Effect of Autarky Pruning on Random
and Circuit Formulas:
An Experimental Study”

Fumiaki Kamiya

UCSC-CRL-96-13
June 30, 1996

Baskin Center for
Computer Engineering & Computer Science
University of California, Santa Cruz

Santa Cruz, CA 95064 USA

ABSTRACT

Modoc was proposed by Van Gelder as an improvement to model elimination. The main
contribution of Modoc is in its new pruning technique based on the concept of autarky,
first introduced by Monien and Speckenmeyer. Compared to programs based on model
search, Modoc has since been observed to excel in speed on circuit formulas yet to fall
behind on random formulas. This paper reports on a study conducted to explain this
behavior in Modoc. The study is based on experiment in which the effectiveness of the two
pruning techniques used in Modoc—autarky pruning and lemma pruning—are examined on
random and circuit formulas. We observe that the effectiveness of autarky pruning differs
tremendously between the two classes of formulas. We also observe that for circuit formulas,
autarkies, which are believed to be very few of, are more likely to be found by simplifying
the formula for some partial truth assignment. This may lead to possible new ways to use
autarkies to solve the satisfiability problem.

Keywords: Propositional satisfiability, refutation, model elimination, Modoc, autarky
pruning, conditional autarky.

*Submitted for publication.



1. Introduction 1

formula num modoc 2cl

class fmlas avg max avg max
rand100 200 | 1.54 4.74 1.10 3.23
rand141 200 | 25.39  89.95 8.76 21.73
b£2670 53 | 7.15 181.49 | 439.01 17724.57
8822670 12 | 30.42  118.78 | 1539.60  2424.46

Figure 1: CPU times in seconds of modoc and 2cl on Sun Sparcstation 10/41. 2cl is
based on model search and is described in [9]. Formula classes are explained in Section 3.

1 Introduction

Modoc was proposed by Van Gelder in [7] as an improvement to model elimination ([3]). Its main
contribution to model elimination is in its new pruning technique based on the concept of autarky,
first introduced by Monien and Speckenmeyer in [6]. Whereas Monien and Speckenmeyer’s use of
autarkies was to find a model, Modoc uses them to exclude clauses whose use will not lead to a
successful refutation.

In [8], it was observed that compared to satisfiability testers based on model search, Modoc
lagged behind on random formulas yet it performed far better on circuit formulas. (For completeness
of this paper, the relevant numbers are reproduced in Figure 1.)

This paper reports on a study conducted to explain the difference in performance of Modoc on
random and circuit formulas. The study is based on experiment in which the changes in the autarky
size and the number of lemmas, both of which support the two pruning techniques employed in
Modoc, are examined.

This paper is organized as follows: In the next section, we standardize the terminology used in
the remainder of this paper and give a brief description on the concept of autarky and on the Modoc
algorithm. Following a short section on the experiment, in Section 4, we examine the outcome of
the experiment with figures depicting the changes in the autarky size and the number of lemmas.
Section 5 contains an experiment performed to show that our conclusion on random formulas made
in Section 4 applies to other random formulas. In Section 6, we discuss what the outcome may lead
to. The paper ends with a conclusion. Appendix contains figures that could not be placed in the
main body of the paper.

2 Terminology

This section gives a brief summary of the terms used in the remainder of this paper and a brief
description on the concept of autarky and on the essence of the Modoc algorithm.

We assume the readers to be familiar with terms such as CNF formula, clause, literal, variable,
truth assignment, etc.

One possible deviation from standard use is the term satisfying truth assignment. Following [7],
we consider any partial truth assignment that satisfies all the clauses in the formula to be a satisfying
truth assignment. This means that a satisfying truth assignment is not necessarily total and that
some of the variables may remain unassigned.

By definition, truth assignments are functions that map variables to truth values. Note, however,
that each truth assignment can be viewed as a set of literals that are made true by the truth
assignment. In this paper, we will often take this set-theoretic view of the truth assignment as
opposed to the usual functional view.



