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AbstractThis paper presents a new spectral partitioning formulation which directly incorporates vertexsize information. The formulation results in a generalized eigenvalue problem, and this problemis reduced to the standard eigenvalue problem. Experimental results show that incorporatingvertex sizes into the eigenvalue calculation produces results that are 50% better than the standardformulation in terms of scaled ratio-cut cost, even when a Kernighan-Lin style iterative improvementalgorithm taking into vertex sizes is applied as a post-processing step. The standard spectralpartitioning formulation is impractical for use in multi-level partitioning schemes since it requiresa contraction method that produces nearly-equal-size clusters. To evaluate the new method foruse in multi-level partitioning, we combine the partitioner with a multi-level bottom-up clusteringalgorithm and iterative re�nement. Experimental results show that our new spectral algorithmis more e�ective than the standard spectral formulation and other partitioners in the multi-levelpartitioning of hypergraphs.1 IntroductionPrevious spectral algorithms for partitioning graphs and hypergraphs have been limited by the factthat they implicitly assume that all vertices in a graph are the same size. In some problems, such asthe partitioning of logic blocks for �eld-programmable gate arrays, this assumption may be valid,however, in problems such as macro cell partitioning or partitioning with hierarchical clustering,vertices are unlikely to all have the same size.In this paper, we present a new spectral partitioning formulation which directly incorporates vertexsizes. This formulation yields a generalized eigenvalue problem that can be reduced to the standardeigenvalue problem. Thus, existing standard eigenvalue computation code can be used with nomodi�cations. We apply our new method to standard benchmarks to quantitatively show thee�ectiveness of the new method.Multiple levels of bottom-up clustering reduce the problem size and tend to produce superior results.Multi-level algorithms have been developed using both spectral [4], and iterative [15, 18, 17, 16],approaches. However after the application of hierarchical clustering algorithms, the resulting graphmay contain vertices of di�erent sizes. An e�ective spectral partitioner must take those sizes intoaccount to produce near-optimal solutions. Our spectral partitioner, MKP (Multi-level K-wayPartitioner), does exactly that.1.1 BackgroundSpectral algorithms were �rst proposed for placement and partitioning by Hall[12]. Fast biparti-tioning methods were developed based on a linear ordering of the vertices using the eigenvectorassociated with the second smallest eigenvalue of the Laplacian of a graph in [20, 11]. A k-way spec-tral partitioning algorithm and new k-way ratio-cut cost function were presented in [8]. Subsequentmethods for spectral k-way ratio-cut partitioning are presented in [1, 3, 2]. Spectral quadrisection1



