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abstractMany practical routing problems such as BGA, PGA, pin redistribution and test�xture routing involve routing with interchangeable pins. These routing problems,especially package layout, is becoming more di�cult to do manually due to increasingspeed and I/O. Currently, no commercial or university router is available for thistask. In this paper, we unify these di�erent problems as instances of InterchangeablePin Routing (IPR) problem. We show that this problem is NP-complete. Weformulate the problem as 
ows in a routing network on a triangulation insteadof grids and developed a min-cost max-
ow heuristic considering only the mostimportant cuts in the design. The heuristic is extended to multiple layers andhandles prerouted nets. It can accommodate all-angle, octilinear or rectilinearmetric. Experiments showed that the heuristic is very e�ective on most practicalexamples. It successfully routed an industry design with 4000 interchangeable pinswithout manual intervention.Keywords: PGA, BGA, package layout, planar routing, routability, network 
ow,interchangeable pins
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Figure 1: An unrouted example of routing with exchangeable pins. Each pad in the centermust be connected to one pad on the edge connector.1 IntroductionPackage layout has been a missing link in design automation. It is done manually becausepackages has been simple enough and the layout tools cannot produce all-angle, non-uniformwidth wires. Nowadays array I/O packages like Ball Grid Arrays (BGA) and Pin GridArrays (PGA) are complex structures with multiple routing layers, power and groundplanes and decoupling capacitors built in. High I/O count and high-speed performancerequirements make manual design more costly and time-consuming. Although some packagerouters exist[18, 19], they have a number of fatal limitations that prevent them from beingadopted by industry for practical use. This paper proposes a more general router that doesnot have these limitations and is suitable for a wide variety of applications, ranging fromBGA and PGA routing to test probe card design.In BGA or PGA package design, we wish to connect each chip pad to a single packagepin, but we may not care which pad is connected to which pin. This same type of problemalso occurs in the design of test �xtures, footprint escape patterns, and to some extent inrouting signals inside an ASIC to one of the available I/O pads on the periphery. Figure 1shows a test probe card design. We want to connect all pins in set A to set B while avoidingall obstacles. We do not care which pin in B is connected by a pin in A as long as there issome pin.Conventional routers cannot address these problems because they require a prede�ned



2 1 INTRODUCTIONpin assignment in the form of a netlist, before the routing process can be started. In additionto adding an extra step to the design process, the choice of pin assignment is critical to thequality of the routing. Often a pin assignment is chosen that cannot be realized. Ratherthan performing pin assignment and routing as two separate steps, what is needed is arouter that performs these two steps simultaneously.Speci�c package routers like PGA or BGA routers[18, 19, 8, 17] have been developedthat take advantage of special geometries and symmetries of their respective problems andthe freedom of interchangeable pins. Although these methods are exceptionally e�cient,they have a number of limitations:Geometry dependent They rely on the symmetry of the arrays and rings to generatesolutions and cannot cope with missing, skewed, o�-grid or arbitrarily placed pads.Routability guarantee These algorithms cannot always tell if they have generated aroutable solution, and have no strategy for changing an unroutable solution into aroutable solution.Unequal sets They require the two pin sets to be the same size. In actual packages thenumber of pins available may be larger than the number of chip I/O. The routershould have the freedom to select which pins to use.Obstacles They do not take into account the presence of obstacles.Multilayer It is not easy to extend Yu and Dai's[18, 19] routers to multiple layers.Prerouting These routers cannot accept prerouted wires. Prerouting is very importantin package design because the designer wants to be able to route all the critical netsbefore other non-critical nets.Responding to these limitations, we propose a general problem formulation called PlanarTwo-Terminal Interchangeable Pin Routing (P2TIR). We showed that although we can takeadvantage of the freedom of interchangeable pins, P2TIR is NP-complete so no polynomial-time algorithm is likely to exist that guarantees routability. Despite of its NP-completeness,we o�er an e�cient heuristic which is independent of pin placement, handles unequal setsand obstacles, can be extended to multiple layers and observes all prerouting. Experimentsshowed that this heuristic, which we called the 
ow router, is very e�ective on practicalexamples, including some provided by the industry. We also showed that the router scaleswell to handle production-sized jobs from industry. The router successfully completed ourlargest example of 4000 interchangeable pins without manual intervention. No commercialor university router is capable of handling interchangeable pin problems of this size.Cho and Sarrafzadeh[4, 3, 5] formulated the Pin Redistribution Problem for routing re-distribution layers in Ceramic Multichip Modules (MCM-C). This problem on a single layeris similar to P2TIR except that all objects are on a �xed grid and all wires are Manhattan.Chang et al[1] uses a 
ow approach similar to ours for solving the Pin Redistribution Prob-lem. Since the problem formulation is less general it is not easy to generalize the solutionto other technologies. In addition, every grid cell corresponds to a node in their 
ow graphso the number of nodes in the graph is O(m2) where m is the dimension of the design. Fora test probe card, the length of the card is in the order of inches and the chips to be testedhas pad pitch in the order of several mils so grid-based approach is practically impossible.In this work we consider the most general case of all-angle wiring and our solution works