2. Terminology 2

2.1 Autarky

Intuitively, an autarky of a formula is a partial truth assignment that can reduce the satisfiability
problem of the formula to the satisfiability problem on the subset of the clauses that are not
satisfied by the autarky. More formally, an autarky A of a CNF formula F partitions F into two
subsets, autsat(F,A) and autrem(F,A), such that any clause in autsat(F, A) contains a literal
in A (and hence is satisfied by A), and any clause in autrem(F, A) contains no literal in A U A4,
where A consists of the complements of the literals in A. Obviously, the satisfiability problem of
F reduces to the satisfiability problem on autrem(F, A). In case F is satisfiable, a satisfying truth
assignment for F can be constructed from the disjoint union of A and a satisfying truth assignment

of autrem(F, A).

Example 1: Let F be {{a,-c,—e}, {=b,c},{-a,b,d},{~d,e}} where a,b,c,d,e are variables.
Then, {a,b,c} is an autarky of F but {a,c} is not.

Using an autarky {a,b, ¢}, the satisfiability problem of F is reduced to the satisfiability problem
on {{—~d,e}}. Since {{—d,e}} is satisfiable, so is F. A satisfying truth assignment for F can be
obtained from the disjoint union of {a,b,c} and a satisfying truth assignment for {{—d,e}}, say
{—d}, as {a,b, c, ~d}.

We say that an autarky is properly partitioning if it is not empty and it is not a satisfying
truth assignment. A properly partitioning autarky A can partition a formula F into two subsets,
autsat(F, A) and autrem(F, A), such that neither is empty. A conditional autarky is a partial truth
assignment that becomes an autarky after simplifying the formula using some other partial truth
assignment. Reason for such autarkies will become clear in the next section (Section 2.2).

2.2 Modoc

We now give an informal description of the Modoc algorithm focusing on the parts of the algorithm
that are most relevant to this study. Full detail of the algorithm can be found in [7].

Modoc is based on model elimination ([3]) which is a refutation procedure. Unlike model
elimination which uses linear “chains” to represent the state of search, Modoc uses a tree-based
data structure ([4]) to represent the search space which it explores.

The aim of Modoc is to refute a clause, called the top clause; this shows that the formula is
unsatisfiable. If no clause can be refuted, then the formula is satisfiable. To refute a clause, Modoc
tries to refute all the literals in it, and to refute a literal, it tries to find a resolving clause that can
be refuted; the process continues recursively. Whenever a refutation attempt for a literal succeeds,
the result is saved as a lemma. This eliminates the need to re-refute the same literal later under the
same premise. When search leaves the subtree that supports the premise of a lemma, that lemma
is thrown out.

The main difference between Modoc and model elimination is in Modoc’s response to failed
refutation attempts of literals. Whenever such attempts fail, the literals are added to the current
autarky. Theoretical basis (correctness, etc.) can be found in [7]. Autarkies are used to prune
subspaces that are known not to have a refutation. To be precise, any clause that contains a literal
in the current autarky can be excluded from resolution as it cannot be refuted. As with lemmas,
when search leaves the subtree that supports the premise in which the refutation failed for a literal,
the autarky is retracted to the state before the literal was added.

Readers are reminded that an autarky found during search is not necessarily an autarky for
the original formula. It is only an autarky in the subtree rooted at the place it was found. Such
autarkies are “conditional” in the sense that if literals whose refutations are attempted along the



3. Experiment 3

formula # of num of clauses # of
name vars | len=1 len=2 len=3 len=4 len=5 len=6 | total lits
bf2670-126.cnf 694 5 1152 346 104 6 0| 1613 | 3793
bf2670-240.cnf | 1734 5 3084 1609 206 33 4| 4941 | 12013

Figure 2: Some statistics on the b£2670 family of formulas. bf2670-126.cnf is the
smallest formula in bf2670 in terms of the numbers of variables, clauses, and literals.
bf2670-240.cnf is one of the largest formulas in terms of the numbers of clauses and
literals.

path from the top clause to the current position in the tree are assumed true and the formula
simplified accordingly, then would the autarky become an autarky for the simplified formula. To
emphasize the conditional nature of such autarkies, we shall call them conditional autarkies.

Example 2: We continue with Example 1. Although {a,c} is not an autarky, it is a conditional
autarky, with respect to a partial truth assignment in which only d is assigned true. This can be
verified by simplifying F with the partial truth assignment, which yields {{a, —¢c,ne}, {=b,c},{e}}.

3 Experiment

In this section, we describe the experiment; the results are summarized in the next section
(Section 4).

A C implementation of Modoc reported in [8], modoc, was modified to collect the necessary
information. Modification was made so that every time a call to one of the autarky manipulating
functions or to one of the lemma management functions is made, modoc will print the new autarky
size or the new number of lemmas, respectively.

