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AbstractThe Sequence Alignment and Modeling system (SAM) is a collection of exible software tools forcreating, re�ning, and using linear hidden Markov models for biological sequence analysis. The modelstates can be viewed as representing the sequence of columns in a multiple sequence alignment, withprovisions for arbitrary position-dependent insertions and deletions in each sequence. The modelsare trained on a family of protein or nucleic acid sequences using an expectation-maximizationalgorithm and a variety of algorithmic heuristics. A trained model can then be used to both generatemultiple alignments and search databases for new members of the family. SAM is written in the Cprogramming language for Unix machines, and includes extensive documentation.The algorithms and methods used by SAM have been described in several pioneering papers fromthe University of California, Santa Cruz. These papers, as well as the SAM software suite, sev-eral servers, and links to related sites such as HMMer are available on the World-Wide Web tohttp://www.cse.ucsc.edu/research/compbio/sam.html
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1 IntroductionThe Sequence Alignment and Modeling system (SAM) is a collection of software tools for creating,re�ning, and using a type of statistical model called a linear hidden Markov model for biologicalsequence analysis. Linear hidden Markov models only model primary structure (sequence) infor-mation; long-range iterations, such as base pairing in RNA, require more complex models such asstochastic context-free grammars, as described by Sakakibara et. al (NAR 22(23):5112{5120), alsoavailable from the UCSC computational biology WWW site.The algorithms and methods have been described in several papers, some of which are available viaanonymous ftp to ftp.cse.ucsc.edu in the protein directory, as well as on our WWW site,http://www.cse.ucsc.edu/research/compbio/sam.html.The primary papers from UCSC (copies of these papers and several others are available from theSAM WWW site) include:� A. Krogh, M. Brown, I. S. Mian, K. Sj�olander, and D. Haussler. Hidden Markov modelsin computational biology: Applications to protein modeling. Journal of Molecular Biology,235:1501{1531, February 1994.� R. Hughey and A. Krogh. Hidden Markov models for sequence analysis: Extension and analysisof the basic method, CABIOS, 12(2):95{107, 1996.� R. Karchin and R. Hughey. Weighting hidden Markov models for maximum discriminationBioinformatics, to appear, 1998.� C. Tarnas and R. Hughey. Reduced space hidden Markov model training. Bioinformatics, toappear, 1998.� K. Karplus, Kimmen Sj�olander, C. Barrett, M. Cline, D. Haussler, R. Hughey, L. Holm, andC. Sander, \Predicting protein structure using hidden Markov models," Proteins: Structure,Function, and Genetics, Supplement 1, 1997.� K. Sjolander, K. Karplus, M. Brown, R. Hughey, A. Krogh, I.S. Mian, and D. Haussler. Dirich-let Mixtures: A Method for Improving Detection of Weak but Signi�cant Protein SequenceHomology. CABIOS 12(4), 1996.� C. Barrett and R. Hughey and K. Karplus. Scoring Hidden MarkovModels. CABIOS 13(2):191{199, 1997.� J. A. Grice, R. Hughey, and D. Speck. Reduced space sequence alignment. CABIOS 13(1):45{53, 1997.� D. Haussler, A. Krogh, I. S. Mian, and K. Sj�olander. Protein modeling using hidden Markovmodels: Analysis of globins. In Proceedings of the Hawaii International Conference on SystemSciences, volume 1, pages 792{802, Los Alamitos, CA, 1993. IEEE Computer Society Press.� A. Krogh, I. S. Mian, and D. Haussler. A hidden Markov model that �nds genes in E. coliDNA. Nucleic Acids Research, 1994. 5



� R. Hughey and A. Krogh. SAM: Sequence alignment and modeling software system. TechnicalReport UCSC-CRL-96-22, University of California, Santa Cruz, CA, September 1996.� K. Karplus. Regularizers for Estimating Distributions of Amino Acids from Small Samples.Technical Report UCSC-CRL-95-11, University of California, Santa Cruz, CA, 30 March 1995.We would appreciate references to the �rst two articles in work that cites or uses the SAM system.Because the software is an active research tool, there are a vast selection of options, many of whichhave, through experimental study, been set to reasonable defaults.The software copyright is held by the Regents of the University of California. A signed license isrequired to obtain a copy of SAM | send email to sam-info@cse.ucsc.edu for a copy of the licenseand information on fees, if applicable. If you have suggestions for enhancements, new ways of usingSAM, or other comments, please contact us.SAM incorporates the readseq package by D. G. Gilbert, who allows it to be freely copied and used.The hmmedit and sae programs use ACEdb by Richard Durbin and Jean Thierry-Mieg. The sourcecode for hmmedit and sae is available from ftp://ftp.cse.ucsc.edu/pub/protein/hmmeditsaesrc.tar.Z.If you wish to be informed of future releases, please send your email address to sam-info@cse.ucsc.edufor addition to our mailing list. Please also use this address for any questions or comments you mayhave.You will also �nd Sean Eddy's system, HMMER (http://genome.wustl.edu/eddy/hmm.html), to beof interest.1.1 AcknowledgmentsWe thank I. Saira Mian and Finn Drablos for their important evaluations of the system, and KevinKarplus for the prior library. Finally, we thank the entire UCSC Baskin Center ComputationalBiology group, led by David Haussler, who got this whole thing started. This work was supportedin part by NSF grants CDA-9115268, IRI-9123692, BIR 94-08579, and MIP-9423985; DOE grant94-12-048216; ONR grant N00014-91-J-1162; NIH grant GM17129; a grant from the Danish NaturalScience Research Council; and a gift from Digital Electronics Corporation.2 Version enhancements2.1 Version 2.1.1April, 1998. Minor revisions and updates; �rst externally-released revision of Version 2.1.� User-de�ned alphabets for sequences. See Section 6.1.1 on page 23.6



� Negative fimstrength values will adjust both insert and FIM states. See Section 7.5 onpage 37.2.2 Version 2.1Modi�cations and improvements to the hmmscore program are the highlight of this upgrade. Febru-ary, 1998.� The multdomain program has been removed and its function has been merged into hmmscore.The mdNLLminusNULL parameter has been renamed mdNLLnull. The multdomainshort param-eter has been renamed alignshort. The old names are currently aliased to the new namesfor these two parameters. See Section 9.2.5 on page 66.� The hmmscore program can now print selected sequence alignments and selected sequencemultiple domain alignments during scoring. See Section 9.2.3 on page 63 and Section 9.2.5 onpage 66.� The interactive mode of hmmscore has been removed. See Section 9.2 on page 56.� The scored sequence letter counts null model has been removed. Null model scores can now becalculated based on the reverse sequences. The simple threshold variable determines whencomplex null model calculations should be performed in terms of the simple null model score.See Section 9.2.1 on page 59.� The content of score �les has changed, as has the use of select seq, select score, sort, andsubtract null. See Section 9.2 on page 56.� The uniqueseq program has been updated. See Section 9.7.5 on page 84.� The checkseq program has been updated. See Section 9.7.1 on page 82.� Scoring examples in this manual have been changed to use fully-local scoring and hmmscorenow prints a warning whenever fully-local scoring is not used. See Section 9.2.4 on page 64.� The protein prior and nucleotide prior variables can be used to specify default priorlibraries. The Dirichlet mixture recode1.20comp is now used by default with protein sequences.See Section 7.1 on page 26.� Internal weighting in buildmodel is now by default turned on with internal weight set to 1.If an external weight �le is speci�ed and internal weight is not explicitly set on the commandline, internal weighting will be turned o�. See Section 8.4.3 on page 47.� The sequence models variable, when set, causes buildmodel to create initial models fromrandom sequences in the training set which are then regularized. The each single sequenceis given a weight equal to the value of sequence models. This option is recommended andis expected to become default behaviour in a future release. It can both reduce runtime byproviding an initial starting point when an alignment is not available and increase modelingperformance. See Section 7.3 on page 31.� The seed runs parameter has been removed from buildmodel.7



2.3 Version 2.0November, 1997.� A complete rewrite of the inner dynamic programming loop to save memory (see the Grice,Hughey, and Speck, and the Tarnas and Hughey papers mentioned in the introduction) andallow local and semi-local scoring and alignment, as well as Viterbi-based training. Memoryuse is now proportional to the product of model length and the square root of the sequencelength rather than the model length and the sequence length. See Section 9.1.1 on page 53and Section 9.2.4 on page 64.� HSSP-based structural transistion regularizer. See Section 7.1.2 on page 28.� The multdomain program now performs scoring adjustments identical to those of hmmscorewhen SW is set. See Section 9.2.4 on page 64.� Internal sequence weighting inspired by HMMer's Maximum Discrimination method has beenimplemented. It signi�cantly increases discrimination performance in the presense of biasedtraining sets. See Section 8.4.3 on page 47.� The a2mdots variable can be cleared to avoid printing dots in a2m �les, leading to an at timesconsiderable space reduction. See Section 9.2 on page 56.� The hmmscore program can parition a database to aid in distributed scoring. See Section 9.2.6on page 69.� SAM will now read its input from compressed (.gz or .Z) �les. See Section 11 on page 86.� The alphabet code has been rewritten to make it simpler for those with source licenses tomodify the code.� Weight �les for buildmodel initial alignments and modelfromalign alignments can be speci�edwith the alignment weights parameter. See Section 8.4 on page 44.� A broader collection of Dirchlet mixture and transition regularizers is included with this ver-sion. See Section 7.1 on page 26.� The MasPar implementation is no longer supported.2.4 Version 1.4August, 1996.� The geometric average of the match state probabilities is now available for use (and the default)with simple and complex null models. Complex null models are now built from the transitionand insert probabilities of the model, and the geometric average of all the model's match tablesin the match table. See Section 9.2.1 on page 59.� The train reset inserts variable causes buildmodel to, at the completion of reestimationcycle, reset all the insertion and FIM tables to (by default) the geometric average of the matchstates. Set to 0 to turn o�. See Section 7.6 on page 38.8



� If no IDs are speci�ed, the hmmscore and multdomain programs will read in sequences a fewat a time, instead of all at once, saving a tremendous amount of memory. If this is done,sequence output by hmmscore is no longer sorted by score, though the score �le can still besorted. Given a sorted score �le and unsorted sequence �le, the new sortseq program willsort the sequences according to the score �le. See Section 9.2 on page 56, Section 9.2.5 onpage 66, and Section 9.7.4 on page 83.� The uniqueseq program will eliminate sequences with duplicate IDs from a �le. The checkseqprogram will read a sequence �le and print information about it. See Section 9.7.5 on page 84.� Training noise is reduced by retrain noise scale (default 0.1) whenever an initial model oralignment is provided. Noise is also reduced between the �rst and successive surgery iterationsby surgery noise scale (default 0.1). See Section 8.1 on page 40.� Models can be edited using the new utility program, modifymodel. See Section 9.5.3 onpage 75.� The program makehist will turn one or two .dist score �le into a histogram, makeroc willturn two .dist score �les into a false positive/false negative plot showing score vs. counts(number of sequences with the score) and makeroc2 will turn two .dist score �les into a plotof false positive vs. false negative as a function of threshold score. All three programs requiregnuplot. See Section 9.6 on page 78.� Weight �le reading is more robust. We plan to implement a WWW weighting server which,given a multiple alignment, will return sequence weights under a variety of weighting schemes.� The a2mallcaps variable has been removed: modelfromalign, buildmodel, and other align-ment reading routines will �rst check to see if the �le is an HSSP �le, if not, the a2m formatwill be checked, and if that does not result in every sequence having the same number ofcolumns, all characters will be treated as uppercase. See Section 7.3 on page 31.� Binary model output. Models can be printed in human unreadable binary form. This reduces�le size to about one quarter, and greatly increases model reading speed. See Section 7.4.3 onpage 36.2.5 Version 1.3May, 1996.� Weighted training. See Section 8.4 on page 44.� Sequence weight annealing. See Section 8.4.2 on page 47.� The ability to use �les as model type speci�ers rather than keywords such as REGULARIZER.See Section 4 on page 19.� The ability to print scores of only those sequences doing better than some threshold. SeeSection 9.2 on page 56.� When multiple models are trained, training is stopped for each model individually accordingto the stopcriterion. Previously, training was stopped when the average score di�erencereached the stopcriterion. See Section 8 on page 39.9



� Modelfromalign can be told to treat all letters as match columns, and turns the letter `O'(capital `o') into a FIM. See Section 9.4 on page 73.� E�ciency improvements to model reading.� SAM alignments have undergone signi�cant changes. Align2model output is now in a normalsequence format, though still with uppercase, lowercase, `.' and `-' meanings. Prettyaligncan read any readseq format, with lower-case letters indicating insertions. Prettyalign canno longer be used as a pipe. Modelfromalign can read any readseq format. The buildmodelprogram can be given an initial alignment. See Section 9.4 on page 73.� The method for specifying multiple database �les or multiple sequence IDs has changed. Mul-tiple db or id declarations on the command �le or a parameter �le will add to a list of database�les or id �les.� The command lines for many programs has changed. Except for prettyalign, all programsnow take arguments in the form of a run name followed by variable name and value pairs. SeeSection 5 on page 21.� The modelfromalign program now uses prior libraries. See Section 9.4 on page 73.� FIM normalization has been moved to another place in the code, and can be avoided if desired.See Section 9.3.1 on page 71.2.6 Version 1.2March, 1996.� The ability to globally apply various FIM and insertion table settings to the regularizer duringtraining and to the model during scoring. This reects a general cleaning up of the log-oddsscoring introduced in 1.1. The defaults are to use training set letter counts in both FIMs andinsert states for training, and match state frequency averages for FIMs during scoring (withno change to the insert states). See Section 7.6 on page 38. See Section 9.2.1 on page 59.� The ability to score sequences according to the di�erence between two models, such as modelstrained on positive and negative family examples. See Section 9.2.1 on page 59.� By default, hmmscore and multdomain will add FIMs to a model before scoring it. See Sec-tion 9.2.1 on page 59.� By default, SAM will start with three models of random length, and then pick the best modelfor surgery and further reestimation. This will increase runtime from Version 1.1, but improvesmodel generation.� Several new parameters exist. See Section 11 on page 86.� An interface is provided between HMMer and SAM. See Section 9.5.4 on page 76.� Non-default initial models are no longer printed in model �les. This led to too much confusionabout which model was the real one, as well as those pesky \non-default model being replaced"messages. 10



� The use of Dirichlet mixture priors has been updated to reect in our most recent work(http://www.cse.ucsc.edu/research/compbio/dirichlet.html). The format of prior li-braries has changed slightly, and only one prior library (uprior9.plib) is included in thedistribution. Mixtures in the earlier format may crash the program. Mixture priorsare particularly useful in database search from a small set of training examples. See Section 7.1on page 26.2.7 Version 1.1November, 1995.� The default protein regularizer has been changed from having the uniform distribution inthe insert states to having the background distribution. This generally helps discriminationexperiments, though may hurt sequence alignment. See Section 7.1 on page 26.� The default scoring has been changed from calculating Z-scores using length bins to NULLmodel subtraction, which accounts for both sequence length and wildcards. For scoring, FIMsmust be added to a model before it is scored for this to produce valid results. This correspondsto the log-odds scoring used in Sean Eddy's HMMER. See Section 9.2.1 on page 59.� Scoring and training with wildcards has been modi�ed so that sequences with many wildcardscan be properly scored with null models.� An iterative program for �nding multiple motifs in a single sequences is part of SAM. SeeSection 9.2.5 on page 66.2.8 Version 1.0January, 1995.� First general release.3 Quick overviewThe Sequence Alignment and Modeling (SAM) suite of programs includes several tools for modeling,aligning, and discriminating related DNA, RNA, and protein sequences. Given a set of relatedsequences, the system can automatically train and use a linear HMM representing the family.SAM uses a linear hidden Markov model (Figure 1) to represent biological sequences. The modelis a linear sequence of nodes , each of which includes match (square), insert (diamond), and delete(circle) states. Each match state has a distribution over the appropriate alphabet indicating whichcharacters are most likely. The chain of match states forms a model of the family, or of columnsof a multiple alignment. Some sequences may not have characters in speci�c positions | deletestates enable them to skip through a node without `using up' any characters. Other sequences may11
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Figure 1: A linear hidden Markov model.have extra characters, which are modeled with the insert states. Insertions are thus used when asmall number of sequences have positions not found in most other sequences, while delete statesare used when a small number of sequences do not have a character in a position found in mostother sequences. As with the match states, all transition probabilities (the chance of having a deleteor moving to an insertion state) are local, enabling, for example, the system to strongly penalizesequences that delete conserved regions.The primary programs include:buildmodel Create a new model from a family of sequences, or re�ne an existing model.align2model Create a multiple alignment of sequences to an existing model. The prettyalignprogram will make align2model output more readable.hmmscore Calculate the negative log-likelihood (NLL) scores for a �le of sequences given a model,as well as smooth curves and Z-scores. This program is used for discrimination experiments.Sequences that score better than (or worse than) a threshold can be saved, as can their align-ments or multiple domain alignments.modelfromalign Use an existing multiple alignment to create an initial model. Such a model isusually then re�ned using buildmodel.add�ms Add free insertion modules to models trained on clipped and complete sequences.sampleseqs Generate typical sequences from a model.hmmer2sam, sam2hmmer Convert, as much as possible, between the two HMM formats.makehist Create a histogram from a score �le. This is an excellent means of viewing model per-formance.makeroc Plot false negatives and false positives against score. Critical for discrimination experi-ments.makeroc2 Plot false negatives vs. false positives as a function of threshold score. Uses linearinterpolation to create a smooth curve.modifymodel Delete, add, or change nodes and subdivide or catenate models.12



readseq A modi�ed copy of Don Gilbert's readseq program for format conversion is included in thereadseq subdirectory. You may whish to compile the standalone version, as it is exceedinglyuseful.A basic owchart for using SAM is shown in Figure 2.As a simple example, consider the task of modeling the 10 tRNAs included in the �le trna10.seqof the distribution. For this experiment, default program settings will be used: the many adjustableparameters are described Sections 5 and 11.3.1 Building a modelTo start, we need to create a model from the sequence �le using buildmodel. This program alwaysrequires a name for the run: if the name is test, the system will create the model output �letest.mod, which will include parameter settings, iteration statistics, and CPU usage, as well as theinitial and �nal model.Parameters to buildmodel are speci�ed with hyphens. For this experiment, �rst we try the command:buildmodel test -train trna10.seqThis speci�es the run name and where the sequences for training can be found. All the sequences willbe used to train the model, though often sequences will be reserved to test the model as well. Havingno other information, the program will check the �rst sequence of the sequence �le to determine whatalphabet to use. In this case, the check tells the system to use the RNA alphabet. The alphabetcan also be speci�ed on the command line if the sequence data is not conclusive:buildmodel test -alphabet RNA -train trna10.seq -seed 0Here, to hopefully make this example reproducible, a seed for the random number generator hasalso been speci�ed.Buildmodel then prints out a line on standard output such as:-34.24 -29.07 -30.16 1.55 68 3 74This is a brief summary of the statistics provided in the output model �le, and is discussed in moredetail in Section 10.1. If no random seed had been speci�ed, buildmodel would use the processnumber, and the statistics line would be di�erent for multiple runs.The run has generated a �le called test.mod. This �le contains various statistics, described later, aswell as the �nal model. Statistics are printed to the �le after each reestimation so that the progressof a run can be readily checked.
13
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3.2 Aligning sequencesTo generate a multiple alignment, a command such as the following is used:align2model trna10 -i test.mod -db trna10.seqprettyalign trna10.a2m -l90 > trna10.prettyThis aligns each sequence to the model, places the alignment in the �le trna10.a2m, and then cleansup the output and places it in the �le trna10.pretty, with 90 characters per line. The alignmentwill look something like:; SAM: ../src/prettyalign v2.1.1 (Apr 24, 1998) compiled 04/27/98 12:32:27.; SAM: Sequence Alignment and Modeling Software System; (c) 1992-1998 Regents of the University of California, Santa Cruz; http://www.cse.ucsc.edu/research/compbio/sam.html;; ------ Citations (HMMs, SAM) ------; A. Krogh et al., Hidden Markov models in computational biology:; Applications to protein modeling, JMB 235:1501-1531, Feb 1994.; R. Hughey, A. Krogh, Hidden Markov models for sequence analysis:; Extension and analysis of the basic method, CABIOS 12:95-107, 1996.; -----------------------10 20 30 40 50 60 70| | | | | | |TRNA1 GGGGAUGUAGCUCAG-.UGG...U.AGAGCGCAUGCUUCGCAUGUAUGAGGCCCCGGGUUCGAUCCCCGGCAUCU---CCATRNA2 GCGGCCGUCGUCUAGU.CUGgauU.AGGACGCUGGCCUCCCAAGCCAGCAAUCCCGGGUUCGAAUCCCGGCGGCCG---CATRNA3 GGCCCUGUGGC-UAGC.UGG...UcAAAGCGCCUGUCUAGUAAACAGGAGAUCCUGGGUUCGAAUCCCAGCGGGGCCUCCATRNA4 GGGCGAAUAGUGUCAG.CGG...G.AGCACACCAGACUUGCAAUCUGGUAGGGA-GGGUUCGAGUCCCUCUUUGUCCACCATRNA5 GCCGGGAUAGCUCAGU.UGG...U.AGAGCAGAGGACUGAAAAUCCUCGUGUCACCAGUUCAAAUC---UGGUUCCUGGCATRNA6 GGGGCCUUAGCUCAGC.UGG...G.AGAGCGCCUGCUUUGCACGCAGGAGGUCAGCGGU-CGA-CCCGCUAGGCUCCACCATRNA7 GGGCACAUGGCGCAGU.UGG...U.AGCGCGCUUCCCUUGCAAGGAAGAGGUCAUCGGUUCGAUUCCGGUUG---CGUCCATRNA8 GGGCCCGUGGCCUAGU.CUGga.U.ACGGCACCGGCCUUCUAAGCCGGGGAUCGGGGGUUCAAAUCCCUCCGGGU---CCGTRNA9 CGGCACGUAGCGCAGCcUGG...U.AGCGCACCGUCCUGGGGUUGCGGGGGUCGGAGGUUCAAAUCCUCUCGUGCCGACCATRNA10 UCCGUCGUAGUCUAGG.UGGu..U.AGGAUACUCGGCUUUCAC-CCGAGAGACCCGGGUUCAAGUCCCGGCGACGGAACCAHere, hyphens indicate deletes while lower-case letters, and the corresponding periods (`.') indicateinserts. The column numbers refer to match states in the model, not to column numbers, so thatinsertions are disregarded in calculating these index points. It is important to remember thatinsertions are not aligned among them selves: the fact that two insertion characters are in the sameprinted column only means that they were generated by the same insertion state, not that theyshould be aligned.3.3 Examining modelsModel structure can be quite interesting. The drawmodel program generates postscript drawingsof models that include match-state histograms and transition line styles that correspond to theirfrequency of use. These drawings are most useful when derived from frequency counts, values thatcan be optionally included in the output �le:buildmodel test -train trna10.seq -seed 0 -print frequencies 115
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END Figure 3: Output of drawmodel. Match state histograms are in AGCU order.
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The command drawmodel test.mod test.ps will run the drawmodel program, which scans the �le�nding a model and frequency count data. By selecting the frequency count data in `overall' mode,the postscript drawing in Figure 3 is generated.1 The histograms in the match states correspond tothe columns of the multiple alignment above, the numbers in the diamond insert states correspondto the average number of insertions for each sequence that uses that state, and the node numbersare given in the circular delete states. Transitions that are not used by a signi�cant number of thesequences are not drawn.Drawmodel is explained in more detail in Section 9.5.1.3.4 Scoring sequencesThe scoring program, hmmscore, generates a �le of the negative log-likelihood minus NULL model(NLL-NULL, or log-odds) scores for each sequence given the model. Let's see how the 10 tRNAsequences �t the model (test.mod):hmmscore test -i test.mod -db trna10.seq -sw 2The arguments are the name of the run, the model �le, the database sequence �le, and a speci�erto use fully-local scoring similar to that of the Smith & Waterman algorithm (this is suggested forall scoring runs unless semilocal or global scoring is speci�cally required).hmmscore produces the test.dist �le:1Unfortunately, drawmodel does not generate postscript bounding boxes. For insertion in this LATEX �le using thepsfig macros, ghostview was used to determine the bounding box.
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% SAM: ../src/hmmscore v2.1.1 (Apr 24, 1998) compiled 04/27/98 12:32:02.% SAM: Sequence Alignment and Modeling Software System% (c) 1992-1998 Regents of the University of California, Santa Cruz% http://www.cse.ucsc.edu/research/compbio/sam.html%% ------ Citations (HMMs, SAM) ------% A. Krogh et al., Hidden Markov models in computational biology:% Applications to protein modeling, JMB 235:1501-1531, Feb 1994.% R. Hughey, A. Krogh, Hidden Markov models for sequence analysis:% Extension and analysis of the basic method, CABIOS 12:95-107, 1996.% -----------------------% Run start: Mon Apr 27 12:50:01 1998% Run name: test% On host: alpha% In dir: /auto/projects/compbio3/samtmp/sam/SAMBUILD/alpha/demos% By user: rph% --------------------------------------------------------------% Inserted Files: test.mod% Database Files: /projects/compbio3/samtmp/sam/demos/trna10.seq%% FIMs automatically added (auto fim = 1).% Subsequence-submodel (local) (SW = 2).% S&W simple NULL scores adjusted by ln(seqlen) (adjust score=2).% 10 sequences with 747 residues.% This run used EM scoring.% The model has 77 positions.%% Using total residues as number of starting possibilities,% 0.01 significance at <= ln(0.01)-ln(747)= -4.6 - 6.6 = -11.2% Adjusting for model length gives 10 starting points,% 0.01 significance at <= ln(0.01)-ln(10) = -4.6 - 2.3 = -6.9% If entire sequences are modeled (i.e., no FIMs),% 0.01 significance at <= ln(0.01)-ln(10) = -4.6 - 2.3 = -6.9% Values for 10.0 significance are -4.3, -0.0, and -0.0.% Significance level is higher for multiple scoring runs.% Sequence scores selected : All (select score=8)%% Column 1: NLL-NULL using simple FIM (node 0) insert probabilities% Column 2: the raw NLL score% Scores sorted by column 1, best first%% Sequence ID Length Simple Raw X countTRNA7 73 -36.52 58.72TRNA3 76 -35.59 64.57TRNA8 75 -34.61 59.74TRNA2 76 -33.78 63.24TRNA9 77 -33.54 63.72TRNA1 72 -33.33 60.42TRNA5 73 -32.77 67.51TRNA6 74 -32.76 61.07TRNA4 75 -32.51 67.67TRNA10 76 -31.78 69.03The score �le contains �ve columns. The �rst is the sequence identi�er, followed by sequence length,the `NLL-NULL' score using a simple null model, and the raw negative log-likelihood score. The18



