
1

Modelling and Analysis
of a Transport Multicast Protocol

Alexandre Brandwajn (1)1* and Serge Fdida (2)

UCSC-CRL-96-20

(1) University of California, Santa Cruz, 225 Applied Science Building, Santa
Cruz, California, Tel. +1 408 459 4023, alexb@ce.ucsc.edu
(2) Laboratoire MASI-CNRS, Université P.&M. Curie, 4 place Jussieu, 75005 Paris,
France
Tel. +33-1-44-27-30-58, Fax. +33-1-44-27-62-86, email: fdida@masi.ibp.fr

Contact person: Serge Fdida

1* This work was done while the first author was on sabbatical at MASI

2

Abstract

Point-to-multipoint communication is becoming a major need to handle
multimedia applications and cooperative work. Multicast protocols are being
designed in order to extend reliable transfer of information to multipoint
configurations. Such protocols have to cope with several issues such as
implosion of control packets that limits scalability or error management
mechanisms to provide a reliable delivery of information to the end user. Most
of these protocols are sensitive to the network environments and the parameters
used to control the exchange of informations. It is therefore mandatory to
properly size these parameters in order to operate the protocol efficiently.
Performance analysis is then required. We consider a multicast algorithm akin to
the bucket algorithm proposed in XTP3.6. We develop a queueing model that
allows us to represent the key features of the proposed protocol, and assist in
properly sizing its parameters. We discuss the model accuracy, and analyze the
results as a function of various network environments.

I- Introduction

High speed networks, based on several technologies, are now under development
with speeds projected to reach into Gbps. This dramatic increase in network
bandwidth represents a tremendous opportunity to develop new services. In
particular, multimedia, distributed computing and cooperative work appear as
promising applications for the near future. Important new functionalities are
required in order to satisfy the requirements of these emerging applications. The
multicast facility, for instance, is expected to be widely used in groupware,
distributed computing and multimedia applications. In this paper, we focus on a
transport multicast protocol. Our goal is to analyze the performance of selected
key aspects of such a mechanism, and to provide a first set of guidelines for the
sizing of main parameters of the protocol in order to achieve a target Quality of
Service (QoS).

The concept of multicast communications has received much recent attention.
Service, protocols [Cha84, Bir91, Gar91, Ngo91, Raj92] and mechanisms
[Agh94,Pin94] have been addressed for various network environments [Car94a,
Dee94, Rob95]. One can point the work carried out in standardization committees
(IETF, ANSI, ISO, ATM, etc. [Dee89, Coh91, Mou92, Coc92, ISO93, MPC95] and
projects CIO [Mil93, Mat93], Berkom [Del93], Cesame [Ann94] for the definition of
a multicast taxonomy, service and protocol. A transport layer multicast shall
provide a simultaneous transfer of the same TPDU to a number of peer transport
layer entities. In providing such a multicast service, the transport layer relies on
the multicast capabilities provided by the network layer if any. Multicasting can
be achieved at different levels. It is often natural at the MAC layer, also provided
at the AAL layer (without error recovery), and at the network layer [Dee89].
When applied at the transport layer, functionalities to be used rely on the
multicasting facilities provided at the lower layers, namely, either MAC, AAL or
IP layer. Transport layer multicasting will be more easy to design if the

3

underlying service provide an efficient multicasting facility (for instance MAC or
IP layer); if such a facility is not provided, other problems have to be solved such
as packet replication, implosion, error recovery, addressing, group management.

We consider a communication situation where a single data stream is sent from a
transmitter to a set of receivers. This mechanism, named multicast, is designed
to operate on different classes of networks. We restrict ourselves to a multicast
facility, akin to XTP3.6 [PEI92, San92, PEI94], designed to work on top of a Local
Area Network that handles the broadcast property. Moreover, the transmitter
does not require any knowledge of group membership. An extension of this
protocol to ATM based networks and large group management is presented in
[Fdi96]. Other approaches are presented in [Car94b], [Flo95].

The basic purpose of the multicast protocol under study is to provide a reliable
error control mechanism for multicasting operation. The transmitter sends
control and data packets to a set of K receivers (known as a multicast group) that
responds by sending back control packets (such as acknowledgements). The
multicast system under consideration is shown in Figure 1.

Transmitter

Receiver 1

Receiver K

Network

Cntl & Data packets

Cntl packets (Echo)

Figure 1: The multicast system

The paper is organized as follows. Section 2 describes the basic operation of the
multicast protocol under consideration, akin to XTP3.6. Section 3 presents the
model of the system. Its solution is obtained under memoryless assumptions,
using a fixed-point iterative procedure. Section 4 is devoted to the analysis and
sizing of the key parameters of the system. With the help of the results of discrete-
event simulations, we investigate also the accuracy of our model. Finally, Section
5 concludes the paper and outlines further studies.

4

II- System description

We now briefly describe the basic mechanisms of the multicast operation on
which we base our analysis. The protocol works roughly as follows. Periodically,

every ∆ time units, the sender sends control packets identified by a set of
parameters including a sequence number (sync). A receiver responds to such a
control packet by a packet of its own identified by the same sequence number
(echo=sync), and which carries additional information (composite information).
Thus, the sequence numbers ensure that a response control packet is associated
with the correct request control packet.