1.1 Formal Problem De�nition 3for Euclidean, octilinear or rectilinear metric. Our routing network is not based on gridsbut on triangulation, which scales linearly with the number of pins. Therefore our solutionis more technology-independent and computationally more e�cient.1.1 Formal Problem De�nitionThe fundamental features of P2TIR are two sets of pins placed arbitrarily in a single planethat we wish to connect to one another. We also need to model the routing area and allobstacles, as well as the particular design rules permitted by the wiring. Accordingly, wede�ne an instance of the Planar 2-Terminal Interchangeable Pin Routing (P2TIR) problemas follows:De�nition 1 Planar 2-Terminal Interchangeable Pin RoutingInstance A 6-tuple of (b;A;B;O;w; s) where:b is a polygon representing the routing area boundary.A is a set of polygons for one class of pins.B is a set of polygons for the other class of pins.O is a set of polygons representing obstacles.w is a positive integer for the minimum wire width.s is a positive integer for the minimum wire spacing.A, B, O are non-overlapping polygons inside b. Without loss of generality jAj � jBj.Output A detailed routing of the design, i.e a set of wire paths that connects each pad inA to a unique pad in B avoiding all obstacles in O and obey the width and spacingrules.Maley[12] showed that the routability of topological routing (or homotopic routing)can be determined in polynomial time. A topological routing of a 2-terminal net is theequivalence class of all detailed routing of the net under homotopic transformation. Atopological routing T is routable if and only if there exists a detailed routing in T thatsatis�es all design rules. Maley also showed that a topological routing is routable if thetotal number of wires 
owing through straight cuts between any pair of features (the 
owof the cut) is less than the maximum number of wires that could be accommodated in thebest case (the capacity).Because there are e�cient algorithms for �nding a correct detailed routing from atopological routing[7], we will consider a routable topological routing a solution for P2TIR.2 Network 
ow formulation of P2TIRIn this section we develop a network 
ow formulation for P2TIR. We showed that any 
owassignment can be transformed to a topological routing.



4 2 NETWORK FLOW FORMULATION OF P2TIR
The decisive cuts on feature f
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Figure 2: A topological routing with some cuts and 
ows illustrated