Two classes of formulas were considered for the study, random formulas and circuit formulas.
Random Formulas: This class consists of 50 141-variable 602-clause 3CNF random formulas

generated from a probability model in which every non-redundant 3-clause is equally probable.
Clauses-to-variables ratio was chosen to be 4.27. This ratio is believed to generate the most
difficult formulas ([5, 2]). (randi41 in Figure 1 refers to this class. rand100 is a class of
100-variable 427-clause formulas generated from the same probability model.)

Circuit Formulas: This class consists of the 53 formulas of the b£2670 family of formulas, which
are generated from an automated test pattern generation program ([1]). The formulas are
satisfiable if and only if the outputs of the fault-free and faulty circuits differ for some common
input. The 2670 circuit is an ALU and has 1193 gates. The fault simulated for bf formulas
is bridge fault. (The fault simulated for ssa formulas in Figure 1 is “single stuck-at” fault.)
The circuit is taken from the ISCAS85 benchmark. Some statistics for this class of formulas
are shown in Figure 2.

Note that whereas random formulas are purely artificial, circuit formulas come from real applica-

tions.

Output from each run of modoc was tabulated and fed into gnuplot to plot the changes in the
autarky size and the number of lemmas during search.

4 Observation

This section summarizes the changes in the autarky size and the number of lemmas encountered
by modoc during search for each formula tested. For each graph shown in this paper, the horizontal



4. Observation 4

Change in Autarky Size Change in Autarky Size
T T T T T T T

140 F 140 F
120 q 120
100 100
[ [
N 80 > 80 -
> >
=< =
R S et
© ©
40 + , 40 +
20 q 20
0l " m Lk bl sl L ol sk L 0 b ast b 1oh gt it bt il =Y TV RO SO kil
0 10000 20000 30000 40000 50000 60000 70000 0 2000 4000 6000 8000 10000 12000 14000 16000
number of calls to autarky functions number of calls to autarky functions
(a) Unsatisfiable Random Formulas (b) Satisfiable Random Formulas

Figure 3: Typical changes in autarky size encountered by modoc on random for-
mulas.  (Figure (a) is from 3.141.602.002-386059.cnf.  Figure (b) is from
3.141.602.001-386058.Cnf.)

range was determined automatically by gnuplot whereas the vertical range was chosen to be the
range of variables used in the formula.

4.1 Change in the Autarky Size

We first look at the change in the autarky size as this shows a tremendous difference between
the two classes of formulas. Readers are reminded that autarkies mentioned in this section are
conditional autarkies and not necessarily autarkies for the original formula.

For random formulas, there was a clear dichotomy in the change in the autarky size, each
corresponding to satisfiable and unsatisfiable formulas, yet, they shared a common characteristic.
For unsatisfiable formulas, the graphs show a line at size zero with some “noise” on it. A typical
graph is shown in Figure 3(a). For satisfiable formulas, the graphs are similar except for the
addition of a “sudden surge” to a satisfying truth assignment at the very end. A typical graph
is shown in Figure 3(b). What appears to be a surge is in fact a slope. This is because autarky
literals are always added one at a time (although they can be removed more than one at a time).
Due to extreme scaling along the horizontal axis, the slope is steepened to an extreme and hence
drawn like a sudden surge. (See Figure 9 in Appendix for a close-up of the last 200 function calls.)

Both figures show that only extremely small autarkies were found by modoc. Of course, there
were exceptions where “spikes” were observed. (See Figure 10 in Appendix for an example.) The
fact that modoc was only able to find extremely small autarkies in the formulas means that Modoc
was not able to prune effectively based on autarkies. This may, at least in part, explain the
deficiency of Modoc on random formulas compared to circuit formulas, as we will see next.

Circuit formulas, on the other hand, showed various behaviors. There were quite a few formulas
that led straight to a satisfying truth assignment, without any waste of work, as in Figure 4(a).
Figure 4(b) is similar to Figure 4(a) in the second half, yet it shows some “struggle” in the first
half. There was also an opposite of Figure 4(b). (See Figure 11 in Appendix for an example.)