The bucket algorithm is used to manage the multicast error control procedure.
When the sender transmits a control packet identified by a given sync value, it
expects to receive a response to this control packet within a specified time
window (Tw). Reply packets received within this window are accumulated and
analyzed so as to extract the most conservative values.

The system has at its disposal a fixed number of buckets, and a bucket is
associated with every control packet issued by the transmitter in order to hold
the information of the corresponding reply packets. Thus, the information
contained in a bucket serves to identify packets that have been correctly received
at a given point in time.

The protocol recognizes as errors the following three conditions: a packet
is received with errors, a packet is lost, or the reception of the reply packet is
delayed beyond the lifetime of the corresponding bucket. When a bucket has to
be freed, the information it contains allows the sender to determine which
packets, if any, should be retransmitted. We assume here that the retransmission
procedure is Go-Back-N (all packets starting form the first one in error are
retransmitted). As response packets can be lost or delayed, this multicast
mechanism is only statistically reliable.

The bucket is a data structure containing fields of interest in the
management of the error recovery procedure such as dseq and rseq. rseq is the
sequence number of the last packet "correctly" received by the receiver protocol
entity, and dseq is the number of the last packet passed to the receiver service user
entity.

The periodicity with which control packets are generated is referred to as

the control period ∆. Clearly, a consistency relationship must exist between the

number of buckets (Tw/∆), the round trip delay and the control period. The
lifetime of a bucket extends from the moment a bucket is created to the moment
it has to be recycled to make space available for another control packet. To ensure
correct operation, this lifetime should be greater than the round trip delay. The
greater the lifetime of a bucket, the lower the number of retransmissions due to
delayed reply packets. On the other hand, because the sender's input buffer has a
finite capacity and is updated when a bucket is released, a longer bucket lifetime

5

will tend to increase the probability of packet loss at the sender due to buffer
overflow.

The lifetime of a bucket is related to the number of buckets in the system.
A larger number of buckets allows to increase the frequency of sampling (i.e.,
decrease the control period). More frequent sampling reduces the number of
packets to be retransmitted in case of error. This has a positive effect on the
throughput of the system. However, more frequent sampling increases the
overhead both in terms of the amount of information transmitted and in terms
of processing required (which appears to be unacceptable for moderate to large
group size). This tends to have a negative effect on system throughput. Thus,
there are several tradeoffs involved, and the reliability achieved using this

mechanism is a function of Tw, ∆, and the network parameters. It is the goal of
this paper to provide a first level sizing of these protocol parameters.

The control packet operation is illustrated in Figure 2.

time

Transmitter

ReceiversCNTL [Sync(i)]

Echo(i), composite information

late response

loss

1

j

KTw

bucket(i)

bucket(i+1)

bucket(n)

∆

CNTL [Sync(n)]

CNTL [Sync(i+1)]

Figure 2: Control packet operation

III- Model of the system

We propose a model of the multicast protocol in which both the sender
and the receivers are viewed as finite capacity queues. The network delay is
represented by a delay server (infinite server queue). Packets can be lost both at
the sender queue and at the receiver queues due to buffer overflow. We consider
a system in which all receivers are statistically identical, so that we use a single
queue to model the set of receivers. The resulting model is shown in Figure 3.

6

input traffic

input loss

µ
Tp

Net
Delay

output loss

TRANSMITTER K RECEIVERS

response

Size N Size L

ν

∆

Figure 3: Model of the system

3.1- Assumptions and Notations

We consider a set of K receivers. Each receiver responds immediately to a
control packet. As mentioned before, an error can occur either because of a
transmission error over the network, a packet loss at the receiver entity, or
simply because of a delayed arrival at the sender of the response control packet
from a receiver (this latter condition is referred to as Delayed Echo Packets).

As a first step, we are interested in evaluating the throughput of the system as a
function of input and output buffer sizes and the duration of the control period.
We assume that Tw is sized according to the maximum network round-trip delay

so that delayed Echo packets never occurs. In this case, the control period (∆) is a

key parameter, because it also fixes the number of buckets (Tw/∆).

We use the following notations:

- referring to the input buffer, we call class 1 customers messages awaiting
transmission. We call class 2 those messages which have been transmitted
and stored waiting for an acknowledgement,

- Tp is the mean one way propagation delay over the network, and we let

γ=1/(2Tp),

- pin(n1,n2) is the probability that there are n1 class 1 customers and n2 class 2
customers in the input buffer Bin,

- Pin(n) the probability that there are n customers (class 1 plus class 2) in the
input buffer Bin,

- pin,2(n2) probability that there are n2 customers of class 2 in the input buffer
Bin,

- Pout(n) probability that there are n customers in the output buffer Bout,

For simplicity and tractability, in the sequel, we assume that service times at the

sender and receiver are exponentially distributed with mean 1/µ and 1/ν ,
respectively. Similarly, the propagation network round-trip delay and the control

interval are assumed to be exponentially distributed with mean 1/γ and 1/δ

7

respectively. The impact of some of these distributional assumptions was studied
using discrete event simulation. Section 4 addresses this subject.

