bounded with respect to
the metric 3.

Next, we look at how relative entropy and mutual information can be defined in the above setting. For
any measures P, @ € A(X), the relative entropy or Kullback-Leibler (KL ) divergence between P and @ can
be defined by

P(E:)
D(P||Q)= sup P(E :
{E.Jen(x Z Q(Ei)
where TTI(X) is the set of all finite partitions of X into Borel sets. (Throughout the paper we define 0log0 = 0.)
An equivalent definition (see [17]) is

o(Pl@) = [ (100 5512 ) apto)

where dP and d@ are Radon-Nikodym derivatives with respect to a suitable dominating measure for P and
Q.

Let © be a set and Py be a measure in A(X) for every # € ©. Each @ is called a possible "state of
Nature.” We assume that Pe = {Pp : 0 € O} is a Borel subset of A(X). The set © inherits the metric 8 on
A(X) in the obvious way: 5(61,02) = 3(Ps,, Ps,) for 61,0, € ©. Let A(O) denote the set of all measures



pt defined on the Borel subsets of ©. We will refer to these as priors. For any prior p € A(©), there is a
corresponding measure P, € A(X) defined by letting

Pu(3) = [ Pu(S)du(6)

for all Borel sets S C X.
For any prior u € A(O) and any measure @ € A(X), the cross information between © under prior g and
X under measure ) is denoted by

Hm@z/bwwww@,

and the mutual information between © and X under the prior y is defined by

I{p) = 1(p, Pp).

3 Result

Consider the game in which first Nature chooses a state # € © at random according to a prior u € A(9Q),
then without knowing f, a statistician chooses a measure @ € A(X), and finally the statistician suffers a
loss D(Py||@). The average loss, or risk, of this game for the statistician is I(y, @). Using the convexity of
—log(x), it follows easily from Jensen’s inequality that

Ip) < 1(p, Q)

for all @) € A(X). Hence for a given p, choosing () = P, is the best strategy for the statistician (the Bayes
optimal strategy), and I(p) is the minimal (or Bayes) risk.

Let Mo = {P, : p € A(O)}, i.e. all measures on X that can be obtained as mixtures of the Py measures.
This 1s the set of all Bayes strategies for the statistician. Let Me C A(X) be the closure of Mg in the
topology of weak convergence, i.e. the topology of the metric S3.

Lemma 1 If© is totally bounded then Mg is compact.
Proof: We will use two properties of the metric 5: For any Pp, Pa, @1, Q2 € A(X) and 0 < A < 1,
BAPL+ (1 = A)Pa, AQ1 + (1 = A)Q2) < AB(P1, Q1) + (1 = A)B(F2, Q2), (1)
i.e. B is convex in both its arguments, and for any 0 < X <1
BAPL+ (1= NP, NP+ (1= XN)Py) <22 = X|. (2)

Each of these are easily verified.

In a complete metric space, a set is compact iff it is closed and totally bounded. Hence it suffices to show
that Mg is totally bounded. Since © is totally bounded, for any ¢ > 0 we can find ©¢ = {6;,...,0,} C O
such that for all § € © there exists g() € ©° with 3(P, ), Ps) < ¢, and such that g is measurable.

Let A(O°) be the set of all probability mass functions on ©° and Mg = {P, : p € A(O°)}. Suppose
P, = [ Pydu(f) € Me. Let P = [ Pyydu(f) € M§. Then by the convexity of 3,

B(PuP) < [ BPu Pyo)in(0) < e
It follows that for any P € Mg these is a @ € MG with 5(P, Q) < ¢, and thus the same is true for Me.

Hence, it suffices to show that M is totally bounded. However, using (2), if {A;} and {A}} are probability
mass functions on ©° with |A; — A}| < €/k then

B(Z /\iPG,, Z/\;P‘%) S €.



Thus since the k-dimensional simplex is totally bounded, so is Mg O
We define the following values associated with the above game: The minimaz value is defined by

V= inf sup I(p, Q).
QEA(X)NEAFG) (1, @)

The mazimin value is defined by
V= sup inf  I(p, Q).
HEA(®) REA(X) ( )

The minimaz-Bayes value is defined by

V*= inf sup I(u,@).
QEMo neA(®)

This last value represents the smallest possible worst-case loss the statistician can guarantee if she restricts
herself to strategies that are in the closure of the set of Bayes strategies.
Some obvious equalities are

V= inf supD(P
achln) seb PUII)

and
Ve = inf sup D(P]|Q),
QEMg €O
since for any choice of @) by the statistician, Nature maximizes the risk of the statistician by putting all the
probability in the prior p on the worst 6, and

since I(p) is the Bayes risk for prior u, as discussed above.
The following lemma is a minor variant of the standard minimax theorem for finite © from [10] (see
Theorem 1, page 82). We include the proof for completeness.