simple null model is just the product of the character probabilities in each sequence multipliedtogether. Thus, the NLL-NULL score show how much improvement modeling with an HMM gainedversus modeling with just a single insertion state of from the HMM. The comments also indicate,for two signi�cance levels and three possible counting assumptions, what score indicates a match tothe model. Because all the sequences are tRNAs, all score well below any of the six signi�cance levelthresholds.Other options of hmmscore enable the selective output of sequences according to their NLL scores,NLL per base scores, or Z-scores. The hmmscore program enters an interactive mode when calledwith no command line arguments. See Section 9.2 on page 56.3.5 Discrimination versus alignmentHidden Markov models can be used for both database discrimination and alignment of families. Toobtain the best performance in each of these tasks may require the construction of di�erent models,one for discrimination and one for alignment. While SAM's default parameters perform reasonablywell in both cases, further research needs to be performed to enhance HMMs in both abilities.Possibilities can include di�erent Dirichlet mixture prior and transition regularization (Section 7.1),di�erent training algorithms (EM versus Viterbi), and di�erent insertion table. In any case, sequenceweighting, either internal or external, is highly recommended (Section 8.4).4 File typesSAM produces a variety of �les. This section summarizes both the extensions SAM uses and theextensions we conventionally use when naming output that goes to standard output.The following �le extensions are automatically used:.mod A model �le created by a buildmodel, addfims, or modelfromalign. When many filesis not set (the default), buildmodel places the run statistics, parameter settings, and thefrequency model into this �le as well. See Section 8.3 on page 42..f.mod A subfamily model for family number `f'. See Section 8.4 on page 44..a.mrrr.mod If print all models is set, model number m during reestimate cycle 'rrr' willbe placed in the �le..s.rrr.mod If print surg models is set, the winning model is printed after each surgeryiteration, where `rrr' is the reestimation index..stat The statistics of a buildmodel run when many files is set, including reestimation scores andinitial parameters. See Section 8.3 on page 42..freq A frequency model generated by buildmodel when many files is set. This is a model thatreports the frequency of each letter in each state when the training set is evaluated accordingto the model. See Section 8.3 on page 42..dist A scoring �le listing sequence identi�ers, lengths, and scores, produced by hmmscore. SeeSection 9.2 on page 56. 19



.sel Sequences that passed the selection criteria used in hmmscore. See Section 9.2 on page 56..smooth The curve used for Z-scoring, produce by hmmscore. See Section 9.2 on page 56..a2m A SAM alignment �le, as created by align2model or hmmscore. A FASTA-compatible format.See Section 9.1 on page 50..weightoutput A list of sequence weights from the internal weighting option of buildmodel.Present when print all weights and internal weighting are both enabled. See Section 8.4.3on page 47..samrc A �le of default parameters either in a home directory or the current directory. See Section 5on page 21..mult One of two multiple domain alignment output �les created by hmmscore. This will containall alignments to a motif that were found. See Section 9.2.5 on page 66..mstat The other multiple domain output �le. This �le contains the sequence identi�er and scoresfor the data in the corresponding .mult �le. See Section 9.2.5 on page 66..seq A �le of sequences, as for example created by sampleseqs..plt A gnuplot command �le created by makehist. See Section 9.6 on page 78..data A gnuplot data �le generated by makehist. See Section 9.6 on page 78..hmmer An HMMER-format model produced by sam2hmmer. See Section 9.5.4 on page 76.The following �le extensions are conventionally used in this manual..ncomp A Dirichlet mixture prior library �le, where n is the number of components to the mixture,as in null.1comp or mall-opt.9comp. See Section 7.1 on page 26..pretty The output (stdout) from prettyalign. See Section 9.1 on page 50..plib A Dirichlet mixture prior library �le (old naming convention). The same extension is usedboth for match state regularizers and HSSP-based transition regularizers. See Section 7.1 onpage 26..regularizer A transition regularizer, generally used in conjunction with a Dirichlet mixture regu-larizer for the match states. See Section 7.1 on page 26..weights A �le of sequence weights. See Section 8.4 on page 44.In most cases, SAM can read compressed (.gz or .Z) �les, speci�ed either as their complete name oras their root name without the compression su�x. If the root name is given and both a compressedand an uncompressed �le exist, the uncompressed �le is read. If both a .gz and a .Z �le is present,the .gz �le is used.
20



5 Parameter speci�cationParameter values are drawn from four sources: command line arguments, inserted parameter �les,default parameter �les, and the program itself. Initial models and regularizers cannot be speci�edon the command line.Each parameter, including the initial model and regularizer, has a reasonable setting hardwired inthe SAM code. These are the default values listed in Section 11. The default regularizer is actuallytwo defaults, one for RNA or DNA, and the other for proteins.These hardwired values can be overridden by a user-speci�c default �le or command line speci�cation.This �le can be one of three alternatives. First, if the environment variable SAMRC is set, newdefault values are read from that �le. Second, if the SAMRC variable was not set and a .samrc �leexists in the current directory, that �le is used as the default. Third, if SAMRC was not set and.samrc was not found in the current directory, $HOME/.samrc is checked.Parameter �les can cause other parameter �les to be read using the insert directive. When thisdirective is used in a default such as .samrc, the inserted �le is assumed to have defaults as well.Non-default �les are speci�ed on the command line as, for example,buildmodel test -alphabet RNA -insert trna.initIn this case, the alphabet is set to RNA, and the �le trna.init will override default parametershardwired in the program or speci�ed in one of the .samrc �les. If the �le contained, for example, theline alphabet DNA, the alphabet would be switched to DNA with an appropriate warning message.Values are set and insert �les are read according to their position on the command line or within a�le.Command line arguments are evaluated in the order they are presented to the program. If one of thecommand line arguments speci�es an inserted parameter �le, that �le is processed before the nextcommand line argument. If one �le inserts another, the inserted �le is processed before completingthe original �le. Thus, to override values speci�ed in an inserted �le, insert the �le �rst on thecommand line, and then specify the parameters to reset: the last speci�ed values win.It is often important to conditionally specify initialization information. In addition to the insert,three conditional insertion directives are also available: insert file dna, insert file rna, andinsert file protein. These cause a �le to be inserted if the alphabet matches the directive. Ifthe alphabet is not yet set when one of these is encountered, and warning message is generated.Two parameter names have abbreviated forms: i can be used in place of insert, and a can beused in place of alphabet. The following will set the alphabet to RNA and read in the �le namedparameters.buildmodel test -a RNA -i parametersThe model output (such as test.mod, in the command line above) includes statistics about therun and a listing of all parameters that have been changed from their default values. Inserted �lenames are listed, but commented out, because their e�ect has been recorded in the list of all changedparameter values. Random number seeds created based on the pid are also commented out so that21



new seeds will be created if the program is rerun on the �le.Models are usually speci�ed using the insert �le (-i) command line argument. In this case, the modeltype (i.e., model, regularizer, frequency counts, or null model, discussed in Section 7.4) is read fromthe �le. Alternatively, a model file, regularizer file, or nullmodel file can be speci�ed, inwhich case the very �rst model structure in that �le (which could be a regularizer or frequency countmodel, for example) is read in. These �le names will override any models present in the inserted �les,even if the inserted �le occurs after the model file parameter on the command line. This optionis particularly useful for discrimination training with positive and negative examples, in which casea model generated by the negative examples can be used as the null model. See Section 9.2.1 onpage 59.There are two special paramater names, db and id, that form lists of strings. That is, when multipledatabase or sequence identi�ers are found on the command line or in a paramater �le, they are addedto the current list of databases or sequence indenti�ers, rather than replacing the previously-speci�edvalue.6 Sequence formatsThe SAM system understands several alphabets and many sequence formats.6.1 AlphabetsThe SAM system currently supports three prede�ned alphabets: `DNA', `RNA', and `protein', aswell as user-de�ned alphabets of up to 25 letters. The prede�ned alphabets can be speci�ed bysetting the alphabet variable. If no alphabet is chosen, the �rst sequence in a speci�ed �le willbe examined using readseq (discussed below) to determine the alphabet. If this method does notwork, the protein alphabet is the default. The SAM software includes several warning messages ifit appears that an incorrect alphabet has been chosen.The alphabets use standard characters. DNA sequences are composed of the characters \AGC-TRYN" and RNA of \AGCURYN," where `R' is a purine (`G' or `A'), `Y' is a pyrimidine (`C,' or`T' or `U,' as appropriate), and `N' is a wildcard character that could be any of the four normalcharacters. SAM's sequence I/O routines can convert between DNA and RNA alphabets if thealphabet is speci�ed incorrectly.The protein alphabet is \ACDEFGHIKLMNPQRSTVWYBZX." In addition to the twenty aminoacids, `X' is the general wildcard character, `B' matches `N' or `D', and `Z' matches `Q' or `E.'In all alphabets, unknown characters are converted to wildcards and a warning message is printed.When a model is created, a wildcard character's probability is the sum of the probabilities of thecomponent letters. Thus, the `X' character will have unity probability, giving it no preferenceto one state over another. During the training process, wildcard character frequency counts areproportioned among the appropriate true characters according to the relative probabilities of thosecharacters. 22



6.1.1 User-de�ned alphabetsSAM also supports user-de�ned alphabets of 2 to 25 user-selected letters (`A'{`Z') and one (required)wildcard letter. The restriction to alphabetic characters is a result of the need for both uppercase andlowercase letters in the sequence alignment format. As the system always requires an all-matchingwildcard, only 25 letters are allowed.User-de�ned alphabets are speci�ed with the alphabet def variable. As with the standard alpha-bets, the de�nition will be included in all resulting models, so future speci�cation of the alphabeton the command line is not required.For example, performing the commandsbuildmodel text -train text.seq -alphabetdef "text QWERTYUIOPASDFGHJKLZCVBNMX"align2model text -i text.mod -db text.seqresults in the alignment �le:>sentence1, 47 bases, 687E946B checksum.THEQUICKBRoW...NFOXJUMPEDOVERTHESLOWL.AZYDOG...>sentence1, 47 bases, 687E946B checksum.THEQUICKBRoW...NFOXJUMPEDOVERTHESLOWL.AZYDOG...>sentence2, 47 bases, EC040EB7 checksum.THEQUICKER.GreeNFOXHOPPEDOVERTHESLOWLuCKYPIG...>sentence3, 47 bases, CB5CB7A1 checksum.THESLOWLAZ.Y...PIGWADDLEDINTOTHEQUICK.PURPLEfox>sentence4, 47 bases, EBB0DD62 checksum.THEFASTBRO.W...NFOXHOPPEDINTOTHEQUICKlAZYDOG...Note that the above example does not model the letter `X' because it is a wildcard: the `X' characterwas not trained and does not have a preference for any state over any other state.A minimum of three characters, 2 normal and one wildcard, is required to de�ne an alphabet. Defaultat regularizers are created automatically, but users may wish to create their own alphabet-speci�cregularizers with regularizer file.As with alphabets, models are tagged with the alphabet def line, for exampleMODEL -- Final model for run textalphabet def text QWERTYUIOPASDFGHJKLZCVBNMxGENERIC1.886984 0.254944 0.376488.....See Section 7.4 on page 31.6.2 SequencesSAM uses a modi�ed version of the readseq package D. G. Gilbert of the Indiana University. Thecode is based on the February 1, 1993 release, and is included as a subdirectory of the SAM sourcedirectory. We are grateful that Gilbert has provided this useful package that may be used by anyone.23



The readseq package can read most common formats: examples of all these formats are includedin the readseq directory. The formats include:� IG/Stanford, used by Intelligenetics and others� GenBank/GB, genbank at�le format� NBRF format� EMBL, EMBL at�le format� GCG, single sequence format of GCG software� DNAStrider, for common Mac program� Fitch format, limited use� Pearson/Fasta, a common format used by Fasta programs and others� Zuker format, limited use. Input only.� Olsen, format printed by Olsen VMS sequence editor. Input only.� Phylip3.2, sequential format for Phylip programs� Plain/Raw, sequence data only (no name, document, numbering)� MSF multi sequence format used by GCG software� PAUP's multiple sequence (NEXUS) format� PIR/CODATA format used by PIRWe often use the IG/Stanford format, which looks like this:; All lines beginning with a `;' are comments; Now follows the identifier for sequence 1, and the sequence,; and the digit '1'SEQ1LMLDQQTINI IKATVPVLKE HGVTITTTFY KNLFAKHPEVRPLFDMGRQE SLEQPKALAM T1;;SEQ2 - Comments after the identifier are ignoredAKHPEVRPLFDMGRQESLEQPKALAMT1The IG/Stanford format has been slightly changed from the readseq package's default: a semicolonstarting a line will end a sequence whether or not the number '1' or the number '2' occurred at theend of the previous line.For information on other formats, please look through the test �les and the Formats �le in thereadseq directory.Sequence output by hmmscore will be in whatever format the last input �le had.24



Sequence output by align2model and hmmscore is in a FASTA-compatible format in which upper-case letters indicate match states and lowercase letters indicate insertion states and hyphens indicatedeletion states (model positions for which the given sequence has no corresponding character). Theprettyalign program can be used to line up the match columns of an a2m-format alignment �le.Additionally, align2model can includes periods so that its sequence outputs can be visually alignedwithout the use of prettyalign. If, for example, the longest sequence in a collection is 2000characters long, all sequences will be �lled (using periods) to that longest sequence's alignmentlength, which will be more than 2000 if any deletion states are used. Thus, allowing the periodsto be printed can greatly expand the size of the alignment �le. If periods are not desired, theparamater a2mdots can be set to 0. The prettyalign program will work whether or not the a2mformat alignment has periods.SAM can also read HSSP �les.6.3 Training and test setsThe buildmodel program uses two sets of sequences: the training and the test set. Training isperformed exclusively on the training set, and at the end of the model creation, all sequences inthe test set are checked against the model, and the average NLL distance is reported for both thetraining and the test set.Training and test sets can be speci�ed in up to two �les each: train, train2, test, and test2.At most Nseq sequences will be read from any one �le, so that at most 4Nseq sequences will be readin if four �les are speci�ed.The system can also randomly partition sequences into the training and the test set. If Ntrain isset, the system will randomly pick Ntrain sequences from all �les speci�ed (training and testing)using the random seed trainseed, and reserve the rest for the test set. By default, the seed is set tothe process ID number, which is printed on the output �le so that the partition can be reproduced.Sequence partitioning and model training use di�erent random seeds, though both default to theprocess ID.Several other programs, such as hmmscore and align2model, take an arbitrary number of sequencedatabase �les speci�ed as db. Unlike most variables, repeating the db declaration adds a new �le tothe list, rather than replacing the previous database �le.7 Regularizers and modelsThe SAM system handles a type of hidden Markov model that was developed speci�cally for biolog-ical sequences. It consists of a chain of `nodes', each of which consists of a `match' state, an `insert'state, and a `delete' state (Figure 1 on page 12). The only way the structure can be varied is in thelength, i.e., how many nodes the model has. There are three transitions out of each state, which canbe taken with some probability. One of these transitions leads to the insert state in the same node,whereas the others lead to the match and delete states in the next node. Two states are special: thebegin state (numbered 0) and the end state (numbered L+ 1 for a model of length L). The model25



A 0.08713 C 0.03347 D 0.04687 E 0.04953 F 0.03977G 0.08861 H 0.03362 I 0.03689 K 0.08048 L 0.08536M 0.01475 N 0.04043 P 0.05068 Q 0.03826 R 0.04090S 0.06958 T 0.05854 V 0.06472 W 0.01049 Y 0.02992Table 1: Default amino acid match-state frequencies for protein regularizer.is completely speci�ed when all the probabilities are given for all transitions and all the letters inthe match and insert states.7.1 RegularizersThe word regularizer is often used in (Bayesian) estimation for a method to keep estimates from over-�tting the data, and in Bayesian statistics it is tightly connected with the so-called prior distribution.We use a Bayesian method of model estimation, and we have chosen to let the regularizer play severalimportant roles in the program. The regularizer should reect your prior expectations about howa model will look like for the family you are about to model. For instance, one may not think amodel that only uses inserts and deletes is a good one, and that expectation can be built into theregularizer.The regularizer has three functions:Regularizer: During model estimation the regularizer should make sure that the model does notdiverge too much from your expectations. It is done by adding `fake' observations to the realones. The model is reestimated by `counting' how many times each probability parameteris used by the data, and then normalizing these counts. Before the normalization the `fake'counts in the regularizer are added.Initial model: By normalizing the regularizer, a valid model is obtained. If no initial model isspeci�ed to the program it will use this normalized regularizer as a starting point, but usuallysome noise is added �rst (see below).Noise: The normalized regularizer also determines the noise added both initially and during learning(if annealing is used). See below.Therefore, to run the program, you always have to specify a regularizer. Some good default ones areshipped with the program, so you need not worry about it in the beginning. With some experiencehowever, it can be used as a powerfull tool for guiding the learning process.The default RNA and DNA regularizer assumes a uniform distribution over the four letters, whilethe default protein regularizer uses the amino acid background frequencies in Table 1. Often it is agood idea to use the actual letter frequencies in the training data instead of the default distribution.This can be achived by setting Insert method train to 1.Without editing all the numbers in the regularizer, one can change the strength of it by changingsome parameters called `con�dences'. All regularizer numbers corresponding to transitions leaving26



the delete states are multiplied by the parameter del jump conf before being used. Similarly forthe parameters ins jump conf and match jump conf. The numbers corresponding to the letterprobabilities in match states and delete states are multiplied by matchconf and insconf respectively.7.1.1 Regularizer alternativesFor training protein sequences, we always recommend the use of a Dirichlet mixture prior, which isenabled by setting prior library to the name of a prior library. The prior library (discussed in theSj�olander et. al. paper mentioned in Section 1) encapsulates information about what distributionsare expected to be found in match states. That is, columns in a multiple alignment are not all drawnfrom the same background distribution: some columns are highly conserved, others are primarilyhydrophobic, and so on. The SAM distribution includes both the mixture from the CABIOS paperas well as several other prior libraries created by Kevin Karplus (karplus@cse.ucsc.edu):uprior9.plib The 9-component library discussed in the aforementioned paper. Optimized for un-weighted blocks data.mall-opt.9comp Library re-optimized for unweighted data from an HSSP subset.opt-weight1.9comp Library reoptimized for weighted version of same HSSP subset.recode1.20comp A 20-component Dirichlet mixture trained on (realigned) HSSP alignments thathave a diverse set of sequences. Intended for use in recoding inputs to neural net, but alsouseful as a standard regularizer.null.1comp A one-component regularizer with tiny alpha, to get e�ectively no regularization.The 20-component library is Kevin Karplus' current favorite for general use.The insert protein command, in conjunction with another �le that speci�es the prior library, canbe used to ensure that a prior library is used whenever protein analysis is performed.The distributions of nucleic acids do not lend themselves to e�ective use of Dirichlet mixture priors.When a prior library is used, it overrides the match-state character emission values of the regularizer.Similarly, the insert-state character emission values of the regularizer are by default overridden to bethe geometric average of the match state probabilities. Thus, as a result of the historical developmentof this code, for protein sequence analysis, only the transistion probabilities of the regularizer areactually used in training. Again, the distribution contains several di�erent transistion regularizersoptimized for di�erent purposes, all created by Kevin Karplus. With Version 2.0, the default proteintransition regularizer has been changed to trained.regularizer, good general regularizer. The oldvalues are in the sam1.3.regularizer �le of the lib directory.trained.regularizer Regularizer optimized for unweighted transition counts on some set of re-estimated HSSP alignmentscheap gap.regularizer Makes gap opening and closing very cheap allowing exploration of manydi�erent alignments, but giving too high a cost to long matches27



long match.regularizer Assigns somewhat reasonable gap costs for unweighted data, useful forsweeping away "chatter" into big matches and big gaps, by making gap opening expensive butgap extension fairly cheap.We intend to futher evaluate nucleotide regularizers in the future.Prior libraries and regularizers can be speci�ed by their path name. If the $PRIOR_LIBRARY environ-ment variable is set to a path name including a trailing `/' (or if it was not set but the proper directorywas speci�ed at compile time), SAM will check that directory for prior libraries and regularizers.Mixtures and regularizers make the biggest di�erence for small training sets. The �le globins50.seqcontains 50 globins. To test this, generate and score two models from four sequences:buildmodel train4 -train globins50.seq -seed 0 -trainseed 0 -ntrain 4-priorlibrary 0buildmodel train4reg -train globins50.seq-priorlibrary recode1.20comp-regularizerfile weak-gap.regularizer-seed 0 -trainseed 0 -ntrain 4hmmscore train4 -i train4.mod -db globins50.seq -sw 2hmmscore train4reg -i train4reg.mod -db globins50.seq -sw 2Note here that the four training sequences are also in the test set.The results of these two runs, as well as two similar ones with 10 training sequences, are shown inin Figure 4, in the form of score histograms. See Section 9.6.1 on page 78. Note how in both cases,the use of the optimized regularizer improves scores of the globin sequences, and also that in bothcases, the jump from 4 sequences to 10 sequences greatly improves model scores.7.1.2 Transition regularizers with structural informationJust as the Dirichlet mixtures were used to incorporate prior information about amino acid dis-tributions in the match states of an HMM, one can now use analogous information concerningthe transition probabilities in various structural environments. To derive this information, we builtHMMs from about 1050 HSSP database �les and aligned the sequences that made up the �le back tothe HMM. Using sequence weighting and noting the structural environment, we generated weightedcounts for transitions in every structural environment. Structural environment was de�ned in termsof secondary structure and accessibility. From these weighted counts we derive pseudocounts andincorporate them when building an HMM. The net e�ect of this is to impose general structuralinformation, such as the low probability of an insert into the middle of a helix, into the HMMestimation process.There are three relevant parameters. The �rst is the speci�cation of the structural transition priorlibrary, which one speci�es with trans priors. The library incorporated into the current SAM suiteis TransFromRev15.plib. In order to use this library, one must specify a template �le with template.This is a three-column �le: animo acid sequence, secondary structure, and accessibility (as de�nedby HSSP). During model estimation, the sequence in the template �le is aligned to the HMM. Thealignment of the template sequence to the HMM dictates the assignment of the values in the secondand third columns of the template �le to each model node. These values in the last two columns28
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Ntrain = 10, no Dirichlet mixture Ntrain = 10, Dirichlet and weak-gap regularizerFigure 4: Regularizer performancespecify a structural environment, whose pseudocounts are used to reestimate the node's transitionparameters. One may change the inuence of pseudocounts with a real-valued multiplier using theparameter transweight.The program make template is included with the SAM distribution for generating template �lesfrom HSSP �les.The following is a command line example involving the use of the transition prior library Trans-FromRev15.plib, the template �le for the PDB structure 2prd, and the weight multiplier.buildmodel 2prd -train 2prd.training.seqs -priorlibary recode1.20comp -transpriorsTransFromRev15.plib -template 2prd.tplate -transweight 2.5The 2prd template �le 2prd.tplate was generated with the command linemake template 2prd -alignfile 2prd.hsspand the �rst few lines are:
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TEMPLATE%%% Template sequence from 2prd%% File generated Mon Aug 11 19:20:51 1997%%SEQLENGTH 174ID 2prd%%%AA STRUCTURE ACCESSIBILITY%-- ----------- -------------A * 128N * 60L G 30K G 60S G 61L S 44P * 88V * 23G * 19D T 172K T 115A T 27P T 11E T 94V E 27V E 1H E 53M E 1V E 0I E 0E E 12V E 0P * 18This method of incorporating structural information into the transition probabilities of an HMMleaves open the option of experimentation with protein HMMs for which structure may only bepredicted or assumed.7.2 Initial modelSometimes one would like to change a model that was already found earlier, and then restart build-model from that model. Thus, the initial model should not be made from the regularizer as describedabove. That is done by specifying the model explicitly in the init �le, by using the heading `MODEL'instead of `REGULARIZER' that starts the regularizer speci�cations. See section 7.4, below. Mostother programs in the SAM package also take already-formed models as input.If desired, the �rst model in some other �le (which might have a keyword other than `MODEL') canbe read using the model file directive. See Section 5 on page 21.30



