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ABSTRACT

One way to prove termination of a logic program is to show that input terms passed
to each recursive procedure decrease in size between successive calls to the same procedure
with respect to some appropriately defined norms. Except when all the input terms are
ground, finding the appropriate norms is generally not easy. Barring the use of numbers and
arithmetics, recursive calls are controlled by recursively constructed terms. Thus, one way
to automatically find the appropriate norms would be to automatically identify recursive
structures in term types. This report describes a work in progress that attempts to infer
such recursive structures using abstract interpretation.
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1 Introduction

Termination analysis of logic programs has attracted a lot of interest within the logic programming
community. For a survey of relevant works, see [2]. One way to prove termination is to show that
input terms passed to each recursive procedure decrease in size between successive calls to the same
procedure with respect to some appropriately defined norms. With the exception when input terms
are all ground, finding the appropriate norms is generally not easy. However, in order to automate
the process of termination analysis, a mechanism to automatically find these norms is necessary.

Barring numbers and arithmetics to control recursive calls, all recursive calls are controlled by
recursively constructed terms. Thus, one way to automatically find the appropriate norms would
be to automatically identify recursive structures in term types.

This report describes a work in progress that attempts to infer recursive structures in term types.
The method is based on abstract interpretation ([1]); the program is converted into a program on
the abstract domain of types and then evaluated in a bottom-up fashion in the style of forward
reasoning.

2 Recursive Calls and Recursive Terms

Barring numbers and arithmetics (and other non-logical constructs) to control recursive calls, the
only way to control recursive calls is to use recursively constructed terms. Thus, one way to
automatically find the appropriate norms would be to automatically identify recursive structures
in terms permissible as arguments for each procedure. Once these are identified, we can test for
termination by checking that any goal has its input terms’ recursive structures instantiated so that
the terms can safely control recursive calls.

Example. Consider the following program:

len([], 0).

len([_IT], s(8)) :- len(T, S).
The recursive structure in the first argument of len is in the second argument, if at all, and the
recursive structure in the second argument of len is in the first argument, if at all. Because of this,
it is obvious that although goals

7- lenC[_I[_10111, O).
and

7- len(_, s(s(0))).
will terminate,

7- len([[011_1.0, ).

will not. O

3 Types, Type Expressions, and Type Labels

Types are chosen to be the abstract domain in our application of abstract interpretation. Formally,
a type is defined to be the set of values variables and constants of the type may take. However, our
interest is not in trying to infer all possible values of the type but rather to infer a small number
of construction rules that could generate all possible values. Further, it is not necessary that the
set of construction rules be “exact”. We are interested in knowing the presence of any recursive
structures in types; therefore, some amount of redundancy in the construction rules is acceptable,
particularly if this makes the construction rules simpler.
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Example. Consider the following program:
even(0).

even(s(s(N))) :- even(l).
Considering 0 to be the numerical zero and s to be the successor function, even(X) succeeds if X
is a non-negative even integer. The type of X can be enumerated as:

{0,8(s(0)),s(s(s(s(0)))),...}

An exact set of construction rules for this type is

typeof (X) == 0

typeof (X)) == s(s(1))
However, for our purpose, the following set of construction rules suffices.

typeof (X) == 0

typeof (X)) == s(I)
O

Type expressions are expressions involving types and describe other types. Let ¢ be a constant,

f be an n-ary functor, and 717, ...,7T, be n types. Then ¢ denotes the type whose only value is ¢, and

f(11,...,T,) denotes the type whose values have the form f(z1,...,2,) where zy € T1,...,2, €
T,.

Type labels are names introduced into the abstracted program for the purpose of referring to
“key” types. Unique type labels are generated and assigned to each argument position of each
procedure. The reason for separate type labels for different clauses of the same procedure is so
that type inference can proceed with respect to each clause as opposed to the set of clauses that
(completely) define the procedure. In a way, the type inference scheme described in this report can
be thought of as trying to describe these type labels. Note that in the abstracted program, we can
introduce the type labels using assertions; this is because the domain of the abstracted programs
is types.

Example. In this report, type labels are generated systematically using the following template:
typelabel$clause. arg

where clause is the position of the clause in the program and arg is the argument position. The

first clause is at position 1 and the first argument is at position 1.