Figure 3: The Routing Network of a PGA package



2.1 The Routing Network 52.1 The Routing NetworkIn the case of 2-terminal nets, we may recognize some similarities between a topologicalrouting and a network 
ow. For example, a net can be modeled as a 
ow from a source (aterminal) to a sink (the other terminal). Flow is conserved at nodes that are not source norsink. Nets are also conserved because they only terminate at pins. Each source originateone unit of 
ow and each source terminate one unit of 
ow. Similarly, each pin eitheroriginate or terminate a net. To make these ideas more concrete, we consider the routingnetwork of a design.The routing network T (V;E; s; t) is a directed graph with a source s and a sink t. We�rst shrink each pin in sets A and B and each obstacle in O into a point. Each representingpoint has to be within the boundary of its object. Let these sets of points be ~A, ~B and ~Orespectively. Then we build a Delaunay triangulation D on ~A[ ~B[ ~O[ b, where b is the setof points of the bounding polygon. From the triangulation graph, we de�ne T as follows:De�nition 2 If � is the dual of D, a Routing Network T (V;E; s; t) is a network whereV = � [ ~A [ ~B. E consists of the following arcs:� A pair of opposite arcs for each edge in �.� A pair of opposite arcs between each point in ~A[ ~B and each of its incident triangles.Each arc has a capacity and a non-negative cost.The arcs originating from a point in ~A (the source set) have unit capacities and arcsto a point in ~A have zero capacities. The opposite is true for ~B (the sink set). Finally,the pair of arcs connecting two triangles have capacities equal to the maximum number ofwires that can cross between the corresponding pins or obstacles in both directions. Thecapacities should account for the �nite size of pins or obstacles. The supersource s has anoutgoing arc to each vertex in ~A with capacity equal to 1 and cost equal to 0. Similarly,the supersink t has an incoming arc from each vertex in ~B.Note that the vertices in � are triangles. Since there are many possible triangulationsfor each instance of P2TIR, there are many possible routing networks for a given probleminstance. Figure 3 shows a routing network of a PGA package. Each line segment in the�gure represents a pair of opposite arcs in the network. Any 
ow assignment on this networkhas the following properties.� The 
ow entering a vertex in ~A must be �1.� The 
ow entering a vertex in ~B must be either 0 or +1. (Some pins in B may not beused.)� The net 
ow entering a vertex in � must be 0. (Wires end at pads, not in triangles.)We can show that 
ow assignment on the routing network of a design can be transformedinto a topological routing of the design.Theorem 1 A 
ow assignment on a routing network of a design can be transformed intoa topological routing of the same design.



6 3 THE FLOW ROUTERProof: We can transform the 
ow one triangle at a time. In each triangle, due to theconservation condition, we can always �nd a proper topological routing in the triangle. Wedelay the discussion of speci�c cases to Section 3 where a speci�c algorithm is developed.The overall topological routing can be formed by patching all the triangles together. 22.2 Routability of the topological routingMaley[12] showed that only a certain set of cuts, the decisive cutset, needs to be checked fora topological routing to determine its routability. If there are N objects, then we need tocheck at most N(N�1)=2 cuts. Thus, the number of cuts in the decisive cut set is boundedby O(jA+B +Oj2).In the routing network only some but not all cuts are represented as constraints. Thesecuts are the edges of the triangulation. There are only O(N) cuts in a triangulation ofN points while there are O(N2) cuts. It is obviously possible that many cuts are notexplicitly represented by the triangulation. We call these implicit cuts. A 
ow solution onlyguarantees that all explicit cuts are safe but says nothing about implicit cuts. Appendix Ashowed that P2TIR is in fact NP-complete so no polynomial time algorithm that �nds aroutable topological routing is likely to exist.3 The Flow RouterIn this section we describe in detail the 
ow router as a heuristic to solve P2TIR. We usethe min-cost formulation. The router has three steps:1. Building the routing network.2. Solving the min-cost max-
ow problem.3. Transforming the solution into a topological routing.3.1 Building the routing networkWe used the incremental Delaunay triangulation described by Lu[11] to construct thetriangulation, although any other algorithms are equally good. The Delaunay triangulationof N = j ~A [ ~B [ ~Oj points can be constructed in O(N logN) time[14]. The dual of thetriangulation can be constructed in O(N) time. Additional edges can be added in O(jA[Bj)time. The capacity of each edge is set as follows:� If the edge is in the dual of the triangulation, then it represent a cut between twovertices. The capacity of the edge isbLength of cut� Pad sizes�Wire spacingWire spacing +Wire width c:This is the number of wires that can intersect this cut without over
owing it.� If the edge terminate at a pin, then the capacity is set to 1.� The capacities of all edges of the supersink t and the supersource s are set to 1.



