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1 IntroductionRecently, the �rst complete genome for a free-living organism was sequenced. On July 28, 1995, The Institutefor Genomic Research (TIGR) announced in Science the complete DNA sequence for Haemophilus in
uenzae(R.D.Fleischmann, 1995). Along with this sequence were 1743 protein genes. It is not every day that theprotein databases get such a large in
ux of novel proteins, and within days protein scientists were hard atwork analyzing the data (Casari et al., 1995). One of the main techniques used to analyze these proteins isto �nd similar proteins in the database whose structure or function are already known. When two sequencesshare at least 25% residue identity and each is at least 80 residues in length, then the two sequences aresaid to be homologous, i.e., they share the same overall structure (Doolittle, 1986). If the structure of oneof the sequences has been determined experimentally, then the structure of the new protein can be inferredfrom the other. If one is fortunate, and a large number of homologous sequences are found, then it may bepossible to tackle the somewhat more di�cult problem, inferring the new protein's function(s).However, requiring a minimum residue identity of 25% can mean that no sequences of known structureare deemed homologous to the new sequence. Does this mean that we can then assume that the three-dimensional structure of this new sequence is in a class of its own? This may be the case some fraction of thetime. But it is more likely that some remote homolog exists in the database, sharing a common structure,but having less than 25% residue identity.Moreover, the problem of �nding homologous sequences, close or remote, is not limited to the case whereone has a single protein. One may have several sequences available for a given family, but expect that otherfamily members exist in the databases, and want to locate these putative members. Finding these remotehomologs is one of the primary motivating forces behind the development of new types of statistical modelsfor protein families and domains in recent years. It is also a key motivation for the work presented here.1.1 Database search using statistical modelsStatistical models for proteins are objects, like pro�les, that capture the statistics de�ning a protein familyor domain. Along with parameters expressing the expected amino acids at each position in the molecule ordomain, and possibly other parameters as well, a statistical model will have a scoring function for sequenceswith respect to the model. These models come in various forms. Pro�les and their many o�shoots (Gribskovet al., 1987; Gribskov et al., 1990; Bucher et al., 1996; Barton and Sternberg, 1990; Altschul et al., 1990;Waterman and Perlwitz, 1986; Thompson et al., 1994a; Thompson et al., 1994b; Barton and Sternberg, 1990;Bowie et al., 1991; L�uthy et al., 1991; Bucher et al., 1996), Position-Speci�c Scoring Matrices (Heniko� etal., 1990), and hidden Markov models (HMMs) (Churchill, 1989; White et al., 1994; Stultz et al., 1993;Krogh et al., 1994; Hughey, 1993; Baldi et al., 1992; Baldi and Chauvin, 1994; Asai et al., 1993), have allbeen proposed and demonstrated e�ective for particular tasks under certain conditions.In contrast with homology determination by residue identity, statistical models use a very di�erenttechnique to determine whether two sequences share a common structure. During database search withthese models, each sequence in the database is assigned a score, (or, negatively, a cost), generally by addingthe score (or cost) at each position in the model. For instance, a typical cost for aligning residue a at positioni, is� logProb(a j position i), where the base of the logarithm is arbitrary. A sequence is determined to belongto the family, or contain the domain, if the cost of aligning the sequence to the model falls below a cuto�.This cuto� can be determined experimentally, for instance, by setting it to the maximum cost for any of theknown members of the family, or it can be pre-determined1.Because these parameters are used to score each sequence in the database, careful tuning of the pa-rameters representing the expected amino acids becomes essential, and zero probabilities are particularlyproblematic. Allowing zero probabilities at positions gives an in�nite penalty to sequences having the zero-probability residues at those positions. Even if a sequence is homologous to those used in training the model,a single mismatch at such a position would render that sequence unrecognizable by the model. On the otherhand, the costs at each position are additive, so small improvements in predicting the expected amino acids ateach position accumulate over the length of the sequence, and can boost a model's e�ectiveness signi�cantly.Since each of these statistical models relies on having su�cient data to estimate its parameters, modelingprotein families or domains for which few sequences have been identi�ed is quite di�cult. Methods that1Two examples of pre-setting the cuto� are choosing a cost that is a certain number of standard deviations belowthe mean cost of all the proteins in the database (in which case, the number of standard deviations is pre-determined),and setting the cuto� based on the statistical signi�cance of choosing the model over a null model.2



