
1

A Finite-Source Multiserver Queue with Preemptive Priorities

by

Alexandre Brandwajn

University of California
Santa Cruz

UCSC-CRL-96-19

Abstract

We consider systems with finite sources of requests, multiple servers, and an arbitrary
number of preemptive priority classes. The service times and the source idle times are assumed
to be exponentially distributed. We present an efficient approach based on marginal state
description. The approach allows a recurrent analysis of priority levels where the usage of servers
by higher priority requests is accounted for through server vanishing and reappearance rates.

We first consider systems with fixed priorities. The method is then extended to cases
where sources can issue requests at several priority levels.

KEYWORDS: preemptive priority, multiple servers, finite source, exponential distribution,
recurrent solution.

2

1. Introduction

Queueing systems with priority service occur frequently in computer systems and other
applications. For open M/G/1 queues with priorities, the exact analytical solution is known and
easy to evaluate numerically. However, in many applications, the requests for service may come
from a finite and possibly relatively small number of sources, so that a Poisson arrival process
cannot be used as an adequate representation. Also, often, service is provided by a pool of
servers so that a single server model is not valid. This is the case with multiprocessor CPUs in
computer systems, as well as in machine interference systems with a team of operatives to repair
failing machines of different priorities.

Given the importance of the priority discipline, there is a large body of literature on this
subject, and it is not the object of this paper to provide a comprehensive bibliography. Jaiswal
and Thiruvengadam [6] gave a solution for a single server with priorities and finite source. This
solution is generally considered too complex for practical applicability. Chandra and Sargent [4]
proposed a numerical solution, based on embedded Markov chain analysis, to a single server with
nonpreemptive fixed priorities. Kameda [7] considered a priority queue with finite sources and a
single server. Causes of inaccuracies of several approximations, developed in particular for
computer performance applications, were reviewed by Kaufman [8]. Veran [9] proposed a
numeric method for the analysis of a single server queue with preemptive priorities. Bondi and
Chuang [1], and Eager and Lipscomb [5] proposed additional approximations based on Mean
Value Analysis. More recently, Wagner [10] studied multiple server queues with non preemptive
priorities and finite source. Bunday, Khorram and Bokhari [3] solved the problem with preemptive
priorities for two classes of requests and multiple servers in the case where the service discipline
is Service in Random Order.

In this paper, we consider systems with finite sources of requests, multiple servers, and
an arbitrary number of priority classes. The service times and the source idle times are assumed
to follow negative exponential distributions. Our approach is based on marginal state description,
and we first consider systems with fixed preemptive priorities. The method is then extended to
cases where sources can issue requests at several priority levels.

2. A simple recurrent analysis

We start by considering the system depicted in Figure 1. The system consists of M
servers shared by a set of c queues. Each queue corresponds to a class of users with a finite
number of sources. For class i, i=1,...,c, we denote by Ni the number of sources, by 1/λi the mean
time for an idle source to generate a request, and by 1/µi the mean service time required for a
request of this class. We assume that the request generation times and the intrinsic service times
are exponentially distributed random variables, and that a source cannot generate a new request
if it has an outstanding request in the system. We also assume that requests of different classes
have different priorities. Class 1 is taken to be of highest priority, and the service discipline is
assumed to be preemptive-resume across classes.

3

Figure 1: Finite source multiserver system with preemptive priorities

With preemptive-resume priority, requests of class i are only competing for servers with
requests of classes 1, ...,i-1, as well as with other class i users. Denote by ni the current number
of class i requests, and by li (li = 0,...,M) the number of servers currently unavailable to class i, i.e,
serving higher priority requests.

We consider the system in steady state, and use (ni, li) as the state description for class i
requests. We let αi(ni,li) be the rate at which servers become unavailable to class i given that
there are ni class i requests in the system and a total of li servers already unavailable, and by
βi(ni,li) the corresponding rate with which servers become available again, i.e., are done serving
higher priority users.

We refer to αi(ni,li) and βi(ni,li) as the server vanishing and reappearance rates,
respectively. If these rates were know, we could without difficulty write the balance equations for
p(ni,li), the steady-state probability that there are ni class i requests currently in the system, and
that M-li servers are available at this priority level.

In order to obtain a recurrent solution for the priority system considered, we assume that
the server vanishing and reappearance rates αi and βi do not depend on ni, the number of class i
requests, but are function a li alone: αi(li), βi(li). Although this is an approximation, it certainly
seems reasonable that lower priority requests should have little influence on arrivals and
completions at higher priority levels.