7.3 Initial alignmentOne of the best ways to train a hidden Markov model is to use an existing rough alignment to getthe process started. There are two equivalent ways to do this. First, a model could be generatedusing the modelfromalign program (Section 9.4). Second, an alignment �le can be speci�ed onthe buildmodel command line using the alignfile directive. In this case, any initial models areignored in favor of this starting alignment.The format of the alignment �le is determined automatically as follows. First, if the key letters`HSSP' begin the �les �rst line, it is read in as an HSSP �le. Second, the align2model format ischecked. In this case, lowercase letters are treated as insertions, periods are ignored, and uppercaseletters and hyphens refer to match columns. If all sequences do not have the same number ofmatch columns under these asumptions, the sequences are checked for a general alignment format,in which all upper and lower case letters count as match columns, and all periods and hyphens countas deletions. If this fails as well, SAM will continue on using this last format, but will print errormessages about the sequences with non-matching lengths.The alignment weights parameter can be used to weight the sequences in the initial alignment.See Section 8.4 on page 44.As a subcase of an initial alignment, buildmodel can be instructed to create models from randomlychosen single sequences in the training set. This is done by setting the sequence models to a valuegreater than 0. For each of the initial models required by buildmodel, a random sequence will bechosen and a model created based on that sequence regularized with a weight equal to the value ofsequence models. As long as fewer models are created than sequences in the training set, a di�erentsequence will be chosen for each model. Noise will be reduced according to retrain noise scale.7.4 Model formatRegularizers and models are speci�ed by one set of numbers for each node in the structure. One canalso specify a generic node for nodes not speci�ed explicitly (internal nodes or the special Start andEnd states). The simplest model (for DNA) looks like this:MODELalphabet DNAGenericdd md iddm mm imdi mi iimA mG mC mTiA iG iC iTENDMODELwhere dd, md, and id are numbers specifying probabilities of transitions INTO the delete state fromdelete, match and insert respectively. Similarly, dm, mm, and im are probabilities for the transitionsINTO a match state and di, mi, and ii into insert. (The states come in the order: delete (d),match (m), and insert (i)). In Figure 1 on page 12, T (m3jd2), for example, corresponds to the dmentry of node 3. The next four numbers (mA, mG, mC, mT) are the letter probabilities in the matchstate, i.e., probabilities for producing the letters A, G, C, and T. Similarly the last four are the31



letter probabilities for the insert state. Here DNA was assumed; there would be 20 probabilitiesfor proteins in each of the last two groups, in the alphabetical order of the single-letter amino acidabbreviations given in Section 6.1. Wildcards do not have corresponding entries in either the matchor insert tables: their probabilities are calculated by SAM.A model of length 4, in which all nodes are di�erent, looks like this:MODELalphabet DNA0 0 0 0 0 0 0 0 mi ii 0 0 0 0 iA iG iC iT1 0 md id 0 mm im di mi ii mA mG mC mT iA iG iC iT2 dd md id dm mm im di mi ii mA mG mC mT iA iG iC iT3 dd md id dm mm im di mi ii mA mG mC mT iA iG iC iT4 dd md id dm mm im di mi ii mA mG mC mT iA iG iC iT5 0 0 0 dm mm im 0 0 0 mA mG mC mT 0 0 0 0ENDMODELThe �rst number in each line is the model position (the node number). Position 0 is the begin state,and position length+1 (5 in the example) is the end state.In the two �rst positions (0 and 1) and the last (5) some probabilities are zero. These will alwaysbe set to zero by the program, whether or not a number di�erent from zero is speci�ed. Referringto Figure 1, the begin and end states look like match states, but really only match beginning-of-sequence and end-of-sequence, rather than real characters. In the case of position 0, initial insertionsare allowed (the mi and ii transitions), as are transitions to the next position's match or deletestates. Since position 0 has no delete state, the dd, dm transitions for position 1 are zero (the ditransition is between d1 and i1 in the �gure).At position 5, all sequences are required to match the implicit end-of-sequence. Because the endposition has no insert or delete states, all transitions into node 5's insert or delete state are zero.The use of regularizers is discussed in section 7.1. A regularizer speci�cation looks exactly thesame as a model speci�cation, except that it starts with `REGULARIZER' instead of `MODEL'.Frequency count output (print frequencies) is similarly formatted, but with the starting word`FREQUENCIES'. A trained model can be turned into a user-speci�ed NULL model (see Section 9.2)by replacing `MODEL' with `NULLMODEL'. Any text on the same line as the initial word is ignored| buildmodel places a brief comment after the word `MODEL'.When specifying regularizers and models, it is sometimes convenient to specify the �rst and lastnode di�erently than the remainder. Since the length of the model can vary, the �nal node cannotbe speci�ed as being, for example, node 100. Instead, one can use negative numbers to specify nodesrelative to the end, rather than the beginning. For example,REGULARIZERGeneric .........Begin ......1 ......3 .......-2 ......-1 ......End .....ENDMODEL 32



`Begin' (or anything beginning with `B') is synonymous with node number 0, and `End' with the endnode. If this regularizer is used with a model of length 100, node number 0, 1, 3, 99(-2), 100(-1), and101 (End) will be speci�ed individually, and for all the rest of the nodes the Generic speci�cationwould be used.The buildmodel program adds two informational nodes to models it produces. The �rst, called`LETTCOUNT', has the distribution of characters in the set of training sequences. The lettercounting procedure adds a small o�set to avoid zero counts. Wildcard counts are proportionedamong the appropriate letters according to the distribution of non-wildcard letters. The second,'FREQAVE', has the average frequency of each letter in the match states. If the match statesare only modelling a portion of the training sequences, these averages may be di�erent from the`LETTCOUNT' values. These nodes can be used as null models during the scoring procedure, andduring future buildmodel runs. See Section 9.2 on page 56.It is often easiest to specify regularizers by changing an exisiting regularizer. For example, thedefault protein regularizer can be printed out to the model �le by setting dump parameters to 1.buildmodel params -a protein -train trna10.seq -dump parameters 1 -reestimates 0This command writes all parameter values to the �le params.mod using the protein alphabet (severalalphabet warning messages will be printed because the sequences are not protein sequences). Thelast argument is required to ensure that buildmodel constructs a regularizer.The params.mod �le contains among other lines, the following regularizer speci�cation (several digitshave been truncated):REGULARIZER: Initial settingalphabet proteinGENERIC 1.89 0.25 0.38 1.82 15.52 3.76 0.23 0.27 4.010.16 0.04 0.11 0.12 0.07 0.12 0.07 0.11 0.13 0.140.06 0.11 0.07 0.10 0.11 0.17 0.15 0.14 0.03 0.070.16 0.04 0.11 0.12 0.07 0.12 0.07 0.11 0.13 0.140.06 0.11 0.07 0.10 0.11 0.17 0.15 0.14 0.03 0.07ENDMODELThe numbers are in order, the transition probabilities, the 20 match state values, and the 20 insertstate probabilities. The match an insert state values correspond to those in Table 1. Versions ofSAM before Version 1.1 had a uniform distribution in the insert states, rather than a backgrounddistribution. To change to a uniform distribution for insert states, but maintaining the default tran-sition regularization, the following could be placed in a parameter �le (or the insert method trainvariable could be used, as discussed in Section 7.1):
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REGULARIZER: Background in match, 1/20 in insertalphabet proteinGENERIC1.886984 0.254944 0.3764881.819972 15.521340 3.7642090.225758 0.265967 4.0065620.162339 0.037220 0.107508 0.123557 0.0745440.122092 0.072662 0.112151 0.128548 0.1385340.063912 0.113368 0.074824 0.103722 0.1106120.170739 0.154307 0.143584 0.028017 0.0693020.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.050.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05ENDMODELAlphabet (or alphabet def) speci�cation within a model or regularizer is optional, though wheneverbuildmodel prints one of these structures, the name of the alphabet will be included.7.4.1 Model lengthThe length of the model(s) can be determined by the program in several ways (listed in order ofimportance):� If there is an initial alignment (alignfile), the length of the alignment will be used.� If there is an initial model of �xed length (no GENERIC) or modellength is 0, the initialmodel's length will be used.� If there is an initial regularizer of �xed length (no GENERIC), the regularizer's length will beused.� If the value of modellength is greater than 0, all models will be of that length.� If instead maxmodlen is set to greater than 0, model lengths will be chosen randomly betweenmaxmodlen and minmodlen.� If maxmodlength is left at its default 0 and modellength is set to 0, and no initial model isspeci�ed, all model lengths will be set to the average length of the training sequences.� If maxmodlength is left at its default 0 and modellength is left at its default value of �1,then model lengths will be randomly chosen between 90% and 110% of either the initial modellength (if present) or the average training sequence length (if no initial model is present).When model lengths are randomly selected, it is done with the same random number generator thatcreates model noise (distinct from the random number generator used to divide sequences into thetraining and the test set).The surgery heuristic (Section 8.2) may lengthen or shorten a model.
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7.4.2 Special nodesThere are several special node types that can be used to hand-tune a model. These are indicatedwith type declarations within the model description, such as:TYPE 29 NO SURGERYTYPE 12 KEEPTYPE 1 FIMTYPE -1 FHere, the two parameters are the node number (a negative node number indexes from the endof the model, as above) and a type. Type declaractions may appear anywhere within the modelspeci�cation, and in any order. If more than one speci�cation for a node appears, the last one isused. Only the �rst character of the type matters, and it must be one of `N', `K', `T', `A', or `F'.To tie a type declaration to a speci�c node (rather than a generic node), its number must matchthat of the node declaration. That is, if a model consists of node declarations for nodes 1 : : : 5, a`TYPE 6 F' statement will either generate an error if there is no generic node declaration, or createa FIM node number 6 using the generic node speci�cation.Model output from buildmodel is fully speci�ed: the model will include begin and end nodes anda sequence of positively-numbered nodes. If you wish to change change node types of a node, youmust specify the exact same positive node number as that node. Specifying, for example TYPE -1FIM, will result in an error because there is no generic node, and node -1 has not been speci�ed. Toachieve this e�ect, you will need to add either a generic or a new node description (for node -1) inaddition to the type statement. Alternatively (and preferably), you can use the addfims programor in some cases the auto fim variable to add a FIM at the start and end of the model.Type `N' nodes are no-surgery nodes. During the surgery heuristic, these nodes will neither bedeleted (if they are used by too few sequences) nor expanded (if their insert states are used by toomany sequences). The parameters of the node will be trained as normal. No-surgery nodes areusually not used explicitly: they are a building block upon which keep and FIM nodes are based.Type `K' nodes are keep nodes. The match and insert probabilities of these states will not be trained,however their transition probabilities will. Keep nodes are also immune to surgery.Type `T' nodes are transition keep notes. The outgoing transitions associated with that node are nottrained but the match and insert tables are. Note that the outgoing transitions for a node includethe incoming transitions to that node's insert state as well as the incoming transitions to the nextnode's delete and match states. Transition keep nodes are immune to surgery.Type 'A' nodes are all keep nodes. This has the attributes of both `K' and `T', though of course onecould not specify both `K' and `T' because nodes can only have one type. The outgoing transitionsand the character distributions are not trained. All keep nodes are immune to surgery. In general,if you do not wish to train a node (for example, it is a conserved region from an existing alignmentthat is known to be correct), the nodes of that region should be of type `A'. The `K' and `T' nodesare for more specialized use, such as learning transition probabilities for an existing pro�le.Keep nodes can be particularly useful when training from an existing model or alignment (usingthe modelfromalign program, Section 9.4). If a region is identi�ed as being particularly importantto preserve during training, its nodes can be identi�ed as keep nodes (determining which node35



numbers correspond to the region can be done using drawmodel or align2model). For example, ifnode numbers 10{12 are identi�ed as being `correct' (and thus should not be trained), the linesTYPE 10 KTYPE 11 KTYPE 12 Kshould be added between the MODEL and matching ENDMODEL statements. After training, thekept nodes may no longer be numbered 10{12 because of model surgery, however the nodes willstill be part of the model, and will be identi�ed as kept nodes in the model output. The programmodifymodel can be used to change node types.Type `F' nodes are free-insertion modules (FIMs) which are discussed below.If the program is being run without an initial model, node types are taken from the regularizer. Ifthere is an initial model, types in the regularizer are ignored preference to any types present in themodel.7.4.3 Binary modelsFiles containing models can be written in either text (human readable) or binary format. You canrecognize a binary model by the keyword BINARY which appears on the line directly after themodel declaration. The advantages of using binary formatted models are decreased �le size/diskspace usage and faster model reading and writing. The disadvantage is that you can't read or modifyyour model �les.By selecting binary format, you can reduce the size of an 81-node model �le from 16,240 bytes to8726 bytes. A �le containing 249 nodes shrinks from 116,218 bytes in text format to 51,647 bytes.We achieve this striking savings by taking advantage of the fact that nodes of a given type frequentlyhave the same letter probabilities for the insert state.Before a binary model is written to �le, the program scans all the nodes of each type. If it �ndsthe nodes all have the same letter probabilities for insert state, the data is stored in a table. Theprobabilities are considered `identical' if their di�erence is less than .000002, therefore they arerounded to this magnitude in the binary model.If you run buildmodel and use binary output you are likely to shave a few seconds from the program'srun time.When generating model �les, use the command-line option -binary output 1 for binary format.The default for this option is currently set to 0 or o�.The program hmmconvert (Section 9.5.2) is available to switch models from one format to another.It will read your model, determine its format and then write the model to a new �le in the oppositeformat.
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7.5 Free-insertion modulesIt is often desirable to be able to model motifs that occour in long sequences. This can be doneby a little `hack' in the HMMs. The idea is to have a model of the motif anked by insert stateswith particular character distributions. The cost of aligning a sequence to such a model does notstrongly depend on the position of the motif in the sequence, and thus it will pick up the piece ofthe sequence that �ts the motif model the best.These insert states are added to the model by the so-called free-insertion modules (FIMs), in whichonly the delete state and the insert states are used. All the transitions from the previous node go intothe delete state, which is ensured by setting the other probabilities to zero. From the delete statethere is a transition to the insert state with the probability set to one. In the insert state, characterprobabilities are set according to FIM method train (for buildmodel) or FIM method score (forhmmscore). Use of these parameters allows you to embody information particular to the problemdomain and can signi�cantly a�ect performance. Discussion on the their use appears in Section 9.2.From the delete and insert states there are transitions to the next node which have the same prob-abilities (delete to match and insert to match have the same probability, and so on). Note that theprobabilities do not sum up to one properly in such a module. Since all sequences must pass througha FIM's delete node (excepting the case of when the Begin node is a FIM), a delete (or dash) willbe present in any alignment to the model.The FIM is also used as the null model during scoring. (Section 9.2)These special nodes can be used to learn, align, or discriminate motifs that occur once per sequence.Typically, FIMs are used at the beginning and the end of a model to allow an arbitrary numberof insertions at either end. For example, if a model for a motif has been learned from truncatedsequences, adding FIMs to the resulting model will enable detection of that motif within longersequences. Before trimming sequences by hand, one should try learning with FIMs, as in:REGULARIZERGENERIC .....TYPE 0 FIMTYPE -1 FIMENDMODELThe begin node (number 0) can be used as a FIM as shown above. However, the end node has noinsert state, so the FIM is put just before the end, which is speci�ed as node �1. (See Section 9.3.1for some important comments on adding FIMs to models without the addfims program, as in theregularizer example above.)Given a sequence, an HMM will only identify one occurence of the domain or motif on which it wastrained even if there are multiple copies. Multiple occurrences can be found with multdomain.To train a model to �nd several (di�erent) motifs, one can add FIMs at di�erent positions in themodel. For instance to model sequences with two motifs of lengths 5 and 10 one should specify themodel as
37



REGULARIZERGENERIC .....TYPE 0 FIMTYPE 6 FIMTYPE -1 FIMENDMODELand set the model length equal to 17 (5+10+2FIMs).If domains are clipped from an alignment, converted to a model using modelfromalign, and thento a FIM model using addfims, it is best to model several positions on either side of the domain toprevent the FIMs from eating up the ends of the domain.The FIM state's insert table (or the generic node's, if the FIM is not fully speci�ed) has the distri-bution over characters to be used.The program addfimswill add free insertion models to both ends of a model, and is further discussedin Section 9.3. Because the correct addition of a FIM requires changes in the transition probabilitiesto and from the FIM, it is recommended that users only add �ms by hand for unspeci�ed regularizersand models: those that only have a generic node and one or more type declarations. To add freeinsertion modules to the ends of an existing model, for training or for motif searching, be sure touse the addfims or modifymodel program, or that auto fim is set to its default value of 1.Sometimes, in alignment or training the model may not be using FIMs as much as desired when,for example, there is a reasonably strong probability of using a speci�c internal insert state. Theprobability of a FIM modeling n characters is by default the product of the insert table proba-bilities for those characters. If this probability is too low, meaning that sequences are not usingthe FIM enough, it can be adjusted with the fimstrength parameter. Changing this parameterfrom its default 1.0 to 2.0, for example, make use of the FIM twice as likely as before. The valueof fimstrength is also applied to simple null models, and if less than zero, the absolute value of�mstrength is applied to both FIMs and normal insertion states.7.6 FIM, insert and match tablesTo aid in the manipulation of insert tables, SAM provides several options to globally change theregularizer's match and insert states, and the initial model if it is generated from the regularizer.These options are controlled by FIM method train and insert method train. The default is to usethe residue counts of the training sequences in both the insert and FIM states, as well as the matchstates of the GENERIC node.0 Use the tables present in the model.1 The relative frequencies of residues in the training sequences (from the LETTCOUNT nodeor the training sequences).2 The relative frequencies of residues in model match states (from the FREQAVE node).3 Uniform (at) probability over all residues.5 Amino acid background frequencies over all proteins (from the Generic node).38



6 Geometric average of the match state probabilities.The match state frequency average is only available when an existing model (with a FREQAVEnode) is being trained.If the method number is negative, the change only occurs if a model is being created by the program.For example, if buildmodel is run with an initial model, a negative FIM or insert method will haveno e�ect on the model.If insert method train is set, and a generic node exists in the regularizer or model, then both thematch and the insert states of that generic node are changed. This is important because it meansthat match states in the initial model (before training commences) will be based on, for example ifinsert method train is 1, the letter counts of the current training set, assuming that that there isno initial model or alignment.If the train reset inserts variable is set, then after each reestimation cycle in the training process,the insertion and FIM tables will be set according its value: 0, 1, 2, 3, 5 as above, or 6 (the default)to set to the geometric average of the match table probabilities in the newly trained model. SeeSection 9.2.1 on page 59.8 The buildmodel estimation processA detailed discussion of the estimation process can be found in \Hidden Markov models in compu-tational biology: Applications to protein modeling," mentioned in the Introduction. This sectionprovides an overview of the mechanics of model estimation.After the sequences have been divided into training and test sets, and the initial model or modelshave been created, buildmodelwill iteratively train the model using expectation-maximiation (EM).For each iteration, a comment line (beginning with a percent sign `%') is written to the output �le(e.g., test.mod) that includes the iteration number and the average NLL distance between the set oftraining sequences and the model. Iterations continue until either an iteration gains less improvementthan the stopcriterion (and noise is less than 10% of its starting value) or reestimates iterationshave been performed. When multiple models are being trained (but not multiple subfamily models,see Section 8.4.1.1), training on each model is stopped individually when that model reaches thestopcriterion (provided noise is less than one tenth its initial value).If surgery and multiple initial models are used, one model is selected for the surgery procedure,which will attempt to prune and grow the model as appropriate. After each surgery procedure (upto nsurgery), the reestimation process is repeated. Once either the limit on the number of surgeriesis reached, or the surgery parameters produce no model modi�cations, the training procedure iscomplete.After the model has been trained, the NLL scores for the test set are computed and reported, andthe �nal model is written to the output �le. This model �le may be used as an input �le to furtherre�ne the model, perhaps by setting the stopcriterion to a smaller value.39



8.1 Noise and annealingIt is possible to add noise to the initial model(s). By setting initial noise to a positive numberthat amount of noise is added to a model in the beginning of the program. It serves the importantpurpose to make models di�er, if the program runs many models simultaneously | each model willhave a di�erent noise added.To try to avoid local minima, one can add noise to the models during their estimation, and de-crease the noise level gradually in a technique similar to the general optimization method calledsimulated annealing. The initial level of the noise in this annealing process is called anneal noise.If anneal noise is greater than 0, annealing is performed. (If initial noise is also given, thatwill determine the noise for the �rst iteration, and anneal noise the noise in the following itera-tions.) During the estimation process the annealing noise is decreased by a speed determined byanneal length. There are two ways it can be done:Linearly: If anneal length is greater than or equal to 1, the noise is decreased linearly to zero inanneal length iterations by the formulanoise = anneal noise(1� number of iterations=anneal length)Exponentially: If anneal length is less than 1, the noise is decreased exponentially by multiplyingthe noise with anneal length in each iteration, which gives the noisenoise = anneal noise � anneal lengthnumber of iterations:In the exponential schedule, noise injection is halted when the amount of noise reaches 10% ofits initial value.Once the noise level has been calculated, there are three possible ways noise can be added, ascontrolled by whether randomize is positive, negative, or zero.positive A set of randomize random paths are calculated through the model according the theregularizer probabilities. Each of these sequences is weighted by the amount of noise. Thesesequences are added to the counts generated by the real frequencies, thus the noise setting issomewhat dependent on the number of sequences being trained.negative A set of �randomize random paths are calculated through the model. With a weight of�noise=randomize, these counts are added to the normalized (probability, rather frequency)model, and than the model is renormalized. Thus, the noise generation is similar to that ofthe �rst case, but total noise added is independent of both the number of sequences and therandomize setting.zero For each probability parameter in the model, a random number between 0 and the correspond-ing parameter in the normalized regularizer is found. This number is scaled by the level ofthe noise, given for instance by initial noise, and added to the probability in the model.After doing this for the whole model, all the probabilities are normalized. For example, if thenoise is a random number between 0 and 2, random pseudo counts corresponding to up to twosequences will be added to each transition and each match state. This is the fastest means ofnoise generation. 40