Continuing with the earlier example using len, we generate four type labels—typelabel$1.1,
typelabel$l.2, typelabel$2.1, and typelabel$2.2—and add them to the abstracted program

as assertions.
len(typelabel$l.1, typelabel$i.2).

len(typelabel$2.1, typelabel$2.2).
O

4 Approach

We consider normalized programs. Normalized programs can be obtained from non-normalized
programs by a straightforward syntactical transformation. The reason for the use of normalized
programs is so that all unifications become explicit.

Example. Consider again the following program:
len([], 0).

len([_|IL], 8(8)) :- len(L, S).
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A normalized version of the above program would be:
len(AO1, A02) :- AO1 = [], AO2 = 0.
len(AO1, A02) :- AO1 = [_|AO12], AO12 = L, A02 = s(A021), AO21 = S,
len(Al11, A12), A1l =L, A12 = 8.

At this time, we can infer some information about the types in the head of each clause by
looking at the body of the clause.

Example. Continuing with the example, we can infer from the first clause that one successful
argument for len is ([1, 0). Also, from the second clause, we can infer that another successful
argument for len has a term whose top functor is . (the list constructor) as its first argument and
a term whose top functor is s as its second argument. O

Note that in the previous example, type inference was essentially done by comparing the left
and right hand sides of =s. Although similar in form, the information obtained from the unifications
depended on what were on the two sides. For instance, the = in the first clause meant that the
constant term on the right hand side was the only instance of the type on the left hand side,
whereas in the second clause, the = meant that the type appearing on the left hand side has the
form appearing on the right hand side (e.g., A01 = [_|4012]), or that the two types are the same
(e.g., A012 = L)L

Let us now formalize this by introducing the rules as axioms for type inference.

o If the goal is X = y where X is a variable and ¢ is a constant, then X is a singleton type

whose only element is c.

o If the goal is X = f(Y7,...,Y,;) where X and Yq,...,Y,, are variables for some n > 1, then

the type of X is f(Y1,...,Y,).

o If the goal is X = Y where X and Y are two variables, then the types of X and Y are the

same.

To disambiguate the overloaded use of =, we convert the normalized program so that each use of
= is rewritten using the appropriate predicate—either instance or iff. instance(X, ¢) means
that ¢ is the only instance of type X and is used for the first case above. iff(X, Y) means that
X and Y have the same type and is used for the second and third cases above.

Example. Continuing with the example, we obtain the following code after the transformation.
len(AO1, AO2) :- instance(AO1, []), instance(A02, 0).
len(AO1, A02) :- iff(AO1, [_lA012]), iff(A012, L),
if£(A02, s(A021)), iff(A021, S),
len(Al11, A12), iff(A11, L), iff(A12, S).

To be able to infer recursive structures in types, we now introduce type labels described in
Section 3.

Example. Continuing with the example, the complete abstracted program, with the type labels,
looks like this:

1 As T write this report now, I feel that the distinction was not necessary. This may be changed in the future.
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len(AO1, AO2) :- instance(AO1, []), instance(A02, 0).
len(AO1, A02) :- iff(a01, [_lA012]), iff(A012, L),
iff (A02, s(A021)), iff(A021, S),
len(A11, A12), iff(A11, L), iff(A12, S).

len(typelabel$l.1, typelabel$i.2).
len(typelabel$2.1, typelabel$2.2).

Now, using bottom-up evaluation on the abstracted program, we can infer recursive structures
in types.

Example. Continuing with the example, a straightforward bottom-up evaluation using the second
and the fourth clauses yields that a success pattern for len involving the second clause as the top
clause is ([_|typelabel$2.1], s(typelabel$2.2)). Since typelabel$2.1 and typelabel$2.2
are the type labels for the head of this clause, we have inferred that

typelabel$2.1 = [?|typelabel$2.1]

typelabel$2.2 = s(typelabel$2.2)
where ‘7’ is used to mean “don’t care”. These tell us that recursive structures are present in both
arguments (because, in each inferred type relation, the type labels on the left hand side also appears
on the right hand side), that for the first argument position of len, the recursive structure is present
in the second argument position of . (because that’s where the type label typelabel$2.1 occurs
on the right hand side), and that for the second argument position of len, the recursive structure
is present in the first argument position of s. O

5 Some Implementation Details

During the evaluation of the axioms, relationships between different (type) variables and member-
ship of constants to types are obtained. These information are passed from one goal to another
during bottom-up evaluation of the abstracted program via variables added by the translator. This
is done so that no special feature is required in the bottom-up evaluator.