As a result, we have the following balance equations for p(ni,li)

4

[(Ni-ni)λi + s(ni,li)µi + αi(li) + βi(li)]p(ni,li)
(1)

= (Ni-ni+1)λip(ni-1,li) + s(ni+1,li)µip(ni+1,li) + αi(li-1)p(ni,li-1) + βi(li+1)p(ni,li+1),

where

s(ni,li) = min(ni, M-li),
αi(M) = 0, (2)
βi(0) = 0,

and terms for infeasible states are assumed to vanish.

Note that (1) corresponds to a simple two dimensional birth and death process with a
state space of size (Ni+1)(M+1). Several methods are available to solve such a system
numerically for p(ni,li), e.g. [2] . It is clear also from the definition of the server vanishing and
reappearance rates that the marginal probability that li servers are unavailable to class i requests
can be expressed as

p(li) =
1

G j

li

=
∏

1

 αi(j-1)/βi(j), li = 0, 1,… (3)

where G is a normalizing constant.

Having obtained the probability p(ni,li) that the current number of class i requests is ni and
that li servers are busy with higher priority requests (classes 1,...,i-1), we can compute the server
vanishing and reappearance rates for users of class i+1. Let p(li+1) be the steady state probability
that li+1 servers are unavailable to class i+1 requests. We have

l

l

i

i

=

+

∑
0

1

p(ni = li+1-li, li), li+1=0,…,min(M-1, Ni)

p(li+1) = (4)

n M l

N

l

M

i i

i

i = −=
∑∑

0

p(ni,li), li+1=M, if Ni ≥ M

The server vanishing rate is then given by

αi+1(li+1) =
l

l

i

i

=

+

∑
0

1

p(ni=li+1-li,li)[αi(li)+(Ni-ni)λi]/ p(li+1), (5)

for li+1 = 0,…,min(M-1,
j

i

=
∑

1

Nj)

and the server reappearance rate can be expressed as

5

βi+1(li+1) =
l

l

i

i

=

+

∑
0

1

p(ni=li+1-li,li)[βi(li)+s(ni,li)µi]/p(li+1) (6)

for li+1 = 1,…,min(M,
j

i

=
∑

1

Nj)

(5) and (6) simply combine the unavailability of servers due to priority levels higher than i with the
server usage by class i requests. Clearly, all servers are available to users at the highest priority
level, so that we have α1(l1) = β1(l1) = 0, for ∀ l1, and for requests of class 2 we have

α2(l2) = (N1-l2) l1, l2 = 0, ..., min(M, N1)-1 (7)

and

l2µ1, l2 = 1, ..., min(M-1, N1),
β2(l2) =

Mµ1 Prob{n1=M | l2=M}, l2=M, if N1 ≥ M. (8)

The conditional probability Prob{n1=M | l2=M} accounts for the fact that the number of servers
busy at level 1 decreases only when no class 1 requests are waiting in queue. This probability is
readily computed from the solution of priority level 1.

Note that, starting with the highest priority level, we are thus able to solve our preemptive
priority system recurrently, one level at a time. At each priority level, we solve the relatively simple
system of equations (1) where the activity of higher priority levels is accounted for through the
server vanishing and reappearance rates αi(li) and βi(li). We have thus traded the solution of the
whole priority system with a total of c classes for c solutions of much simpler birth and death
processes, c-1 of which are two dimensional. The state description we use allows us to examine
the marginal behavior of each priority level but does not provide full information about joint
behavior of several priority levels.

In the next section, we present a few numerical examples which illustrate the accuracy of
our approach.

3. Numerical examples

To obtain our recurrent solution, we introduced the assumption that the server vanishing
and reappearance rates depend only on the number of servers busy serving higher priority
customers and not on the number of lower priority requests. To see that this is in general only an
approximation, consider again the server reappearance rates for customers of class 2. With the
marginal state description chosen, for l2=M, the corresponding rate is given by

β2(n2,l2) = Mµ1Prob{n1=M | n2, l2=M}. (9)

Clearly, the conditional probability that there are exactly M class 1 requests given that there are M
servers busy with class 1 and n2 class 2 requests may be influenced by the value of n2. Note that
the conditional probability in (9) can be expressed as

p(n1=M,n2) /
n M1≥
∑ p(n1,n2) = p(n1=M | n2) /

n M1≥
∑ p(n1 | n2), (10)

6

so that by dropping the dependency on n2 we are assuming that the ratio of marginals

 p(n1=M) /
n M1≥
∑ p(n1) is close to the corresponding ratio of conditionals.

