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A Methodology for Characterizing Cell Testability 

Alvin Lun-Knep Jee 

ABSTRACT 

Integrated circuits (ICs) are continually increasing in complexity. As IC complexity increases, the

cost of testing the IC also increases. As a result, IC designers are expending greater amounts of effort on

designing the ICs to be more easily tested. Most of the work done in measuring the testability of ICs and

modifying the ICs to improve testability has been focused at the schematic level. This dissertation defines a

metric for measuring the testability of cells used in ICs at the physical design level. This testability metric

takes into account the three major influences on testability: the physical design, the circuit schematic, and the

methods used to test the circuit. IC designers can use this testability metric as a guide for modifying the

physical design of logic cells to increase their testability. This dissertation shows that, for standard cell

designs, designing the cells to be more testable will have a larger impact on the testability of the circuit than

designing other parts of the circuit. Thus, the testability metric described here concentrates on the cells used

in standard cell designs. This dissertation describes an implementation of the testability metric. This

dissertation applies the metric to two cells from a standard cell library to demonstrate how cell testability can

be used to guide the modification of the cell’s physical design to improve its testability. 

Keywords: Testability, Carafe, Design for Test, Inductive Fault Analysis 
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Chapter 1

Introduction

Integrated circuits (ICs) are tested after they are manufactured to ensure that ICs sent to the customer are free 

from manufacturing defects that may affect their operation. As IC complexity increases, the cost of testing 

the IC increases due to the higher cost of test equipment and longer periods of time required to fully test the 

IC. Unfortunately, IC designers address testing after many other aspects of IC design have been completed, 

thus making completely testing the IC difficult or impossible. This dissertation presents a methodology that 

estimates the effective testability of the logic cells in a circuit. IC designers can use this methodology to mod-

ify the logic cells to increase their effective testability. 

1.1 Designing Testable Cells 

The goal of IC testing is to ensure that no defective ICs are delivered to customers. The success of 

testing is the fraction of fault-free ICs among those that pass all of the tests. This measure is known as the 

quality level (QL) and is often reported by the complementary term, defect level (DL), where  . 

DLs are typically much less than 200 defects per million(DPM)  [27]  [40] . Previous work has shown that 

achieving high quality levels requires being able to detect a very high percentage of the defects that may occur 

during the manufacture of the IC  [10]  [26]  [27]  [41] . Also, the present methods of generating tests for ICs do 

not detect many of the defects that may occur in current CMOS processes  [12]  [16]  [36]  [39] . For example, the 

short depicted in  Figure 1  behaves like a logic AND gate in one family of standard cells. Since the two shorted 

lines are inputs to a NAND gate, the effect of the short cannot be detected by observing the logic values at the 

output of the NAND gate. This may lead some to believe that the short is innocuous since it does not affect 

the logic behavior of the circuit. However, the short can cause an increase in power supply current, which may 

QL 1 DL−=
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cause the circuit to be unreliable or prone to failure. Therefore, the detection of many apparently innocuous 

faults is desirable. 

  

Figure 1  Example wired-AND short that cannot be detected as a logic fault. 

The cell-based design style is one of the most popular methods used to design circuits  [32] . In this 

design style, the individual logic cells or gates are designed once and stored in a library. When a circuit de-

signer requires a cell that implements a given logic function, the designer retrieves the cell from the library 

and instantiates the cell into the circuit. This design style also facilitates automated circuit design by allowing 

design tools to concentrate on placing cells and routing the interconnection wires as efficiently as possible. 

IC designers primarily address cell performance and area during the creation of the cells, whereas designers 

seldom address the testability of the cells during cell creation. 

This dissertation contains a description of an investigation into designing cells to be easily testable. 

Although creating a circuit with testable cells does not guarantee that the circuit is testable, the testability of 

the cells limits, or places an upper bound on, the testability of the circuit. This dissertation links the testability 

of cells to the testability of the circuit and introduces a cell testability measure. This cell testability measure 

includes the effects of the test environment and the circuits in which the cells are used. Cell designers can use 

this methodology to identify which faults may be difficult to detect in a cell. This information can guide cell 

designers to create cells that not only have high performance and little area, but also have a high level of test-

ability. 

1.2 Dissertation Organization 

Chapter 2 defines the terms used throughout this dissertation and provides a review of previous research in 

design for testability (DFT). 

Chapter 3 develops the relationships between quality level and useful testability metrics. Chapter 3 

also presents and discusses the major influences on testability. This chapter finishes by outlining a methodol-

ogy that can be used to estimate the testability of IC components and thus, the expected quality levels for the 

IC. 
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Chapter 4 investigates the potential benefits that can be gained from designing cells to be testable. 

This chapter examines cell-based circuits to determine which parts of the circuits are more likely to contain 

defects and cause faulty behavior. Fault simulation of the faults that may occur in the circuits shows which 

faults are more difficult to detect. The difficult to detect faults indicate which parts of the circuits will benefit 

the most from physical design for testability and also how much benefit can be realized. This chapter also 

introduces the types of defects and faults that will be examined in this dissertation, as well as the tools and 

techniques used to analyze the circuits and cells in the presence of these faults. 

Chapter 5 presents a methodology for measuring a logic cell’s effective testability. This methodology 

determines the testability of each fault within a cell with respect to the test environment and the circuit topol-

ogy. The methodology correlates the faults that may occur in the cell as a result of manufacturing defects with 

characterizations of the test environment and the circuit topology to compute the effective testability of the 

cell. This information can guide cell designers to create cells that are more testable for the given test environ-

ment and class of circuits. 

Chapter 6 contains an example application of the methodology described in Chapter 5. Using the 

characterizations produced by the methodology, this chapter analyzes the testability of a few cells. This chap-

ter then presents physical modifications made to the cells to increase their testability. 

Chapter 7 summarizes the contributions of this dissertation. This chapter also proposes areas of fu-

ture research. 
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Chapter 2

Background

The term testability means many things to different people. There currently is no single accepted definition 

of testability. This chapter reviews some of the work that has been done to define testability and work that has 

been done to quantify testability. Most of these also provide examples of how the circuit can be modified to 

increase the circuit’s testability as they have defined it. The first section of this chapter defines some of the 

terms that are used throughout this dissertation. The second section briefly describes work done previously in 

defining testability and developing DFT techniques. 

2.1 Definitions 

The first set of definitions describes the levels of abstraction of IC failures. The next set of definitions de-

scribes terms relating to the measurement of testability and terms that distinguish a circuit and its components. 

These terms are also defined in the Glossary in  Appendix A . 

There are several levels of abstraction that describe the effects of failures in ICs as a result of man-

ufacturing problems  [2] . The abstraction levels start at the physical failure mechanisms and progress through 

different interpretations of the behavior of the fabrication anomaly. The diagram in  Figure 2  shows the differ-

ent abstraction levels from the lowest, the failure mechanism, to the highest, the high-level fault. The diagram 

also shows relationships between the levels of abstraction. In some cases, more than one item at one level of 

abstraction may cause the same effect at the next higher level of abstraction. A simple example of this is a 

short between two wires on an IC. There are many possible, independent physical defects that can cause extra 