Lemma 2 If © is finite then V* < V.
Proof: Suppose © = {#y,...,0;}. Let

S={(D(F,lQ), ., D(P, Q) : Q € Mo},

and let co(S) be the convex hull of S. By Helley’s theorem (see e.g. [10], Lemma 1, page 65), for every z €

co(S) there exist sq1,...,8541 € S and A1, ..., Agyq with A; > 0 and Zf;l Aj = 1 such that Zf;l Ajs; = z.

Let s; = (D(Py,[|Q;), - .., D(Ps,]1Q;)) for Q; € Mg and @ = Zf;l AjQ; € Me. By Jensen’s inequality
([5]), for all 8,
k41
>_AiD(P1Qy) = D(Bs|Q).
j=1
Thus for all z € co(S) there exists s € S with s; < z; for all 4.
For each real alet Ly, = {(z1,...,25) : 2 < a,1 <i<k}. Let V =1Iub{a: Ly Nco(S) = @}. From the
observations above, it follows that for every n > 1 there exists (), € Mg such that

D(Py,

1
Qn) <V 4 —forall 1 <i<k.
n

Thus V* < V. It suffices to show V < V.
Let L}, denote the interior of Ly . Since L} and co(S) are disjoint convex sets there exists a hyperplane
that separates them, i.e. there exist real p;; 1 <¢ <k, and ¢, such that

k
Zpizi <cforallz e LY (3)

i=1



and
k

Zpizi > ¢ for all z € co(S5). (4)
i=1
Each p; must be nonnegative, because if p; < 0 for some i then keeping z € LY, we can let z; — —oo holding
the other coordinates fixed, which contradicts (3). In addition, since we must have >~ p; > 0, we can assume
wlog that > p; = 1 (dividing p; and ¢ by > p; if necessary).
From (3) it follows that V = Zlepiv < ¢. From (4) it follows that for all Q € Mg,

k
> piD(Py]|Q) > > V.
=1

Hence

V= sup inf Zu Q)> V.

HEA(O QEM@ i=1

k
NQ)> it S pD(R
QEM@Z»Z:;

O

The lemma below extends the above result to the case of infinite ©. This generalizes similar results of
Gallager [11], and Davisson and Leon-Garcia [7]. As in the latter result, the proof closely follows that of
Theorem 2, page 85 in [10]. Again, we include it only for completeness!.

Before we can prove the lemma, we need a few more preliminary definitions. A real-valued function
f on a topological space X is lower semicontinuous if for all real r, {x : f(x) > r} is open. Any lower
semicontinuous function defined on a compact set achieves its infimum on that set, and if F is any set of
lower semicontinuous functions, then g(x) = sup{f(x) : f € F} is lower semicontinuous (see [10]). Finally,
Posner has shown that the function D(P]|Q) is lower semicontinuous in both its arguments with respect to
the topology of weak convergence (or equivalently, w.r.t. the § metric) [18].

Lemma 3 If Pe is uniformly tight then V* = V = V., and moreover there exists a minimaz strateqy in
Me, i.e. there exists Qo € Mg such that V = SUP e A(0 (u Qo).

Proof: It is obvious that V* > V, and it is easily verified that V > V. These inequalities hold for
any game. Thus it suffices to show that V* < V and that there is a measure @)y in Mg such that V* =
SUP ¢ 4@ (u Qo). The latter is equivalent to showing there is a Qg € Mg such that mf 7is SUPseo D(P||Q) =

SUPgeo D(P9||Q0). To verify this claim, first note that if V* = oo then any @ € /\/l@ Wlll do for Q. So
wlog, assume V* < co. Since Pg is uniformly tight, it is totally bounded, and hence Mg is compact by
Lemma 1. Thus since supgcq D(F3||Q) is lower semicontinuous, it achieves its minimum over Mg at some
Qo € Mg. The claim follows.

We now show V* < V. Suppose V < V*. For each § € O, let Sp(V) = {Q € Mo : D(P]|Q) > V}.
Since D(Ps||Q) is lower semicontinuous in @, Sg(V') is an open subset of Mg for every . In addition, it is
easily verified that for every ) € Mg there exists a § € © such that D(FPp||Q) > V: just find @ such that

D(P||Q) > sup D(P||Q) — (V" = V) > inf sup D(H||Q)— (V" =V)=V.
9 QeMo 8

Hence {Sp(V') : 0 € ©} is an open cover of Mg. Since Mg is compact, there exists a finite set
®V = {gla"'agk} g S

such that {Sp, (V),..., S, (V)} covers Me. Hence for every @) € Mg there exists ¢, 1 < ¢ < k, such that
D(P,]|Q) >V, and hence max<;<x D(Ps,]|Q) > V. 1t follows that

QéI/l\E 1r£1?<ka(P9 [1Q) > V. (5)

IThe key here is that the convex closure of the set of measures Pg forms an “essentially complete class”, as defined in
Ferguson’s text, and compactness of this set follows from Lemma 1. This, and the comments below, give us the set-up needed
to apply Ferguson’s theorem, which is based on [2].



