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1. Introduction 1formula num modoc 2clclass fmlas avg max avg maxrand100 200 1.54 4.74 1.10 3.23rand141 200 25.39 89.95 8.76 21.73bf2670 53 7.15 181.49 439.01 17724.57ssa2670 12 30.42 118.78 1539.60 2424.46Figure 1: CPU times in seconds of modoc and 2cl on Sun Sparcstation 10/41. 2cl isbased on model search and is described in [9]. Formula classes are explained in Section 3.1 IntroductionModoc was proposed by Van Gelder in [7] as an improvement to model elimination ([3]). Its maincontribution to model elimination is in its new pruning technique based on the concept of autarky,�rst introduced by Monien and Speckenmeyer in [6]. Whereas Monien and Speckenmeyer's use ofautarkies was to �nd a model, Modoc uses them to exclude clauses whose use will not lead to asuccessful refutation.In [8], it was observed that compared to satis�ability testers based on model search, Modoclagged behind on random formulas yet it performed far better on circuit formulas. (For completenessof this paper, the relevant numbers are reproduced in Figure 1.)This paper reports on a study conducted to explain the di�erence in performance of Modoc onrandom and circuit formulas. The study is based on experiment in which the changes in the autarkysize and the number of lemmas, both of which support the two pruning techniques employed inModoc, are examined.This paper is organized as follows: In the next section, we standardize the terminology used inthe remainder of this paper and give a brief description on the concept of autarky and on the Modocalgorithm. Following a short section on the experiment, in Section 4, we examine the outcome ofthe experiment with �gures depicting the changes in the autarky size and the number of lemmas.Section 5 contains an experiment performed to show that our conclusion on random formulas madein Section 4 applies to other random formulas. In Section 6, we discuss what the outcome may leadto. The paper ends with a conclusion. Appendix contains �gures that could not be placed in themain body of the paper.2 TerminologyThis section gives a brief summary of the terms used in the remainder of this paper and a briefdescription on the concept of autarky and on the essence of the Modoc algorithm.We assume the readers to be familiar with terms such as CNF formula, clause, literal, variable,truth assignment, etc.One possible deviation from standard use is the term satisfying truth assignment. Following [7],we consider any partial truth assignment that satis�es all the clauses in the formula to be a satisfyingtruth assignment. This means that a satisfying truth assignment is not necessarily total and thatsome of the variables may remain unassigned.By de�nition, truth assignments are functions that map variables to truth values. Note, however,that each truth assignment can be viewed as a set of literals that are made true by the truthassignment. In this paper, we will often take this set-theoretic view of the truth assignment asopposed to the usual functional view.



2. Terminology 22.1 AutarkyIntuitively, an autarky of a formula is a partial truth assignment that can reduce the satis�abilityproblem of the formula to the satis�ability problem on the subset of the clauses that are notsatis�ed by the autarky. More formally, an autarky A of a CNF formula F partitions F into twosubsets, autsat(F ; A) and autrem(F ; A), such that any clause in autsat(F ; A) contains a literalin A (and hence is satis�ed by A), and any clause in autrem(F ; A) contains no literal in A [ �A,where �A consists of the complements of the literals in A. Obviously, the satis�ability problem ofF reduces to the satis�ability problem on autrem(F ; A). In case F is satis�able, a satisfying truthassignment for F can be constructed from the disjoint union of A and a satisfying truth assignmentof autrem(F ; A).Example 1: Let F be ffa;:c;:eg; f:b; cg; f:a; b; dg; f:d; egg where a; b; c; d; e are variables.Then, fa; b; cg is an autarky of F but fa; cg is not.Using an autarky fa; b; cg, the satis�ability problem of F is reduced to the satis�ability problemon ff:d; egg. Since ff:d; egg is satis�able, so is F . A satisfying truth assignment for F can beobtained from the disjoint union of fa; b; cg and a satisfying truth assignment for ff:d; egg, sayf:dg, as fa; b; c;:dg.We say that an autarky is properly partitioning if it is not empty and it is not a satisfyingtruth assignment. A properly partitioning autarky A can partition a formula F into two subsets,autsat(F ; A) and autrem(F ; A), such that neither is empty. A conditional autarky is a partial truthassignment that becomes an autarky after simplifying the formula using some other partial truthassignment. Reason for such autarkies will become clear in the next section (Section 2.2).2.2 ModocWe now give an informal description of the Modoc algorithm focusing on