
Data Dependent Optimizations forPermutation Volume RenderingCraig M. WittenbrinkKwansik KimAlex T. Pang�UCSC-CRL-96-24December 11, 1996Baskin Center forComputer Engineering & Information SciencesUniversity of California, Santa CruzSanta Cruz, CA 95064 USAabstractVolume rendering or volume visualization is an algorithm for creating images fromthree-dimensional and four-dimensional data sets, without computing intermediate surfacerepresentations. Because of the inherent O(N3) run time, numerous approximations areused to provide interactivity. As compute platforms have become more capable in theiroperations per second, and in their memory capacities, the requirements of volume renderingbecome more and more advanced. The goal of application users is high �delity renderingsof medical, simulation, and remotely sensed data sets. Interactivity provides a tractablemeans for setting the many input parameters, but interactivity is challenging because ofthe run time complexity. We investigate the further optimization of massively parallelalgorithm solutions, in an e�ort to have the e�ciency of the parallel approaches reach thatof sequential ones, without sacri�cing �delity. This paper discusses experiments in extendingpermutation warping on the MasPar MP-2 implementation to include data dependentcoherency optimizations, and object space to screen space precompositing communicationsavings. We start with a description of the base algorithm, and then describe the extensions,showing results of nearly 400% speed improvement or a factor of 5 speedup.Keywords: parallel volume visualization, SIMD, algorithms, octree, ray tracing�Partially supported by a grant from ISCR-LLNL B291836 and NSF IRI-9423881, C.M.Wittenbrink is withHewlett-Packard Laboratories, Palo Alto, CA



1. Introduction 1Keywords:1 IntroductionVolume rendering algorithms calculate visualizations from sampled medical and simulation data,and researchers have sought to speed up the algorithms to make them more useful. Our algorithmuses permutation warping to achieve linear speedup and linear storage on data parallel machines.The algorithm supports arbitrary view directions, large data sets, large parallel machines, and highorder �lters, combined features not supported by other data parallel algorithms. We have deriveda new one-to-one processor assignment that improves on the previously known solutions. On theMasPar MP-1, we have shown a speedup of 15.7 for a 16 k processor MP-1 over a 1k processorMP-1, and two frames/second with a 1283 volume and trilinear view reconstruction. Supra linearspeedups of over 20 are achieved with near neighbor �ltering [1]. We have also shown that run timeis constant across view angle, that the algorithm has tunable �lter quality, and that one may achievee�cient memory implementation.In this paper we investigate extensions to the algorithm to make it competitive in speed, whilesupporting superior �ltering qualities to parallel variants of the shear warp factorization algorithm.The focus of this paper are extensions and implementation results on the MasPar MP-2. The abilityto do load balancing, culling, and adaptive ray termination are possible with scalable, e�cientmassively parallel MIMD and SIMD algorithms. Implementation of remote frame viewing forinteractive visualization has also been developed.Even though the performance of sequential algorithms is impressive, there are always factors thatdrive for higher performance solutions including growing data set sizes, algorithm requirements,and user expectations. Data set sizes are increasing because of the increased sophistication ofscanners, data fusion methods, and dramatic price reductions of disk and random access memory.Applications which have recently driven up the required memory capabilities are irregular grids fromcomputational uid dynamics and the visible human data sets. Algorithm requirements are a movingtarget, as users want increasingly sophisticated shading, classi�cation, and interaction methods. Asmore capable algorithms and/or hardware are made available, users prefer higher and higher �delitysolutions, which may use improved gradient calculations, supersampling, and larger frame sizes.User expectations are also changing, because of the real-time interactivity on surface shadedgraphics, users are inconvenienced when an application doesn't achieve the same performance.The use of volume rendering in applications likely lags behind, because there is always a gap inperformance between surface/wire frame graphics and volume rendering.In the pursuit of the highest performance volume rendering solutions, three approaches havebeen taken: parallel algorithms on general parallel machines, parallel algorithms on special purposegraphics hardware, and special purpose volume rendering hardware. There is a place for all three ofthese approaches, and one may imagine that the best approach will di�er depending on metric, stateof the art, and price point. We have done work on general parallel machines [2, 3, 1] (MasPar, Pro-teus), and continue to research that approach. The highest performance in frames/second has beenthe parallelization of the shear warp approach of Lacroute [4, 5, 6, 7]. Volume rendering algorithmson special purpose graphics hardware include Cabral et al. [8]'s use of the SGI Reality Engine'sTexture mapping hardware, SGI In�nite Reality Engine MIP Mapping hardware for 3D texturemapping, and special purpose volume rendering hardware includes Meagher's Octree Corporationvolume rendering accelerator [9] and P�ster and Kaufman et al.'s Cube architecture [10].In the pursuit of the highest performance solutions there are several challenges: achieve thehighest performance, achieve the highest e�ciency, create new capabilities, and create new applica-tions. Imagine even without any innovation in algorithms, the highest performance will double every18 months given the advancements in commodity computer hardware. If you simply had enoughmoney to buy the latest, fastest shared address space multiprocessor, each year, you would be ableto publish improvements. What balances this out is the growth in requirements, data set sizes, andexpectations.