To assess the accuracy of our approach, we use the numerical solution of the balance
equations for examples with two priority levels, and discrete event simulation as comparison basis
for examples with a larger number of priority classes. The reported confidence intervals are at
95% confidence level, and were obtained using the independent replications method with 10 runs
of 55000 service completions each. We ran a large number of cases, comparing both the
throughput (requests served per time unit) and the expected number of users in the system
(queued and in service) for each class of requests. In the vast majority of cases, the results of
our recurrent approach are very close to the exact numerical results or fall within the estimated
confidence intervals, occasionally slightly outside.

A few examples illustrate the accuracy of our method. Under the heading method, we
use e for exact numerical solution, s for simulation, and r for the recurrent approximate solution.
The input data used is identified by a set number as follows:

set number of classes class sources mean interarrival time mean service time

 1 2
 1 6 10 1.5

2 18 5 3

 2 2
1 6 10 1.5
2 18 0.5 0.3

 3 2

1 6 10 1.5
2 20 0.5 0.3

 4 2

1 6 10 1.5
2 5 0.2 0.1

5 3

1 6 10 1.5
2 5 0.2 0.1
3 10 4 2

6 4

1 5 10 1
2 5 0.2 0.05
3 10 3 1
4 10 1 0.1

7 5

1 3 10 1
2 3 0.2 0.05
3 4 3 1
4 4 1 0.2

7

5 5 0.5 0.1

Table 1: results with 2 servers

set class method throughput expected number
 1 e 0.516 0.841

 r 0.516 0.841
 1

 2 e 0.409 15.956
 r 0.409 15.956

--
 1 e 0.516 0.841

 r 0.516 0.841
 2

 2 e 4.087 15.956
 r 4.087 15.956
--

 1 e 0.516 0.841
 r 0.516 0.841

 3
 2 e 4.087 17.956

 r 4.087 17.956

 1 e 0.516 0.841
 r 0.516 0.841

 4 2 e 10.116 2.977
 r 10.117 2.977

--
 1 s 0.274 +- 0.006 0.282+-0.007

 r 0.273 0.274

 2 s 11.510+- 0.039 0.705+-0.003
 r 11.500 0.700

 3 s 0.786+-0.007 1.627+-0.031
 r 0.809 1.573
 7

 4 s 1.209+-0.024 2.789+-0.035
 r 1.440 2.560

 5 s 0.905+-0.023 4.542+-0.017
 r 0.532 4.734

8

Table 2: results with 3 servers

set class method throughput expected number
 1 e 0.521 0.787

 r 0.521 0.787
 1

 2 e 0.739 14.303
 r 0.739 14.303

--
 1 e 0.521 0.787

 r 0.521 0.787
 3

 2 e 7.394 16.303
 r 7.394 16.303

--
 1 s 0.524+-0.007 0.792+-0.015

 r 0.521 0.787

 5 2 s 14.402+-0.067 2.119+-0.010
 r 14.409 2.118

 3 s 0.387+-0.007 8.452+-0.044
 r 0.389 8.445

 1 s 0.464+-0.011 0.452+-0.015

 r 0.455 0.455

 2 s 19.527+-0.035 1.105+-0.007
 r 19.488 1.102

 6
 3 s 1.506+-0.024 5.490+-0.105

 r 1.527 5.419

 4 s 0.492+-0.045 9.434+-0.069
 r 0.440 9.560

We observe that our method produces results which tend to fall within or slightly outside
the estimated confidence intervals. This seems to be the typical behavior. Occasionally,
however, the results obtained deviate more significantly from simulation results. This is illustrated
by set 7 in Table 1. It has been our experience that this type of inaccuracy is more likely to occur
when higher priority classes have longer average service time requirements than lower priority
requests (similar to the observation in [8]) although this is not systematically so. Also, the errors
don't appear to grow as the ratio of mean service times increases; on the contrary, they seem to
peak and then vanish.

If the occasional lower accuracy is of concern, it is possible to nearly eliminate this
behavior by using a somewhat more involved state description. The resulting method is described
in the next section.

9

4. Alternate method

The central idea is to consider priority classes in "adjacent" pairs while accounting for the
influence of higher priority requests through server vanishing and reappearance rates, this time
conditioned also on the current number of higher priority requests in the pair being considered.