For each clause in the program, the head and the goals in the body are added two more
parameters. Both parameters precede original parameters in the program. The design choice of
these parameters preceding original parameters was made so that these parameters will always
appear at the same argument positions.

Example. Continuing with the example, len is increase of its number of arguments to four. Fach
goal will now look like this:
len(TypeRelIn, TypeRelOut, List, Len)

The meaning of the arguments are:

TypeRelIn  List of type relations known before the evaluation of this goal.

TypeRelOut List of type relations known after the evaluation of this goal.

List Same as the first argument of the original len.

Len Same as the second argument of the original len.

The head as well as the goals in the body will share variables so that the type relations obtained
during bottom-up evaluation will flow through the clause.
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Example. Continuing with the example, the program now looks like this:
len(TypeRelIn, TypeRelOut, AO1, AO2) :- instance(TypeRelIn, TypeRell, AO1, []),
instance(TypeRell, TypeRelOut, A02, 0).

len(TypeRelIn, TypeRelOut, AO1, A02) :- iff(TypeRelln, TypeRell, AO1, [_|A012]),
iff (TypeRell, TypeRel2, A012, L),
iff (TypeRel2, TypeRel3, A02, s(A021)),
iff (TypeRel3, TypeRel4, A021, S),
len(TypeRel4, TypeRel5, Al1l, A12),
iff (TypeRel5, TypeRel6, A11l, L),
iff (TypeRel6, TypeRelOut, A12, S).

Note that the variables are shared so that type relations may enter the clause at the head via
TypeRellIn, cascade through the body, and exit the clause from the head via TypeRelOut. O

Evaluation of axiom goals is when and where the real work of obtaining type relations is done.

o [f the axiom goal is instance(TypeRelIn, TypeRelOut, Type, Const), then the type Type
is associated with the constant type Const, and the association is added to the list of type
relations passed in via TypeRelIn and then sent out via TypeRelOut.

o [f the axiom goal is 1ff (TypeRelIn, TypeRelOut, Typel, Type2), then the two type vari-
ables, Typel and Type2, are examined. If either of them are uninstantiated, then the two
type variables are unified and so are TypeRelOut and TypeRelln (i.e., no new type relations
are added). If both Typel and type2 are instantiated, then Typel and Type2 are associated
and the association is added to the list of type relations passed in via TypeRelIn and then
sent out via TypeRelOut.

6 Results

The type inference program was implemented in Prolog using SICStus Prolog. The program was
then ran on several toy programs. The programs and their outputs are shown in Figures 1 to 10. For
program listings, numbers on the left indicate the clause numbers. For program outputs, numbers
on the left merely indicate the line numbers. They are not part of the program nor part of the
output.

Figure 1 shows the list length program we have been using as the example. As shown in
Figure 2, the target program is loaded with load program/1, and the type inference is started by
calling doit/0. Information relevant to types is then retrieved by calling typeinfo/0. For len,
our program was able to detect that the two arguments of len had recursive structures (lines 10
and 11 in Figure 2). For this small program, our program was successful.

The program was not so successful with the list reversal program in Figure 3. For this program,
our program was able to detect the list structure in the first argument of reverse/2 (using
transitivity from lines 13 and 24 in Figure 4) and the first and second arguments of reverse/3
(lines 23 and 24 in Figure 4), but not for the others. However, line 16 (and 17) in Figure 4 says
that the second and the third arguments of reverse/3 are of the same type. Thus, if we choose to
extrapolate this, we could conclude that the list structure was also detected for the third arguments
of reverse/3. Similar argument can be made for the second argument of reverse/2 by line 1.
Note, by the way, the large number of type equivalences (lines 6 to 9, 11 to 14, 16, 17, 19, and
20). Although these type relations are all crucial information inferred from the program, maybe
our program should have tried some other means to keep all this information from being displayed.
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This becomes a bigger problem for larger programs, as it can be witnessed in Appendix A. More
would be said in Section 7.

Figure 5 is the list append program. This program is particularly tricky as the procedure, as it
is written, works even if the second argument is not a list. Figure 6 shows that the program was
able to detect the list structure for the first and third arguments (lines 13 and 14); as expected,
not for the second argument. However, line 6 (and 7) says that the types of the second and third
arguments are the same. Thus, again, if we choose to extrapolate this, we could conclude that the
second argument also has a list structure.

