
Inferring Recursive Structures in Types inProlog Programs using AbstractInterpretationFumiaki KamiyaUCSC-CRL-96-17July 25, 1996Baskin Center forComputer Engineering & Computer ScienceUniversity of California, Santa CruzSanta Cruz, CA 95064 USAabstractOne way to prove termination of a logic program is to show that input terms passedto each recursive procedure decrease in size between successive calls to the same procedurewith respect to some appropriately de�ned norms. Except when all the input terms areground, �nding the appropriate norms is generally not easy. Barring the use of numbers andarithmetics, recursive calls are controlled by recursively constructed terms. Thus, one wayto automatically �nd the appropriate norms would be to automatically identify recursivestructures in term types. This report describes a work in progress that attempts to infersuch recursive structures using abstract interpretation.Keywords: Termination analysis, abstract interpretation, recursive structures in termtypes.



1. Introduction 11 IntroductionTermination analysis of logic programs has attracted a lot of interest within the logic programmingcommunity. For a survey of relevant works, see [2]. One way to prove termination is to show thatinput terms passed to each recursive procedure decrease in size between successive calls to the sameprocedure with respect to some appropriately de�ned norms. With the exception when input termsare all ground, �nding the appropriate norms is generally not easy. However, in order to automatethe process of termination analysis, a mechanism to automatically �nd these norms is necessary.Barring numbers and arithmetics to control recursive calls, all recursive calls are controlled byrecursively constructed terms. Thus, one way to automatically �nd the appropriate norms wouldbe to automatically identify recursive structures in term types.This report describes a work in progress that attempts to infer recursive structures in term types.The method is based on abstract interpretation ([1]); the program is converted into a program onthe abstract domain of types and then evaluated in a bottom-up fashion in the style of forwardreasoning.2 Recursive Calls and Recursive TermsBarring numbers and arithmetics (and other non-logical constructs) to control recursive calls, theonly way to control recursive calls is to use recursively constructed terms. Thus, one way toautomatically �nd the appropriate norms would be to automatically identify recursive structuresin terms permissible as arguments for each procedure. Once these are identi�ed, we can test fortermination by checking that any goal has its input terms' recursive structures instantiated so thatthe terms can safely control recursive calls.Example. Consider the following program:len([], 0).len([_|T], s(S)) :- len(T, S).The recursive structure in the �rst argument of len is in the second argument, if at all, and therecursive structure in the second argument of len is in the �rst argument, if at all. Because of this,it is obvious that although goals?- len([_|[_|[]]], _).and ?- len(_, s(s(0))).will terminate,?- len([[[]|_]_], _).will not. 23 Types, Type Expressions, and Type LabelsTypes are chosen to be the abstract domain in our application of abstract interpretation. Formally,a type is de�ned to be the set of values variables and constants of the type may take. However, ourinterest is not in trying to infer all possible values of the type but rather to infer a small numberof construction rules that could generate all possible values. Further, it is not necessary that theset of construction rules be \exact". We are interested in knowing the presence of any recursivestructures in types; therefore, some amount of redundancy in the construction rules is acceptable,particularly if this makes the construction rules simpler.