increase the accuracy of estimating the expected amino acids at each position are thus of primary importancefor these models.We tread a thin line between speci�city and sensitivity in estimating these parameters. If a model ishighly speci�c, but does not generalize well, it will recognize only a fraction of those sequences in the family.In database discrimination, this model will generate false negatives|sequences that should be labeled asfamily members, but are instead labeled as not belonging to the family. The model is too strict, anddatabase search with this model produces little new information. The reverse situation occurs when wesacri�ce speci�city for sensitivity. In this case, the model categorizes sequences which are not in the familyas familymembers. These false positives are obtained through models that are too lax, and while true remotehomologs may be included in the set identi�ed as family members, they may be hard to identify as such ifthe pool is simply too large. One of the tests of the e�ectiveness of a statistical modeling technique, in fact,is how well it reduces the numbers of false negatives and false positives in database discrimination.1.2 Issues in estimating expected amino acid probabilitiesThe following examples illustrate the kinds of issues encountered in estimating amino acid probabilities.In the �rst scenario, imagine that a multiple alignment of 100 sequences has a column containing onlyisoleucine, and no other amino acids. In the second scenario, an alignment of three sequences also has acolumn containing only isoleucine, and no other amino acids. If we estimate the expected probabilities ofthe amino acids in these columns to be equal to the observed frequencies, then the estimate of the expectedprobability of each amino acid i is simply the fraction of times i is observed (i.e., p̂i = ni= j~nj, where niis the frequency of amino acid i in the column, and j~nj = Pi ni). Using this method of estimating theprobabilities, we would assign a probability of 1 to isoleucine and zero to all the other amino acids for bothof these columns. But is this estimate reasonable?It is illuminating to consider the analogous problem of assessing the fairness of a coin. A coin is saidto be fair if Prob(heads) = Prob(tails) = 1=2. Equivalently, we expect that if we toss a fair coin n times,obtaining h heads and t tails, we expect h=n and t=n to each come closer and closer to 1=2 as n approachesin�nity, in accordance with the law of large numbers. Now, if we pick a coin at random, and toss it threetimes, and it comes up heads each time, what should our estimate of the probability of heads for this coinbe? If we assume that most coins are fair, then we are unlikely to change this a priori assumption basedon only a few tosses. On the other hand, if we toss the coin an additional thousand times and it comes upheads each time, at this point very few of us would insist that the coin was indeed fair. Our estimate ofthis coin's probability of heads is going to be 1, or quite close to it. Given an abundance of data, we willdiscount any previous assumptions, and believe the data.In the �rst scenario, for the column containing 100 isoleucines and no other amino acids, the evidenceis strong that isoleucine is conserved at this position. Allowing any substitutions in this position is clearlynot optimal, and giving isoleucine probability 1, or close to it, appears sensible.In the second scenario, with an alignment of only three sequences, we cannot rule out the possibilitythat proteins in the family not included in the training set may have other amino acids at this position.In this case, we might not want to assign isoleucine probability 1, and require that all sequences in thefamily (or containing the domain) must have an isoleucine at this position. Instead, we might want to useprior knowledge about amino acid distributions, and modify our estimate about the expected distributionto re
ect that prior knowledge. In this case, we know that where isoleucine is found, other hydrophobicresidues are often found, especially leucine and valine. Our estimate of the expected distribution at thisposition would sensibly include these residues, and perhaps the other amino acids as well, albeit with muchsmaller probabilities. By contrast, when we have many sequences multiply aligned, we expect the estimatep̂i = ni= j~nj to be a close approximation of the true underlying probabilities, and any prior information abouttypical amino acid distributions is relatively unimportant.Thus, the natural solution is to introduce prior information into the construction of the statistical model,interpolating smoothly between reliance on the prior information concerning likely amino acid distributions,in the absence of data, to con�dence in the amino acid frequencies observed at each position, given abundantdata. Our aim in this work is to provide a statistically well-founded, Bayesian framework for obtaining thisprior information and for combining this prior information with observed amino acid frequencies.One �nal comment concerning skew is in order. A skewed sample can arise in two ways. In the �rst,the sample is skewed simply from the luck of the draw. This kind of skew is common in small samples, andis akin to tossing a fair coin three times and observing three heads in a row. The second type of skew is3