2 2. Background on Permutation WarpingWe have pursued improvements in massively parallel solutions. The parallel shear warp su�ersfrom a lack of scalability and while the highest performance general purpose machine algorithm,is not e�ciently parallelizeable beyond tens of processors. Our permutation warping approachhas been proven to be scalable, but it's e�ciencies do not match the shear warp approach. Thee�ciencies don't match because we use a trilinear reconstruction (7 multiplies), and the shear warpuses a bilinear reconstruction (3 multiplies) which means we're doing roughly 2.3 times the work tocompute the more accurate �lter. Other e�ciency di�erences include data dependent optimizations,such as the thresholding and run length codings. The future requirements of scalability to thousandsof processors and highest �delity will make permutation warping an attractive alternative, and sowe are researching the inclusion of data dependent optimizations. We give a short background onpermutation warping, Section 2, then present our research methodology, Section 3, and researchresults, Section 4.2 Background on Permutation WarpingRendering is the creation of images from models, whether those models are geometric or vol-umetric. Medical imaging by rendering of slices and volumes of data, and by changing renderingparameters allows searching for di�erent tissues or abnormalities. Development at the Universityof California, Santa Cruz uses the MasPar MP-2 4096 node machine, the Silicon Graphics RealityEngine 2 with 4 processors, and several Silicon Graphics Indigo-2 Extremes. We have also developedremote frame viewing solutions, in order to e�ectively use the remote MPP's [11].We developed several solutions to various aspects of the rendering problem. Our solutions canbe divided into primarily two areas, memory access e�ciency, and network e�ciency. We inventeda cache architecture scheme, a storing of a subset of data for immediate access, which uses tiling toachieve e�ciency with little hardware. Tiling is also called blocking, chuncking, and mosaicing{arecent example of such subdivision is in the Microsoft Talisman architecture [12]. In one study, weshowed the utility of such a tiling scheme in working with tiles in images [13]. In another study, weshowed how tiling improved the e�ectiveness of a massively parallel rendering algorithm [1]. To go tothe next step in the development of tiling requires generalizing the tiler to work not just with commonimage processing operations and volume rendering, but with many classes of rendering algorithms.Another solution we developed is permutation warping for network e�ciency. A permutation is apairing, similar to choosing partners at a dance. If there is a one-to-one pairing, then the pairing iscalled a permutation. We showed that for spatial assignment in rendering, such a dance hall pairingcan be computed, and therefore rendering requires simply a one-on-one tete-a-tete instead of a largeconference [14, 1]. This holds for regular grids, and many data sets of interest are regularly gridded.We work with atmospheric circulation data, �nite element trabecular bone data, and the numerousregularly gridded example data sets publicly available.Our solutions have been published [15, 13, 14, 1], but their utility has not been widely seizedupon, and collaboration with LLNL was started to port these solutions onto the world wide web forcurrent biomedical studies [11]. It was hoped the use of the developed volume rendering tools wouldhelp to prove or disprove their e�ciency. By generalizing tiling and permutation warping to moreclasses of rendering and showing implementations on more machines, it becomes more importantto a wider audience of people. And, by investigating solutions for accelerated rendering on realproblems, important directions in further parallel volume rendering research may be found.Volume rendering is an algorithm that computes the interaction of light in a volume of lightscattering particles. The algorithm uses geometric spaces between which transforms are performed:(Step 1) object space (OS) points , (Step 2) three dimensional screen space (SS) points, and (Step 3)two dimensional screen space points. The domain of points in each space is de�ned by bounding hulls.The three steps are: (1) the preprocessing stage (PPS), (2) the volume warping stage (VWS), and(3) the compositing stage (CS). The inputs to the algorithm are a scalar valued volume, a set of lightsources and their positions, a viewing transform matrix, a classi�cation function, used to convertderived values to densities, and a shading function, which calculates the lighting and illuminatione�ects. The PPS calculates normals, opacities, and initial shaded intensities. Classi�cation and