4. Approach 2Example. Consider the following program:even(0).even(s(s(N))) :- even(N).Considering 0 to be the numerical zero and s to be the successor function, even(X) succeeds if Xis a non-negative even integer. The type of X can be enumerated as:f0; s(s(0)); s(s(s(s(0)))); : : :gAn exact set of construction rules for this type istypeof (X) ::= 0typeof (X) ::= s(s(T))However, for our purpose, the following set of construction rules su�ces.typeof (X) ::= 0typeof (X) ::= s(T)2 Type expressions are expressions involving types and describe other types. Let c be a constant,f be an n-ary functor, and T1; : : : ; Tn be n types. Then c denotes the type whose only value is c, andf(T1; : : : ; Tn) denotes the type whose values have the form f(x1, : : :,xn) where x1 2 T1; : : : ; xn 2Tn.Type labels are names introduced into the abstracted program for the purpose of referring to\key" types. Unique type labels are generated and assigned to each argument position of eachprocedure. The reason for separate type labels for di�erent clauses of the same procedure is sothat type inference can proceed with respect to each clause as opposed to the set of clauses that(completely) de�ne the procedure. In a way, the type inference scheme described in this report canbe thought of as trying to describe these type labels. Note that in the abstracted program, we canintroduce the type labels using assertions; this is because the domain of the abstracted programsis types.Example. In this report, type labels are generated systematically using the following template:typelabel$clause.argwhere clause is the position of the clause in the program and arg is the argument position. The�rst clause is at position 1 and the �rst argument is at position 1.Continuing with the earlier example using len, we generate four type labels|typelabel$1.1,typelabel$1.2, typelabel$2.1, and typelabel$2.2|and add them to the abstracted programas assertions.len(typelabel$1.1, typelabel$1.2).len(typelabel$2.1, typelabel$2.2).24 ApproachWe consider normalized programs. Normalized programs can be obtained from non-normalizedprograms by a straightforward syntactical transformation. The reason for the use of normalizedprograms is so that all uni�cations become explicit.Example. Consider again the following program:len([], 0).len([_|L], s(S)) :- len(L, S).



4. Approach 3A normalized version of the above program would be:len(A01, A02) :- A01 = [], A02 = 0.len(A01, A02) :- A01 = [_|A012], A012 = L, A02 = s(A021), A021 = S,len(A11, A12), A11 = L, A12 = S.2 At this time, we can infer some information about the types in the head of each clause bylooking at the body of the clause.Example. Continuing with the example, we can infer from the �rst clause that one successfulargument for len is ([], 0). Also, from the second clause, we can infer that another successfulargument for len has a term whose top functor is . (the list constructor) as its �rst argument anda term whose top functor is s as its second argument. 2Note that in the previous example, type inference was essentially done by comparing the leftand right hand sides of =s. Although similar in form, the information obtained from the uni�cationsdepended on what were on the two sides. For instance, the = in the �rst clause meant that theconstant term on the right hand side was the only instance of the type on the left hand side,whereas in the second clause, the = meant that the type appearing on the left hand side has theform appearing on the right hand side (e.g., A01 = [ |A012]), or that the two types are the same(e.g., A012 = L)1.Let us now formalize this by introducing the rules as axioms for type inference.� If the goal is X = y where X is a variable and c is a constant, then X is a singleton typewhose only element is c.� If the goal is X = f(Y1,: : :,Yn) where X and Y1; : : : ; Yn are variables for some n � 1, thenthe type of X is f(Y1; : : : ; Yn).� If the goal is X = Y where X and Y are two variables, then the types of X and Y are thesame.To disambiguate the overloaded use of =, we convert the normalized program so that each use of= is rewritten using the appropriate predicate|either instance or iff. instance(X, c) meansthat c is the only instance of type X and is used for the �rst case above. iff(X, Y ) means thatX and Y have the same type and is used for the second and third cases above.Example. Continuing with the example, we obtain the following code after the transformation.len(A01, A02) :- instance(A01, []), instance(A02, 0).len(A01, A02) :- iff(A01, [_|A012]), iff(A012, L),iff(A02, s(A021)), iff(A021, S),len(A11, A12), iff(A11, L), iff(A12, S).2 To be able to infer recursive structures in types, we now introduce type labels described inSection 3.Example. Continuing with the example, the complete abstracted program, with the type labels,looks like this:1As I write this report now, I feel that the distinction was not necessary. This may be changed in the future.