Figure 5 shows some of the other often-observed graphs in which a repetition of various “spires”
is seen. In Figure 5(a), the spires are similar in height and seen at regular intervals, whereas in



4. Observation 5

Change in Autarky Size Change in Autarky Size
1200 F T T T T | T T T T T
1600
1000 - q 1400
1200
800
& & 1000 |
n n
£ 600 <
§ § 800
=3 =3
© ©
400 - 600
400
200
200
0 . . . . . 0 [ . f . . .
0 200 400 600 800 1000 1200 0 500 1000 1500 2000 2500 3000 3500 4000
number of calls to autarky functions number of calls to autarky functions
(a) bf2670-414.cnf (b) b£2670-483. cnf
Figure 4: Changes in the autarky size encountered by modoc on circuit formulas.
Change in Autarky Size Change in Autarky Size
1400 F T T T T T T T T T
1600
1200
1400
1000 q 1200 -
R 8
‘D 800 B 1000 -
< <
3 3
5 600 5
© ©
400
200 -
0 L L L L l!' L + 0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 0 10000 20000 30000 40000 50000 60000
number of calls to autarky functions number of calls to autarky functions

(a) b£2670-487 . cnf (b) bf2670-501. cnf

Figure 5: Changes in the autarky size encountered by modoc on circuit formulas.

Figure 5(b), the spires are of various heights and seen at irregular intervals. Also note the heights
of the spires in each of these graphs. In Figure 5(a), modoc was able to find autarkies that contained
approximately 80% of the variables, whereas in Figure 5(b), the largest autarky modoc was able to
find was slightly above 50%. Apart from the graphs in Figure 5, there were graphs in which the
spires were in increasing heights. (See Figure 12 in Appendix for an example.)

Other interesting graphs include “plateaus”. (See Figure 13 in Appendix for examples.)

Although upward slopes in the figures appear to have different gradient, this is simply due to
the difference in horizontal scaling. Should the graphs be drawn with the same horizontal scaling,
all upward slopes would have been drawn with the same gradient.

With the exception of one formula (b£2670-035.cnf shown in Figure 13(b) in Appendix), a
common observation was that autarkies modoc found for circuit formulas were much larger than
those found for random formulas. With the previous observation of modoc being able to find only
extremely small autarkies for random formulas, it appears that we may attribute the difference in



4. Observation

autarky size / depth

1200 F

1000 -

800

600

400

200

Change in Autarky Size and Depth
T T T

autarky size —
depth ------

. . .
400 600 800
number of calls to autarky functions

.
200

(a) b£2670-414. cnf

.
1000

1200

autarky size / depth

1600

1400

1200 -

1000

800

600

Change in Autarky Size and Depth
T T T T T

autarky size —
depth ------

-

. f . .
1000 1500 2000 2500 3000 3500 4000
number of calls to autarky functions

[
500

(b) bf2670-483. cnf

Figure 6: Changes in the autarky size and the depth at which the changes occurred in
modoc on circuit formulas.

behavior to the relative abundance of autarkies in circuit formulas and the near lack of autarkies
in random formulas.

As mentioned at the beginning of this section, the autarkies found by Modoc are not necessarily
autarkies for the original formula.
the original formulas?

So one may ask, how many of them are autarkies for
Of the 103 formulas tested, only in two of them was modoc able to
find properly partitioning autarkies for the original formulas. (See Figure 14 in Appendix for
details.) Interestingly, both formulas were satisfiable random formulas, and all properly partitioning
autarkies that were found were very close to the satisfying truth assignments found by modoc in
terms of the number of literals in them.

Instead of looking at (unconditional) autarkies, we now look at the depths at which conditional
autarkies are found. Note that the depth corresponds to the size of the partial truth assignment on
which the conditional autarky depends. Figure 6 shows two graphs with the depths at which the
changes occurred also plotted. Observe that toward the end of search, large autarkies are found at
shallow depths. This means that there are large conditional autarkies with relatively small partial
truth assignments on which they depend.