Let A(Ov) C .A(O) be the set of all priors (probability mass functions) over Oy and let Mg, = {P, : p €
A(Oy)}. Tt follows from (5) that
f D(P, >
QEIJI\l/l@V ax DB ]1Q) 2 V. (6)
Since Mg, = Mg, , by Lemma 2

inf D(P. = inf [
Qelxl\l/l@ 112?<Xk (P, 1l Neiu(gv)Qelxl\l/lev (. @) Q)

Since the Bayes optimal strategy for the statistician is mixture derived from a prior in A(Oy ), we also have

su mmf I su mf 7 su mf 7 8
b g, (1,Q) = Leb | adibn) (1,Q) < LU gehx) (1,Q) = (8)

By (6), (7), and (8), it follows that for all V < V* V < V. Hence V* < V. O

Our final lemma examines the case when Pg is not uniformly tight.
Lemma 4 If Pg is not uniformly tight, then V. = co.

Proof: Since Pg is not uniformly tight, there exists € > 0 such that for every compact K C X, there is a
measure P € Pg such that P(K) < 1 —e¢. Let 6 = ¢/2. Then we can construct an infinite sequence {X;}
of disjoint Borel subsets of X and a corresponding sequence {P;} of measures in Pg such that P;(X;) > ¢
and S; = U;’:l X; 1s compact for all 2. The construction proceeds as follows: First let P; be any measure in
Peo and Xy be any compact set such that P;(X;) > J. As mentioned above, a set of probability measures
on X is uniformly tight iff it is totally bounded, so in particular, any single probability measure P in Pg
is tight in the sense that for any ¢’ > 0 there exists a compact K C X with P(K) > 1 —¢'. So this first
part of the construction is possible. Now, assume we have completed the ith step of the construction. Since
Pe is not uniformly tight and S; is compact, we can find P41 € Peo such that P11(S;) <1 —e. But since
Pi11 (by itself) is tight, we can find a compact set K with P,;1(K) > 1 —46. Let S;31 = K US;, and
hence X;y1 = K — S;. Clearly S;41 is compact and Pj41(X;41) > 6. Thus by induction, the construction is
possible.
Now we make a few simple claims about the relative entropy of finite distributions that are easily verified.
First, assuming that log denotes the natural logarithm, then for any finite probability mass functions {p;}

and {QZ}a

Zpilog%Z Z pilog& —%. (9)

ilog(pi/qi)>0 '

Second, if {¢;} is a probability mass distribution and {p;} is any set of nonnegative numbers then

Zpi log% > (Zm) logszw (10)

The second claim follows directly from Jensen’s inequality, and is a special case of the log sum inequality given
in [5]. The first claim follows from the fact that xlogz > —1/e for all nonnegative #, and the observation

that
Pi Pi Pi
S omiel= 3 g (Bigl).
i:log(pi/q:)<0 " illog(pi/ai)<0 ' '
Returning to our construction, for each n > 1 let {E;} be the finite partition of X obtained by E; = X,
1<j<n,and B,y 1 =X — Sy, and let Q = L El 1 Pi. Then using the definitions and the above clalms
and construction,

V. = sup I(u,Py)
HEA(®)

1 n
a3 i)
n i=1

Y
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O
Putting these lemmas together, we have

Theorem 1 V* =V =V, and moreover there exists a minimaz strategy in Mg, i.e. there exists Qo € Me
such that V' = sup ¢ 4(e) I(p, Qo).

Proof: If Pe is uniformly tight the result follows from Lemma 3. Otherwise, V. = oo by Lemma 4. However,
since we always have V* >V >V in this case these values are trivially all equal, and since the minimax
value is infinite, any strategy is minimax. O

4 Discussion

Here we show that the minimax and maximin values for this game are equal, but we do not give general
bounds on this value. For the general source coding/cumulative relative entropy risk case in which Pg is a
family of smooth parametric n-fold product distributions, bounds on the Bayes Risk and the minimax value
of the game that hold asymptotically for large n are given in [4]. These have a long history, also described
there. Bounds on these quantities in a more abstract n-fold product setting are obtained in [14], using the
results of this paper. We are unaware of any general bounds for the case when the distributions in © are
not product distributions.

In [16] it is shown that the minimax value of this game is nearly a lower bound on the loss that must be
suffered by the statistician for “most” states of Nature, where “most” is defined with respect to a limit of
priors that achieve the maximin bound. Related results are given in [14]. Both [4] and [16] also investigate
the limiting value of this game in the above case as n — oo. It is shown in [4] that in this limit Jeffreys’
prior achieves the maximin = minimax value asymptotically for smooth, parametric distributions. It would
be interesting to know the structure of the corresponding ”asymptotically least favorable” prior in more
abstract settings.
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