2. Background on Permutation Warping 3shading is discussed in detail in the background references [16, 17, 18, 19]. The VWS transformsthe initial shading intensities and the opacities to the three dimensional screen space by resampling.The CS evaluates the view ray line integrals to get the two dimensional screen space pixel intensities.The �nal output is a two dimensional array of pixel values. For a more in depth discussion of volumerendering see Collected papers in Kaufman [20], Blinn [16], Kajiya and von Herzen [17], Levoy [18,19], and our survey [13].The array of output pixel intensities can be calculated many di�erent ways indicated by thenumerous input variables: volume data, light sources, view transform, classi�cation function, andshading function. An illustrative categorization of possible algorithms is by viewing transform.Existing parallel algorithms may be grouped into four categories determined by their viewing trans-forms: backwards, multipass forwards, forwards splatting, and forwards wavefront. A backwardsviewing transform is ray tracing [21]. Nieh and Levoy [22], Yoo et al. [23], Montani et al. [24], Neu-mann [25], Goel et al. [26], and Hsu [27] have developed backwards (ray tracing) volume renderingalgorithms for parallel computers. Our permutation warping [2] approach computes a backwardsmapping algorithm with optimal storage and deterministic communication on shared or distributedmemory machines.Figures 2.1 and 2.2 illustrate the transforms calculated by processors. The object space andscreen space are separated, the object space on the left and the screen space on the right. Aprocessor does permutation warping by: 2.1) Calculating processor assignments; 2.2) Calculating thereconstruction point; 2.3) Performing resampling and reading the values of its neighboring processors;(The number of neighbors used determines the �lter order.) And, 2.4) Sending resampled values toscreen processors. Figure 2.1 shows the aligned subimages in two-dimensions. In Step 3, a parallelproduct evaluation combines resampled intensities and opacities. Binary tree combining computesproducts for any associative (not necessarily commutative) operator. For details of binary treecompositing, see our work [28, 3].Figure 2.1: Volume in two dimensions showing the communication and depth sorting witha permutation warping assignment. The arrow shows the data communication from objectspace (OS) to screen space (SS). The �nal 2D volume on the right shows the communicatedfragments properly sorted.
Figure 2.2: Volume transforms in parallel.Several enhancements are possible for the permutation warping algorithm. Load balancing,region culling, and local subcube adaptive termination. We describe these enhancements, and their



4 3. Methodologyexpected improvement for the algorithm. Our prior algorithmic studies of permutation warpinghave shown that it is asymptotically time and space optimal for resampling on the EREW PRAM(exclusive read exclusive write parallel random access machine) [28, 2, 3, 14, 1]. The MIMD studythat we carried out showed that there was poor load balacing for certain view angles. An e�ectiveload balancing strategy is a must for MIMD variants of the permutation warping algorithm, and theproposed work includes altering the mapping of permutations to virtual addresses which will allowthe use of slackness [29], and also redistribution of processor's work. The permutation assignmentcan be done from virtual processor address to virtual processor address, and the virtual assignmentscan be dynamically altered to load balance the processing as it occurs.The Lacroute et al. shear warp factorization algorithm, [4], has been able to reduce the amountof work necessary in computing a volume rendered output from regular volumes by nearly an orderof magnitude. Parallel versions of this program have been presented [7], and the primary speedup isthrough straight forward parallelization of the sequential algorithm. Culling of the amount of volumethat needs to be considered speeds up the algorithm. But, their studies show that the possiblespeedup to higher numbers of processors is limited because of the decomposition. Permutationwarping can scale further as we demonstrated on the SIMD implementations, and it is also possibleto use similar culling and compression to further improve e�ciencies of our algorithm. Cullingthrough run length encoding, and other compression schemes have been investigated, using theparallel permutation warping algorithm.Because, in permutation warping, each subvolume is rendered as if a separate volume renderingjob, some amount of adaptive termination along a ray may be performed. In addition, as thesubvolume's contributions are computed, an amount of work may be reduced by doing front to backparallel evaluation and terminating once opacity has reached a threshold. The adaptive terminationin the subvolume is a straightforward addition, while the adaptive termination across subvolumes canbe done in a variety of ways. The improvement is expected to partially depend on the architecture.3 MethodologyWe have the following methodology with which to pursue our research for scalable permutationvolume rendering: analytical evaluation of expected improvement followed by performance studiesto provide evidence to support or deny analysis. We have attempted to get access to massivelyparallel MIMD (Multiple Instruction Multiple Data) platforms including those of our collaboratorsat Lawrence Livermore National Laboratories: a Meiko Scienti�c CS-2, and a Cray T3D. In addition,H.P. Convex platforms are available to us at H.P. Labs. There is also possible access to regionalsupercomputing centers, such as the San Diego Supercomputing center, but we have taken advantageof the machines at the University of California, Santa Cruz including a 4096 processor MP2 SIMDmachine. Because this machine has thousands of processors, and a general interconnection network,it is suitable for studies in scalability, though may be dated for trying to compare numbers for rawperformance. We hope to port our software to a variety of machines to investigate the scalabilityissues.The analytical evaluation methodology provides an estimated performance for algorithm alter-natives. We have used abstract parallel machines to quantify the relevant machine parameters. The�rst analysis was to investigate the known optimizations. The data coherency can be investigatedin terms of how much performance improvement may be gained. There is volume coherency, raycoherency, and image coherency. That may all be exploited to reduce computation, and bandwidth.The challenge for massively parallel algorithms is communication and storage. There is a tradeo�between the two. For example if the entire volume is stored on each processor, then there neednot be any communication (but obviously an unacceptable amount of memory required). Weassume that the unknown optimizations are those that involve reducing communication, and thatpermutation warping involves a signi�cant advancement in communication e�ciencies. For eachcoherency technique, we can hope to at best have communication not add any run time.The timing numbers in the performance studies are derived from multipe runs of the program.On the MasPar, there is a hardware register available that captures the number of clock cycles,