Note that the annealing schedules are ad hoc. Still, according to our experience even fast and crudeannealing generally improves performance. By default, exponential noise at a ration of 0.8 is usedwith no initial noise, an anneal noise of 5, and a randomize setting of 50 (corresponding to50 random sequences). These values were chosen experimentally (see the Hughey and Krogh papermentioned in the introduction).After a model has been created, adding too much noise to the model may eliminate all the trainedinformation. Therefore, if an initial model or an initial alignment is speci�ed, noise (initial noiseor anneal noise) is reduced from the default setting by a factor of retrain noise scale, whichhas a default of 0.1. Thus, the e�ective noise during a retraining would be 0.5 rather than 5. Thesame is true of surgery iterations, discussed in the next section. In this case, the starting noise of thereestimation process after a surgery, whether or not an initial model is speci�ed, is the anneal noisescaled by surgery noise scale parameter, which also has a default of 0.1.A second annealing option, one based on slowing increasing the weights of the sequences beingtrained is discussed in Section 8.4.2.8.2 SurgeryIt is often the case that during the course of learning, some match states in the model are used byfew sequences, while some insertion states are used by many sequences. Model Surgery is a meansof dynamically adjusting the model during training.Surgery will be nsurgery times: a full reestimation process is performed including reestimatesreestimations, or until the stopcriterion is reached. By default, as in the tRNA example above,surgery is performed up to two times.The basic operation of surgery is to delete unused match states and to insert match states in placeof over-used insert states (the special node types described in Section 7.4.2 are never subjectedto surgery modi�cation). In the default case, any match state used by less than one half of thesequences is removed, forcing those sequences to use an insert state or to signi�cantly change theiralignment to the model.2 Similarly, any insert state used by more than half sequences is replacedwith a number of match states approximating the average number of characters inserted by thatinsert state.The surgery heuristic can be adjusted with one parameter or with three. In the �rst case, settingmainline cutoff to a number other than the default 0.5 will indicate how much non-match, or mainline, activity will be accepted. For example, a setting of 0.25 indicates that any match state usedby less than one quarter of the sequences should be removed, while any insert state used by morethan one quarter of the sequences should be expanded into a number of match states approximatelyequal to the average number of characters emitted by that state.For �ner tuning of the surgery process, the parameters cutmatch, cutinsert, and fracinsert, canbe used. During surgery, any match state with a smaller portion of sequences than cutmatch isremoved, and any insert state with a higher portion of sequences than cutinsert is replaced by theaverage number of characters emitted by that insert state multiplied by fracinsert. By default,fracinsert is 1.0, and cutmatch and cutinsert are both equal to mainline cutoff.2To be more precise, any node that has a frequency count of less than one half the number of sequences is removed.41



These parameters can be set in ways that cause large amounts of surgery. For example, settingcutmatch to 0.5 and cutinsert to 0.25 will delete any match state used by fewer than half thesequences, and insert match states for any insert node used by greater than one quarter of thesequences. Typically, this will result in an oscillating model in several positions | those positionsused by more than one quarter and less than one half of the sequences. Such excessive surgery cansometimes aid in forming a good model.8.3 Training statisticsIn addition to the trained model, a report of the training procedure is included in buildmodel'soutput. The comment sections of this �le for the training example in the introduction is reproducedbelow.
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% SAM: buildmodel v2.1.1 (Apr 24, 1998) compiled 04/27/98 12:31:54.% SAM: Sequence Alignment and Modeling Software System% (c) 1992-1998 Regents of the University of California, Santa Cruz% http://www.cse.ucsc.edu/research/compbio/sam.html%% ------ Citations (HMMs, SAM) ------% A. Krogh et al., Hidden Markov models in computational biology:% Applications to protein modeling, JMB 235:1501-1531, Feb 1994.% R. Hughey, A. Krogh, Hidden Markov models for sequence analysis:% Extension and analysis of the basic method, CABIOS 12:95-107, 1996.% -----------------------% Run start: Mon Apr 27 12:49:46 1998% Run name: test% On host: alpha% In dir: /auto/projects/compbio3/samtmp/sam/SAMBUILD/alpha/demos% By user: rph% --------------------------------------------------------------% Regularizer FIM method train training letter frequencies (1).% Regularizer Insert method train training letter frequencies (1).% Model initial FIM method train training letter frequencies (1).% Model initial Insert method train training letter frequencies (1).% Generic, Insert, and FIM character tables dynamically reset to% train reset inserts geometric mean of match probabilities (6).% All models generated from regularizer.%% Model lengths: 80 76 68% Itera- Average% tion distance% 1 108.535 106.841 105.750% 2 105.199 104.495 105.751% 3 104.916 103.681 105.910% 4 105.510 103.122 106.658% 5 105.418 102.466 104.947% 6 104.099 102.609 105.159% 7 103.643 101.179 103.770% 8 103.262 102.086 103.935% 9 102.124 99.454 103.989% 10 100.864 99.758 102.458% 11 101.231 99.296 102.804% 12 100.591 98.433 101.124% 13 100.067 95.583 99.759% 14 97.499 92.888 98.344% 15 82.019 70.605 79.457% 16 78.085 66.075 75.398% 17 72.760 65.473 73.220% 18 70.477 64.637 71.556% 19 69.273 64.283 70.661% 20 68.444 64.169 70.313% 21 68.079 64.120 70.182% 22 67.826 64.120 70.132
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% 23 67.625 64.120 70.132% 24 67.519 64.120 70.132% 25 67.443 64.120 70.132% Model 1 (counting from 0) wins!!% --------------------------------------------------------------% TRAIN 10 sequences (average length 74). Distance statistics...% Min:-32.21 ( 4) Max:-26.93 ( 3) Ave:-29.72 SampDev: 1.95% MinSDs: -1.28 MaxSDs: 1.44%% Total CPU time: user 0: 0: 7 system 0: 0: 0% Finished at: Mon Apr 27 12:49:54 1998% --------------------------------------------------------------%% Parameters from command line and insert files:%% trainseed 8541% seed 0train /projects/compbio3/samtmp/sam/demos/trna10.seqa RNAprint frequencies 1%% --------------------------------------------------------------% --------------------------------------------------------------MODEL -- Final model for run testHere, the initial information includes program version and run information. In this case, no initialmodels were speci�ed, so buildmodel created 3 models (the default value of Nmodels) from theregularizer of the speci�ed lengths. Next, all three models are trained, and the one with the bestscore is selected. In this case, the best model did not require any surgery, so the process was complete.If the best model did need surgery, that single model would be further re�ned. Next, statistics onthe scores of the training sequences (and test sequences, if present) and CPU time are presented,followed by non-default parameter settings. The seed entry is commented out to prevent any futuretraining iterations from reusing the old seed. Finally, the model, along with its generic, letter count,and frequency average nodes is printed. The model has not been included in the example.If the many files variable is set, then the results of buildmodel are broken up into three �les: the.stat �le contains the run statistics and parameter settings, the .mod �le contains the �nal model,and the .freq �le contains the frequency model if print frequencies is set.8.4 Weighted trainingBeginning with Version 1.3, SAM is able to perform a variety of weighted training options, includingsupport for multiple sub-family training. Sequence weighting is particularly important when, asnormal, the sequence data given to SAM is biased toward some type or subfamily of sequences (forexample, from those organisms that have been most studied). Prior to Version 2.0, the SAM softwaresystem did not include any internal sequence weighting schemes, but could use weights generatedby some other program. Version 2.0 includes two internal weighting methods described below, the�rst of which is turned on by default when external weighting is not used.
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8.4.1 External weightingFor all external sequence weighting options, a sequence weights �le is speci�ed with either thesequence weights variable (for buildmodel training sets) or the alignment weights variable (forbuildmodel or modelfromalign initial alignments). In this �le, any line starting with a percentsign (%) is ignored as a comment. The �rst non-comment line is presumed to be a descriptionof the weights �le, for example including the program that generated the sequence weights. Thenext non-comment line contains two integers, the number of weighted sequences and the number ofweighted subfamilies. Remaining uncommented lines consist of a sequence identi�er, white-space,and oating-point sequence weights, one per family. Weights can be positive, negative, or zero, andneed not sum to one. If a sequence does not have a corresponding weight, its weight is set to 1.0and a message is printed. If a weight does not have a corresponding sequence, a message is printed.Sequences and weights do not need to be in the same order within their respective �les.For plain sequence weighting, the number of families is set to 1, and each sequence is assigned asingle weight in the sequence weights �le. During the reestimation cycle, the frequency counts foreach sequence will be multiplied by its weight.Sequence weighting is particularly important in database discrimination: without sequence weight-ing, the model may specialize to an over-represented subset of the sequences, meaning that familymembers that do not happen to be in that sub-family will receive low scores.The �le gseg4.seq contains the initial 70-character segments of each of 4 globins. The last threeare quit similar.;BAHG$VITSPmldqqtiniikatvpvlkehgvtitttfyknlfakhpevrplfdmgrqesleqpkalamtvlaaaqnien;GLB$APLJUalsaadagllaqswapvfansdangasflvalftqfpesanffndfkgksladiqaspklrdvssrifar;GLB$APLKUslsaaeadlvgkswapvyankdadganfllslfekfpnnanyfadfkgksiadikaspklrdvssriftr;GLB$APLLIslsaaeadlagkswapvfanknangadflvalfekfpdsanffadfkgksvadikaspklrdvssriftr;When a model is trained on this �le without weighted training, the model is overspecialized to thelatter group of sequences, resulting in the following scores:GLB$APLKU 70 -138.28 53.50GLB$APLLI 70 -138.04 50.91GLB$APLJU 70 -131.19 56.49BAHG$VITSP 70 -97.16 101.29The following simple weight �le is an attempt to correct this bias:
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% gseg4.weightsWeight file for the simple globin segment example.% 4 sequences and 1 family4 1BAHG$VITSP 2.0GLB$APLJU 0.66GLB$APLKU 0.66GLB$APLLI 0.66Note that in this weight �le, to make the results of the two examples comparable, the weights weremade to sum to 4. The reason for this is that in addition to sequences, the regularizer (providedthe various con�dence parameters are non-zero) shapes the model. Setting all sequence weightsuniformly high (e.g., 100.0) will have a similar e�ect to setting all the regularizer con�dences to 0.With the simple weight �le, the following scores are produced.BAHG$VITSP 70 -130.50 67.12GLB$APLLI 70 -114.13 75.53GLB$APLKU 70 -113.77 78.55GLB$APLJU 70 -107.92 80.61Here, with the three similar sequences weighted less, the model better matches (perhaps too much)the dissimilar sequence.The above example is de�nitely a toy problem: weights must be set using statistically and biologically-valid means.8.4.1.1 Multi-subfamily weighting Warning: This feature is not completely available or com-pletely debugged.A particularly interesting use of weighting schemes is when a family of sequences can be dividedinto several subfamilies. This special type of training is used whenever the number of families in aweights �le is greater than one.In this case, SAM will train one model per family in parallel so that each model can specializeto its subfamily. Although this sounds just like training each subfamily separately, there is animportant di�erence. During the regularization procedure, the counts across all subfamily modelsare taken into account when reestimating each subfamily's model. This means that, in the case ofmultiple alignments, a full-family multiple alignment can be generated by aligning each sequence toits appropriate subfamily model and combining the results. At the moment, subfamily modeling isnot fully implemented and not recommended for use.There are a few changes in the functionality of buildmodel when subfamily modeling is used. First,only a single suite of subfamily models is trained at a time, so multiple runs must be performedto match the functionality of starting with more than one model and selecting the best. Second,prior libraries must be used. Third, a more conservative approach to model surgery is taken. Thesubfamily models are always modi�ed in parallel, and only if all the subfamily models agree on thesurgery procedure (if all subfamily models believe inserting new model positions is appropriate, theminimum of all proposed insertion lengths is used). To encourage more surgery, users may wish tolower the surgery thresholds when training with multiple models. See Section 8.2 on page 41.46



Also, model �les are treated somewhat di�erently. The many files option is always turned on.The subfamily models are writing to �les named, for example, runname.3.mod, where the numberindicates which subfamily (starting from zero) that model is for. It is possible to retrain a suite ofsubfamily models by setting family base file to the root name of the suite of models (i.e., runnamein the above example).The hmmscore program does not yet score against multiple models: to perform database searchagainst a suite of models, hmmscore must be run independently for each subfamily, and then theresults combined by, for example, classifying each sequence as a member of the subfamily with whichit scored best.8.4.2 Annealing with WeightsSequence weights can also be an e�ective means of annealing (Section 8.1) during the trainingprocess. When using this option, the sequence weights are slowly increased over the �rst severalreestimation cycles. Thus, at �rst, the sequences will have little e�ect on the model for the nexttraining iteration: the regularizer and prior library will dominate, though particularly strong signalsin the sequences, such as strongly conserved regions, will show throw. As the training continues, thesequence weight multiplier is brought up to its �nal value, giving full weight to the sequences.The annealing schedule options are similar to that available with noise generation. The relevant pa-rameters are weight length, which indicates how long the annealing should last, and weight final,indicating the �nal sequence weight multiplier (the default is 1.0). The sequence weight multiplierfound be the formulas below is multiplier by the sequence weight (which is 1.0 if no weight �le isused in training) to �nd each sequence's weight during the given reestimation iteration.Linearly: If weight length is greater than or equal to 1, the weight multiplier is increased linearlyto weight final in anneal length iterations by the formulamultiplier = weight final � number of iterations=weight lengthExponentially: If weight length is less than 1, the multiplier is increased exponentially until themultiplier reaches 90% of its �nal value as follows:multiplier = weight final � (1:0� weight lengthnumber of iterations):Sequence weights are never zero: the �rst reestimation cycle uses the �rst non-zero value of theweight formula.8.4.3 Internal weighting optionsVersion 2.0 of SAM o�ers two methods of standalone weighting (i.e. without the extra steps for the�le-based weighting). These methods are based entirely on the log-odds score of the sequence againstthe model being trained. Their invention was motivated by HMMer's maximum-discriminationtraining method. 47



Given a linear hidden MarkovmodelM , a dynamic programming calculation can be used to calculate,for a given sequence, the probablity that sequence a was generated by the model, P (ajM). Thequestion of interest is, however, does that model match the sequence? That is, is the sequence morelikely to be generated by the hidden Markov model than some other, less structured null model,�. Making the assumption that the models M and � are a priori equally likely, this reduces to thelog-odds probability of P (M ja) = p(ajM)p(ajM) + p(aj�) :Typically, a log-odds score S is used instead (Altschule 91):Sa = ln P (ajM)P (�ja)P (M ja) = 11 + e�SThis score measures whether the probability that the sequence was generated by the model is greaterthan the probability it was generated by a null model. This log-odds score is used to calculate theweight of a sequence. As model training iterations proceed, sequences that poorly match the model(i.e. with poor log-odds scores) are given higher weight.Internal weighting method 1 uses the following equation to calculate a sequence weight.W = e(w�S)�( lnK(w�b) )S is the log-odds score of the sequence. The program keeps track of the current worst score w andthe current best score b and these are used to decide on the two extreme weights. The worst scoringsequence will have a weight of 1, while the best scoring sequence will have a weight of K, typicallyin the 0.01 to 0.1 range. K is a user-controlled parameter entered on the command line as iweight.To use method 1 with K=.1, run buildmodel with the following arguments:buildmodel runname -train train.seq -internal weight 1 -iweight .1Internal weighting method 2 is a variation of method 1. When using method 1, sequences with verypoor scores may get excessively large weights. Method 2 modi�es the weights of such outlier se-quences. If a sequence scores so badly that it exceeds the median score by three standard deviations,it is weighted with a decreasing linear weight function, reaching a minimum of 1.0 for the sequencewith the worst score.Method 2: W = e(w�S� lnK(w�b) )is applied to scores no more than 3 deviations below the median, whileW = 1� S � wb� wis applied to the remaining sequences.To use method 1 with K=0.05, run buildmodel with the following arguments:48



buildmodel runname -train train.seq -internal weight 2 -iweight 0.05The current SAM default is to not use internal weighting. If internal weighting is selected and noiweight parameter entered, SAM defaults to an iweight of 0.1.Looking again at the toy problem example demonstrated in the previous section, we saw the followingscores when a model was trained on 4 globins without weighting.GLB$APLKU 70 -138.28 53.50GLB$APLLI 70 -138.04 50.91GLB$APLJU 70 -131.19 56.49BAHG$VITSP 70 -97.16 101.29The unweighted model is overspecialized.Internal weighting method 1 produces these scores:GLB$APLLI 70 -99.47 91.42GLB$APLJU 70 -98.70 91.61GLB$APLKU 70 -97.10 95.98BAHG$VITSP 70 -93.66 103.20Internal weighting method 2 produces these scores:GLB$APLLI 70 -95.28 95.93GLB$APLJU 70 -93.43 97.25GLB$APLKU 70 -91.59 101.63BAHG$VITSP 70 -84.48 112.20When using internal weighting, you can inspect all sequence weights generated during each iterationof the model building process.buildmodel runname -train train.seq -internal weight 2 -iweight 0.05 -print all weights1The print all weights option when set to 1 will produce a weight output �le once per iteration.The �les are named runname1.weightoutput, where 1 is the iteration number.By default, print all weights is set to o�.Continuing the example of Figure 4 on page 29, performing the two commands:buildmodel train4w -train globins50.seq-seed 0 -trainseed 0 -ntrain 4 -internalweight 2buildmodel train4wreg -train globins50.seq-priorlibrary recode1.20comp-regularizerfile weak-gap.regularizer-seed 0 -trainseed 0 -ntrain 4 -internalweight 2hmmscore train4w -i train4w.mod -db globins50.seq -sw 2hmmscore train4wreg -i train4wreg.mod -db globins50.seq -sw 2results in the score histograms of Figure 5, in which the scores improve even further from the use ofregularizers and Dirichlet mixtures. 49



0

5

10

15

20

25

30

35

40

-250 -200 -150 -100 -50 0 50 100

C
ou

nt
s

Log-odds Score

train4reg.dist train4reg

0

5

10

15

20

25

30

35

40

-250 -200 -150 -100 -50 0 50 100

C
ou

nt
s

Log-odds Score

train4wreg.dist train4wreg

Ntrain = 4, Dirichlet and weak-gap regularizer Ntrain = 4, Dirichlet, weak-gap, internal weighting
0

5

10

15

20

25

30

35

40

-250 -200 -150 -100 -50 0 50 100

C
ou

nt
s

Log-odds Score

train10reg.dist train10reg

0

5

10

15

20

25

30

35

40

-250 -200 -150 -100 -50 0 50 100

C
ou

nt
s

Log-odds Score

train10wreg.dist train10wreg

Ntrain = 10, Dirichlet and weak-gap regularizer Ntrain = 10, Dirichlet, weak-gap, internal weightingFigure 5: Weighting performance8.5 Viterbi trainingFor increased speed and performance (and possible worse results), Viterbi training is now possible(though in some instances not robust). The viterbi parameter should be set to 1 for Viterbitraining. Future research will help determine the usefulness of this option. Fragment training(Section 9.1.1) can also be used, but is not recommended because the jump transitions are notcurrently trained; instead jumps into the model are replaced with sequences of delete states. Thus,training with fragments will over-emphasize the delete states in the model.9 Related programs9.1 align2model and prettyalignAfter you have obtained a model of your sequence family, align2model can be used to give a multiplealignment of sequences. Often one is just interested in aligning the sequences that were also used totrain the model, but in principle any sequence can be included in the alignment.The multiple alignment is obtained by aligning each of the sequences to the model by the Viterbi50



algorithm. This has the advantage that it can be done for each sequence independently, and thereforeit is very simple to add new sequences to the multiple alignment. Also, once the model is found, themultiple alignment is very fast and easy to produce.The program to produce the basic alignment is called align2model. Calling it with no argumentsgives a brief explanation. To align all the sequences in trna10.seq use the command:align2model trna10 -i test.mod -db trna10.seqThis will put an intermediate form of the alignment in the �le trna10.a2m. In this FASTA-compatible intermediate format deletions are shown as dashes (`-') and insertions (produced inthe insert states of the model) are shown as lower case characters, while periods (`.') are used to �llin the sequences that did not have any insertions if a2mdots is set to 1, the default.In case you only want to align a few sequences in a large �le, you can specify the identi�ers of thesesequences on the command line. For instancealign2model trna2 -i test.mod -db trna10.seq -id TRNA1 -id TRNA9will only align the two speci�ed sequences. The output (in trna2.a2m) would look like this:>TRNA1, 77 bases, ADEFE3D4 checksum.GGGGAUGUAGCUCAG-.UGGUAGAGCGCAUGCUUCGCAUGUAUGAGGCCCCGGGUUCGAUCCCCGGCAUCU---CCA>TRNA9, 77 bases, 71415595 checksum.CGGCACGUAGCGCAGCcUGGUAGCGCACCGUCCUGGGGUUGCGGGGGUCGGAGGUUCAAAUCCUCUCGUGCCGACCATo get a nice display of the alignment produced by align2model, you can use the program prettyalign,which has several display options. The program reads from a �le like the one made in the exampleabove:prettyalign trna10.a2m > trna10.prettywhich would give you an alignment similar to the one shown in the Section 3Prettyalign does not follow SAM's normal commandline format. To see an explanation of thevarious options, run the program with some invalid option (like prettyalign -h). Some of themost useful options are:-f Print in a FASTA-like format.-i Do not include sequence identi�ers in front of each line.-l num Set the output line length equal to num.-n Toggle indexing the sequences, as well as labeling them.-c Toggle column numbering.-m Set maximum insertion length (longer insertions are printed as their length).-I I-G style alignment. Also sets maximum insertion length very high.51



The commandsalign2model trna3 -i test.mod -db trna10.seq -id TRNA1 -id TRNA2 -id TRNA9prettyalign trna3.a2m -l 50 > trna3.prettygives the following output10 20 30 40| | | |TRNA1 GGGGAUGUAGCUCAG-.UGG...UAGAGCGCAUGCUUCGCAUGUTRNA2 GCGGCCGUCGUCUAGU.CUGgauUAGGACGCUGGCCUCCCAAGCTRNA9 CGGCACGUAGCGCAGCcUGG...UAGCGCACCGUCCUGGGGUUG50 60 70| | |TRNA1 AUGAGGCCCCGGGUUCGAUCCCCGGCAUCU---CCATRNA2 CAGCAAUCCCGGGUUCGAAUCCCGGCGGCCG---CATRNA9 CGGGGGUCGGAGGUUCAAAUCCUCUCGUGCCGACCAThe prettyalign program can compress long insertions to only the initial segment of bases inthe insertion plus digits representing the total length of the insertion. For example, the sequenceGacguacguG could be printed out as Ga8guG if 4 was the largest number of insertions that was to beallowed (note that the character 8 is using up one of the positions). By default, insertions of up tolength ten thousand are fully printed. This can be changed with the -m ag to prettyalign, whichsets the maximum number of insertions that are printed. If set to zero, no insertions are printed,and no indication of the lack is given. If less than zero, insertion characters are not printed, andthat number of digits is used to indicate the length of each insertion.For example, the alignment at the end of Section 9.3.1 could alternatively be created using thecommandprettyalign ftrain.mod -m 8 > ftrain2.prettyto produce the alignment:
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10 20 30 40 50| | | | |TRNA1 ........GGGGAUGUAGCUCAGU-GG..UAGAGCGCAUGCUUCGCAUGUAUGAGGCCCCGGGTRNA2X gcg18ugc-GGCCGUCGUCUAGUCUGGauUAGGACGCUGGCCUCCCAAGCCAGCAAUCCCGGGTRNA3X ccc.....GGCCCUGUGGCUAGCUGGU..CAAAGCGCCUGUCUAGUAAACAGGAGAUCCUGGGTRNA4X ggg16cagGGCGAAUAGUGUCAGCGGG..-AGCACACCAGACUUGCAAUCUGGUAGGGA-GGGTRNA5X ........GCCGGGAUAGCUCAGUUGG..UAGAGCAGAGGACUGAAAAUCCUCGUGUCACCAGTRNA6 ........GGGGCCUUAGCUCAGCUGG..GAGAGCGCCUGCUUUGCACGCAGGAGGUCAGCGGTRNA7 ........GGGCACAUGGCGCAGUUGG..UAGCGCGCUUCCCUUGCAAGGAAGAGGUCAUCGGTRNA8 g.......GGCCCGUGGCCUAGUCUGGa.UACGGCACCGGCCUUCUAAGCCGGGGAUCGGGGGTRNA9 c.......GGCACGUAGCGCAGCCUGG..UAGCGCACCGUCCUGGGGUUGCGGGGGUCGGAGGTRNA10 uc......-CGUCGUAGUCUAGGUGGU..UAGGAUACUCGGCUUUCACCCGAGAGA-CCCGGG60 70| |TRNA1 UUCGAUCCCCGGCAUCUCC-a........TRNA2X UUCGAAUCCCGGCGGCCGC-acg12gca.TRNA3X UUCGAAUCCCAGCGGGGCC-uccagggg.TRNA4X UUCGAGUCCCUCUUUGUCC-acca.....TRNA5X UUCAAAUCUGGUUCCUGGC-aug13gca.TRNA6 U-CGA-CCCGCUAGGCUCC-acca.....TRNA7 UUCGAUUCCGGUUGCGUCC-a........TRNA8 UUCAAAUCCCUCCGGGUCC-g........TRNA9 UUCAAAUCCUCUCGUGCCG-acca.....TRNA10 UUCAAGUCCCGGCGACGGA-acca.....The -I will create a compatible IG-style alignment �le which may be converted to other formatsusing the readseq package included as a subdirectory of SAM. The -I option automatically sets ahigh value for the insertion length parameter.9.1.1 Aligning fragmentsConsider a model of 100 nodes and a fragment of 25 that very closely matches some contiguoussection of the model. Even though that section would align very well, the overall alignment of thefragment could be quite poor because of its need to use 75 delete states in the model. The problemhere is that in addition to modelling conserved regions, the model also models the length of theconserved region.SAM has two alignment options for dealing with fragments. The �rst option allows a sequence tostart matching the model at any location (rather than only the begin node) and end at any location(rather than only the end node). This will improve alignment for short sequences that match asegment of the model. This option can be turned on by setting the SW variable to one.The second option is similar to Smith and Waterman method of sequence comparison, which will�nd the best alignment for any pair of subsequences within two sequences. The same can be donewith models, allowing a submodel to match a subsequence. This type of dynamic programming canbe speci�ed by setting the SW variable to 2. When this is done, sequences can jump from the initialmodule (presumably a FIM, automatically added when auto fim is set) into the delete state of anymodule in the model, and can also jump out of the delete state of any module within the model tothe delete state of the next-to-last node. The �rst and next-to-last module are assumed to be FIMs,hence the rational is that a sequence will use the FIM for some period of time to consume charactersthat do not match the model, then the sequence will jump to the model node corresponding to the53