4.2 Change in the Number of Lemmas

While there was a significant difference in the change in the autarky size between the two classes
of formulas, nothing similar was observed for the change in the number of lemmas derived during
search. The changes in the number of lemmas for random formulas were all quite similar; a typical
graph is shown in Figure 7. For circuit formulas, there were variations, yet they were not as
dramatic as the graphs for the change in the autarky size; two graphs are shown in Figure 8.
Although the graphs differ in the average number of lemmas relative to the number of variables,
they share the same characteristic that the lemmas are abundant. Rate of fluctuation for circuit
formulas appears to be slower than that for random formulas. (The rates of fluctuation for the two
graphs in Figure 8 are actually quite similar. What makes the two look different is the use of different
scalings along the horizontal axes. Figure 15 in Appendix shows a graph for b£2670-501.cnf using
the same scaling as Figure 8(a).) However, we do not believe that the rate of fluctuation may have



5. More Experiment 7

Change in Number of Lemmas
140 T T

120

number of lemmas

LJI il |.ﬂhm.|l‘wmuh | ‘.L\

T
40000 80000 120000 160000
number of calls to lemma functions

Figure 7: Typical change in the number of lemmas encountered by modoc on random
formulas. (The graph is from 3.141.602.001-386058.cnf.)

Change in Number of Lemmas Change in Number of Lemmas
T T T T T T T T
1600
600 -
1400
” 500 o 1200
© ©
£ £
5 400 £ 1000 f
s s 800
é 300 é
=1 =] 600
c [=4
200
400
100 ~ 200 -
0 . . . . . . . . 0 . . . .
0 100 200 300 400 500 600 700 800 900 0 40000 80000 120000 160000
number of calls to lemma functions number of calls to lemma functions
(a) b£2670-007 . cnf (b) b£2670-501.cnf

Figure 8: Changes in the number of lemmas encountered by modoc on circuit formulas.

an effect on the performance of Modoc. Overall, we believe that lemmas are not a crucial factor in
explaining the difference in the performance of Modoc.

5 More Experiment

It was pointed out after running the experiment in Section 3 that using random 3CNF formulas

with clauses-to-variables ratio of 4.27 may be “unfair” to the random formulas, as the ratio is

believed to generate the most difficult set of formulas ([5, 2]). So to be fair, two more classes of
random formulas were generated and tested.

Under-constrained Random Formulas: This class consists of 50 141-variable 482-clause 3CNF
random formulas. The clauses-to-variables ratio is 3.416 which is 20% smaller than the
ratio used in Section 3. This makes the formulas under-constrained and highly likely to be
satisfiable.

Over-constrained Random Formulas: This class consists of 50 141-variable 722-clause 3CNF
random formulas. The clauses-to-variables ratio is 5.124, which is 20% larger than the



6. Discussion 8

ratio used in Section 3. This makes the formula over-constrained and highly likely to be
unsatisfiable.
Both classes of formulas were generated from the same probability model used in Section 3.

All under-constrained random formulas turned out to be satisfiable. Although there were
variations in the change in the autarky size, all graphs shared a common characteristic that the
“rise” to a satisfying truth assignment was preceded by an optional line at size zero, possibly with
some “bumps” on it. (Some of the graphs are shown in Figure 16 in Appendix.)

All over-constrained random formulas turned out to be unsatisfiable. All graphs were very
similar to the graph in Figure 3(a), only much more “barren”. (A typical graph is shown in
Figure 17 in Appendix.)

Although the graphs show a slight difference compared to Figure 3, they continue to show the
near lack of autarkies as observed in Section 4. We speculate that autarky pruning is not likely to
be successful on any random formulas using any (reasonable) clauses-to-variables ratio.

6 Discussion

So what does all the observation mean? For one, it reconfirms the observation first made by
Monien and Speckenmeyer in [6] that autarkies are rare and that trying to partition a formula
using a properly partitioning autarky is not likely to be an effective approach. On the other hand,
our observation suggests abundance of conditional autarkies in circuit formulas!. Is there anything
we can do to exploit this characteristic?

The observation reported in this paper may lead to new uses of autarkies in solving the
satisfiability problem. However, it does not appear to be a trivial task to incorporate them into
a satisfiability testing algorithm. The difficulty arises from having to cope with the partial truth
assignments that the conditional autarkies depend on. Suppose we have a formula that has a
conditional autarky. We could simplify the formula using the partial truth assignment on which
the conditional autarky depends, partition the formula based on the (conditional) autarky, and
solve the satisfiability problem on the set of the remaining clauses. If the set is satisfiable, the
original formula is satisfiable; but what if it is unsatisfiable? In this case, we don’t know about the
satisfiability of the original formula. (Or do we know anything?) The reduction that took place
from the original formula to the set of the remaining clauses was conditional, just like the autarky.