4. Implementation and Results 5and this can be read to compute the run time. The MasPar MP-2 at Santa Cruz has the followingcapabilities:output from mpcon�g:MasPar DPU Model MP-2204 (64 rows, 64 columns)ACU IMEM size: 4 MBytesACU CMEM size: 512 KBytesPE memory size: 64 KBytesIOCTLR in I/O slot 8 (8 MBytes)IORAM unit #2: 128 MBytes in I/O slot 2SSD: unit #0: 96 MBytesoutput from mpi:Version 4.00MACHINE TYPE PE PMEM CMEM MODEL UCODE QUEUE RELEASEganesha alpha-V3. 64x64 65536 475136 2204 0.19.228 1jb-239-21Also, necessary for our performance studies have been the use of image veri�cation. Certainvolume coherency adaptations have been found to a�ect the resulting image quality so comparisonof computed images has been used to verify proper functioning, and identify artifacts of variousschemes.4 Implementation and ResultsThese are the algorithm variants that we have used to evaluate coherency acceleration on theMasPar (variant 0 is the baseline algorithm as described in [1]):1. Octree compression of sub-volume with no attempt at load balancing.2. Octree compression with dynamic load balancing.3. Octree compression with static load balancing.4. Pre-compositing before communication.The performance of permutation warping can be improved by using compression techniques likeocttree or run length encoding. A space partitioning octtree scheme has been implemented for anattempt to improve performance of permutation warping. The linear octtree[30] is a data structurethat can be traversed linearly and spatial location can be computed quickly by simple computations.The minimal storage requirements for a linear octree node is the size of voxel plus the size of an octreecode. We use 1 byte for voxel data and 32 bits for an octree code. One octree coding level require 4bits including a padding character[30]. Therefore our data structure can handle a sub-volume of size28 in each direction. For performance, we have an additional data structure that stores the origin ofeach octree region and its size in each direction of 3 dimensional space. The octree creationis doneby checking if 8 consecutive codes with same parent have the same voxel intensities after sorting theocttree coded volume.The octtree is constructed for the sub-volume of each PE with a speci�ed threshold. If a nodein the octtree is less than or equal to the threshold, it will be considered an empty node which doesnot contribute to the �nal rendering and these nodes are not stored in the local octtree.If each PE has a node to be sampled, the sample point in the middle of the sub-volume for thatnode is computed. Then the sample point is transformed according to given viewing transformationand for that location the data value and corresponding intensity are computed. The resultingintensity is stored in the local array to be sent to the corresponding location in screen space processorswhich is done after the resampling.Dynamic load balancing is done followingway. If a PE doesn't have any more nodes to process dueto its coherency while other PEs are still in the process of sampling octree nodes, it �nds the neighborwith the most octree nodes and transfers N nodes. If a PE doesn't have any neighbor with more thanN nodes to process, it will transfer a smaller number. This simple algorithm is not e�cient when mostPE's do not have many nodes while a few PEs have large numbers of nodes to process. It is unclear if