Figure 7 is the list permuting program. This is also the first program that includes two
procedures (apart from the list reversal program in Figure 3 where there were two closely related
procedures). As shown in Figure 8, our program was able to detect list structures in both arguments
of permute and in the third argument of delete. However, it was not able to detect the list structure
in the second argument of delete; the most information it got out of the analysis was that the top
functor was a list constructor (lines 10 and 18).

Figure 9 shows the quicksort program that was used to test our program. It is also the most
complex program we used to test our program. Note the use of the successor function to represent
non-negative integers. The number of lines printed by our program for type information was over
150 lines. Lines of interest are summarized in Figure 10; the whole output is shown in Appendix A.
With the exception of append, our program was able to detect all the recursive structures.

7 Future Work

Our program could not infer all recursive constructs in term types. However, it was successful in
most cases, at least with toy programs. An immediate problem with our program would be in its
output processing; currently, there is barely any. Some filter is desired so that only the essential
type information would be printed to the screen. Also, the use of type labels may need to be
re-examined. The type labels lead to a large number of ground terms whose association need to be
handled explicitly by the program. It would be better if some non-ground representation could be
substituted so that type equivalence could be handled via unification.
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1 len([1, 0).
2 len([X | Xs], s(8)) :- len(Xs, S).

Figure 1: List length program len.

1 | ?- load_program(len).

2 yes
| ?- doit.

4 yes
| ?- typeinfo.

6 typelabel$l.2 = 0.

7 typelabel$1l.1 = [].

8 typelabel$2.2 = s(typelabel$1.2).

9 typelabel$2.1 = [_130|typelabel$1.1].
10 typelabel$2.2 = s(typelabel$2.2).
11 typelabel$2.1 = [_130|typelabel$2.1].
12 yes

Figure 2: Output for len.

1 reverse(Xs, RXs) :- reverse(Xs, [], RXs).

2 reverse([], Acc, Acc).

3 reverse([X | Xs], Acc, RXs) :- reverse(Xs, [X | Acc]l, RXs).

Figure 3: List reversal program reverse.
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| ?- load_program(reverse).

yes
| ?- doit.

yes

| ?- typeinfo.

typelabel$l.
typelabel$2.
typelabel$l.
typelabel$2.
typelabel$2.
typelabel$l.
typelabel$3.
typelabel$l.
typelabel$3.
typelabel$3.
typelabel$2.
typelabel$2.
typelabel$2.
typelabel$3.
typelabel$2.
typelabel$2.
typelabel$3.
typelabel$3.
typelabel$3.

NP, N WWERNONNEL, P, ONNEeE PR, WN

yes

= typelabel$2.
= typelabel$l.
= typelabel$2.
= typelabel$l.
= [1.

= typelabel$3.
= typelabel$l.
= typelabel$3.
= typelabel$l.
= [1.

= typelabel$2.
= typelabel$2.
= [1.

= typelabel$2.
= typelabel$3.
[_130|typelabel$3.2].
[_130|typelabel$2.1].
[_130|typelabel$3.2].
[_130|typelabel$3.1].

=R W

= o= N W

3.

3

Figure 4: Output for reverse

append([], Ys, Ys).
2 append([X | Xs], Ys, [X | Zs]) :- append(Xs, Ys, Zs).

Figure 5: List append program append.
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1 | ?- load_program(append) .

2 yes

3 | 7- doit.

4 yes

5 | 7- typeinfo.

6 typelabel$1.3 = typelabel$l.2.
7 typelabel$1.2 = typelabel$1l.3.
8§ typelabel$l.1 = [].

9 typelabel$2.2 = typelabel$l.2.

10 typelabel$1l.
11 typelabel$2.
12 typelabel$2.
13 typelabel$2.
14 typelabel$2.

typelabel$2.2.

= [_130|typelabel$1.3].
= [_130|typelabel$l.1].
= [_130|typelabel$2.3].
= [_130|typelabel$2.1].

B WL, WNNER,NNDW
1}

15 yes

Figure 6: Output for append.

permute([1, [1).
2 permute([X | Xs], [Y | Ysl) :-
delete(Y, [X | Xs], Zs),
permute(Zs, Ys).

delete(X, [X | Xs], Xs).
4 delete(Y, [X | Xs], [X | Zs]) :-
delete(Y, Xs, Zs).