3.2- Sender analysis

For our purpose here, we view the sender as an input buffer of size N. The

input traffic is assumed to be Poisson with parameter λ. The packets sent are
stored in the buffer until an acknowledgement is received allowing to delete
from the buffer the number of packets corresponding to the indications contained
in the acknowledgment. Our model accounts for the fact that several data packets
can be acknowledged by a single response packet. If a transmission error occurs,
the sender enters a retransmission procedure according to the response control
packets received so far.

The proposed model of the input buffer is shown in Figure 4.

Input Traffic
Capacity N

Transmission

µ

Ack Buffer
Network & Receivers

Go-Back-N

Control (Echo) Packets - every

Retransmission

Release

rseq

dseq

n2

n1

n=n1+n2loss

Copy

Transmitted

∆
Parameters dseq, rseq

Figure 4. The input buffer model

The packets sent enter the input buffers if there is space available or are lost
otherwise. They wait for transmission (population n1) in the buffer. Once they are
transmitted, a copy is kept in the input buffer until the corresponding
acknowledgement is received (population n2). When the corresponding bucket is
recycled (after Tw), a group of packets is released from the input buffer
(corresponding to the value dseq), and another group could be retransmitted
according to the received value rseq.

Referring to the bucket recycling instant let:

pa(k |n1,n2) be the probability to free a group of k packets (k=0,…, n2) from the input
buffer knowing that there are n1 packets waiting for transmission and n2 for
acknowledgement.

8

pb(m |n1,n2) be the probability to retransmit a group of m packets from the input
buffer knowing that there are n1 packets waiting for transmission and n2 for
acknowledgement.

We denote by N and L the capacity of the input and output buffers, respectively.
n1 + n2 ≤ N.

The following general balance equations are obtained for the input buffer model:

1- n2 <L. In this situation, there are no retransmissions.

pin(n1,n2) [λ+µ+δ*(n1,n2)]

= pin(n1-1,n2) λ + pin(n1+1,n2-1) µ {arrivals + transmission}

+ δ pa(k | n1,n2+k)∑
k=1

N-(n1+n2)

 pin(n1,n2+k) {release of k packets}

where δ*(n1,n2) = δ pa(k |n1,n2)∑
k=1

n2

2- n2 =L. This is a particular state because it is entered upon retransmission
due to buffer overflow of the output buffer (capacity L).

pin(n1,n2=L) [λ+µ+δ pa(k | n1, L)∑
k=1

L
]

= pin(n1-1,L) λ + pin(n1+1,L-1) µ {arrivals + transmission}

+ δ pa(k | n1,L+k)∑
k=1

N-(n1+L)

 pin(n1,L+k) {release of k packets}

+ δ ∑
m=1

n1

pb(m | n1-m,L+m) pin(n1-m,L+m) {retransmission of m packets}

3- n2 >L.

pin(n1,n2) [λ+µ+δ pa(k | n1, n2) + δ pb(m | n1, n2)∑
m=1

n2-L

∑
k=1

n2

]

= pin(n1-1,n2) λ + pin(n1+1,n2-1) µ {arrivals + transmission}

9

+ δ pa(k | n1,n2+k)∑
k=1

N-(n1+n2)

 pin(n1,n2+k) {release of k packets}

The conditional probabilities pa() and pb() are derived from models of other
systems components as described hereafter and summarized in Section 3.6.

From the input buffer analysis, we obtain the input buffer probabilities and hence
the traffic directed to the output buffer, taking into account losses that occur at the
input buffer:

λ* = λ [1-Pin(N)]

3.3- Receiver analysis

The set of receivers is taken to comprise K statistically identical stations. The
station generates answers to the CNTL packets issued by the sender. Answers are
broadcast to the group (sender and receivers) and consist mainly of
acknowledgement packets used to free the input buffer, and to initialize the
retransmission procedure in case of error.

The receiver queue is viewed as an output buffer of capacity L, and its model is
represented in Figure 5.

Echo back to the sender

(Go-Back-N)

Output Buffer

loss
buffer full

≤L

λ

ν

shutdown arrivals packets
departures

Control
period

∆

'

dseq, rseq

Figure 5. The output buffer : model of a receiver

λ' is the mean total rate of arrivals of data packets at the output buffer. It includes
both first transmissions and retransmissions from sender to receivers. This traffic

λ' enters the output buffer if free space is available or is lost otherwise (and will
later generate retransmission of the lost packet and subsequent ones). The control
procedure is modeled through the transmission back to the sender of the Echo

packets. They are sent periodically every ∆ and carry the control parameters dseq
and rseq.

10

3.4- Analysis of the output buffer

We are now interested in the analysis of the output queue that represents
the behavior of receiver's buffers. For a given receiver, the number of packets to
be retransmitted corresponds to the set of packets between the first received in
error (loss or transmission error) and the last packet stored in the input queue
because the retransmission procedure is Go-Back-N. To simplify our analysis, we
start by neglecting transmission errors, i.e., we assume that the only errors
possible are those caused by output buffer overflow. According to this
assumption, as long as the output buffer is not full, every single packet will be
received correctly and acknowledged to the source. As soon as the output buffer
becomes full, the protocol management is able to inform the source that the
retransmission procedure must be attempted.