6 4. Implementation and Results
Figure 4.1: Distributions of number of octree nodes. Left: box64 before load balancing,Middle: brain64 before load balancing, Right: box64 after load balancing.there exists an optimal dynamic load balancing algorithm on a SIMD architecture that will improveperformance. We have to balance the time to communicate nodes with the time to interpolate asample point. We haven't come up with an algorithm that prevents collisions in the dynamic loadbalancing on SIMD Architecture and improves performances of the permutation warping algorithm,though we have found marked improvement with static load balancing. If we spread all nodes evenlyover all PEs dynamically, it greatly increases communication cost at run time. Figure 4 shows thedistribution of the linear octree nodes over the 64 by 64 processor elements. The irregularity ofthe distribution is shown because some processor's sub-volumes are highly homogeneous or full ofempty voxels while others are highly noisy and thus hardly compressed. The irregularities of theoctree node numbers are highly dependent on the volume data content. We implemented the simpledynamic load balancing but the communication time overwhelmed the performance savings throughcompression and therefore implemented a static load balancing scheme. The static load balancingprocess should be done only once for each data set in the initialization process and when user changesvolume classi�cation parameters.After the linear octree compression, we simply iterate a process that �nds a processor with theminimum number of nodes and maximum number of nodes and moves the load properly. If theload di�erence is greater than the given slack number s, we move s nodes. Otherwise we movethe di�erence between the maximum number of nodes and the target number of nodes for eachprocessor which is simply the total number of nodes divided by the total number of processorsavailable. The �gure 5 shows the number of octree nodes before and after the load balancing. Box64data has 643 voxels of box shape data and brain64 data has 643 data of an MR scanned volume.The rightmost �gure shows the load balanced number of nodes for all processing elements. It stillhas some processors with low number of nodes but the balancing is optimal because the maximumamong all processors can not be lowered further and only the maximum number counts on SIMDarchitecture.Table 4.1 shows the performance of the variants of the octree optimized versions of permutationwarping algorithms. The timing and octree numbers are for box64 data which is composed of 262144voxels. The threshold is used to determine whether the given voxel is empty or not. The Total runtime is an approximated wall clock time using the MASPAR hardware clock cycle. The \rotationtime" includes the time for viewing transformation and re-sampling times. The version 0 is thebase permutation warping algorithm without any coherency optimizations. It takes about 30 to 60seconds for reading data, building octree and load balancing depending on the number of nodescompressed. The re-sampling was done using trilinear �lter.Version 0 is the baseline algorithm as described in [1]. Version 1 was run without any compres-sion and load balancing. The run time is slightly increased because of the overhead in processing



4. Implementation and Results 7Version Number Max. Conden- Removing Load Avg. Avg. Tot.of Nodes sation Empty Balan- Rotation Compositing RunNodes per PE Voxels cing Time Time Time0 262144 -(64) - - - 0.12918 0.0103816 0.1395631 262144 64 No No No 0.188704 0.0103834 0.1990882 6166 2 1 Yes Yes 0.0334324 0.0103829 0.04381513 29791 8 No Yes Yes 0.0331754 0.0103823 0.04355754 3765 48 Full Yes No 0.120899 0.0103808 0.1312795 3765 1 Full Yes Yes 0.0172912 0.0103823 0.0276739Table 4.1: Run times for 643 box64 data.Version Number Max. Conden- Removing Load Avg. Avg. Tot.of Nodes sation Empty Balan- Rotation Compositing RunNodes per PE Voxels cing Time Time Time0 262144 -(64) - - - 0.129179 0.0102961 0.1394761 262144 64 No No No 0.188706 0.0102887 0.1989933 28360 8 No Yes Yes 0.0321614 0.01029 0.04245135 28860 8 Full Yes Yes 0.0318081 0.0102895 0.0420975Table 4.2: Run times for 643 brain64 data.non-compressed linear octree data structures. Version 2 shows the timing for the octree compressionwith 1 level compressed, which means that the octree is compressed up to size of 23 voxels, andload balanced. Note that the number of nodes are greatly decreased because the empty voxels arealso removed. The version 2 showed about 218 % faster speed. The version 3 has an octree thatis not compressed at all but the empty voxels are removed and the load is balanced. It showedabout 220 % improvement which is similar to version 2. This is due to the SIMD architecture ofMASPAR. While the number of nodes to be re-sampled are much less in the version 2 than version3, the communication time to send the sampled value to the output locations is increased if the nodeis a compressed large region of homogeneous voxels. While one processor is processing this largenode, many processors with smaller nodes may be idle. The worst case is that communication timeincreases up to n3 times where n is the size of sub-volume in each dimension for each processing ele-ment. In order to solve this problem, one might want to build an analytical model of communicationtime and re-sampling (or interpolation time). Using this model, one might want to device optimalload balancing algorithm. However, the exact modeling of communication is not possible because itdepends on the viewing rotation. A partial and approximate solution to this problem would be tosort the array of nodes in decreasing size of its region for each processor so that the idling time isdecreased.Version 4 shows very little improvement even with full compression which shows the run time isdetermined by the processing element with the maximum number of nodes and thus we need theload balancing. Version 5 shows slightly more than 400 % faster performance with full compressionand load balancing. Note that we might need to communicate some voxels' re-sampled values thatare not communicated in the base algorithm and vice versa, which depends on the viewing rotation,volume data content, and load balancing. Also note that we have additional performance gains ifthe re-sampling points happens to be within the given octree node which is homogeneous and thuswe do not need to interpolate. However, the probability that all 4096 processors' re-sampling pointsin MasPar are in homogeneous regions is relatively slim and unpredictable. It reveals another pointwith which we might want exploit with MIMD machines. The re-sample points are guaranteed to bewithin 1 voxel distance from the given octree node. Therefore we need to store voxels surroundingthe octree.