7 Conclusion

Autarky pruning is one of the two pruning techniques used in Modoc (other being lemma pruning).
Its effectiveness is hence expected to have a major impact on the success of Modoc. Experimentally,
we have seen that Modoc is not able to take advantage of this pruning technique on random
formulas. In a way, random formulas defy autarky pruning. This may be explained by their
randomness and hence their evenness in their distribution of variables. It will be interesting to do
a mathematical analysis on the autarky sizes of random formulas. (What is the probability that a
random formula has a properly partitioning autarky whose size is >1%7 >5%7 >10%7)

Tt is the author’s belief that Monien and Speckenmeyer’s observation on the rarity of autarkies was for random
formulas. Unfortunately, this is not clear from their paper [6]. If the author’s belief is correct, our observation does
not contradict with their observation.



References 9

We also showed, through experiment, that (unconditional) autarkies are extremely rare, even for
circuit formulas for which autarky pruning appears to be effective. However, for circuit formulas,
it appears that there is abundance of conditional autarkies. Also, it appears that there are large
conditional autarkies with small partial truth assignments on which they depend. These may lead
to new ways to use autarkies to solve the satisfiability problem, but currently, we don’t know of any.
A hypothetical algorithm that “conditionally” reduces the problem to a subformula was described.
The algorithm works fine if the subformula is satisfiable, but the question remains on what we can
do in case the subformula is unsatisfiable. Are all efforts lost? Can we recover any information
about anything to circumvent the complete loss of efforts? Many questions remain to be answered
regarding the use of conditional autarkies.

Acknowledgments

The author wishes to thank Allen Van Gelder for valuable discussions on Modoc and for reading
earlier drafts of this paper.

References

[1] T. Larrabee. Test pattern generation using Boolean satisfiability. [EEE Transactions on
Computer-Aided Design, 11(1):6-22, January 1992.

[2] T. Larrabee and Y. Tsuji. Evidence for a satisfiability threshold for random 3CNF formulas.
Technical Report UCSC-CRL-92-42, UC Santa Cruz, Santa Cruz, CA., October 1992.

[3] D. W. Loveland. A simplified format for the model elimination theorem-proving procedure.
JACM, 16(3):349-363, 1969.

[4] J. Minker and G Zanon. An extension to linear resolution with selection function. Information
Processing Letters, 14(3):191-194, June 1982.

[5] D. Mitchell, B. Selman, and H. Levesque. Hard and easy distributions of SAT problems. In
Proceedings of the Tenth National Conference on Artificial Intelligence (AAAI-92), San Jose,
CA., pages 459-465, July 1992.

[6] B. Monien and E. Speckenmeyer. Solving satisfiability in less than 2" steps. Discrete Applied
Mathematics, 10:287-295, 1985.

[7] A. Van Gelder. Simultaneous construction of refutations and models for propositional formulas.
Technical Report UCSC-CRL-95-61, UC Santa Cruz, Santa Cruz, CA., 1995. (submitted for
publication).

[8] A. Van Gelder and F. Kamiya. The partial rehabilitation of propositional resolution. Technical
Report UCSC-CRL-96-04, UC Santa Cruz, Santa Cruz, CA., 1996.

[9] A. Van Gelder and Y. K. Tsuji. Satisfiability testing with more reasoning and less guessing.
In D. S. Johnson and M. Trick, editors, Cliques, Coloring, and Satisfiability: Second DIMACS
Implementation Challenge., DIMACS Series in Discrete Mathematics and Theoretical Computer
Science. American Mathematical Society, 1996.



Appendix A. More Figures 10

A  More Figures

This section contains figures that could not be placed in the main body of the paper.

Change in Autarky Size (last 200 function calls)
T T T T

140 F

120 -

100 -

80

60

autarky size

40 |

20

n . . . .
14440 14480 14520 14560 14600
number of calls to autarky functions

Figure 9: Change in the autarky size during the last 200 calls to autarky functions
encountered by modoc on a random formula 3.141.602.001-386058.cnf. This is a close-
up of the last 200 function calls in Figure 3(b) on Page 4. We can see that what was
drawn as a “sudden surge” was in fact a slope.

Change in Autarky Size
T T T

140 F

120 -

100 -

80

60

autarky size

40 |

20

0 Wbl L L.m Leabl il M

0 10000 20000 30000 40000 50000 60000
number of calls to autarky functions

Figure 10: Change in the autarky size encountered by modoc on a random formula
3.141.602.040-386097 .cnf. In this graph, two “spikes” can be seen.