An important point is that during the period from the instant when the loss
occurs to the moment when the first recovered packet arrives at the output
queue, no packet will be admitted in the output buffer due to Go-Back-N. Hence,
to model loss of packets due to buffer full condition, we shut down arrivals for a

period of duration 1/τ= 2Tp + 1/ν + ∆/2, where Tp is the one-way network delay,

1/ν is the average treatment time for a message at the receiver, and ∆ is the
duration of the control period. In order for the procedure to be efficient, the
output loss will have to be kept very small, so that we assume that the input flow

(initial packets plus retransmissions) is still Poisson with parameter λ'.

In our analysis of an output buffer, we consider that the output buffer can be in
one of two states: state 1, referred to as Regular, prevails when no loss occurs, and
state 2, referred to as the Shutdown state, occurs when an arriving data packet
finds the buffer full. We denote the system state as p(n,i), n=0,…,L, and i=1,2,
where n is the number of packets stored in the output queue and i is the current
status (Regular or Shutdown). Also, we let Pout(n) be the number of packets stored
in the output queue.

To solve the equations for p(n,i), we observe that p(n,i) can be expressed as

p(n,i) = Pout(n) p(in) , where p(in) is the conditional probability that the output
buffer is in state Regular or Shutdown given the number of packets.

Pout(n) is then given by

Pout(n) = G ∏
i=1

n

 λ'(i-1)

 ν
, n=1,…, L

where G is a normalizing constant

with λ'(i) = λ'[1-p(2 | i)], i=0,…, L

and we obtain the following recurrent solution for the conditional probabilities

p(in).

11

For n=L:
From the balance equation:

p(L, 2) (τ+ν) = p(L, 1) λ'

we get, p(2 | L) (τ+ν) = p(1 | L) λ'

so that, p(2 | L) (τ+ν) = [1-p(2 | L)] λ'

p(2 | L) = λ '
λ'+ν+τ

then for n=L-1, …, 1:

p(2 | n) (τ+ν) = p(2 | n+1) ν
λ' [1-p(2 | n)]

ν
p(2 | n) (τ+ν) = λ' p(2 | n+1) - λ' [p(2 | n+1) p(2 | n)]
p(2 | n) {τ+ν+ λ' p(2 | n+1)} = λ' p(2 | n+1)

p(2 | n) =
 λ' p(2 | n+1)

 λ' p(2 | n+1)+ν+τ

and finally for n=0:

p(2 | 0) =
 λ' p(2 | 1)

 λ' p(2 | 1)+τ

The solution of the output buffer enables to compute Pout(L), which is the loss
probability that fires retransmissions. The number of packets to be retransmitted
is equal to the number stored in input buffer minus the capacity of the output
buffer. We assume, as necessary for an efficient operation of the system that, the
input buffer capacity N is larger than the output buffer capacity L.

3.5- Additional models

Two additional models are developed in order to capture
1- the bulk size distribution of packets that are positively acknowledged and thus
released from the input buffer every control period. We refer to this model as the
acknowledgement model,
2- the auxiliary model is used to capture the distribution of outstanding packets
that are either in transit within the network or in the output queue knowing that
n2 packets are awaiting acknowledgement in the input buffer.

3.5.1- The acknowledgement model

The acknowledgement model is designed to yield the bulk size distribution of the
positively acknowledged packets knowing that n2 packets are waiting for an
acknowledgement. We start by the case of a single receiver. The corresponding
model is shown in figure 6.

12

Network +
Output queue

Network + Output queue

k

∆

Release k packets
dseqω

λ (n2 2)(n)
n0

Figure 6. The acknowledgement model

We use a memoryless state dependent process with rate λ2(n2) for arrivals. The
first queue represents the time from the instant a packet is passed to the network
by the sender to the moment a corresponding Echo packet will reach the input
queue. We use the throughput of the output buffer queue as the service rate of
the corresponding "server":

ω(n0)=ν [1-pout(ns=0 |n0)]

and λ2(n2) = Prob(n1>0 | n2) µ

with n0 + k = n2

where k is the number of packets to be released.

We use the following notations:

pout(ns=0 |n0) is the conditional probability that the output queue is empty given
the total number of packets in network and output queue, and is obtained using
the auxiliary model described in 3.5.2.

Prob(n1>0 |n2) is the conditional probability that the sender has packets to send
given that n2 await acknowledgement, and it can be derived from the solution of
the input queue.