8 4. Implementation and ResultsTable 4.2 shows run times of versions of algorithm with brain64 data which is 643 pre-shadedvolume of MR brain scan data. It is down-sampled from pre-shaded 256�256�167 original volume.The fact that we have down-sampled and pre-shaded volume makes the data highly noisy and thuswe don't have much compression. Timing numbers for Brain64 data show similar speed up whichis about 230 % faster than base permutation warping algorithm. It has been reported that 90 %of most volumes can be considered empty without sacri�cing the resulting raycasted image quality[19]. From the numbers in the Table 4.1 and Table 4.2, we can conclude that we will get about200 % to 400 % performance gains without losing image quality. With more compression with thelinear octree, the performance gain is more. However, we might lose some �ltering quality whenwe re-sample only one point for the octree node of large size region and the point is not within theoctree node region. Figure 4.2 shows the pictures of box64 and brain64 data that are rendered withnon-compressed and compressed volume data. Using better �ltering and anti-aliasing in volume re-sampling should solve this aliasing problems. The left image of each is made with non-compresseddata and the right image is with the compressed data. The box64 has some aliasing but those ofbrain64 data is hardly noticeable because the volume is pre-shaded and down-sampled and thushighly noisy. We haven't implemented shading and the popular lookup table based shading will beimplemented in the future. As the cost of re-sampling goes high with shading and higher order �lter,the performance gain should converges to 900 % (or 10 times speedup) without losing image quality.As the size of the volume increases, the memory requirements for octree storage pushes thememory limit of MasPar which is 64 K per SIMD processor on our MP-2. The possible solutionis that we can set the maximum storage for the additional voxels to store for re-sampling withan octtree and each node's surrounding voxels occupies part of that storage. This requires aslight increase in arithmetic calculations to store and retrieve voxels to interpolate data. Forperformance enhancements, it is important to devise an e�cient retrieval algorithm that calculatesthe surrounding voxels for a node depending on the sampling location and node size. Schemes ofoverlapped octrees subnodes may also be tried. The memory required will still be a problem for worstcase scenarios which means the optimal load balancing algorithm happens to put a combination ofnodes whose total size of surrounding voxels exceeds the physical memory. In this case, we shouldeither use a lower quality �lter for re-sampling or sacri�ce the performance through less optimalload balancing and communication. To save storage, we can also use the decoding calculations [30]without storing coordinate information for the octree region.A simple extension of the interpolation (re-sampling) routine, that fetches all surrounding voxelswhen necessary, will solve the memory limitations. Let c be the average time required to fetch a voxelfrom another processor and e be the maximumnumber of re-sampling points that are not within thegiven octree node per physical processor. For example, the non-compressed box64 without emptyvoxels needs a maximum of 8 re-sampling points per processor. Therefore e will be 8 in worst case.The maximum number of voxels to be fetched for each re-sampling point is 7 out of 8 because thepoint is guaranteed to be within 1 voxel distance from the octree region. In most cases when there-sampling points are located near the faces of octree region, e is 4. Therefore the speed will beslowed by 4� e � c in average case. We haven't implemented this simple extension and one of ourcurrent research topics is to devise an e�cient data structure for storing and retrieving surroundingvoxels for load balanced octree nodes in order to achieve optimal performance.We require 1 communication for each virtual processor in worst case. Let n3 be the number ofvirtual processors for each physical processor. Then we need n3 communications for each physicalprocessor in the worst case on a SIMD architecture. We also implemented a version of program toreduce communication by pre-compositing local sub-volume in each physical processor and sendingO(n2) voxels for each physical processor. Figure 4.3 depicts the boundaries of object space processorsand screen space processors where we have 3 regions (in 2D for convenience) to be sent to othervirtual screen space processors and 1 region that shares the same physical processor for objectand screen space. For each piece of a sub-volume, including the shared region, voxels can be pre-composited before sending to other physical screen space processors or di�erent locations of the samephysical processor. Let m be the maximum number of pieces to be pre-composited locally and s2be the size of the composited image (in 3D space). In the worst case, s equals to n. Note that thisapproach increases the local compositing time up to m times in worst case although compositing