and octasection formulations are given in [13] and [14]. Additional approaches to spectral parti-tioning are presented in [6, 5].Multi-level algorithms for partitioning have become popular in recent years. A multi-level partition-ing algorithm using recursive applications of the ratio-cut paradigm to form clusters is presentedin [23]. The �rst spectral multi-level algorithm was developed by [4], however, it did not includeiterative re�nement at successive levels. Hendrickson and Leland implemented a multi-level algo-rithm with a k-way Kernighan-Lin style re�nement algorithm [15]. An in-depth study of variousmulti-level contraction, initial partitioning, and re�nement strategies on meshes concludes that allmethods tested perform nearly equally as well [17].2 Spectral partitioning with vertex sizesIn this section we describe our new spectral method. An overview of the method is as follows:1. Establish a necessary partitioning constraint on the graph matrix representing a partition Rby replacing the previous constraint RTR = I with our new constraint RTMR = I where Mrepresents the vertex size information.2. Formulate the relaxed version of the problem as a generalized eigenvalue problem:minimize tr(XTQX) subject to XTMX = I (2:1)where Q is the Laplacian of the graph.3. Reformulate the problem, Equation (2.1) as an equivalent standard eigenvalue problem:minimize tr(X̂TQ̂X̂) subject to X̂T X̂ = I: (2:2)By �nding the eigenvalues of the equivalent problem and scaling them appropriately, we can solvethe relaxed partitioning problem with vertex sizes.We begin by revisiting the de�nitions and making the modi�cations necessary to incorporate vertexsizes.2.1 De�nitionsGiven a graph with a set of n vertices, V , we wish to �nd k partitions of this graph. Each vertexis associated with its size attribute. A partitioning of the graph is a division of the n vertices intok disjoint, non-empty subsets P1; P2; � � � ; Pk such that V = P1 [ P2 [ � � � [ Pk.� The n � n adjacency matrix, A, is composed of entries aij which represent the sum of theweights of the edges between vertices i and j.� The n � n diagonal degree matrix, D, has entries dii equal to the sum of the weights of alledges on vertex i.� The Laplacian matrix is de�ned as Q = D � A.� Eh is the sum of the weights of the edges which have exactly one vertex in partition h.2



� jjPhjj is the sum of the sizes of all vertices in partition h.� R is the n�k ratioed assignment matrix. It represents a solution to the partitioning problem.The entry rih has value 1pjjPhjj when vertex i is in partition h and 0 otherwise. This de�nitiondi�ers slightly from [7].� M is the n� n diagonal matrix whose mii entry is the size of vertex i.2.2 Problem FormulationThere are many variations of the k-way partitioning problem. We will focus on optimizing thek-way ratio-cut cost function [7], that is, �nding a solution R such thatkXh=1 EhjjPhjjis minimized. Although it may appear to be the same cost function as presented in [7], there isa subtle di�erence: the de�nitions of R and jjPhjj include the actual vertex sizes rather than thenumber of vertices in a partition.As in the proof of Lemma 1 found in [8]: we can show that the hth diagonal entry of RTQR satis�es:(RTQR)hh = 12 nXi=1 nXj=1 aij(rih � rjh)2 = EhjjPhjj (2.3)Hence the trace of RTQR is Pkh=1 EhjjPhjj .Vertex sizes are implicitly incorporated into our problem by our new de�nitions of R and jjPhjj.We will show that by taking vertex sizes into account, the constraint RTR = I is replaced byRTMR = I . Let Dn;k be the set of n� k matrices which have a single non-zero entry in every rowand for each column exactly one non-zero value among its entries.Theorem 1: R is a ratioed partition matrix if and only if R 2 Dn;k and RTMR = I.PROOF:Suppose R is a ratioed partition matrix. By de�nition each row of a ratioed partition matrix hasa single non-zero entry and the non-zero entries within a column are identical. The ghth elementof RTMR is: (RTMR)gh = nXj=1 nXi=1 rigmij! rjh (2.4)= nXj=1 rjgmjjrjh (2.5)since mij = 0 for all i 6= j. Equation (2.5) is zero when g 6= h due to the orthogonality and Booleanstructure of the columns of R. In the case where g equals h Equation (2.5) is:nXj=1 rjhmjjrjh = nXj=1mjjr2jh = Xvj2Phmjjr2jh = Pvj2Ph mjjjjPhjj = 13