3.2 The Min-cost Max-
ow Algorithm 7Algorithm 1 (BUILDUP)Algorithm BUILDUP(Routing network T )for total
ow  1 to jAjPath p SHORTESTPATH(T )if path is not found, return \T is unroutable".Increment 
ow on all edges of p by 1.endforAlgorithm 2 (SHORTESTPATH)Algorithm SHORTESTPATH(Routing network T )Set current cost on each vertex of T to 1.currcost(s) 0. Queue q  fsg. Pass n 0. Vertex z  supersink t.while nonempty(q) and n � total number of edgesVertex v  dequeue(q).for 8w adjacent to vif 
ow(v; w) < capacity(v; w) and currcost(v) + cost(v; w) < currcost(w)currcost(w)  currcost(v) + cost(v; w), parent(w) v.if w is not in q, enqueue(q; w).endifif 
ow(v; w) < 0 and currcost(v) � cost(v; w) < currcost(w)currcost(w)  currcost(v)� cost(v; w), parent(w) v.if w is not in q, enqueue(q; w).endforif v = z, n n+ 1, z  last element in q.endwhileif nonempty(q) return \Path not found".�nd path by retracing back from the sink.return the shortest path. Figure 4: Algorithm buildupThere is more 
exibility in choosing the cost function. We choose the cost function toapproximate the wire length of the �nal topological routing. Since the position of a wireintersecting a cut is equally likely along the cut, we choose the edge that represent thecut in the routing network to be the perpendicular bisector of the cut. The intersectionof the three perpendicular bisectors of a triangle is the circumcenter of the circumcircleof the triangle. We therefore de�ne the cost of an edge to be the distance between thecircumcenters where the edge terminate. Other points in the triangle, such as the centroid,can be used too. Experiments show that the solutions between using the centroid and thecircumcenter is not much di�erent. This means that both are reasonably good estimatorsof real wire length.3.2 The Min-cost Max-
ow AlgorithmAfter the routing network is constructed, we run a min-cost max-
ow algorithm on the net-work. The algorithm we used is based on the `buildup' algorithm described in Papadimitrouand Steiglitz[13]. Informally, we try to �nd a minimum total cost assignment of 
ows for



8 3 THE FLOW ROUTER

Figure 5: Three cases of mapping 
ows in a triangle to a topological routinga given 
ow. In this case, the given 
ow is the maximum 
ow because the 
ow is equal tothe number of connections, i.e. jAj. This 
ow is maximum because the sum of capacities ofedges of the supersource is jAj. If we cannot push jAj 
ow across the network, the designis unroutable. This is because a bottleneck of cuts in the triangulation is over
owed.This algorithm requires a shortest path algorithm that handles negative-cost edges. Weused the algorithm described in Tarjan[16]. This algorithm runs in O(jV jjEj) time. Notethat the 
ow on an edge can be positive or negative. The direction of the 
ow is always fromthe source to the sink. Therefore the run time of the 
ow assignment algorithm is O(jV j3)since the number of edges in the triangulation is linearly proportional to the number ofvertices. V = A [B [O. Fig. 4 shows both algorithms.3.3 Transforming a 
ow solution to a topological routingThe last step in the 
ow router is to convert a min-cost 
ow solution to a topological routing.This can be done on a triangle-by-triangle basis. Fig. 5 shows the three possible cases of
ow assignments on a triangle. Note that each edge of the triangle corresponds to a pairof opposite arcs in the routing network. In general the 
ow on both arcs are non-zero. Wechoose to simplify the cases by cancelling out the 
ow on opposite arcs and only realize thenet 
ow. Reducing the 
ow will certainly not violate any capacity constraint. We can onlyhave three cases. Case 0 has no connection to any of the pins in the triangle. Case 1 hasone connection and Case 2 has two. Since a topological routing is actually an equivalenceclass of homotopically equivalent detailed routings, Case 1b and Case 1c are redundant.Fig. 6 shows a homotopic transformation of a detailed routing involving a Case 1c triangleto a routing that does not use Case 1b or Case 1c triangles. Since the two routings arehomotopically equivalent, they are the same topological routing.In a case 0 triangle, we can compute the sub
ows �; �; 
 from the 
ows A, B, C by the



3.4 Handling Prerouted Nets and Extension to Multiple Layers 9
Figure 6: A Case 1c triangle transformed homotopically to a Case 1a triangle