start of the fragment, use several model nodes, and then jump to the ending FIM to consume therest of the sequence.The probability of these jumps is set by the variables jump in prob and jump out prob, both ofwhich have a default value of unity. That is, as in the sequence-to-sequence Smith and Waterman,there is no cost associated with jumping in and out of the model.The �le trna1frag.seq contains several sequences that contain part or all of TRNA1. The sequenceinclude TRNA1 (72 bases), TRNA1Long (the complete TRNA with additional characters), Long(58 base segment of TRNA1), Medium (34 base segment), Short (6 base segment TRNA1), andAAMediumA, an embedding of Medium within several segments of As to bring it to 176 characters.Additionally, the �le contains several (obviously) non-TRNAs of various lengths, all of whose IDsbegin with the word `Not'.When this �le is aligned to the model test.mod, created above, the alignment of the sequence andfragments is reasonable, but the non-tRNAs still align the entire model and may even use internalinsertion states. (As shall be seen in Section 9.2.4, the scoring of these fragments with the SWoption o� is not nearly so good as their alignments).10 20 30 40| | | |TRNA1 ........GGGGAUGUAGCUCAG-UGG........UAGAGCGCAUGCUUCGCAUGUAUGATRNA1Long aaa11aaaGGGGAUGUAGCUCAG-UGG........UAGAGCGCAUGCUUCGCAUGUAUGAShort ........-------------------........-------------------------ShortReverse ........UCGUAC-------------........-------------------------Medium ........-------------------........--GAGCGCAUGCUUCGCAUGUAUGAMediumReverse ........UUGGGC---------CCCG........GAGUAUGUACGCUUCGUACGCGAG-AAMediumAA ........AAAAAAAAAAAAAAAAAAAaaa50aaaAAGAGCGCAUGCUUCGCAUGUAUGALong ........---------GCUCAG-UGG........UAGAGCGCAUGCUUCGCAUGUAUGANotShort ........-------------------........---------------AAAAAAAAAANot ........AAAAAAAAAAAAAAA---A........AAAAAAAAAAAAAAAAAAAAAAAAANotLong ........AAAAAAAAAAAAAAAAAAA........AAAAAAAAAAAAAAAAAAAAAAAAANotExtraLong ........AAAAAAAAAAAAAAAAAAA........AAAAAAAAAAAAAAAAAAAAAAAAANotExExtraLong ........AAAAAAAAAAAAAAAAAAA........AAAAAAAAAAAAAAAAAAAAAAAAANotExExExLong ........AAAAAAAAAAAAAAAAAAA........AAAAAAAAAAAAAAAAAAAAAAAAANotExExExExL ........AAAAAAAAAAAAAAAAAAA........AAAAAAAAAAAAAAAAAAAAAAAAA50 60 70| | |TRNA1 GGCCCCGGGUUCGAUCCCCGGCAUCU---CCA.........TRNA1Long GGCCCCGGGUUCGAUCCCCGGCAUCUCCAAAAaaaaaaaa.Short --------------------------CAUGCU.........ShortReverse --------------------------------.........Medium GGCCCCGGGUU---------------------.........MediumReverse --------------------------------.........AAMediumAA GGCCCCGGGUUAAAAAAAAAAAAAAAAAAAAAaaa50aaa.Long GGCCCCGGGUUCGAUCCCCGGCAU--------.........NotShort AA-----------------------------A.........Not AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.........NotLong AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaaa33aaa.NotExtraLong AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaa362aaa.NotExExtraLong AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaa800aaa.NotExExExLong AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaa1676aa.NotExExExExL AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaa3428aa.54



Alignment with the SW option set to 1 is much the same (again, scoring will be improved), thoughthe alignment procedure has managed to better isolate the AAMediumAA sequence's TRNA core,modeled by match states, from its pre�x and post�x, modeling by internal insertion nodes.10 20 30 40| | | |TRNA1 ........GGGGAUGUAGCUCAG-UGG........UAGAGCGCAUGCUUCGCAUGUAUGATRNA1Long aaa11aaaGGGGAUGUAGCUCAG-UGG........UAGAGCGCAUGCUUCGCAUGUAUGAShort ........CAUGCU-------------........-------------------------ShortReverse ........UCGUAC-------------........-------------------------Medium g.......-------------------........---AGCGCAUGCUUCGCAUGUAUGAMediumReverse u.......----------------UGGgccccg..GAGUAUGUACGCUUCGUACGCGAG-AAMediumAA ........AAAAAAAAAAAAAAAAAAAaaa50aaaAAGAGCGCAUGCUUCGCAUGUAUGALong g.......-----------CUCAGUGG........UAGAGCGCAUGCUUCGCAUGUAUGANotShort a.......-------------------........---------------AAAAAAAAAANot ........AAAAAAAAAAAAAAA---A........AAAAAAAAAAAAAAAAAAAAAAAAANotLong ........AAAAAAAAAAAAAAAAAAA........AAAAAAAAAAAAAAAAAAAAAAAAANotExtraLong ........AAAAAAAAAAAAAAAAAAA........AAAAAAAAAAAAAAAAAAAAAAAAANotExExtraLong ........AAAAAAAAAAAAAAAAAAA........AAAAAAAAAAAAAAAAAAAAAAAAANotExExExLong ........AAAAAAAAAAAAAAAAAAA........AAAAAAAAAAAAAAAAAAAAAAAAANotExExExExL ........AAAAAAAAAAAAAAAAAAA........AAAAAAAAAAAAAAAAAAAAAAAAA50 60 70| | |TRNA1 GGCCCCGGGUUCGAUCCCCGGCAUCUCCA---.........TRNA1Long GGCCCCGGGUUCGAUCCCCGGCAUCUCCAAAAaaaaaaaa.Short --------------------------------.........ShortReverse --------------------------------.........Medium GGCCCCGGGUU---------------------.........MediumReverse --------------------------------.........AAMediumAA GGCCCCGGGUUAAAAAAAAAAAAAAAAAAAAAaaa50aaa.Long GGCCCCGGGUUCGAUCCCCGGCAU--------.........NotShort AA------------------------------.........Not AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.........NotLong AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaaa33aaa.NotExtraLong AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaa362aaa.NotExExtraLong AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaa800aaa.NotExExExLong AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaa1676aa.NotExExExExL AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaa3428aa.When alignment is performed using the SW score option set to 2, only the core TRNA segments arealigned: the non-TRNA's, as well as the pr�x and post�x of AAMediumAA are aligned to the FIMsthat have been automatically added to the model. The one problem is that the Short sequence hasmade some use of the end FIM because it is not long enough to make a really signi�cant hit to themodel's internal nodes.
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10 20 30 40 50| | | | |TRNA1 ........GGGGAUGUAGCUCAG-UGGUAGAGCGCAUGCUUCGCAUGUAUGAGGCCCCGGTRNA1Long aaa11aaaGGGGAUGUAGCUCAG-UGGUAGAGCGCAUGCUUCGCAUGUAUGAGGCCCCGGShort c.......----------------------------------------------------ShortReverse ucgu....----------------------------------------------------Medium g.......----------------------AGCGCAUGCUUCGCAUGUAUGAGGCCCCGGMediumReverse uug11cgg----------------------------------------------------AAMediumAA aaa70aaa--------------------AGAGCGCAUGCUUCGCAUGUAUGAGGCCCCGGLong gcucag..----------------UGGUAGAGCGCAUGCUUCGCAUGUAUGAGGCCCCGGNotShort a.......----------------------------------------------------Not a.......----------------------------------------------------NotLong a.......----------------------------------------------------NotExtraLong a.......----------------------------------------------------NotExExtraLong a.......----------------------------------------------------NotExExExLong a.......----------------------------------------------------NotExExExExL a.......----------------------------------------------------60 70| |TRNA1 GUUCGAUCCCCGGCAUCUCCA----.........TRNA1Long GUUCGAUCCCCGGCAUCUCCAAAA-aaaaaaaa.Short -----------------------A-ugcu.....ShortReverse -----------------------A-c........Medium GUU----------------------.........MediumReverse -----------------------A-gua22gag.AAMediumAA GUUAAAA------------------aaa67aaa.Long GUUCGAUCCCCGGCAU---------.........NotShort -----------------------A-aaa11aaa.Not -----------------------A-aaa71aaa.NotLong -----------------------A-aa107aaa.NotExtraLong -----------------------A-aa436aaa.NotExExtraLong -----------------------A-aa874aaa.NotExExExLong -----------------------A-aa1750aa.NotExExExExL -----------------------A-aa3502aa.9.2 hmmscoreAny sequence can be compared to a model by calculating the probability that the sequence wasgenerated by that model. Taking the negative (natural) logarithm of this probability gives the NLLscore. For sequences of equal length the NLL scores measures how `far' they are from the model,and it can be used to select sequences that are from the same family. However, the NLL score hasa strong dependence on sequence length and model length. A less biased score is the NLL dividedby the length of the sequence, although that is still not perfect. Hmmscore provides two less biasedmeans of scoring sequences. The default way is by reporting NLL scores as the di�erence betweena null model and trained model NLL score (a log-odds score, as used in HMMER). The second wayis by its Z-score, that is, the number of standard deviations the NLL is away from the average NLLof sequences of the same length.Null model scoring is discussed in more detail in the Barrett, Karplus, and Hughey paper mentionedin the introduction and available from the SAM WWW page.(http://www.cse.ucsc.edu/research/compbio/papers/nullmod/nullmod.html).56



The program hmmscore can �nd NLL, NLL�NULL (log-odds), and Z-scores. The most commonoperation is to calculate NLL�NULL scores for a large number of sequences. This can be doneby supplying the name of the model �le and one or more sequence database �les on the commandline, optionally followed by hmmscore parameter speci�cations. For instance, for the example �lesdescribed earlier the NLL scores are found the following wayhmmscore test -insert test.mod -db trna10.seq -sw 2Produces the �le test.dist already displayed:
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% SAM: ../src/hmmscore v2.1.1 (Apr 24, 1998) compiled 04/27/98 12:32:02.% SAM: Sequence Alignment and Modeling Software System% (c) 1992-1998 Regents of the University of California, Santa Cruz% http://www.cse.ucsc.edu/research/compbio/sam.html%% ------ Citations (HMMs, SAM) ------% A. Krogh et al., Hidden Markov models in computational biology:% Applications to protein modeling, JMB 235:1501-1531, Feb 1994.% R. Hughey, A. Krogh, Hidden Markov models for sequence analysis:% Extension and analysis of the basic method, CABIOS 12:95-107, 1996.% -----------------------% Run start: Mon Apr 27 12:50:01 1998% Run name: test% On host: alpha% In dir: /auto/projects/compbio3/samtmp/sam/SAMBUILD/alpha/demos% By user: rph% --------------------------------------------------------------% Inserted Files: test.mod% Database Files: /projects/compbio3/samtmp/sam/demos/trna10.seq%% FIMs automatically added (auto fim = 1).% Subsequence-submodel (local) (SW = 2).% S&W simple NULL scores adjusted by ln(seqlen) (adjust score=2).% 10 sequences with 747 residues.% This run used EM scoring.% The model has 77 positions.%% Using total residues as number of starting possibilities,% 0.01 significance at <= ln(0.01)-ln(747)= -4.6 - 6.6 = -11.2% Adjusting for model length gives 10 starting points,% 0.01 significance at <= ln(0.01)-ln(10) = -4.6 - 2.3 = -6.9% If entire sequences are modeled (i.e., no FIMs),% 0.01 significance at <= ln(0.01)-ln(10) = -4.6 - 2.3 = -6.9% Values for 10.0 significance are -4.3, -0.0, and -0.0.% Significance level is higher for multiple scoring runs.% Sequence scores selected : All (select score=8)%% Column 1: NLL-NULL using simple FIM (node 0) insert probabilities% Column 2: the raw NLL score% Scores sorted by column 1, best first%% Sequence ID Length Simple Raw X countTRNA7 73 -36.52 58.72TRNA3 76 -35.59 64.57TRNA8 75 -34.61 59.74TRNA2 76 -33.78 63.24TRNA9 77 -33.54 63.72TRNA1 72 -33.33 60.42TRNA5 73 -32.77 67.51TRNA6 74 -32.76 61.07TRNA4 75 -32.51 67.67TRNA10 76 -31.78 69.03As discussed in Section refsec:score, the score �le contains �ve columns. The �rst is the sequenceidenti�er, followed by sequence length, the `NLL-NULL' score using a simple null model. The next58



score column is either the raw NLL score if only the simple null model is calculated (the default), orthe complex null model's `NLL-NULL' score if one of the more time-consuming null models is used,as discussed below. If Z-scoring is used, Z-scores are listed after the two score columns. Last, thenumber of all-character wildcards in each sequence is listed for those that have any wildcards.By default, hmmscore uses the EM scoring method, just as is used to train a model. If desired,scores can be based on exact alignment to the model, multiplying the probabilities along the bestpath rather than all paths. This method, which corresponds to the forward half of align2model,can be turned on by setting viterbi to 1. Viterbi scoring is appropriate for �nding out how gooda sequence's best alignment to a model is.The hmmscore program can also be used to select sequences according to various criteria.Plots of the NLL{NULL scores or Zscores can be used to visually look for a break between signi�cantand insigni�cant matches. See Section 9.6 on page 78.If any all-character wildcards are present in a sequence (e.g., `X' in proteins or `N' in nucleic acids),the number of wildcards is reported after the score.9.2.1 NLL{NULL scoringSAM includes several possibilities for NULL model scoring. First, the null model can be a simpleprobability distribution, e�ectively a model with a single FIM. Second, the NULL model can be aregularizer of similar structure to the model being scored. Third, the null model can be any modelspeci�ed in SAM format, with the key word `NULLMODEL' (rather than, for example, `MODEL'or `REGULARIZER'), or the �rst model in a �le speci�ed with the nullmodel file parameter.To report di�erences between the model NLL score and the simple null model score (possibly modi�edby FIM method score, see below), set the subtract null variable to 1 (the default). To reportdi�erences between the model and a similarly structured null model (a complex null model, whichuses the transition and insert probabilities of the model and the geometric average of the model'smatch states for its own match states), set subtract null to 2. To report di�erences between twomodels (for example, one trained on positive family examples and one trained on negative examplesof a family), set subtract null to 3. To report di�erences between the score of the sequence andthe score of the reversed sequence, which provides an automatic adjustment for compositional bias,set subtract null to 4.The simple null model score (subtract null=1) is actually calculated in all cases. If the other nullmodel calculations were to be calculated all the time, it would double the running time of hmmscore.The simple threshold variable can be used to control when the more time consuming score shouldbe calculated: the complex null model score will only be calculated when the simple null modelscore is less than simple threshold. Sequences for which the more time consuming null model wasnot calculated will have the score 10000 in the second score column of the distance �le. The defaultvalue of simple threshold is 0.Our current favorites are the simple null model (geometric average) mixed with the reverse sequencenull model for well-scoring sequences. The command:hmmscore testrev -i test.mod -db trna10.seq -subtract null 2 -sw 259



produces a score �le that includes both simple and reverse-sequence null model scores:% SAM: ../src/hmmscore v2.1.1 (Apr 24, 1998) compiled 04/27/98 12:32:02.% SAM: Sequence Alignment and Modeling Software System% (c) 1992-1998 Regents of the University of California, Santa Cruz% http://www.cse.ucsc.edu/research/compbio/sam.html%% ------ Citations (HMMs, SAM) ------% A. Krogh et al., Hidden Markov models in computational biology:% Applications to protein modeling, JMB 235:1501-1531, Feb 1994.% R. Hughey, A. Krogh, Hidden Markov models for sequence analysis:% Extension and analysis of the basic method, CABIOS 12:95-107, 1996.% -----------------------% Run start: Mon Apr 27 12:50:07 1998% Run name: testrev% On host: alpha% In dir: /auto/projects/compbio3/samtmp/sam/SAMBUILD/alpha/demos% By user: rph% --------------------------------------------------------------% Inserted Files: test.mod% Database Files: /projects/compbio3/samtmp/sam/demos/trna10.seq%% FIMs automatically added (auto fim = 1).% Subsequence-submodel (local) (SW = 2).% S&W simple NULL scores adjusted by ln(seqlen) (adjust score=2).% 10 sequences with 747 residues.% This run used EM scoring.% The model has 77 positions.%% Using total residues as number of starting possibilities,% 0.01 significance at <= ln(0.01)-ln(747)= -4.6 - 6.6 = -11.2% Adjusting for model length gives 10 starting points,% 0.01 significance at <= ln(0.01)-ln(10) = -4.6 - 2.3 = -6.9% If entire sequences are modeled (i.e., no FIMs),% 0.01 significance at <= ln(0.01)-ln(10) = -4.6 - 2.3 = -6.9% Values for 10.0 significance are -4.3, -0.0, and -0.0.% Significance level is higher for multiple scoring runs.% Sequence scores selected : All (select score=8)%% Column 1: NLL-NULL using simple FIM (node 0) insert probabilities% Column 2: NLL-NULL for the reverse sequence NULL model% Scores sorted by column 1, best first%% Sequence ID Length Simple Reverse X countTRNA7 73 -36.52 -32.65TRNA3 76 -35.59 -31.70TRNA8 75 -34.61 -30.41TRNA2 76 -33.78 -29.88TRNA9 77 -33.54 -29.65TRNA1 72 -33.33 -29.50TRNA5 73 -32.77 -28.61TRNA6 74 -32.76 -28.22TRNA4 75 -32.51 -28.62TRNA10 76 -31.78 -27.9160



The NLL{NULL scores, especially for the simple null model, are most useful when the model has hadfree insertion modules (Section 7.5) added to it. Then, the null model and the FIMs will cancel out,and the score will be based primarily on the section of the sequence that matches the region that hasbeen modeled. By default, hmmscore automatically adds FIMs to any model that does not alreadycontain them when the simple or complex null model is used. To change this, if for example youwant to ensure that entire sequences are modeled, rather than simply subregions, change auto fimfrom its default value of 1 to 0. The auto fim variable has no e�ect when a user-speci�ed null modelis used.Since NLL{NULL scores are negative logs, the lower the better. In the case above, all of the tRNA'shave been positively identi�ed as tRNAs. (Not surprising as they were all in the training set!)The question of what scores are signi�cant can be addressed mathematically. For aligning a sequenceto a model with a 0.01 signi�cance, one must score better than ln(0:01) = �4:6. At this setting,the expected number of false positives (sequences incorrectly labeled as belonging to the family) is0.01. For searching an entire database, however, the e�ect of the vast number of places the modelwill be �tted against be taken into account: For �tting a model against D locations �4:6� ln(D)must be scored to be signi�cant. The number of locations can be decided in several ways. First,if the model is viewed as matching entire sequences (for example, if free insertion modules havenot been added to the model), then the number of locations is equal to the number of sequencesin the database. If the model does have FIMs, it can match arbitrary regions of any sequence. Ifthe model is regarded as �tting a relatively contiguous section of a sequence, then the number ofcharacters in the database roughly corresponds to the number of starting positions, so the log ofthe database size should be used. For the most conservative signi�cance estimate, if the model isregarded as matching any subsequence of the model, the number of positions is squared, or the logmultiplied by two, to arrive at the signi�cance cuto�. Interested readers may wish to refer to thework of Milosavljevi�c and Jurka (CABIOS 9(4):407{411) for more information.The BLAST program's E parameter is the same as hmmscore's signi�cance level. BLAST has a de-fault signi�cance of 10, indicating an expected 10 false positives during a discrimination experiment.The hmmscore program will report all of these signi�cance tests for running against the sequencesit is given. However, if a model is used in multiple hmmscore runs against di�erent (non-redundant)databases, the signi�cance level must be calculated based on the entire experiment, not an individualhmmscore run.New to Version 1.2 is the ability to adjust the null model scoring. Since this determines the proba-bility that a sequence was randomly generated according to the residue insertion probabilities, thesevalues should reect knowledge of the problem domain. Five possibilities are o�ered. The at dis-tribution or the background distribution of amino acids over all proteins can be used. Both of thesedistributions are invariant over all families, and are thus a simplistic assumption. The distributioncan also be the distribution of the residues in the training set or the average residue distribution overall columns (match states) modeled by the HMM. The advantage of these two, especially the latter,is the ability to correct for compositional bias in the sequences. Lastly, the insertion probabilities canreect the residue distribution of the sequence currently being scored. This is the most pessimisticnull model, as it demands not that the HMM model the sequence better than �xed backgroundfrequencies, but that is model the sequence signi�cantly better than frequencies exactly matchingthe sequence's composition.So the options available for FIM method score are61



0 Use the tables present in the model.1 The relative frequencies of residues in the training sequences (from the Lettercounts node orthe training sequences).2 The relative frequencies of residues in model match states (from the Frequency node).3 Uniform (at) probability over all residues.5 Amino acid background frequencies over all proteins (from the Generic node).6 Geometric average of the match state probabilities in the model.The default setting, for experimental and statistical reasons, is the geometric average of the modelmatch states (6). The insertion tables can be similarly modi�ed with Insert method score, thedefault of which is no change (0).As with the training methods, if the method value is negative instead, the FIMs and insert tableswill only be modi�ed if there is no initial model read in (an unlikely occurrence for hmmscore).A more detailed discussion of these issues can be found in (Barrett, Hughey & Karplus 1996),mentioned in the Introduction.9.2.2 Z-score scoringThe SAM system's second scoring method is the use of Z-scores for database sequences of similarlength. This ability has two parts:Finding a smooth curve: If there are su�ciently many sequences in the �le, a smooth interpo-lation through the data is found (a curve in a score vs. NLL plot). This is used to calculateZ-scores, or for each sequence, the number of standard deviations the NLL score is away fromthe smooth curve. The speci�cation of that smooth curve can be found in a �le with the samename as the model �le, except that the extension is changed to \.smooth" (test.smooth inthe above example). See below for more details. A smooth curve can also be calculated (orrecalculated) from existing NLL scores.Calculating Z-scores: If a smooth curve is calculated, the Z-score for each sequence is also found.If a �le with the extension \.smooth" already exists, the Z-score is also calculated based onthis. The use of Z-scores assumes that scores form a normal distribution at each length, acondition which often does not hold.9.2.2.1 Calculating the smooth curve When searching a database, one would like to know ifthe NLL score of a sequence is signi�cantly lower than it is for other sequences of the same length.This is what the Z-score tells you. To calculate Z-scores one has to �nd the average and standarddeviation of the scores for the bulk of the sequences (excluding `outliers', which are usually theinteresting sequences). The program hmmscore does it the following iterative way:62