Appendix A. More Figures

Change in Autarky Size
T T T

1200

1000

800

600

autarky size

400

200 | L
o ‘ ‘

. .
0 200 400 600 800 1000 1200
number of calls to autarky functions

Figure 11: Change in the autarky size encountered by modoc on a circuit formula
bf2670-208.cnf. This graph is an opposite of the graph in Figure 4(b) on Page 5 in
that all falls through after two-thirds of the way into search.

Change in Autarky Size
T T T

1200

1000

800

600 -

autarky size

400

200

I

A h . . .
0 1000 2000 3000 4000 5000 6000
number of calls to autarky functions

Figure 12: Change in the autarky size encountered by modoc on a circuit formula
bf2670-051.cnf. This graph is similar to the graphs in Figure 5 on Page 5 in that it
shows “spires”. However, it is different from them in that it shows “spires” in increasing

heights.

11



Appendix A. More Figures

Change in Autarky Size Change in Autarky Size
T T T T T T T T T

700 F
1200 600 -
1000 7 500
[ [
N800 N 400 |
2 £
IS
£ 600 - g 300l
© ©
400 1 200
200 - 1 100
0 100 200 300 400 500 600 700 800 900 1000 0 5 10 15 20 25 30 35 40 45
number of calls to autarky functions number of calls to autarky functions
(a) bf2670-494.cnf (b) b£2670-035. cnf

Figure 13: Changes in the autarky size encountered by modoc on circuit formulas. Both
graphs show what looks like “plateaus” of autarkies. Figure (b) is an exception among all
circuit formulas in that very few autarkies were found.

formula order | autarky
name found size
3.141.602.014-386071.cnf 1 131
2 134
3 137
3.141.602.026-386083.cnf 1 134
2 137

Figure 14: Sizes of unconditional autarkies found by modoc. (Formulas for which the first
unconditional autarky found was a satisfying truth assignment are not shown. The last
line for each formula is also the satisfying truth assignment found for that formula by
modoc.)

12



Appendix A. More Figures

Change in Number of Lemmas (first 900 function calls)
T T T T T T T T

1600

1400

1200

1000

800

600 [

number of lemmas

400

200

0

. . . . . . . .
0 100 200 300 400 500 600 700 800 900
number of calls to lemma functions

Figure 15: Change in the number of lemmas during the first 900 calls to lemma functions
encountered by modoc on a circuit formula bf2670-501.cnf. This is a close-up of the
first 900 function calls in Figure 8(b) on Page 7. Note that the horizontal scaling used in
this graph is exactly the same as the graph in Figure 8(a). We can see that the rates of
fluctuation of the two formulas are very similar.

13



Appendix A. More Figures

Change in Autarky Size
T T

Change in Autarky Size

140 F T T 9 140 F T T 3
120 q 120 q
100 q 100 q
[ [
B 80 - 4 B 80 - 1
£ £
3 eor 1 £ et |
© ©
40 R 40 E
20 q 20 q
0 . . . . . . 0 n . .
0 20 80 100 120 140 0 50 10 150 200 250
number of calls to autarky functions number of calls to autarky functions
(a) 3.141.482.03-515220.cnf (b) 3.141.482.13-515230.cnf
Change in Autarky Size Change in Autarky Size
140 7 140 F T T 5
120 q 120 q
100 q 100 q
[ [
B 80 - 4 B 80 - 1
> >
=< =<
R 1 £ eof |
© ©
40 R 40 E
20 q 20 q
0 . . . . . . . 0 Y, S VA . .
0 20 40 60 80 100 120 140 160 180 200 0 50 100 150 200 250 300 350

number of calls to autarky functions

(c) 3.141.482.16-515233.cnf

Figure 16: Changes in the
random formulas.

140
120
100

80

60

autarky size

40

20

number of calls to autarky functions

(d) 3.141.482.42-515259.cnf

autarky size encountered by modoc on under-constrained

Change in Autarky Size
T T T

.

. . . . . .
0 1000 2000 3000 4000 5000 6000 7000
number of calls to autarky functions

Figure 17: Typical change in autarky size encountered by
random formulas. (The graph is from 3.141.722.14-256911.cnf.)

8000

modoc on over-constrained

14