Figure 7: List permute program permute.
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| ?- load_program(permute).

yes
| ?- doit.

yes

| ?- typeinfo.

typelabel$l.
typelabel$l.
typelabel$3.
typelabel$l.
typelabel$3.
typelabel$2.
typelabel$2.
typelabel$3.
typelabel$2.
typelabel$2.
typelabel$4.
typelabel$l.
typelabel$4.
typelabel$2.
typelabel$4.
typelabel$2.
typelabel$2.
typelabel$4.
typelabel$3.
typelabel$4.
typelabel$4.

W WL, P, NP, ONNE WONEPE, WOFEENNNPEP,WR,N

yes

d.

d.
typelabel$l.1.
typelabel$3.3.
[-130]_131].

[typelabel$3.1|typelabel$l.2].

[-130]_131].
typelabel$2.1.
typelabel$3.3.

[typelabel$3.1|typelabel$2.2].

typelabel$l.1.
typelabel$4.3.
[-130]_131].

[typelabel$4.1|typelabel$l.2].

typelabel$2.1.
typelabel$4.3.

[typelabel$4.1|typelabel$2.2].

typelabel$3.1.
typelabel$4.1.
[_130|typelabel$3.3].
[_130|typelabel$4s.3].

Figure 8: Output for permute.
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gsort([1, [1).

gsort([P | Xs], SXs) :-
partition(Xs, P, Xs1, Xs2),
gsort(Xs1, SXs1),
gsort(Xs2, SXs2),
append(SXs1, [P | SXs2], SXs).

partition([l, _, [1, [1).
partition([X | Xs], P, [X | Ls], Bs) :-
lessthan(X, P),
partition(Xs, P, Ls, Bs).
partition([X | Xs], P, Ls, [X | Bsl]) :-
greaterequal (X, P),
partition(Xs, P, Ls, Bs).

lessthan(0, s(_)).
lessthan(s(X), s(Y)) :- lessthan(X, Y).

greaterequal(0, 0).
greaterequal(s(_), 0).

greaterequal(s(X), s(Y)) :- greaterequal(X, Y).

append([], Ys, Ys).
append([X | Xs], Ys, [X | Zs]) :- append(Xs, Ys, Zs).

Figure 9: Quicksort program gsort.
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159
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typelabel$2.
typelabel$2.

typelabel$2.

typelabel$4.3

typelabel$4.
typelabel$3.

typelabel$4.

typelabel$4.3

typelabel$4.
typelabel$s.

typelabel$s.
typelabel$4.

typelabel$5.4

typelabel$s.

typelabel$5.4

typelabel$s.
typelabel$3.
typelabel$4.

typelabel$s.

typelabel$7.2

typelabel$?.

typelabel$10.2
typelabel$10.1

typelabel$12.3
typelabel$12.1

1

typelabel$12.3.
typelabel$4.3.
typelabel$5.3.

[typelabel$6.1|typelabel$4.
[typelabel$6.1|typelabel$4.

typelabel$7.2.
typelabel$7.2.
[typelabel$7.1|typelabel$4.
[typelabel$7.1|typelabel$4.

typelabel$7.2.

typelabel$4.3.
typelabel$5.3.

[typelabel$8.1|typelabel$s
[typelabel$8.1|typelabel$s.

[typelabel$9.1|typelabel$s
[typelabel$9.1|typelabel$s.

typelabel$10.2.
typelabel$10.2.
typelabel$10.2.

s(typelabel$7.2).
s(typelabel$7.1).

s(typelabel$10.2).
s(typelabel$10.1).

[_130|typelabel$12.3].
[_130|typelabel$12.1].

3].
1].

3].
1].

.4]1.
1].

.4]1.
1].

Figure 10: Output for gsort.
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A Complete Output for gsort

1
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10
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28
29
30
31
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34
35
36
37
38
39

| ?- load_program(gsort4).

yes
| 7- doit.

yes
| 7- typeinfo.
typelabel$l.2
typelabel$1.1 = [].

typelabel$2.2 = typelabel$il.3.
typelabel$11.3 = typelabel$2.2.