5. Some Implementation Details 4len(A01, A02) :- instance(A01, []), instance(A02, 0).len(A01, A02) :- iff(A01, [_|A012]), iff(A012, L),iff(A02, s(A021)), iff(A021, S),len(A11, A12), iff(A11, L), iff(A12, S).len(typelabel$1.1, typelabel$1.2).len(typelabel$2.1, typelabel$2.2).2 Now, using bottom-up evaluation on the abstracted program, we can infer recursive structuresin types.Example. Continuing with the example, a straightforward bottom-up evaluation using the secondand the fourth clauses yields that a success pattern for len involving the second clause as the topclause is ([ |typelabel$2.1], s(typelabel$2.2)). Since typelabel$2.1 and typelabel$2.2are the type labels for the head of this clause, we have inferred thattypelabel$2.1 ::= [?jtypelabel$2.1]typelabel$2.2 ::= s(typelabel$2.2)where `?' is used to mean \don't care". These tell us that recursive structures are present in botharguments (because, in each inferred type relation, the type labels on the left hand side also appearson the right hand side), that for the �rst argument position of len, the recursive structure is presentin the second argument position of . (because that's where the type label typelabel$2.1 occurson the right hand side), and that for the second argument position of len, the recursive structureis present in the �rst argument position of s. 25 Some Implementation DetailsDuring the evaluation of the axioms, relationships between di�erent (type) variables and member-ship of constants to types are obtained. These information are passed from one goal to anotherduring bottom-up evaluation of the abstracted program via variables added by the translator. Thisis done so that no special feature is required in the bottom-up evaluator.For each clause in the program, the head and the goals in the body are added two moreparameters. Both parameters precede original parameters in the program. The design choice ofthese parameters preceding original parameters was made so that these parameters will alwaysappear at the same argument positions.Example. Continuing with the example, len is increase of its number of arguments to four. Eachgoal will now look like this:len(TypeRelIn, TypeRelOut, List, Len)The meaning of the arguments are:TypeRelIn List of type relations known before the evaluation of this goal.TypeRelOut List of type relations known after the evaluation of this goal.List Same as the �rst argument of the original len.Len Same as the second argument of the original len.2 The head as well as the goals in the body will share variables so that the type relations obtainedduring bottom-up evaluation will 
ow through the clause.



6. Results 5Example. Continuing with the example, the program now looks like this:len(TypeRelIn, TypeRelOut, A01, A02) :- instance(TypeRelIn, TypeRel1, A01, []),instance(TypeRel1, TypeRelOut, A02, 0).len(TypeRelIn, TypeRelOut, A01, A02) :- iff(TypeRelIn, TypeRel1, A01, [_|A012]),iff(TypeRel1, TypeRel2, A012, L),iff(TypeRel2, TypeRel3, A02, s(A021)),iff(TypeRel3, TypeRel4, A021, S),len(TypeRel4, TypeRel5, A11, A12),iff(TypeRel5, TypeRel6, A11, L),iff(TypeRel6, TypeRelOut, A12, S).Note that the variables are shared so that type relations may enter the clause at the head viaTypeRelIn, cascade through the body, and exit the clause from the head via TypeRelOut. 2Evaluation of axiom goals is when and where the real work of obtaining type relations is done.� If the axiom goal is instance(TypeRelIn, TypeRelOut, Type, Const), then the type Typeis associated with the constant type Const, and the association is added to the list of typerelations passed in via TypeRelIn and then sent out via TypeRelOut.� If the axiom goal is iff(TypeRelIn, TypeRelOut, Type1, Type2), then the two type vari-ables, Type1 and Type2, are examined. If either of them are uninstantiated, then the twotype variables are uni�ed and so are TypeRelOut and TypeRelIn (i.e., no new type relationsare added). If both Type1 and type2 are instantiated, then Type1 and Type2 are associatedand the association is added to the list of type relations passed in via TypeRelIn and thensent out via TypeRelOut.6 ResultsThe type inference program was implemented in Prolog using SICStus Prolog. The program wasthen ran on several toy programs. The programs and their outputs are shown in Figures 1 to 10. Forprogram listings, numbers on the left indicate the clause numbers. For program outputs, numberson the left merely indicate the line numbers. They are not part of the program nor part of theoutput.Figure 1 shows the list length program we have been using as the example. As shown inFigure 2, the target program is loaded with load program/1, and the type inference is started bycalling doit/0. Information relevant to types is then retrieved by calling typeinfo/0. For len,our program was able to detect that the two arguments of len had recursive structures (lines 10and 11 in Figure 2). For this small program, our program was successful.The program was not so successful with the list reversal program in Figure 3. For this program,our program was able to detect the list structure in the �rst argument of reverse/2 (usingtransitivity from lines 13 and 24 in Figure 4) and the �rst and second arguments of reverse/3(lines 23 and 24 in Figure 4), but not for the others. However, line 16 (and 17) in Figure 4 saysthat the second and the third arguments of reverse/3 are of the same type. Thus, if we choose toextrapolate this, we could conclude that the list structure was also detected for the third argumentsof reverse/3. Similar argument can be made for the second argument of reverse/2 by line 1.Note, by the way, the large number of type equivalences (lines 6 to 9, 11 to 14, 16, 17, 19, and20). Although these type relations are all crucial information inferred from the program, maybeour program should have tried some other means to keep all this information from being displayed.