the parts of the algorithmthat are most relevant to this study. Full detail of the algorithm can be found in [7].Modoc is based on model elimination ([3]) which is a refutation procedure. Unlike modelelimination which uses linear \chains" to represent the state of search, Modoc uses a tree-baseddata structure ([4]) to represent the search space which it explores.The aim of Modoc is to refute a clause, called the top clause; this shows that the formula isunsatis�able. If no clause can be refuted, then the formula is satis�able. To refute a clause, Modoctries to refute all the literals in it, and to refute a literal, it tries to �nd a resolving clause that canbe refuted; the process continues recursively. Whenever a refutation attempt for a literal succeeds,the result is saved as a lemma. This eliminates the need to re-refute the same literal later under thesame premise. When search leaves the subtree that supports the premise of a lemma, that lemmais thrown out.The main di�erence between Modoc and model elimination is in Modoc's response to failedrefutation attempts of literals. Whenever such attempts fail, the literals are added to the currentautarky. Theoretical basis (correctness, etc.) can be found in [7]. Autarkies are used to prunesubspaces that are known not to have a refutation. To be precise, any clause that contains a literalin the current autarky can be excluded from resolution as it cannot be refuted. As with lemmas,when search leaves the subtree that supports the premise in which the refutation failed for a literal,the autarky is retracted to the state before the literal was added.Readers are reminded that an autarky found during search is not necessarily an autarky forthe original formula. It is only an autarky in the subtree rooted at the place it was found. Suchautarkies are \conditional" in the sense that if literals whose refutations are attempted along the



3. Experiment 3formula # of num of clauses # ofname vars len=1 len=2 len=3 len=4 len=5 len=6 total litsbf2670-126.cnf 694 5 1152 346 104 6 0 1613 3793bf2670-240.cnf 1734 5 3084 1609 206 33 4 4941 12013Figure 2: Some statistics on the bf2670 family of formulas. bf2670-126.cnf is thesmallest formula in bf2670 in terms of the numbers of variables, clauses, and literals.bf2670-240.cnf is one of the largest formulas in terms of the numbers of clauses andliterals.path from the top clause to the current position in the tree are assumed true and the formulasimpli�ed accordingly, then would the autarky become an autarky for the simpli�ed formula. Toemphasize the conditional nature of such autarkies, we shall call them conditional autarkies.Example 2: We continue with Example 1. Although fa; cg is not an autarky, it is a conditionalautarky, with respect to a partial truth assignment in which only d is assigned true. This can beveri�ed by simplifying F with the partial truth assignment, which yields ffa;:c;:eg; f:b; cg; fegg.3 ExperimentIn this section, we describe the experiment; the results are summarized in the next section(Section 4).A C implementation of Modoc reported in [8], modoc, was modi�ed to collect the necessaryinformation. Modi�cation was made so that every time a call to one of the autarky manipulatingfunctions or to one of the lemma management functions is made, modoc will print the new autarkysize or the new number of lemmas, respectively.Two classes of formulas were considered for the study, random formulas and circuit formulas.Random Formulas: This class consists of 50 141-variable 602-clause 3CNF random formulasgenerated from a probability model in which every non-redundant 3-clause is equally probable.Clauses-to-variables ratio was chosen to be 4.27. This ratio is believed to generate the mostdi�cult formulas ([5, 2]). (rand141 in Figure 1 refers to this class. rand100 is a class of100-variable 427-clause formulas generated from the same probability model.)Circuit Formulas: This class consists of the 53 formulas of the bf2670 family of formulas, whichare generated from an automated test pattern generation program ([1]). The formulas aresatis�able if and only if the outputs of the fault-free and faulty circuits di�er for some commoninput. The 2670 circuit is an ALU and has 1193 gates. The fault simulated for bf formulasis bridge fault. (The fault simulated for ssa formulas in Figure 1 is \single stuck-at" fault.)The circuit is taken from the ISCAS85 benchmark. Some statistics for this class of formulasare shown in Figure 2.Note that whereas random formulas are purely arti�cial, circuit formulas come from real applica-tions.Output from each run of modoc was tabulated and fed into gnuplot to plot the changes in theautarky size and the number of lemmas during search.4 ObservationThis section summarizes the changes in the autarky size and the number of lemmas encounteredby modoc during search for each formula tested. For each graph shown in this paper, the horizontal