where vj is vertex j.On the other hand, if R is an arbitrary matrix in Dn;k satisfying RTMR = I , then we can showthat R is the ratioed partition matrix for the partition P1; P2; � � � ; Pk where Ph is the set of verticeswhose rows have their non-zero entry in column h. Every vertex appears in exactly one Ph sinceevery row has a single non-zero entry. Let rh be the non-zero value appearing in column h. SinceRTMR = I we have1 = nXj=1 rjhmjjrjh = nXj=1mjjr2jh = Xvj2Phmjjr2h = r2h Xvj2Phmjj = r2hjjPhjjfrom which we get rh = 1pjjPhjj . Thus R is the ratioed partition matrix for P1; P2; � � � ; Pk. 23 Relaxed Problem FormulationOur objective is to �nd the matrix which minimizes RTQR subject to the constraint RTMR = Iand R 2 Dn;k . This problem is equivalent to the ratio-cut partitioning problem, and hence, thereis no known optimal polynomial-time solution. We can, however, relax the problem by removingthe R 2 Dn;k constraint. The relaxed problem turns out to be a quadratic placement problem [12],which can be solved in polynomial time.The relaxed problem is de�ned as:minimize z = tr(XTQX) subject to the constraint XTMX = I . (3:1)In the past, it was typical to use the constraint: XTX = I . Our new constraint, XTMX = I ,utilizes the vertex size information that is available. This constraint reduces to XTX = I when allof the vertices are unit size.By taking advantage of the special (diagonal) form of M , we can transform this into a standardeigenvalue problem. Let M = STS.1 Assume that all vertices have positive size and let Q̂ =S�1TQS�1. We consider the modi�ed problem,minimize z = tr(X̂TQ̂X̂) subject to the constraint X̂T X̂ = I . (3:2)Theorem 2: minftr(XTQX) j XTMX = Ig = minftr(X̂T Q̂X̂) j X̂TX̂ = Ig;PROOF:1S is the diagonal matrix with pmii in the iith entry.4



minftr(XTQX) j XTMX = Ig = minftr(XTQX) j XTSTSX = Ig= minftr(XTQX) j X̂T X̂ = I and SX = X̂g= minftr(XTQX) j X̂T X̂ = I and X = S�1X̂g= minftr(X̂TS�1TQS�1X̂) j X̂T X̂ = Ig= minftr(X̂T Q̂X̂) j X̂T X̂ = Ig 2Moreover, there are solutions X and X̂ for the minimum values for Equations (3.1) and (3.2) thatare related by SX = X̂.Equation (3.2) has the same form as previous spectral partitioning formulations, except that Q̂is no longer the Laplacian of the graph. By using the method of Lagrange multipliers or Fan'sTheorem as shown in previous literature [12, 7], Equation (3.2) leads to the standard eigenvalueproblem. Q̂X̂ = X̂� (3:3)Theorem 3: Fan's TheoremLet the eigenvalues �i of a symmetric matrix Q be so arranged that �1 � �2 � � � � � �n. Forany positive integer k � n, the sums Pki=1 �i and Pki=1 �n+1�i are respectively the minimum andmaximum of Pkj=1 xTj Qxj when k orthonormal vectors xj (1 � j � k) vary in the space.PROOF: See [9].There are many solutions for X̂, but by applying Fan's Theorem, we �nd that the eigenvectorsassociated with the smallest k eigenvalues of Q̂ yield an optimal solution to Equation (3.2),since when X̂ is composed of the k eigenvectors associated with the smallest k eigenvalues ofQ̂, X̂T Q̂X̂ = �. � is the k � k diagonal matrix composed of the the smallest k eigenvalues of Q̂.Thus, we now have an optimal solution for the quadratic assignment problem which incorporatesvertex sizes. We can obtain the answer to our original problem, Equation (3.1) using X = S�1X̂.3.1 Lower bound on the cost functionBy putting