more insidious, and can occur even when large samples are drawn. In this kind of skew, one subfamily isover-represented, such that a large fraction of the sequences used to train the statistical model are minorvariants of each other. This disparity among the number of sequences available from di�erent subfamiliesfor a given protein is the basis for the widespread use of weighting schemes (Sibbald and Argos, 1990;Thompson et al., 1994a; Thompson et al., 1994b; Heniko� and Heniko�, 1994). If one has reason to believethat the available data over-represents some subfamilies, Dirichlet mixtures can be used in conjunction withany weighting scheme desired to produce more accurate amino acid estimates. Simply weight the sequencesprior to computing the expected amino acids for each position using a Dirichlet mixture. Each column inthe weighted data will be a vector of counts, though probably real-valued rather than integral. Because weassume weighted data may be used as input, we have incorporated this possibility in the formula given inSection 3.2 to compute the expected amino acid distributions.1.3 Obtaining and using prior knowledge of amino acid distributionsFortunately, even when data from a particular family may be limited, there is no lack of data in the proteinsequence databases concerning the kinds of distributions which are likely or unlikely in particular positions inproteins. In this work, we have attempted to condense the enormous wealth of information in the databasesinto the form of a mixture of densities. These densities assign a probability to every possible distribution ofthe amino acids. We use Maximum Likelihood (Duda and Hart, 1973; Nowlan, 1990; Dempster et al., 1977)to estimate these mixtures|i.e., we seek to �nd a mixture that maximizes the probability of the observeddata. Often, these densities capture some prototypical distributions. Taken as an ensemble, they explainthe observed distributions in the databases.There are many di�erent commonly occurring distributions. Some of these re
ect a preference forhydrophobic amino acids, some for small amino acids, and some for more complex combinations of physio-chemical features. Certain combinations of these features are commonly found, while others are much rarer.Degrees of conservation di�er, due to the presence or absence of structural or functional constraints. In theextreme case, when an amino acid is highly conserved at a certain position in the protein family, such asthe proximal histidine that coordinates the heme iron in hemoglobin, the distribution of amino acids in thecorresponding column of the multiple alignment is sharply peaked on that one amino acid, whereas in othercases the distribution may be spread over many possible amino acids.With accurate prior information about which kinds of amino acid distributions are reasonable in columnsof alignments, it is possible even with only a few sequences to identify which of the prototypical distribu-tions characterizing positions in proteins may have generated the amino acids observed in a particularcolumn of the emerging statistical model. Using this informed guess, we can adjust the expected aminoacid probabilities so that the estimate of the amino acids for that position includes the possibility of aminoacids that may not have been seen at all in that position, but are consistent with observed amino aciddistributions in the protein databases. This has the e�ect of moving estimated amino acid distributionstoward known distributions, and away from distributions that are unusual biologically. The models pro-duced are more e�ective at generalizing to previously unseen data, and are often superior at databasesearch and discrimination experiments (Karplus, 1995a; Tatusov et al., 1994; Bailey and Elkan, 1995;Brown et al., 1993).1.3.1 Comparison with other methods for computing these probabilitiesWe are certainly not the �rst group to notice the need for incorporating prior information about such aminoacid distributions into the parameter estimation process. Indeed, our present work has several conceptualsimilarities with pro�le methods, particularly in regard to seeking meaningful amino acid distributions foruse in database search and multiple alignment (Waterman and Perlwitz, 1986; Barton and Sternberg, 1990;Gribskov et al., 1990; Bowie et al., 1991; L�uthy et al., 1991; Claverie, 1993; Claverie, 1994). This work alsohas much in common with amino acid substitution matrices, which have been used e�ectively in databasesearch and discrimination tasks (Heniko� and Heniko�, 1992; Altschul, 1991).There are two drawbacks associated with the use of substitution matrices. First, each amino acid has a�xed substitution probability with respect to every other amino acid. In any particular substitution matrix,to paraphrase Gertrude Stein, an isoleucine is an isoleucine is an isoleucine. However, an isoleucine seen in onecontext, for instance, in a position that is functionally conserved, will have di�erent substitution probabilitiesthan an isoleucine seen in another context, where any hydrophobic residue may be allowed. Second, only4