4. Observation 4
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(a) Unsatis�able Random Formulas 0
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(b) Satis�able Random FormulasFigure 3: Typical changes in autarky size encountered by modoc on random for-mulas. (Figure (a) is from 3.141.602.002-386059.cnf. Figure (b) is from3.141.602.001-386058.cnf.)range was determined automatically by gnuplot whereas the vertical range was chosen to be therange of variables used in the formula.4.1 Change in the Autarky SizeWe �rst look at the change in the autarky size as this shows a tremendous di�erence betweenthe two classes of formulas. Readers are reminded that autarkies mentioned in this section areconditional autarkies and not necessarily autarkies for the original formula.For random formulas, there was a clear dichotomy in the change in the autarky size, eachcorresponding to satis�able and unsatis�able formulas, yet, they shared a common characteristic.For unsatis�able formulas, the graphs show a line at size zero with some \noise" on it. A typicalgraph is shown in Figure 3(a). For satis�able formulas, the graphs are similar except for theaddition of a \sudden surge" to a satisfying truth assignment at the very end. A typical graphis shown in Figure 3(b). What appears to be a surge is in fact a slope. This is because autarkyliterals are always added one at a time (although they can be removed more than one at a time).Due to extreme scaling along the horizontal axis, the slope is steepened to an extreme and hencedrawn like a sudden surge. (See Figure 9 in Appendix for a close-up of the last 200 function calls.)Both �gures show that only extremely small autarkies were found by modoc. Of course, therewere exceptions where \spikes" were observed. (See Figure 10 in Appendix for an example.) Thefact that modoc was only able to �nd extremely small autarkies in the formulas means that Modocwas not able to prune e�ectively based on autarkies. This may, at least in part, explain thede�ciency of Modoc on random formulas compared to circuit formulas, as we will see next.Circuit formulas, on the other hand, showed various behaviors. There were quite a few formulasthat led straight to a satisfying truth assignment, without any waste of work, as in Figure 4(a).Figure 4(b) is similar to Figure 4(a) in the second half, yet it shows some \struggle" in the �rsthalf. There was also an opposite of Figure 4(b). (See Figure 11 in Appendix for an example.)Figure 5 shows some of the other often-observed graphs in which a repetition of various \spires"is seen. In Figure 5(a), the spires are similar in height and seen at regular intervals, whereas in
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(a) bf2670-414.cnf 0
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(b) bf2670-483.cnfFigure 4: Changes in the autarky size encountered by modoc on circuit formulas.
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(a) bf2670-487.cnf 0
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(b) bf2670-501.cnfFigure 5: Changes in the autarky size encountered by modoc on circuit formulas.Figure 5(b), the spires are of various heights and seen at irregular intervals. Also note the heightsof the spires in each of these graphs. In Figure 5(a), modoc was able to �nd autarkies that containedapproximately 80% of the variables, whereas in Figure 5(b), the largest autarky modoc was able to�nd was slightly above 50%. Apart from the graphs in Figure 5, there were graphs in which thespires were in increasing heights. (See Figure 12 in Appendix for an example.)Other interesting graphs include \plateaus". (See Figure 13 in Appendix for examples.)Although upward slopes in the �gures appear to have di�erent gradient, this is simply due tothe di�erence in horizontal scaling. Should the graphs be drawn with the same horizontal scaling,all upward slopes would have been drawn with the same gradient.With the exception of one formula (bf2670-035.cnf shown in Figure 13(b) in Appendix), acommon observation was that autarkies modoc found for circuit formulas were much larger thanthose found for random formulas. With the previous observation of modoc being able to �nd onlyextremely small autarkies for random formulas, it appears that we may attribute the di�erence in