together Theorem 3 with Equation (2.3), we establish a lower bound for our costfunction. Note, �i(Q̂) denotes the ith smallest eigenvalue of Q̂. This provides a tie between thecontinuous solution and the feasible solutions (matrices restricted to Dn;k), since continuous spacesolutions which have a lower cost will produce a lower bound on the optimal feasible solution cost.Theorem 4: Let P1; P2; : : : ; Pk be any partition and R its ratioed partition matrix.kXi=1 �i(Q̂) = minftr(X̂T Q̂X̂) j X̂TX̂ = Ig � tr �RTQR� = kXh=1 EhjjPhjj (3:4)5



PROOF:By applying Theorem 3 with Equation (3.2) we obtain the left hand side of Equation (3.4). Theright hand side comes from Equation (2.3). 23.2 What is being optimized?The solution X = S�1X̂ derived from X̂, the standard eigenvalue problem for Q̂ in Equation (3.3),is actually the solution to a generalized eigenvalue problem,QX =MX�: (3:5)The generalized eigenvalue problem has been well studied, and turns up in problems such as theoscillation of springs with point masses [21].Consider our modi�ed eigenvalue/eigenvector problem, Q̂X̂ = �X̂. We might speculate that thesolution for X̂ is a variation of Hall's [12] quadratic placement problem. With some calculations,we show that this is indeed the case.Theorem 5: If X̂ is an n � k matrix, then X̂TQ̂X̂ is a k � k matrix whose ghth component is:12 nXi=1 nXj=1aij  x̂igpmi � x̂jgpmj ! x̂ihpmi � x̂jhpmj! (3:6)PROOF:the ghth component of X̂T Q̂(G)X̂ is= nXi=1 x̂igx̂ihPnj=1 aijmi � nXi=1 x̂ig nXj=1 aijpmimj x̂jh= nXi=1 nXj=1 aijmi x̂igx̂ih � nXi=1 nXj=1 aijpmimj x̂igx̂jh= 12 nXi=1 nXj=1 aijmi x̂igx̂ih � nXi=1 nXj=1 aijpmimj x̂igx̂jh + 12 nXi=1 nXj=1 aijmi x̂igx̂ih= 12 nXi=1 nXj=1 aijmi x̂igx̂ih � nXi=1 nXj=1 aijpmimj x̂igx̂jh + 12 nXj=1 nXi=1 ajimj x̂jgx̂jh= 12 nXi=1 nXj=1 aij � x̂igx̂ihmi � 2x̂igx̂jhpmimj + x̂jgx̂jhmj �= 12 nXi=1 nXj=1 aij � x̂igpmi � x̂jgpmj�� x̂ihpmi � x̂jhpmj� 26



3.3 ApplicationThe results of the modi�ed eigenvalue problem may be used directly in any spectral partitioning algorithmwhich forms partitions from the eigenvectors of the Laplacian. The KP algorithm [8] forms k partitionsby using the magnitude and orthogonality of the rows of the eigenvalue matrix. The MKP algorithm isour modi�ed KP algorithm, which accounts for vertex size information, as described in this paper. Ourpartitioner, MP implements the KP and MKP algorithms, as well as multi-level contraction.4 MP ImplementationMP(hgraph HG, int K, int Num levels,algorithm Partition, boole Refine?)f HG0  HGfor (i = 1; i � Num levels; i+ +)HGi  Contract(HGi�1)PNum levels  Partition(HGNum levels, K)for (i = Num levels; i > 0; i� �)f If (Refine? == Yes) Pi  Improve(Pi, K)Pi�1  Expand(Pi)gIf (Refine? == Yes) P  Improve(P0, K)else P  P0return(P )g Figure 4.1: MP Partitioner.Our partitioner, MP, has been implemented in C++. MP interfaces with the LASO library by D.S.Scott[19], which performs the sparse matrix eigenvalue/eigenvector computation. Figure 4.1 illustrates howMP integrates a k-way partitioning algorithm with contraction and iterative improvement. The k-waypartitioning algorithms we implemented include� a reimplementation of the KP partitioning algorithm [7] which uses actual vertex sizes in forming thepartitions and computing the ratio-cut cost,� the MKP partitioning algorithm, which amounts to our new KP modi�ed to use the eigenvectors fromthe generalized eigenvalue problem, Equation (3.5), and� an algorithm which generates a random k-way partition.The last algorithm was used to evaluate the bene�t of the spectral partitioning algorithm when used inconjunction with iterative improvement methods.4.1 Contraction and Iterative ImprovementWe wanted to evaluate MP's performance in three scenarios:� on graphs where vertices were of non-unit size and with no hierarchical clustering,� on graphs with non-unit size vertices and multiple levels of contraction,7