1. For all possible length intervals containing a certain number of sequences (usually 1000) theaverage NLL score and average sequence length is calculated. These numbers de�ne the smoothcurve. The standard deviation around this curve is found also.2. All sequences with an NLL score more than a certain number of standard deviations from thesmooth curve are considered outliers and excluded in the next iteration.3. If there are no new sequences excluded, the process is stopped. Otherwise it is repeated (unlessit has ran for some maximum number of iterations).This procedure often produces good results, but there is no guarantee that it works. To be sureto obtain a nice smooth curve, one can take out all sequences that are known to be outliers (likethe training set) and then run the program on all the rest. It is also a good idea to throw out allsequences that contain wildcard characters before the smooth curve is calculated. This can be doneby editing the �le containing all the NLL scores calculated by hmmscore in the �rst place, removingthe lines which include a wildcard count, such as the second line of:RND ECOLI 375 605.416 0.00000 37.551CA21 CHICK 1362 3975.208 0.00000 33.049 601 X9.2.3 Selecting sequences, scores, and alignmentsSequences can be selected by hmmscore and placed in a .sel �le.A selection mode is chosen by setting select seq. If 0, no sequences are selected; if 1, sequencesare selected according to their simple null model scores and NLLNull; if 2, sequences are selectedaccording to their column 2 score (complex, user, or reverse sequence null, or raw NLL score ifsubtract null is 0 or 1) and NLLcomplex; if 4, sequences are selected according to their Z-scoresand Zmax; if 8, all sequences are selected. Selection criteria can be combined: 3 requires sequencesto score better than NLLnull with the simple null model and NLLcomplex with the complex nullmodel. Negative numbers indicate that sequences that do not pass the corresponding positive testshould be selected.The following will place labeled copies of all sequences scoring lower than -35 into test.sel.hmmscore tests -i test.mod -db trna10.seq -select seq 1 -NLLNull -35 -sw 2Selected sequences are written out in the same order they are encountered in the database �les,which may be di�erent from the order they are listed in the score �le if scores are sorted. Thesortseq program can be used to write out the sequences in the same order they are listed in thescore �le. See Section 9.7.4 on page 83. The sort variable controls whether sequence scores areunsorted (0); sorted by Z-score (4), column 2 of the distance �le (2), or column 1 of the distance �le(1). Sequences in the select �le will be selected by other than the sorting criteria unless sort andselect seq are set to corresponding values.The select score variable can be set in the same manner as select seq, in which case only scoresof those sequences that match the speci�ed criteria will be recorded in the distance �le. This isparticularly useful for database searches in which only sequence IDs are of interest.The select align variable can be used in a similar way to cause selected sequence alignments to be63



placed in the runname.a2m �le. Note that all selection variables use the same NLLnull, NLLcomplex,and Zmax thresholds, though di�erent combinations of the thresholds can be used by the di�erentparameters.9.2.4 Scoring FragmentsConsider a model of 100 nodes and a fragment of 25 that very closely matches some contiguoussection of the model. Even though that section would score very well, the overall score of thefragment could be quite poor because of its need to use 75 delete states in the model. The problemhere is that in addition to modelling conserved regions, the model also models the length of theconserved region.SAM has two scoring options for dealing with fragments. The �rst option allows a sequence tostart matching the model at any location (rather than only the begin node) and end at any location(rather than only the end node). This will improve scoring for short sequences that match a segmentof the model. This option can be turned on by setting hmmscore's SW variable to one.The second option is similar to Smith and Waterman method of sequence comparison, which will�nd the best score for any pair of subsequences within two sequences. The same can be done withmodels, allowing a submodel to match a subsequence. In hmmscore, this type of scoring can bespeci�ed by setting the SW variable to 2. When this is done, sequences can jump from the initialmodule (presumably a FIM) into the delete state of any module in the model, and can also jumpout of the delete state of any module within the model to the delete state of the next-to-last node.The �rst and next-to-last module are assumed to be FIMs, hence the rational is that a sequence willuse the FIM for some period of time to consume characters that do not match the model, then thesequence will jump to the model node corresponding to the start of the fragment, use several modelnodes, and then jump to the ending FIM to consume the rest of the sequence.The probability of these jumps is set by the variables jump in prob and jump out prob, both ofwhich have a default value of unity. That is, as in the sequence-to-sequence Smith and Waterman,there is no cost associated with jumping in and out of the model.The �le trna1frag.seq contains several sequences that contain part or all of TRNA1. The se-quence include TRNA1 (72 bases, TRNA1Long (the complete TRNA with additional characters),Long (58 base segment) TRNA), Medium (34 base segment), Short (6 base segment TRNA1), andAAMediumA, an embedding of Medium within several segments of As to bring it to 176 characters.Additionally, the �le contains several (obviously) non-TRNAs of various lengths, all of whose IDsbegin with the word `Not'.When this �le is scored using hmmscore with SW set to 0 for global alignment, the scores of the fullsequence and the long fragment place them clearly as tRNAs. However, the score of the short andmedium fragments are greatly penalized by the large number of delete states they must use.
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TRNA1Long 94 -38.41 101.77TRNA1 72 -36.23 61.80Long 58 -17.07 61.53AAMediumAA 176 -1.97 316.01NotExExExExL 3504 14.64 6728.30NotExExExLong 1752 14.69 3371.52NotExExtraLong 876 15.57 1693.98Medium 34 16.10 62.00NotExtraLong 438 16.29 855.49NotLong 109 18.23 227.07Not 73 19.27 159.14MediumReverse 34 27.15 73.06NotShort 13 40.50 65.40ShortReverse 6 48.86 57.52Short 6 49.14 57.80When scoring is performed using the SW option set to 1, the following score �le is generated, whichplaces even the short fragment in the possible tRNA range.TRNA1Long 94 -33.87 101.77TRNA1 72 -32.56 61.19Long 58 -22.43 52.11Medium 34 -9.28 33.10Short 6 0.84 7.72NotShort 13 1.14 23.48ShortReverse 6 1.28 8.15MediumReverse 34 2.78 45.16AAMediumAA 176 2.83 315.63Not 73 3.11 138.68NotLong 109 3.51 207.66NotExtraLong 438 4.90 838.02NotExExtraLong 876 5.59 1677.23NotExExExLong 1752 6.28 3355.65NotExExExExL 3504 6.98 6712.48When scoring is performed using the SW option set to 2, the following score �le is generated, whichalso picks up the sequence AAMediumAA, which is a segment of a tRNA embedded within a longersequence.TRNA1Long 94 -34.48 101.16TRNA1 72 -33.33 60.42Long 58 -24.94 49.60AAMediumAA 176 -13.87 298.94Medium 34 -10.37 32.01NotExExExLong 1752 -4.08 3345.28NotExtraLong 438 -3.94 829.19NotLong 109 -3.93 200.22Not 73 -3.92 131.66NotExExtraLong 876 -3.90 1667.74NotShort 13 -3.77 18.58MediumReverse 34 -3.77 38.62ShortReverse 6 -3.65 3.23Short 6 -3.64 3.23NotExExExExL 3504 -3.39 6702.11Signi�cance levels, especially for the second option, change greatly. In the �rst option, because65



sequences can start at any location (e.g., the initial FIM) and jump out of any location (e.g., alsothe initial FIM), no sequence will have scores worse than zero | even non-family members will havea negative NLL�NULL score. However, the signi�cance level will be similar to that of standardscoring.In the second option, the number of placements of a sequence to the model is essentially the numberof starting points of the seqeunce plus the number of exit points once the sequence has started usingthe core of the model. That is, squences start in the initial FIM, may at any time jump anywhereinto the model, and then jump out again latter. The e�ect seen in the signi�cance level dependson both the sequence length and the model length, and for comparison between di�erent models,must be done to the scores themselves as they are being generated. If the adjust score variable isset to 1 (the default) and SW=2, all scores will have added to them the log of the sum of sequenceand model length. If adjust score is set to 2 (the default) and SW=1 or 2, then all scores will haveadded to them the log of the sequence length. In the future, the adjust score parameter may bere�ned as we further explore the length dependence of scores. The adjustment is not su�cient formodels that have internal FIMs. See Section 9.2.1 on page 59.9.2.5 Selecting multiple domain alignmentsThe hmmscore program also can create multiple-domain alignments and score �les from selectedsequences. Prior to Version 2.1, this feature was called the multdomain program. To enable thisoption, the select mdalign parameter is set in a manner similar to other selection parameters. SeeSection 9.2.3 on page 63.For each selected sequence, the multiple domain seach procedure will locate copies of a single motifwithin each selected sequence. A user speci�ed mdNLLnull is the criterion by which a subsequenceis judged to be a match to the model; whenever an mdNLLnull simple null model score or loweris achieved, a match to the model has been found. Once this match is found, it is cut from thesequence and another match is looked for. The process terminates when no matches scoring betterthan mdNLLnull are found. Note that the multiple domain scoring procedure always uses the simplenull model and always uses viterbi scoring. Thus, it is theoretically possible for a sequence to beselected by hmmscore for multiple domain seach but for no domain to be found even if NLLnull andmdNLLnull are set to the same value and select mdalign is set to 1. The mdNLLnull thresholdcan most reliably be set by examining the output of hmmscore (using Viterbi scoring) and decidingwhere the cuto� between hits and misses should be.The output is similar to that of align2model, except that for each match the sequence ID is modi�edto indicate where in the sequence the match occurred. Additionally, all letters in the sequence thatare part of the match are capitalized. Unlike align2model, multiple domain seach sequence outputdoes not include periods (`.') as spacers: prettyalign must be used to correctly space the multiplealignment.As an example, the �le multtrna.seq contains two sequences, each of which contains two trna motifs.By invoking multdomain in the following way (selecting all sequences for a multiple domain):hmmscore multtrna -i testf.mod -db multtrna.seq -select mdalign 8 -sw 2prettyalign multtrna.mult -l90 > multtrna.prettythe �le multtrna.pretty generated is: 66



; SAM: ../src/prettyalign v2.1.1 (Apr 24, 1998) compiled 04/27/98 12:32:27.; SAM: Sequence Alignment and Modeling Software System; (c) 1992-1998 Regents of the University of California, Santa Cruz; http://www.cse.ucsc.edu/research/compbio/sam.html;; ------ Citations (HMMs, SAM) ------; A. Krogh et al., Hidden Markov models in computational biology:; Applications to protein modeling, JMB 235:1501-1531, Feb 1994.; R. Hughey, A. Krogh, Hidden Markov models for sequence analysis:; Extension and analysis of the basic method, CABIOS 12:95-107, 1996.; -----------------------TRNA12 6:80 ugcua...................................................TRNA12 88:166 ugcuaggggauguagcucagugguagagcgcaugcuucgcauguaugaggccccggTRNA34 10:85 gcuagcgua...............................................TRNA34 98:172 gcuagcguaggcccuguggcuagcuggucaaagcgccugucuaguaaacaggagau10|TRNA12 6:80 .........................................GGGGAUGUAGCUCAGTRNA12 88:166 guucgauccccggcaucuccaguacugcguu..........GCGGCCGUCGUCUAGTRNA34 10:85 .........................................GGCCCUGUGGC-UAGTRNA34 98:172 ccuggguucgaaucccagcggggccuccagcauaguuugacGGGCGAAUAGUGUCA20 30 40 50 60| | | | |TRNA12 6:80 -UGG...U.AGAGCGCAUGCUUCGCAUGUAUGAGGCCCCGGGUUCGAUCCCCGGCATRNA12 88:166 UCUGgauU.AGGACGCUGGCCUCCCAAGCCAGCAAUCCCGGGUUCGAAUCCCGGCGTRNA34 10:85 CUGG...UcAAAGCGCCUGUCUAGUAAACAGGAGAUCCUGGGUUCGAAUCCCAGCGTRNA34 98:172 GCGG...G.AGCACACCAGACUUGCAAUCUGGUAGGGA-GGGUUCGAGUCCCUCUU70|TRNA12 6:80 UCUCCAGUAcugcguugcggccgucgucuagucuggauuaggacgcuggccucccaTRNA12 88:166 GCCGCAUCGcuu............................................TRNA34 10:85 GGGCCUCCAgcauaguuugacgggcgaauagugucagcgggagcacaccagacuugTRNA34 98:172 UGUCCACCAguacguagauccgcggc..............................TRNA12 6:80 agccagcaaucccggguucgaaucccggcggccgcaucgcuu..............TRNA12 88:166 ........................................................TRNA34 10:85 caaucugguagggaggguucgagucccucuuuguccaccaguacguagauccgcggTRNA34 98:172 ........................................................TRNA12 6:80 ..TRNA12 88:166 ..TRNA34 10:85 c.TRNA34 98:172 ..This �le shows the matching area of the sequence within several copies of the sequence. If thevariable alignshort is set to zero or higher, matching segments of the sequence are clipped, withalignshort positions shown on either side. The IDs are the same as if complete sequences areprinted, corresponding to the starting and ending points of the motif within the original sequence.Depending on how large alignshort is, the subsequences may overlap. For example, the commands:67



multdomain multtrnas -i testf.mod -db multtrna.seq -alignshort 3prettyalign multtrnas.mult -l90 > multtrnas.prettyproduce the alignment:; SAM: ../src/prettyalign v2.1.1 (Apr 24, 1998) compiled 04/27/98 12:32:27.; SAM: Sequence Alignment and Modeling Software System; (c) 1992-1998 Regents of the University of California, Santa Cruz; http://www.cse.ucsc.edu/research/compbio/sam.html;; ------ Citations (HMMs, SAM) ------; A. Krogh et al., Hidden Markov models in computational biology:; Applications to protein modeling, JMB 235:1501-1531, Feb 1994.; R. Hughey, A. Krogh, Hidden Markov models for sequence analysis:; Extension and analysis of the basic method, CABIOS 12:95-107, 1996.; -----------------------10 20 30 40 5| | | |TRNA12 6:80 cuaGGGGAUGUAGCUCAG-UGG...U.AGAGCGCAUGCUUCGCAUGUAUGAGGCCCTRNA12 88:166 guuGCGGCCGUCGUCUAGUCUGgauU.AGGACGCUGGCCUCCCAAGCCAGCAAUCCTRNA34 10:85 guaGGCCCUGUGGC-UAGCUGG...UcAAAGCGCCUGUCUAGUAAACAGGAGAUCCTRNA34 98:172 gacGGGCGAAUAGUGUCAGCGG...G.AGCACACCAGACUUGCAAUCUGGUAGGGA0 60 70| | |TRNA12 6:80 CGGGUUCGAUCCCCGGCAUCUCCAGUAcug.TRNA12 88:166 CGGGUUCGAAUCCCGGCGGCCGCAUCGcuu.TRNA34 10:85 UGGGUUCGAAUCCCAGCGGGGCCUCCAgca.TRNA34 98:172 -GGGUUCGAGUCCCUCUUUGUCCACCAgua.In addition to multtrna.mult, the �le multtrna.mstat is produced. It reports the NLL-NULL scorefor each of the motifs listed in multtrna.mult. In this case, multtrna.mstat (or multtrnas.mstat)looks like:
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% SAM: ../src/hmmscore v2.1.1 (Apr 24, 1998) compiled 04/27/98 12:32:02.% SAM: Sequence Alignment and Modeling Software System% (c) 1992-1998 Regents of the University of California, Santa Cruz% http://www.cse.ucsc.edu/research/compbio/sam.html%% ------ Citations (HMMs, SAM) ------% A. Krogh et al., Hidden Markov models in computational biology:% Applications to protein modeling, JMB 235:1501-1531, Feb 1994.% R. Hughey, A. Krogh, Hidden Markov models for sequence analysis:% Extension and analysis of the basic method, CABIOS 12:95-107, 1996.% -----------------------% Run start: Mon Apr 27 12:50:26 1998% Run name: multtrna% On host: alpha% In dir: /auto/projects/compbio3/samtmp/sam/SAMBUILD/alpha/demos% By user: rph% --------------------------------------------------------------% Motifcutoff 0.500000 mdNLLminusNULL -10.000000% See related information in multtrna.dist%% Column 1: NLL-NULL using simple FIM (node 0) insert probabilities% Column 2: the raw NLL score% Scores sorted by column 1, best first%% Sequence ID Length Simple Raw X countTRNA12 6:80 75 -32.53 191.65TRNA34 10:85 76 -32.17 224.91TRNA12 88:166 79 -32.13 82.59TRNA34 98:172 75 -29.83 110.74Because reliable results are only obtained if FIMs are added to the model, multiple domain searchersare best performed when auto fims is set to 1.9.2.6 Distributed scoringScoring a large database with hmmscore can take several hours on even the fastest workstation. Thescoring program includes primitive support for distributed scoring. If the segments variable is setto an integer larger than 1, hmmscore assumes that that many runs of hmmscore are being used toscore a complete database. The segment number variable is used to label each segment.These parameters might be used as follows:hmmscore test1 -i test.mod -db bigdatabase -segments 2 -segment number 1 -sw 2&rsh othermachine hmmscore test2 -i test.mod -db bigdatabase -segments 2 -segment number2 -sw 2wait cat test1.dist test2.dist > test.distThe associated parameter, segment size, speci�es that number of sequences that are read in at atime. At its default value of 100, two segments would produce the e�ect that the �rst 100 sequencesare processed by segment 1, the next 100 be segment 2, the next 100 by segment 1, and so on.Note that workload is partitioned according to the number of sequences rather than the number ofresidues, some segments may take longer to complete than other segments.69



9.3 addfimsThe addfims program can be used to add Free Insertion Modules (Section 7.5) to the beginning andend of a model. The program modifymodel can also be used for this purpose. This is particularlyuseful if a model has been trained on a clipped sequence motif, and is to be used in analyzing fullsequences.For example, the �le trna10f.seq is the same as trna10.seq, except that sequences 2{5 have hadextraneous characters appended to one or both ends. Using the test.mod �le previously generated,an alignment of the �rst 5 sequences looks like this:10 20 30| | |TRNA1 ...GGGGAUGUAGCU..........CAG-.................UGG..U.AGAGCGCAUGTRNA2X ...GCGGCCGUCGUC..........UAGUgcggccgucgucuagucUGGauU.AGGACGCUGGTRNA3X cccGGCCCUGUGGC-..........UAGC.................UGG..UcAAAGCGCCUGTRNA4X ...GGGCGAAUAGUGucagggcgaaUAGUgucag............CGG..G.AGCACACCAGTRNA5X ...GCCGGGAUAGCU..........CAGU.................UGG..U.AGAGCAGAGG40 50 60 70| | | |TRNA1 CUUCGCAUGUAUGAGGCCCCGGGUUCGAUCCCCGGC.........AUCU---C........CATRNA2X CCUCCCAAGCCAGCAAUCCCGGGUUCGAAUCCCGGC.........GGCCGCACggcggccgCATRNA3X UCUAGUAAACAGGAGAUCCUGGGUUCGAAUCCCAGC.........GGGGCCUC........CATRNA4X ACUUGCAAUCUGGUAGGGA-GGGUUCGAGUCCCUCU.........UUGUCCAC........CATRNA5X ACUGAAAAUCCUCGUGUCACCAGUUCAAAUCUGGUUccuggcaugGUUCCUGG........CATRNA1 .....TRNA2X .....TRNA3X gggg.TRNA4X .....TRNA5X .....This alignment is incorrect: the extra end characters do not all use end insert states. Rather, internalinsert states are found to minimize the alignment cost for sequences 2X, 4X, and 5X.The addfims program has an interface identical to that of buildmodel, though only the runname,model �le (and its model, or if not present, its regularizer), and the alphabet are used:addfims testf -insert test.modalign2model testf -i testf.mod -db trna10f.seqprettyalign testf.a2m -l90 > testf.alignwill produce the following alignment, which correctly places the extra characters at the ends.
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10 20 30 40| | | |TRNA1 ................GGGGAUGUAGCUCAG-UGG...U.AGAGCGCAUGCUUCGCAUGUAUGTRNA2X gcggccgucgucuaguGCGGCCGUCGUCUAGUCUGgauU.AGGACGCUGGCCUCCCAAGCCAGTRNA3X ccc.............GGCCCUGUGGC-UAGCUGG...UcAAAGCGCCUGUCUAGUAAACAGGTRNA4X gggcgaauaguguca.GGGCGAAUAGUGUCAGCGG...G.AGCACACCAGACUUGCAAUCUGGTRNA5X ................GCCGGGAUAGCUCAGUUGG...U.AGAGCAGAGGACUGAAAAUCCUC50 60 70| | |TRNA1 AGGCCCCGGGUUCGAUCCCCGGCAUCU---CCA-.............TRNA2X CAAUCCCGGGUUCGAAUCCCGGCGGCCGCACGG-cggccgca.....TRNA3X AGAUCCUGGGUUCGAAUCCCAGCGGGGCCUCCA-gggg.........TRNA4X UAGGGA-GGGUUCGAGUCCCUCUUUGUCCACCA-.............TRNA5X GUGUCACCAGUUCAAAUC---UGGUUCCUGGCA-ugguuccuggca.9.3.1 Training with FIMsA similar e�ect can be achieved by training with free insertion modules. Suppose the �le ftrain.initcontains:alphabet RNAtrain trna10f.seqseed 0REGULARIZERalphabet RNAGENERIC 1.88 0.25 0.37 1.81 15.52 3.76 0.22 0.26 4.00 0.25 0.25 0.25 0.25 0.25 0.250.25 0.25TYPE 0 FIMTYPE -1 FIMENDMODELThis �le speci�es a default regularizer and that both the BEGIN node and the last node are freeinsertion modules. Training and aligning on this �le with the commands:buildmodel ftrain -i ftrain.initalign2model ftrain -i ftrain.mod -db trna10f.seqprettyalign ftrain.a2m -l90 > ftrain.alignwill produce the alignment:
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10 20 30 40| | | |TRNA1 ..................GGGGAUGUAGCUCAGU-GG..UAGAGCGCAUGCUUCGCAUGUAUGTRNA2X gcggccgucgucuagugc-GGCCGUCGUCUAGUCUGGauUAGGACGCUGGCCUCCCAAGCCAGTRNA3X ccc...............GGCCCUGUGGCUAGCUGGU..CAAAGCGCCUGUCUAGUAAACAGGTRNA4X gggcgaauagugucag..GGCGAAUAGUGUCAGCGGG..-AGCACACCAGACUUGCAAUCUGGTRNA5X ..................GCCGGGAUAGCUCAGUUGG..UAGAGCAGAGGACUGAAAAUCCUCTRNA6 ..................GGGGCCUUAGCUCAGCUGG..GAGAGCGCCUGCUUUGCACGCAGGTRNA7 ..................GGGCACAUGGCGCAGUUGG..UAGCGCGCUUCCCUUGCAAGGAAGTRNA8 g.................GGCCCGUGGCCUAGUCUGGa.UACGGCACCGGCCUUCUAAGCCGGTRNA9 c.................GGCACGUAGCGCAGCCUGG..UAGCGCACCGUCCUGGGGUUGCGGTRNA10 uc................-CGUCGUAGUCUAGGUGGU..UAGGAUACUCGGCUUUCACCCGAG50 60 70| | |TRNA1 AGGCCCCGGGUUCGAUCCCCGGCAUCUCC-a.............TRNA2X CAAUCCCGGGUUCGAAUCCCGGCGGCCGC-acggcggccgca..TRNA3X AGAUCCUGGGUUCGAAUCCCAGCGGGGCC-uccagggg......TRNA4X UAGGGA-GGGUUCGAGUCCCUCUUUGUCC-acca..........TRNA5X GUGUCACCAGUUCAAAUCUGGUUCCUGGC-augguuccuggca.TRNA6 AGGUCAGCGGU-CGA-CCCGCUAGGCUCC-acca..........TRNA7 AGGUCAUCGGUUCGAUUCCGGUUGCGUCC-a.............TRNA8 GGAUCGGGGGUUCAAAUCCCUCCGGGUCC-g.............TRNA9 GGGUCGGAGGUUCAAAUCCUCUCGUGCCG-acca..........TRNA10 AGA-CCCGGGUUCAAGUCCCGGCGACGGA-acca..........The initial buildmodel run in the above case will produce an warning message along the lines of:Some FIMs have non-zero match states (e.g., node 0),a natural result of turning an existing or GENERIC node into a FIM.These nodes are being renormalized as discussed in the SAM manual.To avoid this message, use addfims or hmmedit when adding FIMs.The purpose of this message is to apprise the user of a frequent occurrence when using FIMs.E�ectively, the FIM has no match state, and therefor transitions into the FIM nodes match state, aswell as the character generating probability table itself, should have zero probability. If they don't,SAM assumes that the node has not been completely turned into a FIM, and renormalizes the nodefor you, in the same manner in which addfims works. SAM will do the following:1. Zero the probabilities in the match table.2. Move any probability assigned to jumps into the FIMs match table to jumps into the FIMsdelete node.3. Assign both the insert to insert and the delete to insert transitions unity probability (in aFIM, probabilities exiting the insert state and exiting the delete state will sum to two ratherthan one).4. To make the FIM independent of whether or not characters are generated (ie, whether ornot just the delete node is used or the delete and the insert node are used), the outgoingprobabilities for the FIM's insert to match and delete to match transitions are averaged, asare the FIM's insert to delete and delete to delete transitions.5. Once the transitions have been averaged, they are normalized so that the delete to match anddelete to delete transitions, as well as the insert to match and insert to delete transitions, sumto one. 72