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(b) bf2670-483.cnfFigure 6: Changes in the autarky size and the depth at which the changes occurred inmodoc on circuit formulas.behavior to the relative abundance of autarkies in circuit formulas and the near lack of autarkiesin random formulas.As mentioned at the beginning of this section, the autarkies found by Modoc are not necessarilyautarkies for the original formula. So one may ask, how many of them are autarkies forthe original formulas? Of the 103 formulas tested, only in two of them was modoc able to�nd properly partitioning autarkies for the original formulas. (See Figure 14 in Appendix fordetails.) Interestingly, both formulas were satis�able random formulas, and all properly partitioningautarkies that were found were very close to the satisfying truth assignments found by modoc interms of the number of literals in them.Instead of looking at (unconditional) autarkies, we now look at the depths at which conditionalautarkies are found. Note that the depth corresponds to the size of the partial truth assignment onwhich the conditional autarky depends. Figure 6 shows two graphs with the depths at which thechanges occurred also plotted. Observe that toward the end of search, large autarkies are found atshallow depths. This means that there are large conditional autarkies with relatively small partialtruth assignments on which they depend.4.2 Change in the Number of LemmasWhile there was a signi�cant di�erence in the change in the autarky size between the two classesof formulas, nothing similar was observed for the change in the number of lemmas derived duringsearch. The changes in the number of lemmas for random formulas were all quite similar; a typicalgraph is shown in Figure 7. For circuit formulas, there were variations, yet they were not asdramatic as the graphs for the change in the autarky size; two graphs are shown in Figure 8.Although the graphs di�er in the average number of lemmas relative to the number of variables,they share the same characteristic that the lemmas are abundant. Rate of uctuation for circuitformulas appears to be slower than that for random formulas. (The rates of uctuation for the twographs in Figure 8 are actually quite similar. What makes the two look di�erent is the use of di�erentscalings along the horizontal axes. Figure 15 in Appendix shows a graph for bf2670-501.cnf usingthe same scaling as Figure 8(a).) However, we do not believe that the rate of uctuation may have



5. More Experiment 7
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Figure 7: Typical change in the number of lemmas encountered by modoc on randomformulas. (The graph is from 3.141.602.001-386058.cnf.)
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(b) bf2670-501.cnfFigure 8: Changes in the number of lemmas encountered by modoc on circuit formulas.an e�ect on the performance of Modoc. Overall, we believe that lemmas are not a crucial factor inexplaining the di�erence in the performance of Modoc.5 More ExperimentIt was pointed out after running the experiment in Section 3 that using random 3CNF formulaswith clauses-to-variables ratio of 4.27 may be \unfair" to the random formulas, as the ratio isbelieved to generate the most di�cult set of formulas ([5, 2]). So to be fair, two more classes ofrandom formulas were generated and tested.Under-constrained Random Formulas: This class consists of 50 141-variable 482-clause 3CNFrandom formulas. The clauses-to-variables ratio is 3.416 which is 20% smaller than theratio used in Section 3. This makes the formulas under-constrained and highly likely to besatis�able.Over-constrained Random Formulas: This class consists of 50 141-variable 722-clause 3CNFrandom formulas. The clauses-to-variables ratio is 5.124, which is 20% larger than the



6. Discussion 8ratio used in Section 3. This makes the formula over-constrained and highly likely to beunsatis�able.Both classes of formulas were generated from the same probability model used in Section 3.All under-constrained random formulas turned out to be satis�able. Although there werevariations in the change in the autarky size, all graphs shared a common characteristic that the\rise" to a satisfying truth assignment was preceded by an optional line at size zero, possibly withsome \bumps" on it. (Some of the graphs are shown in Figure 16 in Appendix.)All over-constrained random formulas turned out to be unsatis�able. All graphs were verysimilar to the graph in Figure 3(a), only much more \barren". (A typical graph is shown inFigure 17 in Appendix.)Although the graphs show a slight di�erence compared to Figure 3, they continue to show thenear lack of autarkies as observed in Section 4. We speculate that autarky pruning is not likely tobe successful on any random formulas using any (reasonable) clauses-to-variables ratio.6 DiscussionSo what does all the observation mean? For one, it recon�rms the observation �rst made byMonien and Speckenmeyer in [6] that autarkies are rare and that trying to partition a formulausing a properly partitioning autarky is not likely to be an e�ective approach. On the other hand,our observation suggests abundance of conditional autarkies in circuit formulas1. Is there anythingwe can do to exploit this characteristic?The observation reported in this paper may lead to new uses of autarkies in solving thesatis�ability problem. However, it does not appear to be a trivial task