Let p(n0 , k) be the joint probability that there are a total of n0 packets in the
network and the output queue and k packets can be acknowledged. We readily
obtain the following balance equations:

1- k>0

p(n0, k) [λ2(n0+k) + δ + ω(n0)]

= p(n0-1, k) λ2(n0+k-1) + p(n0+1, k-1) ω(n0) for n0 >0

p(0, k) [λ2(k) + δ] = p(1, k-1) ω(n0) for n0 =0

13

2- k=0

p(n0, 0) [λ2(n0) + ω(n0)] = p(n0-1, 0) λ2(n0-1) + p(n0, k)∑
k=1

N-n0

δ for n0 >0

and

p(0, 0) λ2(0) = p(0, k)∑
k=1

N

δ

Again, we find it convenient to resort the conditional probabilities through the

identity p(n0, k) = p(n0) p(k |n0) . Substituting this relationship into balance

equations for p(n0, k) , and using the fact that p(n0) can be expressed as

p(n0) = H λ0(i-1)
ω(n0)

∏
i=1

n0

where λ0(n0) = Prob(k | n0) λ2(n0+k)∑
k=0

N-n0-1

and H is a normalizing constant.

we get:

1- k=0

p(0 | 0) = δ
λ2(0) + δ

p(0 | n0) =
δ + p(0 | n0-1) + λ2(n0-1) ω(n0)

λ0(n0-1)
λ2(0) + ω(n0) + δ

2- k>0

p(k | n0) [λ2(n0+k) + δ + ω(n0)]

= p(k |n0-1) λ2(n0+k-1) ω(n0)
λ0(n0-1)

 + p(k-1 |n0+1) λ0(n0)

and Prob(k | n0)=1∑
k=0

N-n0

It is not difficult to solve these equations using a fixed point iteration. Thus, the

acknowledgement model yields the probability p(n0 , k) in the case of a single
receiver. Its use and application to multiple receivers are discussed in section 3.6.

14

3.5.2- The auxiliary model

This model is used to approximately compute the probability to find ns packets in
the output buffer for a given load of n0 packets in the system. We denote by

pout(ns|n0) this probability. The model is shown in figure 7.

Output Buffer

≤L

Network

2Tp
ν

ns

n3

n0n3 ns+ =

Figure 7. The auxiliary model

We compute the probability that the output buffer overflow given the number of
packets waiting for an acknowledgement as the probability that the output queue
is at capacity but in its Regular state (not yet Shutdown), and a packet arrives from
the network during a service time of the output queue.

This yields: p(overflow | n2) =

pout(ns=L | n0) p(n0 | n2) p(one arrival during 1/ν) p(i=1| L)∑
n0=L

n2

The first term of the right hand side of the equation is obtained from the auxiliary

model, p(n0 | n2) from the acknowledgement model, and the last term from the
output model.

3.5.3- Workload from other stations

The traffic patterns are described by the source traffic. However, additional traffic
can be received by any receiver or the sender from other connections. In a first
step, we would like to incorporate in our model the feedback control traffic from
the receivers due to the Echo packets. Let Techo be the time to process an Echo

packet by the sender. This control traffic will consume a percentage α of the
sender's processing capability. We represent this effect as an elongated service
time, i.e. reduced processing rate at the server:

µr= µ[1-α] , where α=KTecho

∆

15

3.6- Solution procedure

As described above, we have decomposed the system under consideration
into four models: the input buffer at the sender, the output buffer at the receiver,
the acknowledgement process to derive the distribution of the number of
messages released each control period, and the auxiliary model to account for
network transit delays. It is apparent from our discussion that these models
depend on one another in the sense that results of one model determine the
values of input parameters for another model. This, naturally suggests an
iterative approach.

First, we solve the auxiliary model outside the fixed point iteration. Its

solution produces pout(ns|n0) , the conditional probability that there are ns packets
in the output queue given that there are n0 packets in the network and output
queue.

Thus, starting with the offered traffic λ as the initial value for λ', the rate of
message arrivals to the output queue, we consider the models in the following
order.

1- the output buffer model

Its solution produce, the conditional probability p(i=1|n=L) that the output

buffer is in its regular state given that it is at capacity, and θ, the number of
packets processed per time unit. Additional performance measures, such as the
distribution of the number of packets at the receiver or the mean sojourn time,
can also be computed.

2- the acknowledgement model

Its solution produces the probability p(n0, k) that there are n0 packets in the
network and output queue, and k packets to be acknowledged. This allows us to

compute p(k|n2) , the conditional probability that k packets are acknowledged
given the total awaiting acknowledgements (n2=n0+k), as well as the conditional

p(n0|n2) . Using p(n0|n2) together with pout(ns|n0) we evaluate the probability of

output buffer overflow given n2 : p(overflow|n2) . p(k|n2) is used as an

approximation for pa(k |n1,n2), and p(overflow|n2) is used for pb(m |n1,n2). Note
that in both cases we neglect the dependence on n1, i.e., we treat n2 as the
dominant condition.

The acknowledgement model of section 3.5.1 considers a single receiver. With
multiple receivers, the protocol will retain the most conservative value of the
number of packets acknowledged. The K receivers in our set are all subject to the
same input stream and, therefore, can not be treated as K independent units.
Based on comparisons with discrete event simulation, we find that, when the
number of receivers exceeds 4 or 5, the distribution of the number of packets
acknowledged is quite accurately represented by considering the convolution of

just two identical distributions p(ki,n2). The p(ki,n2) come from the solution of

16

the acknowledged model with a single receiver, and we combine them so as to get

the most conservative case: p{k=l|n2} = Prob {k1≥l and k2≥l|n2} .
It is the result of this transformation that we use as the probability that k packets
are acknowledged given that a total of n2 are awaiting acknowledgment. Note
that, in some sense, it is as if the two worst receivers were masking all the other
ones since our acknowledgment model corresponds to a receiver with no
"advance" over other receivers in the set. For a small number of receivers, such
as 2 our 3, our results tend to be conservative.