� and �nally, on graphs whose vertices were initially unit size, but became non-unit size through multiplelevels of contraction.Our focus was not to �nd the best contraction algorithm nor the best iterative re�nement algorithm. Ourmain goal was to provide a framework to test our size-aware spectral algorithm. Other researchers haveconducted more detailed studies of di�erent contraction and improvement algorithms and their relativee�ects [17]. Contract(HGraph & HG) fnumcolors=0;Convert HG into a graph G using Frankle cliqueexpansion, ignoring nets with degree > 99Insert all edges of G into heap, ordered by weightfor (i=0; i < num vertices/2; i++) fRemove highest weight edge, e from heapv1 = e.vertex1; v2=e.vertex2;if (v1 and v2 are uncolored) fnumcolors++;v1.color=numcolors; v2.color=numcolors;gelse if (v1 is uncolored) v1.color=v2.color;else if (v2 is uncolored) v2.color=v1.color;ggFigure 4.2: Conglomerative graph contraction algorithm.The contraction algorithm we used is shown in Figure 4.2. The edges of the hypergraph are clique expandedto obtain a graph. The algorithm orders the edges of the graph using a heap based on the weight of an edge.The edges are iteratively removed, and the vertices are merged into clusters (based on the color of a vertex).This algorithm is similar to Kruskal's minimum spanning tree algorithm, except that when n2 edges havebeen encountered, the algorithm terminates.Figure 4.3 shows the iterative improvement heuristic. Our improvement algorithm is modeled after the two-way ratio-cut algorithm [22]. We have extended it to perform k-way partitioning in the following way. Inturn, we select each of the k partitions as the SINK (resp. SOURCE) partition, and the remaining partitionstogether form the SOURCE (resp. SINK). Vertices are moved one by one from the SOURCE to the SINKbased on the gain of a vertex (the total weight of the nets that would become uncut if a vertex is moved to apartition). This process is repeated until there is no more improvement. The best k-way ratio-cut solutionencountered is retained. In practice only a few passes of the outer improvement loop are performed beforea local minima is reached. For our experiments, we terminated the improvement step after three passes.4.2 Implementation IssuesMP works directly with hypergraphs, only transforming the hypergraphs into graphs for the eigenvectorcomputation and edge matching algorithms. Hypergraphs are converted into graphs by performing a cliqueexpansion on the hyperedges. We chose a weighting of the edges proposed by Frankle [10], in which eachedge of the clique formed by hyperedge, ei is given a weight of ( 2deg(ei) ) 32 . For the eigenvalue/eigenvectorcomputations, we chose to perform clique expansions even on very large fanout nets, although in some cases itmay be more practical to set an upper threshold on the nets chosen for clique expansion so that sparse matrix8