Thus, as an example, for a system with 4 priority classes, we first solve for the joint
behavior of classes 1 and 2. This yields the steady state probability p(n1,n2) for the numbers of
requests in the system. Then, we move on to the pair 2 and 3, and we use the state description
(n2,n3,l2) where l2 denotes the number of servers unavailable to the pair, i.e. busy with class 1.
Because we consider classes in consecutive pairs, we can now use server vanishing and
reappearance rates that are a function of both n2 and l2,i.e. α2(n2,l2), β2(n2,l2). We have

α2(n2,l2) = (N1-l2)λ1, l2=0,…,min(M,N1)-1, n2=0,…,N2 (11)

l2µ1, l2=1,…,min(M,N1)
β2(n2,l2) = (12)

Mµ1Prob{n1=M | l2=M, n2}, l2=M, if N1 ≥ M, ∀ n2

The conditional probability in (12) is computed as

Prob{n1=M | l2=M,n2} = p(n1=M,n2) /
n M

N

i =
∑

1

p(n1,n2) (13)

The solution of the corresponding balance equations yields the equilibrium distribution p(n2,n3,l2).

Finally, we consider the pair of priority classes 3 and 4. The state description used is
(n3, n4,l3), where l3 is the number of servers unavailable to the pair. We denote by α3(n3,l3) and
β3(n3,l3) the server vanishing and reappearance rates, respectively, and we compute these rates
using the following general formula for i=2, 3...

αi+1(ni+1,li+1) =
l

l L

i

i i

=

+

∑
0

1min(,)

p(ni=li+1-li,ni+1,li)[αi(ni,li)+(Ni-ni)λi] / p(ni+1,li+1)

(14)

for li+1 = 0,…,min(M,
j

i

=
∑

1

Nj) - 1, ni+1 = 0,…,Ni+1

and

10

βi+1(ni+1,li+1) =
l

l L

i

i i

=

+

∑
0

1min(,)

p(ni=li+1-li,ni+1,li)[βi(ni,li)+s(ni,li)µi] / p(ni+1,li+1) (15)

for li+1 = 1,…,min(M,
j

i

=
∑

1

Nj) , ni+1 = 0,…,Ni+1

where the probability p(ni+1,li+1) is obtained as

l

l L

i

i i

=

+

∑
0

1min(,)

p(ni=li+1-li,ni+1,li), for li+1=0,…,min(M-1,
j

i

=
∑

1

Nj) (16)

l

L

i

i

=
∑

0 n M l

N

i i

i

= −
∑ p(ni,ni+1,li), if

j

i

=
∑

1

Nj ≥ M

and Li = min(M,
j

i

=

−

∑
1

1

Nj) is the maximum number of servers unavailable to the priority class

pair i, i+1.

It is quite straightforward to derive the balance equations for the steady state probability
p(ni,ni+1,li) that there are ni and ni+1 requests of class i and i+1, respectively, and that li servers
are unavailable to this pair. These equations are given in the Appendix. Their solution can be
obtained by any of a number of methods.

With the state description chosen, the interference of class i on class i+1 is represented
explicitly so that it seems best to use the results of the solution of the first pair for both classes 1
and 2, and retain the results for class i+1 for subsequent pairs (i=2,3,...). In practice, there seems
to be very little difference in the marginal results for a class between the pairs i-1, i and i, i+1.

The added computational effort appears to pay off in that it reduces or practically
eliminates the occasional lower accuracy observed with the simpler approach. This is illustrated
in Tables 3 and 4 for the input sets exhibiting lower accuracy in Tables 1 and 2, respectively. For
easier reference, we reproduce simulation results as well as those produced by the simpler
recurrence. The results of the alternate method are identified by the letter a.