5. Conclusion and Future Research 9
Figure 4.2: Rendered images of box64 and brain64 data.

Processor

Screen Space
Processor

pre-compositing

Object SpaceFigure 4.3: Pre-compositing voxel data for virtual processors.time is usually 10 % of total running time. Therefore, the communication reduction is n3�m�n2 inworst case. On SIMD machine, processors with the worst case dominate the performance. Thereforen should be greater than m to get performance gains through pre-compositing. Let N3 be the sizeof the entire volume and P be the total number of the available processors. Then n is NP 13 . Fromour experiment, n should be 128 or greater. The performance gains will be further exploited andincreased when our program is able to handle larger size volumes and the algorithm is implementedon MIMD architectures.5 Conclusion and Future ResearchWe have shown that performance of our permutation warping algorithm has been improved 220% without loss of image quality and 400 % or speedup of 5 with minimal loss of image quality.The quality e�ect can be reduced by better �ltering and anti-aliasing. This report also addressedseveral questions that direct our future research. One of our current research focuses is to devise



10 6. Acknowledgementsan e�cient data structure and algorithm that can store and retrieve the surrounding voxels of loadbalanced octree nodes within the given hardware's memory limitation. As we further exploit issues incommunication reduction though pre-compositing, using higher order �lter, anti-aliasing and lookuptable based shading, the performance gains are expected to converge to 900 % or speed up of 10in the permutation warping implementation given the assumption of 90 % volume compressability.We also addressed issues that suggested further speed up in the implementation of our approach onMIMD architectures.6 AcknowledgementsWe would like to thank the support of the ISCR LLNL funding number B291836 of our project,our LLNL collaborators Karin Hollerbach and Nelson Max, and the involvement of students whoworked on this project including Jeremy Story and Andrew Macginitie. A special thanks goes to Pro-fessors Patrick Mantey, Jane Wilhelms, and Allen Van Gelder for providing feedback, infrastructure,and support for our research.References[1] CraigM.Wittenbrink andA.K. Somani. Permutationwarping for data parallelvolume rendering.Journal of Parallel and Distributed Computing, 1995. submitted.[2] Craig M. Wittenbrink and Arun K. Somani. Permutation warping for data parallel volumerendering. In Proceedings of the Parallel Rendering Symposium, pages 57{60, color plate p. 110,San Jose, CA, October 1993.[3] Craig M. Wittenbrink and Michael Harrington. A scalable MIMD volume rendering algorithm.In Proceedings IEEE 8th International Parallel Processing Symposium, pages 916{920, Cancun,Mexico, April 1994.[4] Philippe Lacroute and Marc Levoy. Fast volume rendering using a shear-warp factorization ofthe viewing transformation. In Proceedings of SIGGRAPH 94, pages 451{458, Orlando, FL, July1994.[5] Philippe Lacroute. Real-time volume rendering on shared memory multiprocessors using theshear-warp factorization. In Proceedings of the 1995 Parallel Rendering Symposium, pages 15{22, Atlanta, GA, Oct 1995. IEEE. Use for a conference paper.[6] Minesh B. Amin, Ananth Grama, and Vineet Singh. Fast volume rendering using an e�cient,scalable parallel formulation of the shear-warp algorithm. In Proceedings of the 1995 ParallelRendering Symposium, pages 7{14, Atlanta, GA, Oct 1995. IEEE. Use for a conference paper.[7] Jaswinder Pal Singh, Anoop Gupta, and Marc Levoy. Parallel visualization algorithms: Perfor-mance and architectural implications. IEEE Computer, 27(7):45{55, July 1994.[8] Brian Cabral, Nancy Cam, and Jim Foran. Accelerated volume rendering and tomographicreconstruction using texture mapping hardware. In Proceedings 1994 Symposium on VolumeVisualization, pages 91{98, Washington, D.C., Oct 1994. IEEE/ACM. Use for a conferencepaper.[9] DonaldMeagher. Fourth-generation computer graphics hardware using octrees. InNCGA, pages316{325, Chicago, IL, Apr 1991. Nat. Comput. Graphics Assoc. Use for a conference paper.[10] H. P�ster and Arie Kaufman. Real-time architecture for high resolution volume visualization.In Proceedings of 8th Eurographics Workshop on Graphics Hardware Proceedings, pages 72{80,Barcelona, Spain, September 1993.[11] Craig M.Wittenbrink, Kwansik Kim, Jeremy Story, Alex T. Pang, Karin Hollerbach, and NelsonMax. A system for remote parallel and distributed volume visualization. In accepted to theIS&T/SPIE Symposium on Electronic Imaging: Science and Technology, San Jose, CA, January1997. SPIE.