the relative frequency of amino acids is considered, while the actual number observed is ignored. Thus, insubstitution-matrix-based methods, the expected amino acid probabilities are identical for an apparentlyconserved column containing 100 isoleucines (and no other amino acids) and a column containing threeisoleucines, or even a single isoleucine. All three situations are treated identically, and the estimates producedare indistinguishable.The method described here addresses both of these issues. A Dirichlet mixture prior can be decomposedinto individual components, each of which is a probability density over all the possible combinations of aminoacids occurring at positions in proteins. Common distributions, determined by functional or structuralconstraints, are captured by these components; these then provide position-speci�c substitution probabilities.In producing an estimate for the expected amino acids, the formula employed (equation 15 in Section 3.2)gives those components which are most likely to have generated the actual amino acids observed the greatestimpact on the estimation.For example, in Tables 1 and 2 we give a nine-component mixture estimated on the Blocks database(Heniko� and Heniko�, 1991). In this mixture, isoleucine is seen in several contexts. Component 9 giveshigh probability to all conserved distributions (i.e., distributions where a single residue is preferred overall others). Component 6 represents distributions preferring isoleucine and valine, but allowing leucine andmethionine (i.e., this component gives high probability to aliphatic residues found in beta sheets). Component5 reverses the order of residues preferred from component 6, preferring leucine and methionine to isoleucine,and allowing phenylalanine and valine as less likely substitutions. Component 8 favors methionine, butallows isoleucine and the other aliphatic residues as well as phenylalanine (and a few other residues). (A fulldescription of how to interpret these mixtures in general is given in Section 2.)When only one or two isoleucines are observed, the lion's share of the probability is shared by twocomponents: component 6 starts o� with the highest probability at 0:45, while component 5 comes in secondwith just under 0:20 probability. (Components 8 and 9 both have relatively low probability, at 0:12 and 0:08,respectively.) However, the information in the column increases rapidly as the number of sequences grows,and the probabilities of each of the components changes. Components 5, 6, and 8 decrease in probability,while component 9, which favors conserved distributions, grows very rapidly in probability. At ten observedisoleucines, component 9 has probability 0:62, component 6 has probability 0:24, component 5 has probability0:07, and component 8 has one of the lowest probabilities of all the components, at 0:002. This process isdemonstrated in Table 3.The estimates of the expected amino acids re
ect the changing contribution of these components. Givena single observation, isoleucine has probability 0:47, valine has probability 0:15, leucine has probability 0:12,and methionine has probability 0:03. This reveals the in
uence of components 5 and 6, with their preferencefor allowing substitutions with valine, leucine and methionine. By ten observations, isoleucine has probability0:94, valine has probability 0:02, leucine has probability 0:01, and methionine has probability 0:003. We canstill see the contribution of component 6, with its bias toward allowing valine to substitute for isoleucine.But the predominant signal is that isoleucine is required at this position.Moreover, the second issue|the importance of the actual number of residues observed|is addressedin the estimation formula as well. Here, as the number of observations increases, the contribution of theprior information is lessened. Even if a mixture prior does not give high probability to a particular type ofdistribution, as the number of sequences aligned increases, the estimate for a column becomes more and morepeaked around the maximum likelihood estimate for that column (i.e., p̂i approaches ni= j~nj as j~nj increases).Importantly, when the data indicate a residue is conserved at a particular position (i.e., most or all of thesequences in an alignment contain a given residue in one position, and a su�cient number of observations areavailable), the expected amino acid probabilities