Figure 7: A prerouted wire as constrained edges and its (partial) routing networkfollowing simple set of equations.
 + � = jAj �+ 
 = jBj � + � = jCj:We can solve this simple set of equations and obtain� = (jBj+ jCj � jAj)=2 � = (jCj+ jAj � jBj)=2 
 = (jAj+ jBj � jCj)=2:Since the 
ow at any vertex is conserved, we have A + B + C = 0. The parity ofA+B + C = parity(0) = E. It is straight forward to verify that parity(jBj+ jCj � jAj) =parity(jCj+ jAj � jBj) = parity(jAj+ jBj � jCj) = parity(A+B +C) = E. Therefore �; �and 
 are all integers. Also,jAj+ jBj � jCj � jA+Bj � jCj = j � Cj � jCj = 0;so �; � and 
 are non-negative.It is a simple matter to �nd the sub
ows in Case 1a and Case 2.We stitch the transformations of all triangles together to obtain the �nal topologicalrouting.3.4 Handling Prerouted Nets and Extension to Multiple LayersWe handle prerouted nets by constrained edges. We assume that each prerouted netis piecewise-linear. Then we embed each wire as a set of constrained edges into thetriangulation. We use the set of algorithms reported by Lu[11] for building and maintaininga Constrained Delaunay Triangulation (CDT). The capacities of corresponding routingnetwork arcs are set to 0 so that wires cannot intersect each other. In e�ect the prerouted



10 4 EXPERIMENTAL RESULTSwires become barriers of 
ows. Since the prerouted wires are directly embedded into thetriangulation, their exact shape a�ects the 
ow solution. Fig. 7 shows a prerouted wireembedded in the triangulation and the resulting dual.For multiple layers, we build triangulation and create the dual graphs on each layer asin the case of single layers. Then we combine these graphs together. Each pin is now a pinstack that spans contiguous, but not necessarily all, layers. So we extend the de�nition ofthe routing network as follows. We �rst choose a point to represent each pin stack. We call,as before, these sets of points ~A; ~B and ~O respectively for sets A, B and O. Let Di be thetriangulation of the ith layer, for i = 1; : : : ; N layers.De�nition 3 If �i is the dual of Di, a Routing Network T (V;E; s; t) is a network whereV = ~A [ ~B [PNi=1�i. E consists of the following arcs:� A pair of opposite arcs for each edge in �i.� A pair of opposite arcs between each point in ~A[ ~B and each of its incident triangleson layer i if the corresponding pin stack has a pad on layer i.Each arc has a capacity and a non-negative cost.Note that each pin stack corresponds to only one (source or sink) vertex in the routingnetwork. But each sink or source vertex has a pair of arcs to their incident triangles on alllayers. The capacity of each cut is set according to the speci�c design rules of the layer thecut belongs to. Therefore each layer can have di�erent design rules. The cost of each arc canalso be adjusted so that some layer has higher cost per unit wire length than others. Themin-cost algorithm will �nd a solution with minimum weighted wire length if one exists.4 Experimental ResultsFig. 8 shows a small PGA with its triangulation and its routing done by the 
ow router.After routing, the intermediate points can be relaxed using methods proposed by Dai et al.[15, 7, 6].The �rst non-trivial example is a single-layer 444 pin PGA package with staggered pins.Yu and Dai[18] cannot handle staggered pins. Another example is a two layer 280 pinBGA package. Again the router of Yu and Dai[19] only handles a single layer. The routerautomatically distributes the wires between the two layers and can accommodate di�erentdesign rules of each layer (Fig. 9). To show that the router does not assume any pinplacement, we routed a 400 pin test probe card provided by industry. The card connectschip I/Os at the center to two arrays of pads at the periphery. The router has to avoidprerouted nets and obstacles such as drill holes and other reserved areas (Fig. 10). Our lastexample shows that the router can handle large production-scale jobs. We use the samebasic probe card layout and randomly generated 2148 pins. The 
ow router completed therouting on two layers with less than 10 design rule violations in 5 hours of CPU time on anHP9000 Model 735/99 workstation (Fig. 11). The design rule violations were �xed easily bymanually editing the routing using Surf[15] in less than 30 minutes. So far no other routers,commercial or university, is capable of handling this. The largest example completed bythe 
ow router was a 4000 pin test probe card. The routing is completed without manualintervention with only 140 design rule violations.
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Figure 8: 96 pin PGA with the triangulation graph and wiring