7. Future Work 6This becomes a bigger problem for larger programs, as it can be witnessed in Appendix A. Morewould be said in Section 7.Figure 5 is the list append program. This program is particularly tricky as the procedure, as itis written, works even if the second argument is not a list. Figure 6 shows that the program wasable to detect the list structure for the �rst and third arguments (lines 13 and 14); as expected,not for the second argument. However, line 6 (and 7) says that the types of the second and thirdarguments are the same. Thus, again, if we choose to extrapolate this, we could conclude that thesecond argument also has a list structure.Figure 7 is the list permuting program. This is also the �rst program that includes twoprocedures (apart from the list reversal program in Figure 3 where there were two closely relatedprocedures). As shown in Figure 8, our program was able to detect list structures in both argumentsof permute and in the third argument of delete. However, it was not able to detect the list structurein the second argument of delete; the most information it got out of the analysis was that the topfunctor was a list constructor (lines 10 and 18).Figure 9 shows the quicksort program that was used to test our program. It is also the mostcomplex program we used to test our program. Note the use of the successor function to representnon-negative integers. The number of lines printed by our program for type information was over150 lines. Lines of interest are summarized in Figure 10; the whole output is shown in Appendix A.With the exception of append, our program was able to detect all the recursive structures.7 Future WorkOur program could not infer all recursive constructs in term types. However, it was successful inmost cases, at least with toy programs. An immediate problem with our program would be in itsoutput processing; currently, there is barely any. Some �lter is desired so that only the essentialtype information would be printed to the screen. Also, the use of type labels may need to bere-examined. The type labels lead to a large number of ground terms whose association need to behandled explicitly by the program. It would be better if some non-ground representation could besubstituted so that type equivalence could be handled via uni�cation.References[1] P. Cousot and R. Cousot. Abstract interpretation: A uni�ed lattice model for static analysis ofprograms by construction or approximation of �xpoints. In Proceedings of the 4th Annual ACMSymposium on Principles of Programming Languages, pages 238{252, 1977.[2] Danny De Schreye and Stefaan Decorte. Termination of logic programs: The never-ending story.Journal of Logic Programming, 19, 20:199{260, 1994.



References 71 len([], 0).2 len([X | Xs], s(S)) :- len(Xs, S).Figure 1: List length program len.1 | ?- load_program(len).2 yes3 | ?- doit.4 yes5 | ?- typeinfo.6 typelabel$1.2 = 0.7 typelabel$1.1 = [].8 typelabel$2.2 = s(typelabel$1.2).9 typelabel$2.1 = [_130|typelabel$1.1].10 typelabel$2.2 = s(typelabel$2.2).11 typelabel$2.1 = [_130|typelabel$2.1].12 yes Figure 2: Output for len.1 reverse(Xs, RXs) :- reverse(Xs, [], RXs).2 reverse([], Acc, Acc).3 reverse([X | Xs], Acc, RXs) :- reverse(Xs, [X | Acc], RXs).Figure 3: List reversal program reverse.