produced by this method will remain peaked around thatresidue, instead of being modi�ed to include all the residues that substitute on average for the conservedresidue, as is the case with substitution matrices. (See, for example, the estimated amino acid probabilitiesproduced by two substitution matrix-based methods in Tables 4-7.)Pseudocount methods are a special case of Dirichlet mixtures, where the mixture consists of a singlecomponent. In these methods, a �xed value is added to each observed amino acid count, and then the countsare renormalized (i.e., p̂i = (ni + zi)=(Pj nj + zj), where zj can be the same constant for every amino acidj, or can vary from one amino acid to the next2. They have some of the desirable properties of Dirichlet2A comparison of Dirichlet mixtures with data-dependent pseudocount methods is given in (Karplus, 1995a) and(Tatusov et al., 1994), where Dirichlet mixtures were shown to give superior results.5



mixtures, but because they have only a single component, they are unable to represent as complex a setof prototypical distributions. We include in Tables 4-7 probability estimates for two popular pseudocountmethods which add the same constant for each amino acid, and can thus be called zero-o�set methods:Add-One, where zi = 1 for all i, and Add-Share, where zi = 0:05 for all i. The Dirichlet density 1-comp, asingle-component Dirichlet density estimated on the Blocks database, is also a pseudocount method wherezi is a closely related to the background frequency of amino acid i.The work of L�uthy, McLachlan, and Eisenberg (L�uthy et al., 1991) also has some interesting similaritiesto that presented here. They analyzed multiple alignments containing secondary structure informationto construct a set of nine probability distributions, which we call the LME distributions, describing thedistribution of amino acids in nine di�erent structural environments3. LME distributions have been shownto increase the accuracy of pro�les in both database search and multiple alignment by enabling them to takeadvantage of prior knowledge of secondary structure.These distributions cannot always be used, since in many cases structural information is not available,or the statistical model employed is not designed to take advantage of such information. For example, ourmethod for training an HMM assumes unaligned sequences are given as input to the program, and that nosecondary structure information for the sequences is available. Thus, distributions associated with particularsecondary structural environments, such as the LME distributions, are inappropriate for our use. Moreover,we have an additional problem using the LME distributions in this Bayesian framework. As we will showin Section 3.2, Bayes' rule requires that in computing the amino acid probabilities the observed frequencycounts be modi�ed less strongly when the prior distribution has a very high variance. Thus, when there isno measure of the variance associated with a distribution, as is the case with the LME distributions, onemust assign a variance arbitrarily in order to use the distribution to compute the expected probabilities.In this paper, we propose the use of mixtures of Dirichlet densities (see e.g., (Berhardo and Smith,1994)) as a means of representing prior information about expected amino acid distributions. In Section 2we give a description of ways to interpret these mixtures. The mathematical foundations of the methoddescribed in this paper are given in Section 3. Dirichlet densities are described in Section 3.1. For thosewishing to use these mixtures, we present in Section 3.2 a Bayesian method for combining observed aminoacids with these priors to produce posterior estimates of the probabilities of the amino acids. Section 3.3contains the mathematical derivation of the learning rule for estimating Dirichlet mixtures. In Section 4, wepresent an overview of work done both at Santa Cruz (Karplus, 1995a; Karplus, 1995b; Brown et al., 1993)and elsewhere (Tatusov et al., 1994; Bailey and Elkan, 1995; Heniko� and Heniko�, 1995) that demonstratesthe e�ectiveness of these densities in a variety of statistical models, and the superiority of this techniquein general over others tried. Some pointers to help users avoid under
ow and over
ow problems, as well asspeed up the computation of mixture estimation, are treated in Section 5.We also want to emphasize, perhaps obviously, that the method described in this paper is general, andapplies not only to data drawn from columns of multiple alignments of protein sequences, but can be usedto characterize distributions over other alphabets as well. For example, we have done some experimentsdeveloping Dirichlet mixtures for RNA, both for single-column statistics and for pairs of columns, and wehave estimated Dirichlet densities over transition probabilities between states in hidden Markov models.For a review of the essentials of the HMM methodology we use, including architecture, parameterestimation, multiple alignments, and database searches, see (Krogh et al., 1994).