.

typelabel$11.2 = [typelabel$3.2|typelabel$l.2].

typelabel$l.2 = typelabel$il.1l.
typelabel$§11.1 = typelabel$l.2.

typelabel$3.4 = typelabel$l.1.
typelabel$§l.1 = typelabel$3.4.
typelabel$3.3 = typelabel$l.1.
typelabel$§l.1 = typelabel$3.3.
typelabel$2.1 = [typelabel$3.2|typelabel$3.1].
typelabel$2.2 = typelabel$12.3.

typelabel$12.3 = typelabel$2.2.

typelabel$12.2 = [typelabel$3.2|typelabel$l.2].

typelabel$l.2 = typelabel$i2.1.
typelabel$12.1 = typelabel$l.2.

typelabel$11.2 = [typelabel$3.2|typelabel$2.2].

typelabel$3.4
typelabel$2.1

typelabel$2.1.
typelabel$3.4.

typelabel$12.2 = [typelabel$3.2|typelabel$2.2].

typelabel$2.2 = typelabel$il.1l.
typelabel$11.1 = typelabel$2.2.
typelabel$3.3 = typelabel$2.1.
typelabel$2.1 = typelabel$3.3.
typelabel$2.2 = typelabel$i2.1.
typelabel$12.1 = typelabel$2.2.

typelabel$11.2 = [typelabel$4.2|typelabel$l.2].

typelabel$4.4
typelabel$1.1
typelabel$4.3
typelabel$1.1
typelabel$2.1

typelabel$l.1.
typelabel$4.4.
typelabel$l.1.
typelabel$4.3.
[typelabel$4.2|typelabel$4.1].

typelabel$12.2 = [typelabel$4.2|typelabel$l.2].

13
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typelabel$11.2 =

typelabel$s .4 =
typelabel$2.1 =

typelabel$§12.2 =

typelabel$4.3 =
typelabel$2.1 =

typelabel$11.2 =

typelabel$5.4
typelabel$1.1
typelabel$s5.3
typelabel$1.1

typelabel$2.1 =

typelabel$§12.2 =
typelabel$11.2 =

typelabel$s.4 =
typelabel$2.1 =

typelabel$§12.2 =

typelabel$s5.3
typelabel$2.1
typelabel$3.4
typelabel$3.3
typelabel$3.1
typelabel$4.4
typelabel$3.4
typelabel$4 .2
typelabel$3.2
typelabel$6.2
typelabel$3.2
typelabel$4.3
typelabel$s.1
typelabel$6.2
typelabel$4 .2
typelabel$4.3
typelabel$s.1
typelabel$4.4
typelabel$5.4
typelabel$4 .2
typelabel$s5.2
typelabel$6.2
typelabel$s5.2
typelabel$4.3
typelabel$s.1
typelabel$7.2

[typelabel$4.
typelabel$2.1.
typelabel$4.4.

[typelabel$4.
typelabel$2.1.
typelabel$4.3.

[typelabel$s.
typelabel$l.1.
typelabel$5.4.
typelabel$l.1.
typelabel$5.3.

2| typelabel$2.2].

2| typelabel$2.2].

2|typelabel$l.2].

[typelabel$5.2|typelabel$s.1].

[typelabel$s.
[typelabel$s.
typelabel$2.1.
typelabel$5.4.
[typelabel$s.
= typelabel$2.1.
typelabel$5.3.

d.
d.
d.
typelabel$3.
typelabel$4.
typelabel$3.
typelabel$4.
typelabel$3.
typelabel$6.2.

[\)[\)[\)[\)rhrh

2|typelabel$l.2].
2| typelabel$2.2].

2| typelabel$2.2].

[typelabel$6.1|typelabel$3.3].
[typelabel$6.1|typelabel$3.1].

typelabel$4.2.
typelabel$6.2.

[typelabel$6.1|typelabel$4.3].
[typelabel$6.1|typelabel$4.1].

typelabel$s.
typelabel$4.
typelabel$s.
typelabel$4.
typelabel$s.
typelabel$6.2.