Improve(HGraph & HG, int k, int maxiterations) fdo fsave initial HGraphfor (h=1; h < k; h++) fFlow(INTO,BestHG,HG, h);Flow(OUTOF,BestHG,HG, h);gg while (BestHG is better than HG) and(iterations < maxiterations);gFlow(int direction, HGraph & BestHG, HGraph &Starting, int target) fif (direction==INTO) fBuild k � 1 src heaps with vertices notin target. Order heaps by the gain inmoving vertex to INTO.While there is a non-empty heap fSelect highest gain vertex, v, breakingties using the move from largest sourcepartition.Move v into target.Evaluate k-way ratio-cut cost, save if best.ggif (direction==OUTOF) fBuild k � 1 dest heaps, using vertices intarget. Order heaps by the gain in movingvertex from OUTOF.While there is a non-empty heap fSelect highest gain vertex, v, breakingties with the move from the smallest destpartition.Move v into target.Evaluate k-way ratio-cut cost, save if best.ggg Figure 4.3: Iterative improvement heuristic.computations performed on the graph can be carried out e�ciently. For e�ciency, in the conglomerativecontraction heuristic, we chose to only perform clique expansion on nets of degree smaller than 100 sincethese nets are unlikely to a�ect the clustering. 9



# of Iterative Algorithmlevels Improvement? RND5 KP MKP0 No 43.4 4.92 2.360 Yes 3.01 2.61 1.382 No 18.0 11.4 1.912 Yes 2.21 1.84 1.26Table 5.1: Geometric mean of scaled cost multiplied by 108 over all tests with actualvertex sizes. # of Iterative Algorithmlevels Improvement? RND5 KP MKP0 No 163.0 17.3 17.30 Yes 19.3 13.6 13.62 No 69.2 29.0 16.22 Yes 13.3 14.5 12.1Table 5.2: Geometric mean of scaled costs multiplied by 105 over all tests with unit sizevertices.5 ResultsWe ran experiments using seven MCNC benchmarks (number of vertices is shown in parenthesis): p1 ga(833),p2 ga(3014), t2(1663), t3(1607), t4(1515), t5(2595), and t6(1752). These benchmarks are netlists with vertexsizes. The actual distribution of vertex sizes is given in Figure A.1 in the appendix.A number of di�erent parameters for the benchmarks were run to analyze the performance of the new method.Results under the heading MKP used the solution to the generalized eigenvalue while results under KP usedthe eigenvectors of the Laplacian. (With unit-size vertices, no contraction and no iterative improvement thisis equivalent to the KP algorithm in [7].) In order to evaluate the bene�t of using the spectral information ina multi-level partitioning scheme we also used an algorithm which generates random k-way partitions. Thebest results out of 5 obtained from random partitions are listed under the heading RND5.Partitioning results were generated for 2; 4; 8; and 16-way partitions. The results were reported using thescaled cost function [7]: 1n(k � 1) kXh=1 EhjjPhjj :Tables 5.1 and 5.2 show the overall performance of the algorithms. We used the geometric mean of theresults over all seven benchmarks for k = 2; 4; 8; and 16. In every test group, MKP gives the best answer. Inthe case where there are unit size vertices with no contraction, KP and MKP give exactly the same answer.The detailed results are given in the following eight tables. The �rst four tables give the k-way ratio-cutcost after generating the partitions before any iterative improvement. We refer to these partitions as initialpartitions. In Tables 5.3 and 5.4 MKP is superior to the other two partitioning methods in almost every testcase. For these tests the actual circuit cell areas were used as the vertex sizes in MKP. In Tables 5.5 and5.6 all vertices were made unit size (the actual cell areas were ignored). In Table 5.5 KP and MKP generateexactly the same answer, which is exactly what we would expect. In Table 5.6, two levels of contractionwere performed, allowing vertices to become non-unit size. Here again, we see that MKP is clearly superior10



partitioner k p1 ga p2 ga t2 t3 t4 t5 t6RND5 2 305.08 289.87 