3In more recent work, they have used 18 di�erent distributions (Bowie et al., 1991).6



2 Interpreting Dirichlet MixturesWe include in this paper a 9-component mixture estimated on the Blocks database (Heniko� and Heniko�,1991) which has given some of the best results of any mixture estimated using the techniques describedhere4. Table 1 gives the parameters of this mixture.Since a Dirichlet mixture describes the expected distributions of amino acids in the data used to estimatethe mixture, it is useful to look in some detail at each individual component of the mixture to see whatdistributions of amino acids it favors.Two kinds of parameters are associated with each component: the mixture coe�cient, q, and the ~�parameters which de�ne the distributions preferred by the component. For any distribution of amino acids,the mixture as a whole assigns a probability to the distribution by combining the probabilities given thedistribution by each of the components in the mixture.One way to characterize a component is by giving the mean expected amino acid probabilities and thevariance around the mean. Formulas to compute these quantities are given in Section 3.1. We can also listthe amino acids for each component in order by the ratio of the mean frequency of the amino acids in acomponent to the background frequency of the amino acids. Table 2 lists the preferred amino acids for eachcomponent in the mixture.The mixture coe�cient q associated with a component is equal to the probability of that componentgiven the data, averaged over all the data|i.e., it expresses the fraction of the data represented by thecomponent. In this mixture, the components peaked around the aromatic and the non-polar hydropho-bic residues represent the smallest fraction of the columns used to train the mixture, and the componentrepresenting all the highly conserved residues (component number 9) represents the largest fraction of thedata.The value j~�j = P20i=1�i is a measure of the peakedness of the component about the mean. Highervalues of j~�j indicate that distributions must be close to the mean of the component in order to be given highprobability by that component. In our experience, when we allow a large number of components, we often�nd that many of the components that result are peaked around individual residues, and have high j~�j, butthis may be an artifact of our optimization technique. However, when we estimate mixtures having a limitednumber of components (for instance, ten or fewer components), we �nd that one component tends to havea very small j~�j, allowing this component to give high probability to all essentially pure distributions. Thiskind of component has high probability in most of the mixtures we have estimated| evidence that nearlypure distributions are common in the databases we have used to estimate these mixtures. Since the Blocksdatabase was selected to favor highly conserved columns, it is not surprising that the individual componentsof a Dirichlet mixture tuned for the Blocks database also favor conserved columns. Mixtures tuned for theHSSP set of alignments, which contains full proteins, rather than just highly conserved blocks, show similarbehavior, although the j~�j of the components of these mixtures are not quite as low as the j~�j of mixturesestimated on the Blocks database.We often �nd that j~�j and q are inversely proportional to each other. For instance, the componentin Table 1 which has the largest mixture coe�cient (meaning the most common distributions) also hasthe smallest value of j~�j. The amino acids favored by this component (component 9)|tryptophan, glycine,proline and cysteine|are indeed the most highly conserved ones. However, as Table 3 shows, this componentgives high probability to pure distributions centered around other residues as well.Groups of amino acids that frequently substitute for each other will tend to have one component thatassigns a high probability to the members of the group and a low probability to other amino acids. Thesecomponents tend to have higher j~�j. For instance, in Table 1, the two components with the largest values ofj~�j (and so the most mixed distributions) represent the polars and the non-polar hydrophobics, respectively.A residue may be represented primarily by one component (as proline is) or by several components (asisoleucine and valine are).4A close variant of this mixture was used in experiments elsewhere (Tatusov et al., 1994; Heniko� and Heniko�,1995) 7