References 81 | ?- load_program(reverse).2 yes3 | ?- doit.4 yes5 | ?- typeinfo.6 typelabel$1.2 = typelabel$2.3.7 typelabel$2.3 = typelabel$1.2.8 typelabel$1.1 = typelabel$2.1.9 typelabel$2.1 = typelabel$1.1.10 typelabel$2.2 = [].11 typelabel$1.2 = typelabel$3.3.12 typelabel$3.3 = typelabel$1.2.13 typelabel$1.1 = typelabel$3.1.14 typelabel$3.1 = typelabel$1.1.15 typelabel$3.2 = [].16 typelabel$2.3 = typelabel$2.2.17 typelabel$2.2 = typelabel$2.3.18 typelabel$2.1 = [].19 typelabel$3.3 = typelabel$2.3.20 typelabel$2.3 = typelabel$3.3.21 typelabel$2.2 = [_130|typelabel$3.2].22 typelabel$3.1 = [_130|typelabel$2.1].23 typelabel$3.2 = [_130|typelabel$3.2].24 typelabel$3.1 = [_130|typelabel$3.1].25 yes Figure 4: Output for reverse.1 append([], Ys, Ys).2 append([X | Xs], Ys, [X | Zs]) :- append(Xs, Ys, Zs).Figure 5: List append program append.



References 91 | ?- load_program(append).2 yes3 | ?- doit.4 yes5 | ?- typeinfo.6 typelabel$1.3 = typelabel$1.2.7 typelabel$1.2 = typelabel$1.3.8 typelabel$1.1 = [].9 typelabel$2.2 = typelabel$1.2.10 typelabel$1.2 = typelabel$2.2.11 typelabel$2.3 = [_130|typelabel$1.3].12 typelabel$2.1 = [_130|typelabel$1.1].13 typelabel$2.3 = [_130|typelabel$2.3].14 typelabel$2.1 = [_130|typelabel$2.1].15 yes Figure 6: Output for append.
1 permute([], []).2 permute([X | Xs], [Y | Ys]) :-delete(Y, [X | Xs], Zs),permute(Zs, Ys).3 delete(X, [X | Xs], Xs).4 delete(Y, [X | Xs], [X | Zs]) :-delete(Y, Xs, Zs).Figure 7: List permute program permute.



References 10
1 | ?- load_program(permute).2 yes3 | ?- doit.4 yes5 | ?- typeinfo.6 typelabel$1.2 = [].7 typelabel$1.1 = [].8 typelabel$3.3 = typelabel$1.1.9 typelabel$1.1 = typelabel$3.3.10 typelabel$3.2 = [_130|_131].11 typelabel$2.2 = [typelabel$3.1|typelabel$1.2].12 typelabel$2.1 = [_130|_131].13 typelabel$3.3 = typelabel$2.1.14 typelabel$2.1 = typelabel$3.3.15 typelabel$2.2 = [typelabel$3.1|typelabel$2.2].16 typelabel$4.3 = typelabel$1.1.17 typelabel$1.1 = typelabel$4.3.18 typelabel$4.2 = [_130|_131].19 typelabel$2.2 = [typelabel$4.1|typelabel$1.2].20 typelabel$4.3 = typelabel$2.1.21 typelabel$2.1 = typelabel$4.3.22 typelabel$2.2 = [typelabel$4.1|typelabel$2.2].23 typelabel$4.1 = typelabel$3.1.24 typelabel$3.1 = typelabel$4.1.25 typelabel$4.3 = [_130|typelabel$3.3].26 typelabel$4.3 = [_130|typelabel$4.3].27 yes Figure 8: Output for permute.