8.62 21.76 19.39 10.92 26.72KP 2 17.63 21.43 1.08 1.40 1.94 0.66 0.81MKP 2 23.68 3.55 0.37 0.73 0.76 0.66 0.81RND5 4 310.38 303.48 10.02 24.79 23.15 10.11 28.56KP 4 19.25 34.39 1.25 2.16 2.03 0.99 1.03MKP 4 23.14 11.28 0.46 0.81 1.38 0.59 0.79RND5 8 340.97 338.65 12.12 27.68 31.08 12.27 30.84KP 8 38.27 60.38 1.10 2.57 2.82 2.82 3.46MKP 8 23.16 13.36 0.84 1.46 1.52 0.79 1.32RND5 16 358.67 366.93 14.06 30.51 30.19 17.62 34.60KP 16 53.78 127.90 3.54 7.50 6.02 2.80 19.33MKP 16 40.24 23.73 11.46 2.62 2.22 0.80 1.62Table 5.3: Scaled ratio-cut costs multiplied by 108 of solutions for actual vertex sizes with0 levels of contraction without iterative improvement.partitioner k p1 ga p2 ga t2 t3 t4 t5 t6RND5 2 130.99 133.37 2.17 9.10 8.44 2.92 10.24KP 2 38.28 17.50 0.72 1.38 34.00 0.50 0.81MKP 2 26.88 3.55 0.37 0.73 2.44 0.50 0.81RND5 4 137.86 144.20 3.58 9.92 9.02 4.22 10.89KP 4 29.22 22.99 0.59 2.24 12.15 0.80 79.79MKP 4 23.73 8.94 0.50 0.66 1.86 0.32 0.88RND5 8 156.03 164.57 4.64 12.18 11.63 5.19 13.36KP 8 46.87 84.08 16.64 1.91 30.17 17.48 42.02MKP 8 27.86 11.62 0.50 1.04 1.47 0.44 0.87RND5 16 162.94 185.60 6.44 13.93 13.96 6.99 17.24KP 16 39.80 94.46 18.83 32.08 32.39 15.29 21.53MKP 16 23.80 16.28 0.88 1.72 1.43 0.75 1.44Table 5.4: Scaled ratio-cut costs multiplied by 108 of solutions for actual vertex sizes with2 levels of contraction without iterative improvement.to the other methods.Each of the last four tables show the results after the iterative improvement for the corresponding benchmarksof the �rst four tables. Of the 112 di�erent benchmark tests presented in the tables, MKP produced the bestanswer or tied for the best answer in 109 of those tests. The weakest performance of MKP was in Table 5.10,which gives the results after iterative improvement using two levels of contraction for unit size vertices. Theiterative improvement performed on two levels of contracted graphs allows the solutions of the other initialpartitioning algorithms to catch up to MKP. 11



partitioner k p1 ga p2 ga t2 t3 t4 t5 t6RND5 2 332.12 87.42 159.69 156.91 172.19 96.88 130.61KP 2 13.39 5.43 8.95 10.07 8.22 11.34 28.57MKP 2 13.39 5.43 8.95 10.07 8.22 11.34 28.57RND5 4 355.96 91.42 162.33 164.29 183.39 103.42 136.61KP 4 25.62 9.40 15.45 23.57 11.13 6.40 18.12MKP 4 25.62 9.40 15.45 23.57 11.13 6.40 18.12RND5 8 369.24 101.17 171.34 174.67 197.43 111.87 149.18KP 8 37.88 13.75 21.48 18.74 14.80 14.51 24.08MKP 8 37.88 13.75 21.48 18.74 14.80 14.51 24.08RND5 16 390.10 109.17 184.70 187.03 214.72 120.88 162.00KP 16 58.37 21.19 36.36 41.11 22.90 18.47 28.65MKP 16 58.37 21.19 36.36 41.11 22.90 18.47 28.65Table 5.5: Scaled ratio-cut costs multiplied by 105 of solutions for unit size vertices with0 levels of contraction without iterative improvement.partitioner k p1 ga p2 ga t2 t3 t4 t5 t6RND5 2 148.85 38.92 57.03 61.69 72.71 37.88 46.72KP 2 80.32 10.34 40.16 9.92 66.05 11.41 28.57MKP 2 17.39 9.71 14.43 9.91 6.93 4.46 28.57RND5 4 147.45 42.24 62.25 66.25 75.51 40.50 50.76KP 4 68.34 13.57 28.26 17.38 31.77 8.76 31.74MKP 4 21.91 9.79 18.36 14.86 12.85 7.25 17.69RND5 8 163.68 48.72 72.36 78.01 86.19 46.16 62.25KP 8 68.75 18.75 34.45 24.70 32.27 18.12 33.47MKP 8 36.24 12.64 24.83 17.94 22.24 8.06 24.07RND5 16 194.74 55.31 81.74 86.63 93.61 52.22 76.80KP 16 102.10 20.50 46.97 38.20 42.36 19.00 47.97MKP 16 56.06 16.20 26.42 22.23 23.76 9.82 32.12Table 5.6: Scaled ratio-cut costs multiplied by 105 of solutions for unit size vertices with2 levels of contraction without iterative improvement.6 Conclusion and Future ResearchIn this paper we have presented a modi�ed eigenvalue formulation to account for vertex sizes, and studied itsuse on circuits with varying vertex sizes and within a multi-level partitioning scheme. From the benchmarkspresented in this paper, it is clear that MKP provides excellent results.Future research will focus on adding practical constraints (input/output and partition capacity) to MKP,rather than using the k-way ratio-cut cost function. 12