Both p(k|n2) and p(overflow|n2) are used as parameters in the input buffer

model. To solve the acknowledgement model, we need pout(ns=0|n0) from the

auxiliary model, and p(n1>0|n2) from the input buffer model.

3- the input buffer model

Its solution produces p(n1,n2) , the joint probability that there are n1 packets
to be retransmitted and n2 packets awaiting acknowledgement. Hence, we get

p(n1|n2) and the admitted traffic λ* = λ [1-Pin(n1+n2=N)].

In the fixed point approximation, we use the value of λ* obtained from the

analysis of the input buffer to determine the value of λ ', the rate of packet

arrivals to the output queue, so that the throughput θ of the latter equals the
admitted traffic at the sender. A straightforward adjustment

λ 'i+1 = λ 'i . λ* i

θ
, i=1,2, …

where the superscript denotes the iteration number, turns out to work well in
practice.

We do not have a formal proof of convergence. Experimental evidence
indicates that the proposed iteration converges within just a few iterations:
typically on the order of 10 for a relative difference between consecutive values of

λ* less than 10-5.

IV- Results and Analysis

This section is devoted to the analysis of both the method accuracy and
results obtained for many network configurations.

The approximation approach described above enable us to compute system
parameters such as throughput, delay, buffer size distribution, loss probabilities,
distribution of the number of packets released/retransmitted per control period,
etc. To assess its accuracy, we compared our method with simulation. In the
simulation, we considered both constant and exponential distribution for the

parameter ∆ in order to check the influence of this distributional assumption. We
ran a number of simulations for many network configurations and compared the
key parameters. The results indicate that our approach is a robust method able to

17

take into account many difficult features of the system. Having gained confidence
in the method's performance, we used it in order to study the system behaviour
as a function of different network scenarios.

We used the following parameters to check the method accuracy against
simulation:
Pin(i) is the probability to find i (i=1,…,N) customers in the input queue,
Pout(j) is the probability to find j (j=1,…,L) customers in the output queue,
P(n2), n2=1,…,N, is the distribution of the number of packets awaiting for
acknowledgment in the input buffer,
Plib(k), k=1,…, N-L, is the distribution of the number of packets released from the

input buffer per control period ∆,
Total Delay is the delay experienced by a packet to be correctly delivered to the
end-user.

Table 1 compares results obtained with simulation (for a selected receiver) and
the model for the following parameters:

K= 10, N=15, L=6, Tp=1ms, ∆=100ms, Techo=1ms, λ=50pack/s, µ=200pack/s,

ν=100pack/s.

Recall that K is the number of receivers, N is the capacity of the input buffer at the

sender, L denotes the capacity of the output buffer at each of the receivers, ∆ is the
duration of the control period, Techo is the time to process an echo packet at the

sender, λ is the average rate of arrival of packets to the sender, 1/µ is the mean

time to process a packet at the sender, and 1/ν is the mean time to process a packet
by the receiver (exclusive of queueing in the buffer).

Parameters Analytic Simulation (∆=Exp) Simulation (∆=Cst)

Pin(0) 0.0153 0.017 0.012
Pin(N) 0.118 0.148 0.012
Pout(0) 0.515 0.531 0.458
Pout(N) 0.006 0.008 0.012

P(n2=0) 0.02 0.023 0.017
P(n2=1) 0.053 0.044 0.049
P(n2=2) 0.083 0.065 0.083
P(n2=3) 0.098 0.078 0.108

Plib(0) 0.184 0.165 0.0045
Plib(1) 0.143 0.138 0.026
Plib(2) 0.116 0.118 0.069

Tot. Delay(ms) 31.84 35.24±0.52 35.22±0.38

Table 2 presents results obtained with simulation and the model for the
following parameters:

18

K= 10, N=15, L=6, Tp=20ms, ∆=100ms, Techo=1ms, λ=50pack/s, µ=200pack/s,

ν=100pack/s.

Parameters Analytic Simulation (∆=Exp) Simulation (∆=Cst)

Pin(0) 0.0015 0.0078 0.0015
Pin(N) 0.174 0.182 0.034
Pout(0) 0.546 0.550 0.467
Pout(N) 0.004 0.007 0.009

P(n2=0) 0.002 0.01 0.002
P(n2=1) 0.007 0.02 0.012
P(n2=2) 0.021 0.033 0.03
P(n2=3) 0.046 0.054 0.055

Plib(0) 0.195 0.204 0.0042
Plib(1) 0.148 0.142 0.026
Plib(2) 0.118 0.114 0.074

Tot. Delay(ms) 51.01 53.79±0.78 53.53±0.47

Table 3 shows the results obtained with simulation and the model for the
following parameters:

K= 10, N=15, L=6, Tp=10ms, ∆=100ms, Techo=1ms, λ=25pack/s, µ=200pack/s,

ν=100pack/s.