References 11
1 qsort([], []).2 qsort([P | Xs], SXs) :-partition(Xs, P, Xs1, Xs2),qsort(Xs1, SXs1),qsort(Xs2, SXs2),append(SXs1, [P | SXs2], SXs).3 partition([], _, [], []).4 partition([X | Xs], P, [X | Ls], Bs) :-lessthan(X, P),partition(Xs, P, Ls, Bs).5 partition([X | Xs], P, Ls, [X | Bs]) :-greaterequal(X, P),partition(Xs, P, Ls, Bs).6 lessthan(0, s(_)).7 lessthan(s(X), s(Y)) :- lessthan(X, Y).8 greaterequal(0, 0).9 greaterequal(s(_), 0).10 greaterequal(s(X), s(Y)) :- greaterequal(X, Y).11 append([], Ys, Ys).12 append([X | Xs], Ys, [X | Zs]) :- append(Xs, Ys, Zs).Figure 9: Quicksort program qsort.



References 12...18 typelabel$2.2 = typelabel$12.3....45 typelabel$2.1 = typelabel$4.3....58 typelabel$2.1 = typelabel$5.3....72 typelabel$4.3 = [typelabel$6.1|typelabel$4.3].73 typelabel$4.1 = [typelabel$6.1|typelabel$4.1]....83 typelabel$3.2 = typelabel$7.2....87 typelabel$4.2 = typelabel$7.2.88 typelabel$4.3 = [typelabel$7.1|typelabel$4.3].89 typelabel$4.1 = [typelabel$7.1|typelabel$4.1]....91 typelabel$5.2 = typelabel$7.2....102 typelabel$5.3 = typelabel$4.3.103 typelabel$4.3 = typelabel$5.3....110 typelabel$5.4 = [typelabel$8.1|typelabel$5.4].111 typelabel$5.1 = [typelabel$8.1|typelabel$5.1]....122 typelabel$5.4 = [typelabel$9.1|typelabel$5.4].123 typelabel$5.1 = [typelabel$9.1|typelabel$5.1]....125 typelabel$3.2 = typelabel$10.2....129 typelabel$4.2 = typelabel$10.2....133 typelabel$5.2 = typelabel$10.2....140 typelabel$7.2 = s(typelabel$7.2).141 typelabel$7.1 = s(typelabel$7.1)....150 typelabel$10.2 = s(typelabel$10.2).151 typelabel$10.1 = s(typelabel$10.1)....159 typelabel$12.3 = [_130|typelabel$12.3].160 typelabel$12.1 = [_130|typelabel$12.1].... Figure 10: Output for qsort.



Appendix A. Complete Output for qsort 13A Complete Output for qsort1 | ?- load_program(qsort4).2 yes3 | ?- doit.4 yes5 | ?- typeinfo.6 typelabel$1.2 = [].7 typelabel$1.1 = [].8 typelabel$2.2 = typelabel$11.3.9 typelabel$11.3 = typelabel$2.2.10 typelabel$11.2 = [typelabel$3.2|typelabel$1.2].11 typelabel$1.2 = typelabel$11.1.12 typelabel$11.1 = typelabel$1.2.13 typelabel$3.4 = typelabel$1.1.14 typelabel$1.1 = typelabel$3.4.15 typelabel$3.3 = typelabel$1.1.16 typelabel$1.1 = typelabel$3.3.17 typelabel$2.1 = [typelabel$3.2|typelabel$3.1].18 typelabel$2.2 = typelabel$12.3.19 typelabel$12.3 = typelabel$2.2.20 typelabel$12.2 = [typelabel$3.2|typelabel$1.2].21 typelabel$1.2 = typelabel$12.1.22 typelabel$12.1 = typelabel$1.2.23 typelabel$11.2 = [typelabel$3.2|typelabel$2.2].24 typelabel$3.4 = typelabel$2.1.25 typelabel$2.1 = typelabel$3.4.26 typelabel$12.2 = [typelabel$3.2|typelabel$2.2].27 typelabel$2.2 = typelabel$11.1.28 typelabel$11.1 = typelabel$2.2.29 typelabel$3.3 = typelabel$2.1.30 typelabel$2.1 = typelabel$3.3.31 typelabel$2.2 = typelabel$12.1.32 typelabel$12.1 = typelabel$2.2.33 typelabel$11.2 = [typelabel$4.2|typelabel$1.2].34 typelabel$4.4 = typelabel$1.1.35 typelabel$1.1 = typelabel$4.4.36 typelabel$4.3 = typelabel$1.1.37 typelabel$1.1 = typelabel$4.3.38 typelabel$2.1 = [typelabel$4.2|typelabel$4.1].39 typelabel$12.2 = [typelabel$4.2|typelabel$1.2].