partitioner k p1 ga p2 ga t2 t3 t4 t5 t6RND5 2 16.94 3.55 0.32 0.73 0.61 0.19 0.27KP 2 17.63 3.55 0.32 1.24 0.61 0.19 0.81MKP 2 9.53 3.55 0.32 0.73 0.39 0.19 0.81RND5 4 28.76 30.83 0.36 0.99 1.57 0.54 0.62KP 4 18.28 32.56 0.94 1.88 1.72 0.38 0.80MKP 4 10.83 8.29 0.34 0.66 0.59 0.28 0.61RND5 8 28.67 36.36 0.96 1.99 3.57 1.38 2.26KP 8 30.86 42.51 0.73 2.11 2.34 0.71 1.71MKP 8 18.00 11.56 0.46 1.02 0.98 0.44 0.87RND5 16 34.07 70.03 3.61 4.66 8.88 3.22 11.99KP 16 43.03 49.03 1.67 2.92 1.79 1.28 2.50MKP 16 22.40 15.19 0.65 1.86 1.31 0.43 0.89Table 5.7: Scaled ratio-cut costs multiplied by 108 of solutions for actual vertex sizes with0 levels of contraction with iterative improvement.partitioner k p1 ga p2 ga t2 t3 t4 t5 t6RND5 2 19.98 3.55 0.32 0.50 0.57 0.19 0.80KP 2 19.98 3.55 0.25 1.29 0.39 0.19 0.81MKP 2 19.98 3.55 0.32 0.73 0.57 0.19 0.81RND5 4 20.79 8.72 0.36 1.04 1.14 0.40 1.91KP 4 20.01 14.36 0.36 1.33 1.05 0.59 0.82MKP 4 19.22 8.21 0.36 0.66 0.68 0.28 0.81RND5 8 21.04 37.80 0.49 0.83 1.65 1.04 4.35KP 8 20.69 17.66 0.38 1.02 0.86 0.70 0.81MKP 8 19.92 9.57 0.37 0.71 0.63 0.32 0.83RND5 16 19.62 45.47 1.00 1.75 2.30 1.99 4.46KP 16 20.69 27.51 1.00 1.88 2.05 1.03 1.78MKP 16 19.99 10.22 0.38 0.76 0.66 0.32 0.82Table 5.8: Scaled ratio-cut costs multiplied by 108 of solutions for actual vertex sizes with2 levels of contraction with iterative improvement.13



partitioner k p1 ga p2 ga t2 t3 t4 t5 t6RND5 2 13.91 4.58 12.97 14.34 11.66 5.95 11.10KP 2 13.39 5.43 8.85 8.98 7.95 8.94 11.63MKP 2 13.39 5.43 8.85 8.98 7.95 8.94 11.63RND5 4 22.97 15.63 19.50 16.58 12.22 6.75 13.30KP 4 22.32 8.74 14.41 16.42 10.52 5.87 10.38MKP 4 22.32 8.74 14.41 16.42 10.52 5.87 10.38RND5 8 40.30 19.84 36.76 23.44 22.64 16.63 24.29KP 8 30.78 11.48 19.05 16.80 13.08 7.84 15.12MKP 8 30.78 11.48 19.05 16.80 13.08 7.84 15.12RND5 16 68.18 26.32 48.07 32.01 52.90 23.04 41.59KP 16 45.82 16.93 26.77 23.50 18.96 12.29 22.17MKP 16 45.82 16.93 26.77 23.50 18.96 12.29 22.17Table 5.9: Scaled ratio-cut costs multiplied by 105 of solutions for unit size vertices with0 levels of contraction with iterative improvement.partitioner k p1 ga p2 ga t2 t3 t4 t5 t6RND5 2 24.45 5.39 10.24 11.45 5.93 4.87 9.51KP 2 13.39 5.39 12.41 9.29 5.70 5.47 7.96MKP 2 13.39 4.58 7.96 9.29 6.40 3.31 10.34RND5 4 17.45 7.99 12.94 13.95 8.50 5.20 11.12KP 4 19.86 8.11 12.06 15.15 10.44 7.69 11.84MKP 4 17.45 9.08 11.39 11.47 9.24 5.70 11.09RND5 8 30.16 11.56 18.56 15.78 10.49 8.50 18.68KP 8 37.59 15.34 22.58 16.29 15.61 8.38 17.77MKP 8 29.03 10.99 20.61 15.86 14.44 7.00 16.19RND5 16 52.91 18.94 25.95 20.59 21.42 11.95 27.86KP 16 65.25 14.62 31.48 31.64 23.34 12.35 42.45MKP 16 48.39 13.53 23.69 20.58 18.73 8.96 23.41Table 5.10: Scaled ratio-cut costs multiplied by 105 of solutions for unit size vertices with2 levels of contraction with iterative improvement.14
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A Vertex Size distribution in benchmarks
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Figure A.1: Histogram of actual vertex sizes (scaled by 1000.0) in all seven benchmarks.
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