References 11[12] Jay Torborg and James T. Kajiya. Talisman: Commodity realtime 3d graphics for the pc. InProceedings of SIGGRAPH, pages 353{363, New Orleans, LA, August 1996. ACM.[13] CraigM.Wittenbrink and A. K. Somani. Cache tiling for high performance morphological imageprocessing. Machine Vision and Applications, 7(1):12{22, Winter 1993.[14] Craig M. Wittenbrink and A. K. Somani. 2D and 3D optimal parallel image warping. Journalof Parallel and Distributed Computing, 25(2):197{208, March 1995.[15] Robert M. Haralick, Arun K. Somani, Craig M. Wittenbrink, et al. Proteus: a recon�gurablecomputationalnetwork for computer vision. Machine Vision and Applications, 8(2):85{100, 1995.[16] Jim Blinn. Light reection functions for simulations of clouds and dusty surfaces. In ComputerGraphics, pages 21{29, July 1982.[17] J. T. Kajiya and B. Von Herzen. Ray tracing volume densities. In Proceedings of SIGGRAPH,pages 165{174, July 1984.[18] Marc Levoy. Display of surfaces from volume data. IEEE Computer Graphics and Applications,8(5):29{37, May 1988.[19] Marc Levoy. E�cient ray tracing of volume data. ACMTransactions on Graphics, 9(3):245{261,July 1990.[20] Arie Kaufman, editor. Volume Visualization. IEEE Computer Society Press, Los Alamitos, CA,1991.[21] J. Foley, A. vanDam, S.K. Feiner, and J.F. Hughes. Computer Graphics Principles and Practice.Addison Wesley Inc., Reading, MA, second edition, 1990.[22] J. Nieh and M. Levoy. Volume rendering on scalable shared-memory mimd architectures. InProceedings of 1992 Workshop on Volume Visualization, pages 17{24, October 1992.[23] T. S.Yoo, U. Neumann, H. Fuchs, S.M. Pizer, T. Cullip, J. Rhoades, and R.Whitaker. Achievingdirect volume visualization with interactive semantic region selection. In Proceedings IEEEVisualization `91, pages 58{65, San Diego, CA, October 1991.[24] C. Montani and R. Scopigno. Rendering volumetric data using the sticks representation scheme.In Computer Graphics, San Diego Workshop on Volume Visualization, pages 87{93, San Diego,CA, November 1990.[25] Ulrich Neumann. Parallel volume rendering algorithm performance on mesh connected multi-computers. In Proceedings on the Parallel Rendering Symposium, pages 97{104, San Jose, CA,October 1993.[26] Vineet Goel and Amar Mukherjee. An optimal parallel algorithm for volume ray casting. In 9thInternational Parallel Processing Symposium, page to appear, Santa Barbara, CA, April 1995.[27] W. H. Hsu. Segmented ray casting for data parallel volume rendering. In Proceedings of theParallel Rendering Symposium, pages 7{14, San Jose, CA, October 1993.[28] Craig M. Wittenbrink. Designing Optimal Parallel Volume Rendering Algorithms. PhD thesis,University of Washington, 1993.[29] L. G. Valiant. A bridging model for parallel computation. Communications of the ACM,33(8):103{111, August 1990.[30] I.Gargantini. Linear octtrees for fast processing of three-dimensional objects. ComputerGraphicsand Image Processing, 20(4):365{374, December 1982.