Appendix A. Complete Output for qsort 1440 typelabel$11.2 = [typelabel$4.2|typelabel$2.2].41 typelabel$4.4 = typelabel$2.1.42 typelabel$2.1 = typelabel$4.4.43 typelabel$12.2 = [typelabel$4.2|typelabel$2.2].44 typelabel$4.3 = typelabel$2.1.45 typelabel$2.1 = typelabel$4.3.46 typelabel$11.2 = [typelabel$5.2|typelabel$1.2].47 typelabel$5.4 = typelabel$1.1.48 typelabel$1.1 = typelabel$5.4.49 typelabel$5.3 = typelabel$1.1.50 typelabel$1.1 = typelabel$5.3.51 typelabel$2.1 = [typelabel$5.2|typelabel$5.1].52 typelabel$12.2 = [typelabel$5.2|typelabel$1.2].53 typelabel$11.2 = [typelabel$5.2|typelabel$2.2].54 typelabel$5.4 = typelabel$2.1.55 typelabel$2.1 = typelabel$5.4.56 typelabel$12.2 = [typelabel$5.2|typelabel$2.2].57 typelabel$5.3 = typelabel$2.1.58 typelabel$2.1 = typelabel$5.3.59 typelabel$3.4 = [].60 typelabel$3.3 = [].61 typelabel$3.1 = [].62 typelabel$4.4 = typelabel$3.4.63 typelabel$3.4 = typelabel$4.4.64 typelabel$4.2 = typelabel$3.2.65 typelabel$3.2 = typelabel$4.2.66 typelabel$6.2 = typelabel$3.2.67 typelabel$3.2 = typelabel$6.2.68 typelabel$4.3 = [typelabel$6.1|typelabel$3.3].69 typelabel$4.1 = [typelabel$6.1|typelabel$3.1].70 typelabel$6.2 = typelabel$4.2.71 typelabel$4.2 = typelabel$6.2.72 typelabel$4.3 = [typelabel$6.1|typelabel$4.3].73 typelabel$4.1 = [typelabel$6.1|typelabel$4.1].74 typelabel$4.4 = typelabel$5.4.75 typelabel$5.4 = typelabel$4.4.76 typelabel$4.2 = typelabel$5.2.77 typelabel$5.2 = typelabel$4.2.78 typelabel$6.2 = typelabel$5.2.79 typelabel$5.2 = typelabel$6.2.80 typelabel$4.3 = [typelabel$6.1|typelabel$5.3].81 typelabel$4.1 = [typelabel$6.1|typelabel$5.1].82 typelabel$7.2 = typelabel$3.2.