Users who do not like this default behavior, in particular the averaging that ensures the FIM has thesame outgoing transition cost whether or not it generates characters, may generate their own FIMwith a zeroed match table, in which case only the following will be done during model normalization:1. Zero any probability assigned to jumps into the FIMs match table.2. Assign both the insert to insert and the delete to insert transitions unity probability.3. Normalized the delete to match and delete to delete transitions, as well as the insert to matchand insert to delete transitions, to sum to one.Because (for historical reasons), the begin node (node 0) is composed of a non-character-producingmatch state and an insert state, rather than a delete state and an insert state, a node zero FIM isnormalized with these two states swapped.In all cases, a FIM is never trained.9.4 modelfromalignModelfromalign takes a multiple alignment and converts it to a model. As a base model, theprogram starts with the default regularizer (or a speci�ed regularizer, as for buildmodel), and thencalculates node frequencies according to the given multiple alignment. Sequences in the alignmentcan be weighted according to the alignment weights �le, discussed in Section 8.4.If a trustworthy hand alignment is available, this is often the best way to build a model: createone from an alignment, and then re�ne it using buildmodel. If some sections of the alignment areparticularly important, it may be desirable to make them �xed nodes, as described in Section 7.4.2.The alignfile parameter can also be used with buildmodel to specify a seed alignment. SeeSection 7.3 on page 31.The modelfromalign program will read any readseq format, but has a few special interpretations.It follows the align2model convention that lowercase letters are insertions, hyphens are deletions,and dots are simply �ller for insertions in other sequences. Additionally, the letter `O' is convertedinto a FIM, following a convention used in some multiple alignment formats. If all sequences do nothave the same number of uppercase letters and hyphens, then modelfromalign will try treating allcharacters as uppercase and all periods as hyphens (i.e., it will try modeling each character as amatch column).The program has one required parameter that must be set on the command line or in an insertedor .samrc �le: the alignfile is the name of the �le with the alignment. For example,modelfromalign trna2 -alignfile trna2.alignwill produce a model from the trna2.align alignment. All buildmodel parameters dealing withregularization and prior libraries are used in the conversion from column frequencies to a model.Prior libraries are particularly helpful when converting a small protein alignment to a model.73



If the alignment is of a motif, setting the align fim variable to 1 will cause FIMs to be added tothe model before printing it out.9.5 Model manipulation9.5.1 drawmodelThe drawmodel program is a means of generating a postscript drawing from a model, regularizer, orfrequency count data (created with the print frequencies option). The program is run with twoarguments, the �rst being a model �le, and the second the output �le.drawmodel model.mod drawing.psThe program will scan the �le, looking for models, regularizers, and frequency counts, and querywhether or not each one should be printed, after presenting a line from the �le.There are two drawing options: overall and local. Overall is the correct option for frequency counts| the outgoing transitions of each state are drawn in di�erent styles depending on the fraction ofall sequences that use that transition. The circular delete states show the node number, while thediamond insert states show average number of characters, rounded up, inserted by each sequencethat used the insert state.In the local option, suitable for models and regularizers, transitions from a given state are drawnaccording to what percentage of sequences in that given state take each transition. Also, the diamondinsert states have the percent of sequences which, once within the insert state, remain in the insertstate. (See Figure 3 on page 16.)The drawmodel program has several command-line options: -landscape to draw models in land-scape format, and -scale num, to change the scale of the drawing to an arbitrary oating-pointnumber. The default is portrait mode with a scale 0.235, which �ts six row of 19 protein modelnodes (plus one ghost node, the �rst model of the next row) on each page. Larger scale settingsincrease the size of the model nodes, and cause fewer to be placed on each line. For additionalcustomization, the postscript �le, which is readable, can be modi�ed (e.g., to change print on adi�erent size of paper).If -mod n, -freq n, or -reg n is speci�ed on the command line, the nth model, frequency count,or regularizer will be selected for printing, and the interactive queries on which model to print willnot occur.The drawmodel program requires a postscript header called sam header.ps. If the program isinstalled correctly, the path of this header will be compiled into the drawmodel program. If this isnot the case, or you prefer a modi�ed header, set the SAM PS environment variable to the directoryname, without a trailing slash (`/'), that contains the sam header.ps �le.Europeans and other people who like the A4 paper size can change `/A4 false def' to `/A4 truedef' near the bottom of the header �le sam header.ps.74



9.5.2 hmmconvertThe hmmconvert program takes a model �le as input and outputs a new model �le in the `opposite'format (binary or text) from the original.The command syntax is as follows:hmmconvert runname -model file test.modIf test.mod is in text format, runname.mod will be in binary format and vice versa. If you wish todestroy your original model �le, use a runname of the �le's name without the .mod extension.hmmconvert test -model file test.modIf test.mod is in text format, this command will create a new �le called test.mod in binary format.If test.mod is binary, the new test.mod will be text.To preserve your original model�le, enter a new runname.hmmconvert new -model file test.modThis will create a �le called new.mod in the opposite format of test.mod. test.mod will be leftalone.9.5.3 modifymodelmodifymodel is a utility program for modifying SAM models. It has an interactive type in interfaceas well as command line arguments. This program will grow over time to meet the needs of users.It contains extensive built in help with examples and a question mark (?) will list the commands:AddNodes nodeNumber count #adds generic nodes after specifiedChange subCommand... #has sub commands, change ? to seeDeleteNodes nodeSpec #deletes the specified nodesDuplicateNode nodeNumber count #copies the specified nodeNewModel modelLength #make new model from default genericPrependToCurrentModel fileName #reads model from file, pastes on frontPostpendToCurrentModel fileName #reads model from file, puts on endReadModel fileNameShow subCommand...WriteModel [fileName] #defaults to name of file last read inQuitHelpMost (at the moment all) operations act on the current model: which is the last read in model. Thebasic usage is to read a model in, do what you want to it (add nodes, change types, paste modelstogether, etc.) and write it back out.The currently supported functions are: 75



� Changing node types.� Adding/duplicating/deleting nodes.� Cutting models into smaller parts.� Pasting models together.To print all the types of the nodes (use this to see how long the model is):show type allTo change all nodes that do not have a type into KEEP nodes,change type K ALLTo change node 9 into a FIM:change type + F 9To shorten a model by deleting nodes 4 through the end:delete 4,endBelow is an example of reading a model, deleting the �rst 20 nodes, adding a new node to the frontand changing it to a FIM, then pasting it on to the end of a second model, and �nally writing themodi�ed model out:read one.moddelete 1,20add 0 1change type + F 1prepend two.modwritemodel both.modquit9.5.4 Conversion between SAM and HMMerSAM and HMMer are the two most widely used HMM sequences alignment and modeling systems.Even though they both employ hidden Markov models, their �le formats are vastly di�erent. Pro-vided with this release are the conversion programs sam2hmmer and hmmer2sam that make almostcomplete conversion between SAM and HMMer v1.7 possible.The conversion is \almost" because there is some information loss, and this information loss is due tothe structural di�erences between the two systems. For those users who wish to use the conversionutilities, we discuss these issues below.9.5.4.1 Internal HMM Structure Both SAM and HMMer use the same linear model of nodesthat contain 3 states { match, delete, insert. The number of transitions per node is the same, 9. The76



internal di�erence is in how transitions between nodes are viewed. SAM views transitions INTO anode, thus each node contains the transitions FROM the previous node. HMMer is the opposite,transitions are TO the next node. HMMer's convention makes much more sense because each tripleof transitions stored in a node sums to one. SAM's convention maintained only for historical reasons.This becomes a problem at the beginning and end of the model.The begin node of HMMer has a valid transition probability distribution out of the MATCH state (inthat the transition probabilities sum to one), but has the null distribution for matching characters.This means HMMer always starts in the insert state, and the begin node match state is not used.The begin node of SAM can start in either non-character-generating match or an insert. So theSAM to HMMer conversion is �ne, but HMMer to SAM conversion leaves SAM's begin node matchstate character table zero. The net result is that SAM is forced to start in the insert state.The end node of HMMer also has a zero match state character table.The two programs are used as follows:hmmer2sam hmmerfile.hmmer newsamfile.modsam2hmmer newhmmerfile -i samfile.modAbove, the output of sam2hmmer is stored in the �le newhmmerfile.hmmer.9.5.4.2 Extra Information in HMMer HMMer allows other information on a per node basis.This information seems to be solvent access and consensus information. This information cannotbe used in SAM at this time, and is silently dropped. A note of the global presence of this extrainformation is noted as a comment in the SAM model, solely for documentation purposes.9.5.4.3 Extra Information in SAM SAM has constructs in the model that are not supportedin HMMer, and these constitute the greatest di�erence in the two systems. SAM has per node\types" that control learning and evaluation parameters. The problematic type is the Free InsertionModule (or FIM). This special type allows SAM to have a single node give equal cost for all charactersby e�ectively matching one or more characters. These FIMs can be positioned anywhere in a model,but are most commonly positioned at the ends (the begin node and the node before the end node).HMMer has no such concept, and handling FIMs in a conversion is a problem. FIMs at the begin andend are are not too critical, because HMMer's system always treats the begin and end just like theyare free inserts (also, HMMer re-normalizes all nodes so any strange distributions are \�xed"). FIMsin the middle of a model can NOT be converted in an exact manner. Due to the structure in SAM,some probabilities in a FIM node do not sum to one and the match state transition probabilities areall zero. During conversion, these nodes have to be \�xed" so that valid (sum to one) probabilitydistributions are given to HMMer.One way to �x up a FIM is to remove it: it maps to nothing in a HMMer model. This methodis not too bad if the FIM does not usually match many characters, but is very bad if the FIM isused a lot. A second way is fabricate some normal cheap insert states and hope that they matchthe average length of the FIM. This method is hard, since there is not enough information to guessthe number of insert nodes to add. (If the frequencies are present in the SAM model, then this canbe done. However this information is not always present.). sam2hmmer utilizes the former option.The transition probabilities for the match state are computed from the exit probabilities of the FIM(a chain of FIMs in a row are removed as they were one). A SAM FIM has exits from the insert77



and delete states, and the previous non-FIM node has a transition from match to insert. The newtransitions are computed from these numbers by breaking the match to FIM transition into twoparts that have the same ratio as the exit probabilities of the FIM. This same computation is doneto compute the new transitions from delete and insert.It is not possible to record any extra information from SAM into a HMMer model as HMMer doesnot support comments in the �le.9.6 Plotting ProgramsSAM has several plotting programs to assist in data analysis. The programs require gnuplothttp://www.cs.dartmouth.edu/gnuplot info.html. In general, the programs create one or more .data�les, a .plt �le of gnuplot commands, and a postscript �le.Options common to the programs include:plotps | Creates a postscript �le runname.ps using gnuplot if set to 1, 2, or 3. When set to 0,only a .plt �le and one or two .data �les are generated. A setting of 1 generates a plot in gnuplot'sdefault rectangular shape, while a setting of 2 generates a square plot. For options 1 and 2, the.data and .plt �les used to create the postscript �le are deleted. When set to 3, the postscript �leis generated and the .data and .plt �les are retained. The default setting is 1.plotleft | Lowest X axis value on a graph generated by gnuplot. The X axis is calculatedinternally if plotleft=plotright. The default setting is 0.0.plotright | Highest X axis value on a graph generated by gnuplot. The X axis is calculatedinternally if plotleft=plotright. The default setting is 0.0.plotmax | Highest Y axis value on a graph generated by gnuplot. The Y axis is calculatedinternally if plotmax=plotmin. The default setting is 0.0plotmin|Lowest Y axis value on a graph generated by gnuplot. The Y axis is calculated internallyif plotmax=plotmin. The default setting is 0.0.plotline | Creates a vertical line at this value in a graph generated by gnuplot if plotline isnonzero. The default setting is 0.0.plotnegate| Negates the scores on a graph generated by gnuplot if set to 1. The default settingis 0 (o�).9.6.1 makehistThe makehist program will generate two or three �les from one or two .dist distance �le created byhmmscore or a .mstat distance �le created by multdomain. The �les can be used with the populargnuplot plotting package. Histograms are most useful to discover to examine the separation betweenfamily members and non-family members during a database search. The makehist program requiresa NLLfile as an argument, in addition to the runname. For example, to make a histogram from78
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Figure 6: A histogram generated by makehist and gnuplot.test.dist, the following command would be used:makehist test -Nllfile test.distThen, to view the histogram, run the gnuplot program and enter the command load "test.plt"to view the results. The test.plt �le may be modi�ed to change the graph. If the two markedlines in the �le are uncommented, a postscript �le will be generated.If a second �le is speci�ed, using the NLLfile2 option, a second histogram is placed above the �rstone. The makehist program has an optional argument, histbins, which can be used to set thenumber of bins between which scores should be divided. The histogram in Figure 6 was generatedusing �ve bins.9.6.2 makerocThe makeroc program generates a postscript graph �le using the gnuplot plotting package. It takestwo .dist distance �les created by hmmscore as input and plots false negatives/ false positives onthe axis Score vs. Counts where Score is the NLL-null score of a sequence and Counts is the numberof sequences in the �les with a particular score.To plot false negatives vs. false positives in two distance �les globins.dist and nonglobins.dist,the following command would be used:makeroc test -Nllfile globins.dist -Nllfile2 nonglobins.dist79
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9.7 Sequence manipulationThe minor programs described in this section can be used to perform many helpful tasks.9.7.1 checkseqThe checkseq program will read a sequence �le and list various pieces of information about it. Forexample,checkseq unused runname -db trna10.seqwill produce the output:Alphabet: RNAInput Format: igAlignment: noAlignType: unalignedAlignColumns: 0Num Sequences: 10Average Length: 74.70Max Length: 77Min Length: 72IDs Unique: yesSeq Unique: yesSAM internally recognizes several types of alignments. The check proceeds as follows: if the �leis an HSSP �le, it is considered an alignment. Otherwise, if the �le is an a2m format �le withthe same number of upper case (match) and hyphen (delete) characters in each line, it is an a2mformat alignment. Otherwise, if all characters have the same total number of upper case, lower case,hyphen, and period characters, it is an \all positions alignment" | if all positions are regarded asmatch columns, the �le can be viewed as an alignment.If the sort variable is set, checkseq will indicate whether or not all IDs are unique and whether ornot all sequences are unique. This can be time consuming for large data �les, in which case the useris advised to set sort to zero if this information is not needed.9.7.2 permuteseqThe permuteseq program requires a run name and a database �le. Its output will be a �le ofsequences that are permuted copies of the sequences in the database �le. If Nseq is speci�ed, thesequence �le will be looped through multiple times until the requested total number of sequencesare created. That is, in a �le of 10 sequences, if Nseq is 15, the output .seq �le will contain 10random sequences, one for each original sequence, followed by 5 random sequences, one for each ofthe �rst 5 sequences in the �le.The permuteseq program can be used to verify scoring results. For example, the command:82



permuteseq permuted -db trna10.seq -Nseq 8 -id TRNA1 -id TRNA2 -id TRNA3hmmscore permuted -i test.mod -db permuted.seq -sw 2produces the following distance �le, which shows all the permuted tRNA sequences as having poorscores.Rand6-TRNA3 76 -4.70 95.45Rand8-TRNA2 76 -4.18 92.83Rand2-TRNA2 76 -4.18 92.84Rand5-TRNA2 76 -4.12 92.89Rand4-TRNA1 72 -4.04 89.71Rand3-TRNA3 76 -3.94 96.22Rand1-TRNA1 72 -3.87 89.88Rand7-TRNA1 72 -3.82 89.939.7.3 sampleseqsThe sampleseqs program will, given a model, randomly generate sequences according to the model'sprobabilities. For example,sampleseqs sample -i test.mod -Nseq 5will produce the following sample.seq �le of synthetic tRNAs:>SampleSeq0, 77 bases, EF8B285D checksum.GCGGGGGGAGCUUACCCGUCAGACCGCUGGGUUAGCCCGGGCCGCACCCACCAGUUCUACUCCGGAUGGCGAUACCC>SampleSeq1, 76 bases, B016E442 checksum.GGGGGCAUGGCCCCGCUUGGAAGGCGCAGGCCCGCAACGGAAAGUGGUCCCGGUUGUAAACCGCUCGACGCAACCA>SampleSeq2, 72 bases, CF9F2C7F checksum.GUAGAGGUAGCUCAGUUUGCAGCGCGGCAGCCUGCCAAUGUGGGGAUCAGGGGUUCAUAUCGAAGUCCUCCA>SampleSeq3, 70 bases, B077D3EB checksum.GCAGAUCAGUUGGUAGGACACCUGAUCACAAUCGCCGGGACCGAUGGGUCGAGUCCCCGCGGCGGGGGCA>SampleSeq4, 78 bases, 5AC70EDF checksum.UGCGCCAUAGUAUAGCUGGGUGCGCGGAUGCCUAGGACCUAGAGAGCUCACCGGUUCCAACCCUGGAACUCGGGACCARun with no arguments for a usage message.9.7.4 sortseqThe sortseq program takes as input a database �le(s) of sequences (*.sel or *.seq) and a distance�le (*.dist) of NLL-NULL scores generated by hmmscore. It outputs a �le of sequences in the sameorder as they occur in the distance �le. Sortseq provides an enhancement to hmmscore. It outputsa .seq �le which contains the actual sequences in sorted order while hmmscore outputs a �le onlycontaining sorted sequence id's and scores.For example: 83



sortseq sort -db trna10.seq -NLLfile test.distwill produce the following sort.seq �le of sequences:;TRNA7, 73 bases, 188CBC35 checksum.TRNA7GGGCACAUGGCGCAGUUGGUAGCGCGCUUCCCUUGCAAGGAAGAGGUCAUCGGUUCGAUUCCGGUUGCGUCCA1;TRNA3, 76 bases, E054B7BB checksum.TRNA3GGCCCUGUGGCUAGCUGGUCAAAGCGCCUGUCUAGUAAACAGGAGAUCCUGGGUUCGAAUCCCAGCGGGGCCUCCA1;TRNA8, 75 bases, A22B0856 checksum.TRNA8GGGCCCGUGGCCUAGUCUGGAUACGGCACCGGCCUUCUAAGCCGGGGAUCGGGGGUUCAAAUCCCUCCGGGUCCG1;TRNA2, 76 bases, 9DFDE3C0 checksum.TRNA2GCGGCCGUCGUCUAGUCUGGAUUAGGACGCUGGCCUCCCAAGCCAGCAAUCCCGGGUUCGAAUCCCGGCGGCCGCA1;TRNA9, 77 bases, 71415595 checksum.TRNA9CGGCACGUAGCGCAGCCUGGUAGCGCACCGUCCUGGGGUUGCGGGGGUCGGAGGUUCAAAUCCUCUCGUGCCGACCA1;TRNA1, 72 bases, D7704609 checksum.TRNA1GGGGAUGUAGCUCAGUGGUAGAGCGCAUGCUUCGCAUGUAUGAGGCCCCGGGUUCGAUCCCCGGCAUCUCCA1;TRNA5, 73 bases, C13872C8 checksum.TRNA5GCCGGGAUAGCUCAGUUGGUAGAGCAGAGGACUGAAAAUCCUCGUGUCACCAGUUCAAAUCUGGUUCCUGGCA1;TRNA6, 74 bases, 2BEB10D6 checksum.TRNA6GGGGCCUUAGCUCAGCUGGGAGAGCGCCUGCUUUGCACGCAGGAGGUCAGCGGUCGACCCGCUAGGCUCCACCA1;TRNA4, 75 bases, B11509BB checksum.TRNA4GGGCGAAUAGUGUCAGCGGGAGCACACCAGACUUGCAAUCUGGUAGGGAGGGUUCGAGUCCCUCUUUGUCCACCA1;TRNA10, 76 bases, B2090954 checksum.TRNA10UCCGUCGUAGUCUAGGUGGUUAGGAUACUCGGCUUUCACCCGAGAGACCCGGGUUCAAGUCCCGGCGACGGAACCA19.7.5 uniqueseqThe uniqueseq program takes as input a database �le(s) of sequences (*.sel or *.seq). It sortsthe sequences and outputs a �le containing every sequence with a unique ID (i.e. no dupes arecopied to the output �le). It also outputs messages to the user informing of the following conditionsin the database �le: same id for di�erent sequences; same sequence for di�erent ids; and duplicateid found. If the optional -train mytrainfile.seq is used, the program checks the sequences inthe trainfile and writes any sequence not in the database �le to the output �le. In this case,84



the following user information messages are output: training sequence (ID number) is in databasewith di�erent ID (ID number); training sequence (ID number) is in database with same ID; trainingsequence (ID number) not in database (note: the program currently checks only one training �le).For example:uniqueseq unique -db testme.seq -train trna10.seqwill produce unique.seq.10 System installationThe SAM system runs on a variety of Unix workstations (we have checked installation on worksta-tions including DEC DECstation and Alpha, HP 715, IBM RS6000, SGI Onyx Reality Engine, SunSparc, Intel Pentium with the Linux operating system. The example buildmodel run required 50seconds (user) on an RS6000/350, 45 seconds on a Sun 4/50 with 16 MBytes of memory, 42 secondson a DECStation 5000/240 with 128 MBytes of memory, 33 seconds on the HP 715/50, 14 secondson both a DEC Alpha 3000/400 and the Reality Engine.The distribution includes an INSTALL �le that discusses installation procedures.If compilation did not work, you may need to try de�ning -DDUM as part of the command line. Ifthat does not work, please send email to sam-info@cse.ucsc.edu for help.10.1 Runtime statisticsAt the end of each run of buildmodel, a line of statistics is printed out, such as the line-218.36 -217.00 -217.68 0.96 22 0 149mentioned in Section 3. These numbers are quite useful for quick comparison of results when, forexample, running the program many times using a shell script. The numbers are: minimum NLL-NULL score, maximum score, average score, sample deviation of scores, number of reestimates,number of surgeries, and the length of the �nal model. In the above case, the scores are for thetraining set: if a test set were speci�ed (Section 6.3), the minimum, maximum, average, and sampledeviation for the test set would be reported after the model length, followed by the ratio of theaverage test set score to the average training set score (ideally, this value should be close to unity| larger values may indicate over�tting of the model to the training set).10.2 Reducing runtimeTraining a model can be a be a time-consuming process. Each reestimation cycles through allsequences in the training set, performing a dynamic programming algorithm with operations pro-portional to the product of the total number of characters in the training set and the length of the85



model. Then, there can be large numbers of reestimations, making some runs take overnight.Shorter execution times (and possibly worse models or alignments) can be had in several: a hardlimit can be placed on the number of reestimates, or the stopcriterion can be increased, thoughboth of these can decrease model quality. Similarly, the number of surgeries can be reduced. Oneof the most e�ective ways to reduce runtime is to simply reduce the number of sequences in thetraining set. A small, well-chosen training set, in which close homologues have been eliminated, canproduce better models than a larger, random training set.If a run seems to be taking too long, it is possible to tell SAM to save the next model as a preludeto killing the program. The two UNIX signals, SIGUSR1 and SIGUSR2, can be used to toggle theprint surg models and print all models variables. In the �rst case, models are printed after eachsurgery procedure, and in the second, after each reestimation cycle.10.3 Future FeaturesThere are many future features we would like to include in SAM. The following list will also pointout some of the things you currently cannot do using the system. The items are of varying di�culty.� Elimination of the Zscoring options and reduction of the number of parameters.� Graphical and command line tools for modifying models, including changing node types andprobability tables.� Position-speci�c regularizer strengths to extend the special node concepts between entirely�xed and entirely free.� Model learning and combining using genetic algorithms.� A coarse-grain parallel implementation.� A version that can run on the Kestrel programmable parallel processor:http://www.cse.ucsc.edu/research/kestrel11 Parameter descriptionsThis section alphabetically explains all the parameters that can be speci�ed in an init �le. Where ap-propriate, the type of the parameter and any default value is listed. The default values are automati-cally used by the program if the user does not specify any alternative setting. The dump parametersoption can be used to verify the default values. See Section 5 on page 21.The programs drawmodel and prettyalign do not use parameter �les.The parameter reading routines will accept variations in capitalization and the presence or absenceof underscores. 86