Parameters Analytic Simulation (∆=Exp) Simulation (∆=Cst)

Pin(0) 0.015 0.059 0.075
Pin(N) 0.014 0.010 0.0
Pout(0) 0.729 0.73 0.723
Pout(N) 0.0002 0.0002 0.0003

P(n2=0) 0.018 0.069 0.087
P(n2=1) 0.11 0.144 0.185
P(n2=2) 0.178 0.17 0.222
P(n2=3) 0.175 0.155 0.193

Plib(0) 0.288 0.275 0.079
Plib(1) 0.204 0.211 0.199
Plib(2) 0.145 0.150 0.26

Tot. Delay (ms) 31.6 31.7±0.39 31.77±0.24

Although we cannot present all the results here, we see that they are generally in
good agreements with the simulation results obtained for an exponentially

19

distributed control period (∆). Simulation results for a constant control period
differ from the analytical model results mainly for the computation of the

distribution of packets released every ∆. However, the key parameters are still
within an acceptable relative error even for worst case configurations. We found

that the relative error tends to be larger for smaller values of ∆, and larger values
of Tp. Given the very simple network model used, the latter effect is not

surprising. The increase in relative error as ∆ becomes small is not fully
understood.

The analysis of the protocol behavior is presented in figures 8 to 12. The influence
of the control period and the propagation delay on the offered traffic and the
acknowledgement delay (time for a packet to get released from the input buffer) is

analyzed. We can see that there exists a value of ∆ that minimizes the loss and
therefore optimizes the throughput and the delay. We notice in figure 8 and 9
that the influence of the propagation delay is negligible. Figure 10 shows the
influence of the input load on the throughput. There always exists an optimum

value for ∆ . It is worth to mention that the optimum value for ∆ seems to
depend little on the offered load. Figure 11 shows the influence of the number of
receivers on the delay and throughput that leads to the well-known implosion
problem.

2001801601401201008 06 04 02 0
20

30

40

50

Tp=1ms
Tp=10ms
Tp=20ms

Delta (ms)

T
h

ro
u

g
h

p
u

t

Figure 8. Influence of ∆ and Tp on the Throughput (pack./s)

(K= 10, N=15, L=6, Techo=1ms, λ=50pack/s, µ=200pack/s, ν=100pack/s.)

20

1901701501301109 07 05 03 03 0
100

150

200

250

300

350

Tp=1ms
Tp=10ms
Tp=20ms

Delta (ms)

A
ck

n
o

w
ld

g
e

m
e

n
t

D
e

la
y

 (
m

s)

Figure 9. Influence of ∆ and Tp on the Acknowledgement Delay (ms)

(K= 10, N=15, L=6, Techo=1ms, λ=50pack/s, µ=200pack/s, ν=100pack/s.)

2001801601401201008 06 04 02 0
10

20

30

40

50

Lambda=25
Lambda=50
Lambda=75
Lambda=100

Delta (ms)

T
h

ro
u

g
h

p
u

t
(p

a
ck

/s
)

Figure 10. Influence of the load (packets/s) and ∆ (ms) on the Throughput

(K= 10, N=15, L=6, Techo=1ms, Tp=20ms, λ=50pack/s, µ=200pack/s, ν=100pack/s.)

21

5 04 03 02 01 00
0

100

200

300

400

500

600

700

800

900

1000

Delay
Throughput (x20)

Number of receivers (K)

D
e

la
y

 a
n

d
 T

h
ro

u
g

h
p

u
t

Figure 11. Influence of the number of receivers on the Throughput (pack./s) and
Acknowledgement Delay (ms)

(Delta=60ms, N=15, L=6, Techo=1ms, Tp=10ms, λ=50pack/s, µ=200pack/s,

ν=100pack/s.)

In our model, the number of buckets could be derived from the RTT (Round-

Trip-Time) divided by the control period ∆. However, the computation of RTT is
a key issue in a real environment. In fact, RTT varies from time to time according
to the network and traffic changes, making the number of buckets variable in
time. This is also the case in our system. Another solution is to compute an

approximate value for RTT and then select a value for ∆. In such a situation, the
number of buckets is kept constant during the life of the conversation. Figure 12
illustrate just such a case. We see that there exists an optimum number of
buckets which depends on the RTT value chosen. A solution is to build an
algorithm with either a dynamic number of buckets to react to changes in RTT

(keep ∆ constant) or, adjust ∆ to keep the number of buckets fixed.

22

1 0987654321
20

30

40

50

Number of buckets

T
h

ro
u

g
h

p
u

t
(p

a
ck

/s
)

RTT=200ms

Figure 12. Influence of the number of buckets on the throughput
(RTT chosen=200ms)

(K= 10, N=15, L=6, Techo=1ms, λ=50pack/s, µ=200pack/s, ν=100pack/s.)