Table 3: alternate method, results with 2 servers

set class method throughput expected number
 1 s 0.274 +- 0.006 0.282+-0.007

 r 0.273 0.274
 a 0.273 0.274

 2 s 11.510+- 0.039 0.705+-0.003
 r 11.500 0.700
 a 11.500 0.700

 3 s 0.786+-0.007 1.627+-0.031
 r 0.809 1.573

11

 a 0.795 1.615
 7

 4 s 1.209+-0.024 2.789+-0.035
 r 1.440 2.560
 a 1.261 2.739

 5 s 0.905+-0.023 4.542+-0.017
 r 0.532 4.734
 a 0.920 4.540

Table 4: alternate method, results with 3 servers

set class method throughput expected number
 1 s 0.464+-0.011 0.452+-0.015

 r 0.455 0.455
 a 0.455 0.455

 2 s 19.527+-0.035 1.105+-0.007
 r 19.488 1.102
 a 19.488 1.103

 6
 3 s 1.506+-0.024 5.490+-0.105

 r 1.527 5.419
 a 1.515 5.455

 4 s 0.492+-0.045 9.434+-0.069
 r 0.440 9.560
 a 0.507 9.493

In the next section, we outline the extension of our approach to the case where customers
of different classes are no longer each confined to a single priority level.

5. Classes spanning several priority levels

We now consider a generalization of the system of Figure 1 in that we dissociate
customer classes and priority levels. Specifically, we assume that a new request generated by a
class i (i=1,...c), source with probability qik requires service at priority level k, k=1,...,K, where K is
the total number of priority levels. Clearly, we have

k
∑ qik = 1 for all classes i. We also assume

that the service times are exponentially distributed, and we denote by 1/µik the average service
time required by class i request at priority level k.

The system described presents new difficulties: higher priority levels may now depend on
lower priority levels in that the rate of request generation depends on the total number of requests
of a given class currently in the system, i.e. possibly also on lower priority levels, and, also, the
requests at any given priority level may now be a mixture of several distinct classes. We cast our
discussion in the context of the recurrence of Section 2, and, as a simple approximation, we
propose the following approach.

12

Consider priority level k. The throughput of class i requests at this level can be expressed
as

θik = λιqik(Ni- nik - nix) (17)

where nik and nix denote the expected number of class i requests at level k, and at other priority
levels, respectively. We treat class i at level k as an "independent" class of users with a fictitious
rate of request generation ϕik determined by from the relationship

ϕik (Ni - nik) = θik (18)

Thus, during the analysis of each priority level, we treat the request classes as tied to the given
priority level. Clearly, since nix generally is not known when dealing with level k, and nik and nix

depend on each other, a fixed point iteration seems the approach of choice. Denote by n the
current total number of requests at level k, and by l the number of servers unavailable to level k.
Denote also by nik(n) the conditional expected number of class I requests at level k given, and let
mik(n,l) be the conditional expected number of servers busy with class i requests at level k given n
and l. To deal with multiple classes of requests at a single priority level, we use the following
simple approximation.

nik(n) ≈ n fik(n), n=1,… (19)

mik(n,l) ≈ s(n,l)fik(n), n=1,… (20)
where

fik(n) = [Ni-nik(n-1)]σik /
j

∑ [Nj-njk(n-1)]σjk , for n=1,.., k=1,…K (21)

and

σjk = ϕik / µik. (22)

Note that, starting with nik(0) = 0, for all i and k, (19) and (21) allow us to obtain nik(n) recurrently.
Hence, referring to the state description (n,l), we can express the rate of arrivals of requests to
level k as

λk(n) =
j

∑ [Nj-njk(n-1)] ϕjk, n=0,1… (23)

and the state dependent rate of service at level k as

µk(n,l) =
j

∑ mjk(n,l)µjk, n=1,2,… (24)

These state dependent arrival and service rates allow us to proceed with the solution of priority
levels in a manner analogous to the case where there is only one request class at each level.
Clearly, knowing the probability distribution for (n,l) at level k and the conditional averages nik(n) it
is straightforward to obtain the averages nik .

13

With a First Come First Served discipline at a priority level, the relationships defined
through (19), (20) and (21) can be expected to be best satisfied when the mean service times of
request classes at the given priority level (1/µik) are not very different. Note that this is the case in
a number of applications where service at a given priority level is synonymous with a cap on
service requirements. The recurrence defined by (19) and (21) may be subject to numerical loss
of accuracy so that in practice care must be taken to ensure that none of the njk(n) is allowed to
exceed Nj.

With these caveats, the general accuracy of the proposed approach to classes spanning
several priority levels is good. As an example, Table 5 shows the results obtained with 3 request
classes corresponding to parameter set 5 except that class spans several priority levels. In case
1 and 2, we have q11=0.5, q12=0.4, q13=0.1 with 4 and 3 servers, respectively. Case 3 pertains to
3 servers and q11=q12=0.5. The simpler recurrent solution of Section 1 was used in all three
cases. Typically, the number of iterations needed to achieve stable values of throughputs with
classes on multiple priority levels is on the order of 10.