[\)[\)[\)[\)rhrh

[typelabel$6.1|typelabel$s.3].
[typelabel$s.1|typelabel$s.1].

typelabel$3.2.
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83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

101

102

103

10/

105

106

107

108

109

110

111

112

113

11/

115

116

117

118

119

120

121

122

123

12/

125

typelabel$3.
typelabel$4.
typelabel$4.
typelabel$?.
typelabel$4.
typelabel$4.
typelabel$4.
typelabel$?.
typelabel$s.
typelabel$4.
typelabel$4.
typelabel$s.
typelabel$3.
typelabel$s.
typelabel$3.
typelabel$s.
typelabel$3.
typelabel$s.
typelabel$s.
typelabel$s.
typelabel$4.
typelabel$s.
typelabel$4.
typelabel$s.
typelabel$s.
typelabel$s.
typelabel$s.
typelabel$s.
typelabel$s.
typelabel$9.
typelabel$3.
typelabel$s.
typelabel$s.
typelabel$9.
typelabel$4.
typelabel$s.
typelabel$s.
typelabel$9.
typelabel$s.
typelabel$s.
typelabel$s.

ol NN R, NN R RN RN R RN WW RS RN DNNDRNRNWW RS WORNNER WP WN

Output for gqsort

typelabel$7.2.

[typelabel$7.1|typelabel$3.
[typelabel$7.1|typelabel$3.

typelabel$4.2.
typelabel$7.2.

[typelabel$7.1|typelabel$4.
[typelabel$7.1|typelabel$4.

typelabel$5.2.
typelabel$7.2.

[typelabel$7.1|typelabel$s.
[typelabel$7.1|typelabel$s.

typelabel$3.
typelabel$s.
typelabel$3.
typelabel$s.
typelabel$3.
typelabel$s.

N NN N W W

[typelabel$8.1|typelabel$3.
[typelabel$8.1|typelabel$3.

typelabel$4.3.
typelabel$5.3.
typelabel$4.2.
typelabel$s8.2.

[typelabel$8.1|typelabel$4.
[typelabel$8.1|typelabel$4.

typelabel$5.2.
typelabel$s8.2.

[typelabel$8.1|typelabel$s.
[typelabel$8.1|typelabel$s.

typelabel$3.2.
typelabel$9.2.

[typelabel$9.1|typelabel$3.
[typelabel$9.1|typelabel$3.

typelabel$4.2.
typelabel$9.2.

[typelabel$9.1|typelabel$4.
[typelabel$9.1|typelabel$4.

typelabel$5.2.
typelabel$9.2.

[typelabel$9.1|typelabel$s.
[typelabel$9.1|typelabel$s.

typelabel$10.2 = typelabel$3.2.
typelabel$3.2 = typelabel$10.2.

3].
1].

3].
1].

3].
1].

4] .
1].

4] .

1].

4] .
1].

4] .
1].

4] .
1].

4] .
1].
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126
127
128
129
130
131
132
133
13/
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
158
154
155
156
157
158
159
160

161

typelabel$s.4 =
typelabel$s.1 =

typelabel$10.
typelabel$4 .2
typelabel$5.4
typelabel$s.1
typelabel$10.
typelabel$s.
typelabel$s.
typelabel$s.
typelabel$6.
typelabel$6.
typelabel$?.
typelabel$?.
typelabel$?.
typelabel$?.
typelabel$s.
typelabel$s.
typelabel$9.
typelabel$9.
typelabel$10.
typelabel$10.
typelabel$10.
typelabel$10.
typelabel$10.
typelabel$10.
typelabel$1l.
typelabel$1l.
typelabel$1l.
typelabel$12.
typelabel$1l.
typelabel$12.
typelabel$12.
typelabel$12.
typelabel$12.

R N R NP NP NP N RN

yes

2

2

= Wk, W NN RN WS, NP, N =N

Output for gqsort

[typelabel$10.1|typelabel$3.
[typelabel$10.1|typelabel$3.

typelabel$4.2.
typelabel$10.2.

[typelabel$10.1|typelabel$4.
[typelabel$10.1|typelabel$4.

typelabel$5.2.
typelabel$10.2.

[typelabel$10.1|typelabel$s.
[typelabel$10.1|typelabel$s.

s(_131).

0.

s(typelabel$6.2).

s(typelabel$6.1).

s(typelabel$7.2).
s(typelabel$7.1).

0.

0.

0.

s(_131).
s(typelabel$s8.2).
s(typelabel$s8.1).
s(typelabel$9.2).
s(typelabel$9.1).
s(typelabel$10.2).
s(typelabel$10.1).
typelabel$11.2.
typelabel$11.3.

d.

typelabel$11.2.
typelabel$12.2.
[_130|typelabel$11.3].
[_130|typelabel$1l.1].
[_130|typelabel$12.3].
[_130|typelabel$12.1].

4] .
1].

4] .
1].

4] .
1].
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