V- Conclusion

Among other services, multimedia cooperative applications require a
multicast capability with various levels of reliability. The efficient provision of a
reliable multicast service is difficult and needs to be carefully addressed and
analyzed as a function of the network, application and key parameters of the
protocol. In this paper, we considered a statistically reliable multicast protocol
akin to XTP3.6. A model able to handle several complex features of this protocol
was derived and compared against simulation results. The model allowed us to
analyze and size selected protocol parameters, and to show that the system
throughput is optimized for some values of the number of buckets used in the
algorithm.

V- References

[Ann94] Annals of Telecommunications, The Cesame Project, Tome 49, N°5-6, pp. 217-356, May-June 1994.[30]
[Bha94] Bhagwat P., Mishra P., Tripathi S.K., "Effect of Topology on Performance of Reliable Multicast

Communication", Infocom94, pp.602-609, 1994.
[Bir91] Birman K. , Schiper A. and Stephenson P., "Lightweight Causal and Atomic Group Multicast",

ACM Transactions on Computer Systems, vol. 9, no. 3, pp. 272-314, August 1991.

23

[Car94a] Carle G., "Adaptation Layer and Group Communication Server for Reliable Multipoint Services in
ATM Networks", in Steinmetz (Ed), Multimedia: Advanced Teleservices and High-Speed
Communication Architectures, Springer, pp. 124-138, 1994.

[Cha84] Chang J. and Maxemchuk N.F. , "Reliable Broadcast Protocols", ACM Transactions on Computer
Systems, vol. 2, no. 3, pp. 251-273, August 1984.

[Coc92] Cocquet P., Diot C., "Enhanced Transport Service", Proposed Contribution to ISO/IEC JTC1
SC6/WG4, June 1992.

[Coh91] Cohn M., "High Speed Transport Protocol (HSTP) Specification", Contribution to ISO/IEC JTC1
SC6/WG4 on the High Speed Transport Protocol, September 1991.

[Dee89] Deering S., "Host Extension for IP Multicasting", RFC 1112, August 1989.
[Dee94] Deering S. et al., "An Architecture for Wide-Area Multicast Routing", SIGCOMM'94, London,

pp.126-135, august 1994.
[Del93] Delgrossi L., Sandvoss J. (ed.), "The BERKOM-II Multimedia Transport System (MMT), Version

3.0", August 1993.
[Fdi96] S. Fdida, "Multimedia Transport Protocol and Multicast Communication", in: High-Speed

Networking for Multimedia Applications, W. Effelsberg, O. Spaniol, A. Danthine, D. Ferrari
(eds.), Kluwer Academic Publishers, Boston/Dordrecht/London, 1996.

[Flo95] S. Floyd et al., "A Reliable Multicast Framework for Light-weight Sessions and Application Level
Framing", SIGCOMM'95, pp.342-356, 1995.

[Gar91] Garcia-Molina H. and Spauster A., "Ordered and Reliable Multicast Communication", ACM
Transactions on Computer Systems, vol. 9, no. 3, pp. 242-272, August 1991.[5]

[ISO93] ISO/IEC, JTC1/SC6/WG4, Draft Multicast Taxonomy of Multicast Operation, 10.31.1993.
[Mat93] Mathy L., Leduc G., Bonaventure O., Danthine A., "A Group Communication Framework", CIO

RACE Project 2060, R2060/ULg/CIO/IN/P/005, December 1993.
[Mil93] Miloucheva I., "Specification of Enhanced Protocol Facilities for Multicast and Broadcast", CIO

RACE Project 2060, R2060/TUB/CIO/DS/P/003/b1, October 1993.
[Mou92] Moulton J. , Proposed USA Contribution to SC6 on Multicast Transport Protocol, July 1992.
[MPC95] Multi-Peer Communication Architecture, ISO/IEC Draft 7498-5, SG7-SC21, 1995.
[Ngo91] Ngoh L.H., "Multicast Support for Group Communications", Computer Networks and ISDN

Systems, vol. 22, pp. 165-178, 1991.
[Ott94] J. Ott, C. Borman, "Multicasting the ITU MCS: Integrating Point-to-multipoint and Multicast

Transport", Singapore ICCS, Elsevier, pp. 1013-1017, 1994.
[Pin94] S. Pingali, D. Towsley, J. Kurose, "Comparison of Sender-initiated and Receiver initiated Reliable

Multicast Protocols", Performance Evaluation Review, Vol.22, N.1, pp. 221-230, 1994.
[PEI92] Protocol Engines Inc., "XTP Protocol Definition", Version 3.6, January 1992.
[PEI94] Protocol Engines Inc., "XTP Protocol Definition", Version 4.0, 1994.
[Raj92] Rajagopalan B., "Reliability and Scaling Issues in Multicast Communications", Sigcomm'92, pp188-

198, 1992.
[Rob95] Roberts L.G., "Point-to-Multipoint ABR Operation", ATM Forum /95-0834, August 1995.
[San92] Santoso H., Fdida S., "Transport Layer Multicast:An Enhancement for XTP bucket algorithm", 4th

IFIP High Performance Networking (hpn'92), Liège, Belgique, December 1992.