Table 5: results with a class on several priority levels
case class method throughput expected number
 1 s 0.496+-0.006 1.048+-0.030

 r 0.494 1.056

 1 2 s 16.261+-0.038 1.746+-0.006
 r 16.310 1.738

 3 s 0.817+-0.007 6.739+-0.065
 r 0.808 6.767

--
 1 s 0.450+-0.007 1.501+-0.048

 r 0.448 1.519

 2 2 s 15.091+-0.070 1.983+-0.013
 r 15.276 1.945

 3 s 0.411+-0.009 8.335+-0.048
 r 0.400 8.400

--
 1 s 0.524+-0.006 0.810+-0.013

 r 0.503 0.969

 3 2 s 14.465+-0.063 2.108+-0.010
 r 14.898 2.020

 3 s 0.394+-0.007 8.401+-0.043
 r 0.378 8.489

Cases 1 and 2 show what seems to be the typical accuracy of the approach with only
small percentage errors. Case 3 illustrates occasional larger errors: some 5% on throughputs,
and 20% on average number of requests in the system. Note that some part of this deviation may
be due to the use of the simpler single level recurrence.

14

6. Conclusion

We have presented an approach to the solution of finite source multiserver priority
queues under memoryless distributional assumptions. The approach analyzes priority levels in
isolation, and the interference of higher priority levels is represented though server vanishing and
reappearance rates. The accuracy of this method is generally good although occasionally larger
errors can be observed. It is possible to eliminate or reduce these errors through the use of a
computationally somewhat more costly variant of the method where priority levels are treated in
pairs. Finally, we have considered the case where sources of a given class may issue requests at
several priority levels. . We propose a simple fixed point approximation which appears to yield
relatively accurate results. The extension of such a fixed point iteration to non-preemptive
multiserver priority systems appears possible.

7. Bibliography

1. Bondi, A. B., Chuang Y.-M.: A New MVA-Based Approximation for Closed Queueing Networks
with a Preemptive Priority Server, Performance Evaluation 8, 195-221 (1988).

2. Brandwajn, A: An Iterative Solution of Two-Dimensional Birth and Death Processes, Operations
Research 27, 595-605 (1979).

3. Bunday, B.D., Khorram, E., Bokhari, H.M.: The G/M/r machine interference model with a
mixture of priority and ordinary machines, in Proc. Third International Workshop on Queueing
Networks with Finite Capacity, July 1995, Ilkley, UK.

4. Chandra, M. J., Sargent, R.G.: A numerical method to obtain the equilibrium results for the
multiple finite source priority queueing model, Management Science 29, 1298-1308 (1983).

5. Eager, D., Lipscomb, J.N.: The AMVA Priority Approximation, Performance Evaluation 9, 173-
193 (1988).

6. Jaiswal, N.K. and Thiruvengadam: Finite source priority queues, SIAM Journal of Applied
Mathematics 15, 1273-1293 (1967).

7. Kameda, H: A finite-source queue with different customers, Journal of the ACM 29, 478-491
(1982).

8. Kaufman, J.S.: Approximation Methods for Networks of Queues with Priorities, Performance
Evaluation 4, 183-198 (1984).

9. Veran, M: Exact analysis of a priority queue with finite source, in Proc. Int. Seminar on
Modelling and Performance Evaluation Methodology, Paris, Springer Verlag, 371-390, 1985.

10. Wagner, D. Steady State Analysis of a Finite Capacity Multi-Server Model with Nonpreemptive
Priorities and Nonrenewal Input, in Proc. Third International Workshop on Queueing Networks
with Finite Capacity, July 1995, Ilkley, UK.

15

Appendix

Balance Equations for p(ni,ni+1,li)

p(ni,ni+1,li)[(Ni-ni)λi + (Ni+1-ni+1)λi+1 + αi(ni,li) + βi(ni,li) + s(ni,li)µi]

= p(ni-1,ni+1,li)(Ni-ni+1)λi + p(ni,ni+1-1,li) (Ni+1-ni+1+1)λi+1

+ p(ni+1,ni+1,li)s(ni+1,li)µi + p(ni,ni+1+1,li) s(ni+1+1,ni+li)µi+1

+ p(ni,ni+1,li-1)αi(ni,li-1) + p(ni,ni+1,li+1) βi(ni,li+1)

where unfeasible terms are assumed to vanish.