Appendix A. Complete Output for qsort 1583 typelabel$3.2 = typelabel$7.2.84 typelabel$4.3 = [typelabel$7.1|typelabel$3.3].85 typelabel$4.1 = [typelabel$7.1|typelabel$3.1].86 typelabel$7.2 = typelabel$4.2.87 typelabel$4.2 = typelabel$7.2.88 typelabel$4.3 = [typelabel$7.1|typelabel$4.3].89 typelabel$4.1 = [typelabel$7.1|typelabel$4.1].90 typelabel$7.2 = typelabel$5.2.91 typelabel$5.2 = typelabel$7.2.92 typelabel$4.3 = [typelabel$7.1|typelabel$5.3].93 typelabel$4.1 = [typelabel$7.1|typelabel$5.1].94 typelabel$5.3 = typelabel$3.3.95 typelabel$3.3 = typelabel$5.3.96 typelabel$5.2 = typelabel$3.2.97 typelabel$3.2 = typelabel$5.2.98 typelabel$8.2 = typelabel$3.2.99 typelabel$3.2 = typelabel$8.2.100 typelabel$5.4 = [typelabel$8.1|typelabel$3.4].101 typelabel$5.1 = [typelabel$8.1|typelabel$3.1].102 typelabel$5.3 = typelabel$4.3.103 typelabel$4.3 = typelabel$5.3.104 typelabel$8.2 = typelabel$4.2.105 typelabel$4.2 = typelabel$8.2.106 typelabel$5.4 = [typelabel$8.1|typelabel$4.4].107 typelabel$5.1 = [typelabel$8.1|typelabel$4.1].108 typelabel$8.2 = typelabel$5.2.109 typelabel$5.2 = typelabel$8.2.110 typelabel$5.4 = [typelabel$8.1|typelabel$5.4].111 typelabel$5.1 = [typelabel$8.1|typelabel$5.1].112 typelabel$9.2 = typelabel$3.2.113 typelabel$3.2 = typelabel$9.2.114 typelabel$5.4 = [typelabel$9.1|typelabel$3.4].115 typelabel$5.1 = [typelabel$9.1|typelabel$3.1].116 typelabel$9.2 = typelabel$4.2.117 typelabel$4.2 = typelabel$9.2.118 typelabel$5.4 = [typelabel$9.1|typelabel$4.4].119 typelabel$5.1 = [typelabel$9.1|typelabel$4.1].120 typelabel$9.2 = typelabel$5.2.121 typelabel$5.2 = typelabel$9.2.122 typelabel$5.4 = [typelabel$9.1|typelabel$5.4].123 typelabel$5.1 = [typelabel$9.1|typelabel$5.1].124 typelabel$10.2 = typelabel$3.2.125 typelabel$3.2 = typelabel$10.2.



Appendix A. Complete Output for qsort 16126 typelabel$5.4 = [typelabel$10.1|typelabel$3.4].127 typelabel$5.1 = [typelabel$10.1|typelabel$3.1].128 typelabel$10.2 = typelabel$4.2.129 typelabel$4.2 = typelabel$10.2.130 typelabel$5.4 = [typelabel$10.1|typelabel$4.4].131 typelabel$5.1 = [typelabel$10.1|typelabel$4.1].132 typelabel$10.2 = typelabel$5.2.133 typelabel$5.2 = typelabel$10.2.134 typelabel$5.4 = [typelabel$10.1|typelabel$5.4].135 typelabel$5.1 = [typelabel$10.1|typelabel$5.1].136 typelabel$6.2 = s(_131).137 typelabel$6.1 = 0.138 typelabel$7.2 = s(typelabel$6.2).139 typelabel$7.1 = s(typelabel$6.1).140 typelabel$7.2 = s(typelabel$7.2).141 typelabel$7.1 = s(typelabel$7.1).142 typelabel$8.2 = 0.143 typelabel$8.1 = 0.144 typelabel$9.2 = 0.145 typelabel$9.1 = s(_131).146 typelabel$10.2 = s(typelabel$8.2).147 typelabel$10.1 = s(typelabel$8.1).148 typelabel$10.2 = s(typelabel$9.2).149 typelabel$10.1 = s(typelabel$9.1).150 typelabel$10.2 = s(typelabel$10.2).151 typelabel$10.1 = s(typelabel$10.1).152 typelabel$11.3 = typelabel$11.2.153 typelabel$11.2 = typelabel$11.3.154 typelabel$11.1 = [].155 typelabel$12.2 = typelabel$11.2.156 typelabel$11.2 = typelabel$12.2.157 typelabel$12.3 = [_130|typelabel$11.3].158 typelabel$12.1 = [_130|typelabel$11.1].159 typelabel$12.3 = [_130|typelabel$12.3].160 typelabel$12.1 = [_130|typelabel$12.1].161 yes