Figure 9: A 444 staggered pin PGA package and a two layer 280-pin BGA package
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Figure 10: 400 connection test probe card with prerouted nets. These nets constrained therouting so that wires to each chip is grouped together.
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Figure 11: Two layer test probe card with 2148 randomly generated pins (one layer shown)In all examples a topological routing is created and transformed to a detailed routingwith methods described by Dai et al[7]. The whole routing process includes triangulation,building the routing network, running the min-cost algorithm and transform 
ow intotopological routing.5 ConclusionA large number of diverse practical routing problems in ASIC, packaging and testing can bereduced to the Planar Two-terminal Interchangeable Pin Routing problem. In this paper,we have shown that despite the freedom of pin assignment, P2TIR is NP-complete. Wedeveloped a min-cost 
ow router heuristic to solve this problem. The router was applied tosolve an array of routing problems in PGA, BGA and test probe cards. The router runs onmultiple layers and handles prerouted nets. Experiments show that the heuristic is e�cientin computing time and produced very good results.A P2TIR is NP-completeP2TIR can be considered the weakest or the most restricted routing problem not onlybecause it is planar and all nets are two-terminal, but also because pins are interchangeableso any solution can take advantage of the 
exibility of pin assignment. We will show that



14 A P2TIR IS NP-COMPLETE

Figure 12: A boolean variabledetermining the existence of a routable solution of P2TIR is still NP-complete.Problem 1 (Existence of a Planar 2-Terminal Interchangeable Pin Routing (EP2TIR))Instance Two sets of pins A and B, a design rule R = fw; sg where w is the minimumwidth of a wire and s is the minimum spacing between two wires or between a wireand a pin, a set of obstacles O.Output Answer to the question \Is there an embedding of wires that connect pins betweenA and B satisfying R and avoiding all the obstacles in O?"Maley[12] showed that given a planar 2-terminal topological routing, a polynomial-timealgorithm exists to verify its routability. He provided an algorithm that runs in O(n2 logn)time where n is the sum of the number of obstacles and wires. Chen and Lee[2] gave a planesweep algorithm that produced a detailed rectilinear routing in O(jF jjW j) time where F isthe set of features (pins and obstacles) andW is the set of wires. Surf[7] has an incrementaldesign rule checker. Therefore EP2TIR 2 NP. We will reduce PLANAR 3-SAT to EP2TIR.PLANAR 3-SAT is de�ned as follows:Problem 2 (PLANAR 3-SAT)Instance A set of boolean variables V , a set of clauses C = f(v1 + v2 + v3)jvi 2 V or vi 2V; i = 1; 2; 3g, a planar bipartite graph G = (V [ C;E) such that an edge (v; c) 2 Eif and only if v or v appears in c.Output The answer to the question \Is there an assignment A :V ! fT;Fg such that allclauses in C evaluate to T?"Lichtenstein[10] showed that PLANAR 3-SAT is NP-complete. In the following we willconstruct several components and describe a procedure to construct a layout instance givena PLANAR 3-SAT instance.For convenience we call the terminals in the smaller set A in an instance of EP2TIRthe \source" terminals and those in B as the \sink" terminals. Figure 12 shows a routingchannel loop with an alternate sequence of source terminals and sink terminals. The designrule is such that only one wire can be routed in the channel. The sources and sinks are
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Figure 13: A basic switch element

Figure 14: A clausealways in pairs so two and only two states are possible. We can arbitrarily assign one stateT and the other F. We call this loop a \variable" block.Figure 13 shows a \switch" element. Two routing channels meet at a junction whereonly one wire can pass. If there is a wire in the lower channel, it is impossible to havea wire in the upper channel and vice versa. The width of the junction is not enough toroute one wire through so a wire cannot start in the lower channel and ends in the upperchannel and vice versa. Using this element we can build a \clause" block (Figure 14). Aclause block has one source and three sinks connected by routing channels. On each channelbetween the source and sink there is a switch. The switch joins with either an unnegatedor a negated channel of a variable block. If the variable appears unnegated in the clause,the switch connects with the negated channel of the variable loop. If the variable appearsnegated in the clause, the switch connects with the unnegated channel of the loop. It iseasy to see that for the structure to have a feasible 
ow, at least one switch has to allow aroute, requiring a truth assignment from the variables.Now we will prove the following.1. An instance L of EP2TIR can be constructed in polynomial time given an instance Sof PLANAR 3-SAT.2. A solution exists for L if and only if S is satis�able.Proof: For each S, we can construct a corresponding layout instance L by using variableand clause blocks. Hopcroft and Tarjan showed that an embedding for any planar graphcan be found in polynomial time[9]. From this embedding we replace each clause vertex by
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