to incorporate them intoa satis�ability testing algorithm. The di�culty arises from having to cope with the partial truthassignments that the conditional autarkies depend on. Suppose we have a formula that has aconditional autarky. We could simplify the formula using the partial truth assignment on whichthe conditional autarky depends, partition the formula based on the (conditional) autarky, andsolve the satis�ability problem on the set of the remaining clauses. If the set is satis�able, theoriginal formula is satis�able; but what if it is unsatis�able? In this case, we don't know about thesatis�ability of the original formula. (Or do we know anything?) The reduction that took placefrom the original formula to the set of the remaining clauses was conditional, just like the autarky.7 ConclusionAutarky pruning is one of the two pruning techniques used in Modoc (other being lemma pruning).Its e�ectiveness is hence expected to have a major impact on the success of Modoc. Experimentally,we have seen that Modoc is not able to take advantage of this pruning technique on randomformulas. In a way, random formulas defy autarky pruning. This may be explained by theirrandomness and hence their evenness in their distribution of variables. It will be interesting to doa mathematical analysis on the autarky sizes of random formulas. (What is the probability that arandom formula has a properly partitioning autarky whose size is �1%? �5%? �10%?)1It is the author's belief that Monien and Speckenmeyer's observation on the rarity of autarkies was for randomformulas. Unfortunately, this is not clear from their paper [6]. If the author's belief is correct, our observation doesnot contradict with their observation.
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Appendix A. More Figures 10A More FiguresThis section contains �gures that could not be placed in the main body of the paper.
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Figure 9: Change in the autarky size during the last 200 calls to autarky functionsencountered by modoc on a random formula 3.141.602.001-386058.cnf. This is a close-up of the last 200 function calls in Figure 3(b) on Page 4. We can see that what wasdrawn as a \sudden surge" was in fact a slope.
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Figure 10: Change in the autarky size encountered by modoc on a random formula3.141.602.040-386097.cnf. In this graph, two \spikes" can be seen.



Appendix A. More Figures 11
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Figure 11: Change in the autarky size encountered by modoc on a circuit formulabf2670-208.cnf. This graph is an opposite of the graph in Figure 4(b) on Page 5 inthat all falls through after two-thirds of the way into search.
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Figure 12: Change in the autarky size encountered by modoc on a circuit formulabf2670-051.cnf. This graph is similar to the graphs in Figure 5 on Page 5 in that itshows \spires". However, it is di�erent from them in that it shows \spires" in increasingheights.
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(a) bf2670-494.cnf 0
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(b) bf2670-035.cnfFigure 13: Changes in the autarky size encountered by modoc on circuit formulas. Bothgraphs show what looks like \plateaus" of autarkies. Figure (b) is an exception among allcircuit formulas in that very few autarkies were found.
formula order autarkyname found size3.141.602.014-386071.cnf 1 1312 1343 1373.141.602.026-386083.cnf 1 1342 137Figure 14: Sizes of unconditional autarkies found by modoc. (Formulas for which the �rstunconditional autarky found was a satisfying truth assignment are not shown. The lastline for each formula is also the satisfying truth assignment found for that formula bymodoc.)
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Figure 15: Change in the number of lemmas during the �rst 900 calls to lemma functionsencountered by modoc on a circuit formula bf2670-501.cnf. This is a close-up of the�rst 900 function calls in Figure 8(b) on Page 7. Note that the horizontal scaling used inthis graph is exactly the same as the graph in Figure 8(a). We can see that the rates ofuctuation of the two formulas are very similar.
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(a) 3.141.482.03-515220.cnf 0
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(b) 3.141.482.13-515230.cnf
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(c) 3.141.482.16-515233.cnf 0
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(d) 3.141.482.42-515259.cnfFigure 16: Changes in the autarky size encountered by modoc on under-constrainedrandom formulas.
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Figure 17: Typical change in autarky size encountered by modoc on over-constrainedrandom formulas. (The graph is from 3.141.722.14-256911.cnf.)