SAM supports reading compressed input �les. If any of the �le name arguments to the options endin a .gz or .Z extension. SAM will read the �les using the approriate decompression program. Ifan input �le does not exist and does not have a .gz or .Z extension is not found, SAM will try toread from a compressed �le with one of these extensions.a2mdots <0 or 1> [1]: By default (1), align2model will place dots in the sequence alignment to�ll space need for other sequences' insertions. If set to 0, these dots are not printed. SeeSection 9.1 on page 50.adjust score <0, 1 or 2> [2]: If set, scores are adjusted appropriately according to the SWmethod,and model and sequence length, so that �nal scores are somewhat independent of sequencelength and model length. Currently, this only applies to fully local scoring, in which case, thelog of the sum of the model and sequence lengths is added to each score. This parameter isused by hmmscore and by multdomain. See Section 9.2.4 on page 64.alignfile <string>: A �le containing an alignment of sequences for use with modelfromalign oras an initial model for buildmodel. See Section 9.4 on page 73. See Section 9.2 on page 56.align fim <0 or 1> [0]: Add FIMs to the ends of a model generated by modelfromalign or analign�le in buildmodel. See Section 9.4 on page 73.alignment weights <string>: A �le containing sequence weights for alignments used to form ini-tial models with buildmodel or models with modelfromalign. See Section 8.4 on page 44.alignshort <integer> [-1]: When less than 0 (default), multiple domain search produces an align-ment �le that copies the entire sequence for each copy of the domain occurring within thesequence. When 0, only the region matching the model is printed. When greater than zero,that many characters to the left and the right of the domain are also printed to the �le. Inboth cases, sequence IDs in the new �le can be used to locate where the hmmscore found copiesof the model. See Section 9.2.5 on page 66.alphabet <string> [protein]: This system supports 3 alphabets: DNA, RNA or protein. Theprotein alphabet is the default, and does not need to be speci�ed. The abbreviation a may beused in place of alphabet. If unset, the �rst train, test, or db �le is checked to see if thealphabet can be determined from the data. See Section 6.1 on page 22.alphabet def <string>: The alphabet def variable can be used to de�ne an alphabet of 2 to 25letters plus a (require) all-matching wildcard character. In the quoted string argument, bothan alphabet name and the list of characters, with the wildcard last, must be speci�ed. SeeSection 6.1.1 on page 23.anneal length <oat> [0.8]: Indicates the speed with which noise should be decreased to zero. Ifgreater than 1, decrease linearly over anneal length reestimates. If less than one, decreaseexponentially. See Section 8.1 on page 40.anneal noise <oat> [5]: Amount of noise to add to the model (decreased linearly or exponen-tially according to anneal length. See Section 8.1 on page 40.auto fim <0 or 1> [1]: Cause hmmscore to automatically add FIMs to the model before scoringwhen simple or complex null model subtraction is used or fully local scoring (SW is 2) is used.See Section 9.2 on page 56.binary output <0 or 1> [0]: Tells addfims, buildmodel, makecounts, modelfromalign, and modifymodelto write models in text format if set to 0 or a binary format if set to 1. Default is currentlytext or 0. See Section 7.4.3 on page 36. 87



calc smooth <0 or 1> [0]: Tells hmmscore whether or not to calculate a smooth curve and writeit to smooth file, or its default (runname.smooth). See Section 9.2 on page 56.cutinsert <oat> [0.5]: If this fraction of sequences use an insert state, surgery will replaced withone or more match states. See Section 8.2 on page 41.cutmatch <oat> [0.5]: When fewer than this fraction of sequences use a match state, surgery willdelete the state. See Section 8.2 on page 41.db <string>: A �le containing sequences that are to be scored against a model in hmmscore oraligned to a model in align2model. Multiple instances of the db variable add to the list ofdatabase �les, rather than replacing the previous db �le name. See Section 9.2 on page 56.del jump conf <oat> [1.0]: Con�dence in the regularizer for transitions leaving a delete state.The regularizer's transition values are multiplied by this number. See Section 7.1 on page 26.dump parameters <0, 1, or 2> [0]: Normally, only modi�ed parameters are printed to the output�le. If this is set to 1, all parameters are printed. If 2, and speci�ed alone on the commandline, buildmodel znd align2model will dump parameters and exit. Because in this case analphabet is not speci�ed and a regularizer not created, a setting of 2 will not reveal the defaultregularizer. See Section 7.4 on page 31.family base file <string>: If non-null, and sequence weights and family specific are spec-i�ed, initial models are read in from the �les whose names are created by appending .i.mod,where i is an integer corresponding to the family number. For example, if there are threefamilies and the base name is test, the family models will be read in from test.0.mod,test.1.mod, and test.2.mod. The �rst model in the �le (of any type, including MODEL,REGULARIZER, NULLMODEL, and FREQUENCIES) is used. An error will result if themodels are of di�erent lengths. See Section 8.4 on page 44.FIM method train <0, 1, 2, 3, 5, 6> [-1]: During the model building process, one may employ aninitial model that contains FIMs. The table probabilities can readily be changed to reectdi�erent distributions. Negative values only cause changes to the tables when models arecreated by the program, rather than being read in. The default setting of -1 uses the letterfrequencies in the training set when generating new models. See Section 7.6 on page 38.FIM method score <0, 1, 2, 3, 5, 6> [-6]: Similar to FIM method train, except that the insert prob-abilities in the FIMs are changed before sequences are scored against the model. Negativevalues only cause changes to the tables when models are created by the program, rather thanbeing read in. The default method of -6 uses the geometric average of match state probabilities.See Section 9.2.1 on page 59.fimstrength <oat> [1.0]: A factor by which to multiply the FIM letter emission probabilities.If set to 2.0, for example, each letter will have twice the probability of being generated as inthe normalized insert state. This can be used to encourage the use of FIMs. The value isalso applied to simple null models. When set to a value less than 0, the absolute value offimstrength is applied to all insert states, FIM or otherwise. See Section 7.5 on page 37.fracinsert <oat> [1.0]: When an insert state is being replaced, surgery will replace it with theaverage number or characters generated by the insert state multiplied by this number. SeeSection 8.2 on page 41.FREQUENCIES: A model structure that has frequency counts rather than probabilities. Output bybuildmodel if the print frequencies parameter is set to 1. The drawmodel program is theonly program that can use frequencies as input. See Section 7.4 on page 31..88



histbins <integer> [10]: Number of bins used by the makehist program. See Section 9.6.1 onpage 78.id <string>: A sequence identi�er, used to restrict align2model or hmmscore to only consideringspeci�c sequences. Multiple occurrences of the id parameter are added to the list of sequenceidenti�ers, rather than replacing the value of id.initial noise <oat> [-1.0]: When greater than zero, amount of noise to add for the �rst itera-tion. See Section 8.1 on page 40.ins jump conf <oat> [1.0]: Con�dence in the regularizer for transitions leaving an insert state.The regularizer's transition values are multiplied by this number. See Section 7.1 on page 26.insconf <oat> [10000]: Con�dence in the regularizer for character probabilities in an insert state.The high default means that the regularizer will overpower the actual counts determined byaligning sequences to the model. The regularizer's character insert values are multiplied bythis number. See Section 7.1 on page 26.insert <string>: Insert another parameter �le. The single character i may be used in place ofinsert. See Section 5 on page 21.insert file dna <string>: Insert another parameter �le if the current alphabet has been set toDNA. This is particularly useful for alphabet-speci�c regularizers. See Section 5 on page 21.insert file protein <string>: Insert another parameter �le if the current alphabet has beenset to protein. This is particularly useful for alphabet-speci�c regularizers. See Section 5 onpage 21.insert file rna <string>: Insert another parameter �le if the current alphabet has been set toRNA. This is particularly useful for alphabet-speci�c regularizers. See Section 5 on page 21.Insert method train <0, 1, 2, 3, 5> [-1]: Similar to FIM method train except that the insert prob-abilities are changed in the nodes that are not FIMs. Negative values only cause changes tothe tables when models are created by the program, rather than being read in. The defaultmethod -1 uses the letter frequencies in the training set when generating models. If the modelor regularizer includes a GENERIC node, then its match and insert tables are also �lled inwith these values. See Section 7.6 on page 38.Insert method score <0, 1, 2, 3, 5, 6> [0]: Similar to FIM method score except that the insertprobabilities are changed in the nodes that are not FIMs. Negative values only cause changesto the tables when models are created by the program, rather than being read in. The defaultmethod 0 is to not change the insert tables during scoring. See Section 9.2.1 on page 59.internal weight <0, 1, 2> [1]: Use internal maximum discrimination sequence weighting. Auto-matically turned o� if not explicitly set and external weights are used. See Section 8.4.3 onpage 47.jump in prob <oat> [1.0]: The probability cost of jumping into the center of the model when theSW option is set. See Section 9.2.4 on page 64.jump out prob <oat> [1.0]: The probability cost of jumping out of the center of the model whenthe SW option is set. See Section 9.2.4 on page 64.mainline cutoff <oat> [0.5]: Changing this value will set both cutmatch and cutinsert to thenew value. See Section 8.2 on page 41. 89



many files <0,1> [0]: When zero, all the output of buildmodel is sent to the .mod �le. Whenset, the probability model, frequency model, and run statistics are printed to di�erent �les.See Section 4 on page 19.match jump conf <oat> [1.0]: Con�dence in the regularizer for transitions leaving a match state.The regularizer's transition values are multiplied by this number. See Section 7.1 on page 26.matchconf <oat> [1.0]: Con�dence in the regularizer for character probabilities in a match state.The regularizer's character match values are multiplied by this number. This variable is ignoredif a prior library is used. See Section 7.1 on page 26.maxinserts <integer> [100]: In buildmodel it, the maximum number of states inserted after anynode by the surgery. See Section 8.2 on page 41.maxmem <integer> [0]: Maximum size of dynamic programming array to use for training and align-ment. See Grice, Hughey, and Speck, and Tarnas and Hughey CABIOS papers for moreinformation on the algorithm used. Depending on system con�guration, performance mayincrease with higher values. If set to zero (the default), SAM will always use the smallestpossible amount of space.maxmodlen <integer> [0]: When starting with multiple, randomly generated models, the longestmodel to use. If set to 0 (the default), the value is calculated as 10% above the averagesequence length when needed. See Section 7.4.1 on page 34.minmodlen <integer> [0]: When starting with multiple, randomly generated models, the shortestmodel to use. If set to 0 (the default), the value is calculated as 10% below the averagesequence length when needed. See Section 7.4.1 on page 34. See Section 7.4.1 on page 34.MODEL: Specify an initial model. See Section 7.4 on page 31..model abort length <integer> [10000]: In buildmodel, if the initial model length is greater thanthis number, an error message is printed and the program is aborted. This is to avoid giantmodels that will never complete training because of their memory or execution time require-ments.model file <string>: If non-null, this �le is read for an initial model. The �rst model in the �le(of any type, including MODEL, REGULARIZER, NULLMODEL, and FREQUENCIES) isused. This will override any models present in inserted �les. See Section 4 on page 19.modellength <integer> [-1]: When greater than 0, sets the model length to a speci�c value inbuildmodel. (overridden if a model or regularizer without a GENERIC node is present). Ifequal to 0 and maxmodlen is less than 1, all model lengths are set to the average length ofthe training sequences. If less than 0, model length(s) are set to a random value betweenminmodlen and maxmodlen according to seed. These two bounds will default to 90% and110% of average sequence length if maxmodlen is less than 1. See Section 7.4.1 on page 34.Motifcutoff <oat> [0.5]: In mutiple motif search, fragments which are smaller than this fractionof the model length are not considered for further processing. Further, processing stops if afragment of length less than the square of Motifcutoff is the best match (this is needed whenusing SW scoring with weak thresholds). See Section 9.2.5 on page 66.mdNLLnull <oat> [-10.0]: Criterion by which subsequences are judged to be matches to a singlemotif (model) during a multiple domain alignment. All occurrences for which NLL-NULL isbetter than the speci�ed value are considered matches. See Section 9.2.5 on page 66.90



NLLnull <oat> [-10.0]: If a selection variable is odd, this value is checked against a sequence'ssimple null model score. See Section 9.2 on page 56.NLLcomplex <oat> [-10.0]: If a selection variable includes 2 in its binary representation, thisvalue is checked against a sequence's complex, user, or reverse sequence null model score. SeeSection 9.2 on page 56.NLLFile <string>: File with already-calculated sequence distances for use with hmmscore, makehist,makeroc or makeroc2. See Section 9.2 on page 56. and See Section 9.6 on page 78..NLLFile2 <string>: A second �le with already-calculated sequence distances for use with makehist,makeroc or makeroc2. See Section 9.6 on page 78.Nmodels <integer> [3]: Multiple initial models can be trained simultaneously, with the best onebeing used for surgery and further training. See Section 7.4.1 on page 34.NscoreSeq <integer> [100000]: Maximum number of sequences to be read by the hmmscore oralign2model program.Nseq <integer> [10000]: Maximum number of sequences to be read from any of the up to foursequence �les or a database �les in buildmodel. See Section 6.3 on page 25.nsurgery <integer> [3]: Maximum number of surgeries to perform. Each surgery will result in afull EM cycle until stopcriterion or reestimates is reached.Ntrain <integer> [0]: Number of sequences to train on. If zero, all sequences that were read fromthe �les train and train2 (up to a limit of Nseq per �le) form the training set. If Ntrainis greater than than the number of sequences read in from the �les train, train2, test, andtest2, all sequences are used for training. If Ntrain is less than the total number of sequencesread in from the four �les, all the sequences are randomly partitioned (using trainseed) intothe training set with Ntrain sequences, and of the remaining sequences (i.e., whether or nota sequence occured in a training �le or a test �le is ignored). See Section 6.3 on page 25.nucleotide prior <string>: The prior library to use if the RNA or DNA sequences are beingmodelled and prior library has not been set. See Section 7.1 on page 26.NULLMODEL: Identi�es a user de�ned null model in a model �le. The parameter subtract nullmust be set to 3 to use this null model. See Section 9.2 on page 56.nullmodel file <string>: If non-null, this �le is read for a complex null model. The �rst modelin the �le (of any type, including MODEL, REGULARIZER, NULLMODEL, and FREQUEN-CIES) is used. This will override any null models present in inserted �les. To use this nullmodel, subtract null must be set to 3. See Section 4 on page 19.plotleft <oat> [0.0]: Lowest X axis value on a graph generated by gnuplot. The X axis iscalculated internally if plotleft=plotright. Used in conjunction with makehist, makerocand makeroc2. See Section 9.6 on page 78.plotline <oat> [0.0]: Creates a vertical line at this value in a graph generated by gnuplot ifplotline is nonzero. Used in conjunction with makehist, makeroc and makeroc2. See Sec-tion 9.6 on page 78.plotmax <oat> [0]: Highest Y axis value on a graph generated by gnuplot. The Y axis is cal-culated internally if plotmax=plotmin. Used in conjunction with makehist, makeroc andmakeroc2. See Section 9.6 on page 78. 91



plotmin <oat> [0]: Lowest Y axis value on a graph generated by gnuplot. The Y axis is cal-culated internally if plotmax=plotmin. Used in conjunction with makehist, makeroc andmakeroc2. See Section 9.6 on page 78.plotnegate <int> [0]: Negates the scores on a graph generated by gnuplot if set to 1. Used inconjunction with makehist, makeroc and makeroc2. See Section 9.6 on page 78.plotps <int> [1]: Creates a postscript �le runname.ps if set to 1. When set to 0, only a .plt �le isgenerated. A square plot postscript �le is generated for a setting of 2. For options 1 and 2, the.data and .plt �les used to create the postscript �le are deleted. When set to 3, the postscript�le is generated and the .data and .plt �les are retained. Used in conjunction with makehist,makeroc and makeroc2. See Section 9.6 on page 78.plotright <oat> [0.0]: Highest X axis value on a graph generated by gnuplot. The X axis iscalculated internally if plotleft=plotright. Used in conjunction with makehist, makerocand makeroc2. See Section 9.6 on page 78.print all models <0 or 1> [0]: When set, models are printed after each iteration of the forward-backward procedure. Models are printed to �les of the form runname.a.mrrr.mod, where`mrrr' is the catenation of the number of the model (or 1 if only one model is being estimatedat a time) and the reestimate number. This variable can be toggled at runtime by sending aSIGUSR2 signal to the program, providing a means to look at intermediate results while theprogram is running or checkpointing a program run.print all weights <0 or 1> [0]: When set, a weight output �le is generated after each iter-ation of the forward-backward procedure. Weights are printed to �les of the form run-name1.weightoutput, where `1' is the number of the iteration.print frequencies <0 or 1> [0]: If this option is set, the frequency counts for each state will beprinted as well as the model.print surg models <0 or 1> [0]: When set, models are printed after each surgery (surgery occursafter a sequence of EM reestimates). Models are printed to �les of the form runname.s.rr.mod,where `rrr' is the reestimation index for the run. When surgery is used, a single winning modelis automatically selected after the �rst EM reestimation loop if multiple initial models areused. This variable can be toggled at runtime by sending a SIGUSR1 signal to the program.prior library <string>: When set, use Dirichlet mixture priors to regularizer the models. Tran-sition costs and insert states are still regularized by the default (or speci�ed) regularizer, butmatch states are regularized with Dirichlet mixtures. The matchconf variable is ignored if aprior library is used, in favor of the prior weight variable. If prior library is not set andprotein prior or nucleotide prior is set, the indicated prior library is used. See Section 7.1on page 26.prior weight <oat> [1.0]: Weight of the prior library, if it is used. See Section 7.1 on page 26.protein prior <string> [recode1.20comp]: The prior library to use if the proteins are being mod-elled and prior library has not been set. See Section 7.1 on page 26.randomize <integer> [50]: Determines how noise is added to the model. See Section 8.1 on page 40.read smooth <0 or 1> [0]: Tells hmmscorewhether or not to read a smooth curve from smooth file,or its default (runname.smooth). See Section 9.2 on page 56.92



reestimates <integer> [40]: Maximum number of reestimates to perform after a surgery. Gener-ally, this should be set higher than the number of iterations that have noise. See Section 8 onpage 39.reglength <integer> [-1]: Similar to modellength, sets the length of the regularizer. Usually notneeded. See Section 7.4.1 on page 34.REGULARIZER: Specify an initial regularizer. See Section 7.4 on page 31.regularizer file <string>: If non-null, this �le is read for a single-component regularizer. The�rst model in the �le (of any type, including MODEL, REGULARIZER, NULLMODEL, andFREQUENCIES) is used. This will override any regularizers present in inserted �les. SeeSection 4 on page 19.rerun <integer> [-1]: The program optimizes Nmodels models until the �rst `surgery', and thencontinues with the best one. Sometimes it is interesting to see how the second best would havedone. If the second best is number 4 (starting from 0!), a setting this parameter to 4 wouldoptimize that model. Models can also be accessed using one print all models.retrain noise scale <oat> [0.1]: If an initial model or alignment is passed to buildmodel,initial noise (or anneal noise if initial noise is unspecified)is scaled by this multi-plier, which must be between 0.0 and 1.0. See Section 8.1 on page 40.seed <integer> [-1]: Random seed for noise generation and for selection of initial model lengths ifmodellength is less than one. The default value causes the process's pid to be used, whichwill then be printed to the output �le to enable replication of results.segments <integer> [1]: Number of segments hmmscore should logically split database into. Seg-mentation is based on number of sequences. See Section 9.2.6 on page 69.segment number <integer> [1]: Segment number among segments. See Section 9.2.6 on page 69.segment size <integer> [100]: Number of sequences read in at a time and given to one of thesegments. See Section 9.2.6 on page 69.select align <integer> [0]: Tells hmmscore what selection criteria should be used for placingaligned sequences into the �le runname.a2m. If 0, no sequences are selected; if 1, sequences areselected according to their simple null model scores and NLLNull; if 2, sequences are selectedaccording to their complex, user, or reverse sequence null model score and NLLcomplex; if 4,sequences are selected according to their Z-scores and Zmax; if 8, all sequences are selected.Selection criteria can be combined: 3 requires sequences to score better than NLLnull withthe simple null model and NLLcomplex with the complex null model. Negative numbers indi-cate that sequences that do not pass the corresponding positive test should be selected. SeeSection 9.2 on page 56.select mdalign <integer> [0]: Tells hmmscore what selection criteria should be used for placing amultiple domain sequence alignment in the �le runname.mult with scores in runname.mstat.Functions as with select align. Only sequences that pass the selection criteria and have aViterbi alignment simple null model score that is better than mdNLLnull will appear in the�les. See Section 9.2 on page 56.select score <integer> [8]: Tells hmmscore what selection criteria should be used for listing se-quence scores in the �le runname.dist. Functions as with select align. See Section 9.2 onpage 56. 93



select seq <integer> [0]: Tells hmmscore what selection criteria should be used for placing se-quences in the �le runname.sel. Functions as with select align See Section 9.2 on page 56.sequence models <oat> [0.0]: Build initial models from randomly-selected sequences in the train-ing set when greater than zero. Value indicates the weight the sequence should have whencombined with the regularizer. See Section 7.3 on page 31.sequence warning <integer> [0]: Primarily for debugging. Set to �1 to print out all sequences inwhich a `wrong' letter was found, or to �2 to print out all sequences.sequence weights <string>: File to read for sequence weights. See Section 8.4 on page 44.simple threshold <integer> [0]: Complex, user, and reverse sequence scores will not be calcu-lated by hmmscore unless the simple null model score is less than this number. Set to 10000to require all scores to be calculated. See Section 9.2.1 on page 59.smoothfile <string>: Name of �le for input or output of data used in calculation of Z-scores. SeeSection 9.2 on page 56.sort <integer> [1]: Indicates whether or not sequence scores should be sorted by hmmscore. Witha value of 1, sequences are sorted by column 1 (simple null model score). With a value of 2,sequences are sorted by column 2 (other null model selections; see subtract null). With avalue of 3, sequences are sorted by Z-score if available or by column 1. When negative, scoresare sorted in reverse order, worst �rst. When 0, scores are not sorted. Sort also indicateswhether or not uniqueseq should sort sequence IDs and sequences to check for uniqueness.See Section 9.2 on page 56 and Section 9.7.5 on page 84.stopcriterion <oat> [0.1]: The reestimation loop will stop whenever the improvement in theNLL score is less than this number (provided noise is less than 10% of its original value forthat iteration), or when the maximum number of reestimates is reached. See Section 8 onpage 39.subtract null <integer> [1]: In hmmscore and other programs, decides the type of null model tobe used. In score �les, this will be the second score column (the �rst is always the simple nullmodel). When set to 0, raw scores are reported in the second column. Setting to 1 providessimple null model scores; to 2, complex null model scores; to 3, user's input null model; andto 4, the reverse sequence null model.surgery noise scale <oat> [0.1]: After the �rst surgery, anneal noise is scaled by this multi-plier, which must be between 0.0 and 1.0. See Section 8.1 on page 40.SW <integer> [0]: When set to 1 , hmmscore uses submodel to sequence scoring. When set to 2 ,hmmscore uses submodel to subsequence scoring. Can also be used with align2model but notcurrently with buildmodel. Similar to the Smith and Waterman method. See Section 9.2.4on page 64.test <string>: A �le to read test sequences from. See Section 6.3 on page 25.test2 <string>: A second �le to read test sequences from. See Section 6.3 on page 25.trainseed <integer> [-1]: Random seed for partitioning the sequences into the test set and thetraining set. The default value causes the process's pid to be used, which will then be printedto the output �le to enable replication of results. See Section 6.3 on page 25.train <string>: A �le to read training sequences from. See Section 6.3 on page 25.94



train2 <string>: A second �le to read training sequences from. See Section 6.3 on page 25.train reset inserts <0,1,2,3, or 6> [6]: At the end of buildmodel training, all insert and FIMcharacter tables are set according to this variable, which takes on the same meanings asFIM method train. The default setting is to set all insert and FIM tables to the normalizedgeometric average of the match state costs. See Section 7.6 on page 38.trans priors <string>: The name of the structure-speci�c transition prior library to use whenstructural information for transition probability estimation is to be used for HMM estimation.See Section 7.1.2 on page 28.transweight <oat> [1.0]: A multiplier that a�ects the inuence of the pseudocounts generatedby the structure-speci�c transition priors. See Section 7.1.2 on page 28.template <string>: For use with the structure-speci�c transition prior library. A three- column �le(amino acid sequence, secondary structure, accessibility) that is used during HMM estimationto assign a structural environment to each model node. See Section 7.1.2 on page 28.viterbi <0 or 1> [0]: If this is set, score or train using the Viterbi algorithm rather than EM. SeeSection 9.2 on page 56.weight final <oat> [1.0]: The �nal (steady-state) multiplier of sequence weights. The default(1.0) means that, if no sequence weight �le is used, each sequence is weighted as being onesequence. If a weight �le is used, all values in that �le are multiplied by this value. SeeSection 8.4 on page 44 and Section 8.1 on page 40.weight length <oat> [0]: An annealing schedule for the sequence weight multiplier. If greaterthan 1.0, the weight multiplier is increased from zero linearly over weight length reestimates.If less than one, increase exponentially. See Section 8.4 on page 44 and Section 8.1 on page 40.window size <integer> [1000]: Window size for use in Z-score calculation by hmmscore. See Sec-tion 9.2 on page 56.Zmax <oat> [4.0]: Z-score beyond which points are considered outliers during curve �tting inhmmscore. When a selection variable includes 4 in its binary representation, Zmax is used todetermine what sequences are selected. Also, when select score/seq= 4, sequences with aZ-score greater than Zmax are selected. See Section 9.2 on page 56.
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