3 Mathematical Foundations3.1 What are Dirichlet densities?A Dirichlet density � is a probability density over the set of all probability vectors ~p (i.e., pi � 0 andPi pi = 1) (Berger, 1985; Santner and Du�y, 1989). In the case of proteins, with a 20-letter alphabet,~p = p1; : : : ; p20 and pi = Prob(amino acid i). Here, each vector ~p represents a possible probability distributionover the 20 amino acids. A Dirichlet density has parameters ~� = �1; : : : ; �20, �i > 0. The value of the densityfor a particular vector ~p is �(~p) = Q20i=1 p�i�1iZ (1)where Z is the normalizing constant that makes � integrate to unity. The mean value of pi given a Dirichletdensity with parameters ~� is �i= j~�j (where j~�j =Pi�i). The mean value for ~p isEpi = �i= j~�j (2)The second moment Epi pj , for the case i 6= j is given byEpi pj = �j�ij~�j (j~�j+ 1) : (3)When i = j, the second moment Ep2i is given byEp2i = �i (�i + 1)j~�j (j~�j+ 1) (4)In the case of a mixture prior, we assume that � is a mixture of Dirichlet densities, and hence has theform � = q1�1 + : : :+ ql�l (5)where each �j is a Dirichlet density speci�ed by parameters ~�j = (�j;1; : : : ; �j;20) and the numbers q1; : : : ; qlare positive and sum to 1. A density of this form is called a mixture density (or, in this speci�c case, aDirichlet mixture density), and the qj values are called mixture coe�cients. Each of the densities �j is calleda component of the mixture.The mean of a mixture is the weighted sum of the means of each of the components in the mixture,weighted by their mixture coe�cients. That is, Epi =Pj qj�j;i= j~�jj.We use the symbol � to refer to the entire set of parameters de�ning a prior. In the case of a mixture,� = ~�1; : : : ; ~�l; q1 : : : ; ql, whereas in the case of a single density, � = ~�.
8



3.2 Computing Expected Amino Acid ProbabilitiesAs described in Section 1, in predicting the expected probabilities of amino acids at each position in a proteinfamily or domain, one is often hampered by insu�cient or skewed data. The amino acid frequencies in theavailable data may be far from accurate re
ections of the amino acid frequencies in all the family members.Fortunately, we are in a position to take advantage of information contained in a Dirichlet prior. As weexplained in Section 3.1, a Dirichlet density with parameters � = ~�1; : : : ; ~�l; q1 : : : ; ql de�nes a probabilitydistribution �� over all the possible distributions of amino acids. Given a column in a multiple alignment,we can combine the information in the prior with the observed amino acid counts to form estimates p̂i ofthe probabilities of each amino acid i at that position. These estimates, p̂1; : : : ; p̂20, of the actual pi valueswill di�er from the estimate p̂i = ni= j~nj, and should be much better when the the number of observationsis small.Let us suppose that we �x a numbering of the amino acids from 1 to 20. Then, each column in a multiplealignment can be represented by a vector of counts of amino acids of the form ~n = (n1; : : : ; n20), where niis the number of times amino acid i occurs in the column represented by this count vector.At this point, we must explain some assumptions we have made concerning how the observed data weregenerated. The mathematical formulae for estimating and using Dirichlet mixture priors described in thefollowing sections follow directly from these assumptions. We assume that the hidden process generatingeach count vector ~n, can be modeled by the following stochastic process5 :1. First, a component j from the mixture � is chosen at random according to the mixture coe�cient qj.2. Then a probability distribution ~p is chosen independently according to Prob �~p �� ~�j�, the probabilityde�ned by component j over all such distributions.3. Finally, the count vector ~n is generated according to the multinomial distribution with parameters ~p.Obviously, when � consists of a single component, the �rst step is trivial, since the probability of thesingle component is 1. In this case, the stochastic process consists of steps 2 and 3.We can now de�ne the estimated probability p̂i of amino acid i, given a Dirichlet density with parameters� and observed amino acid counts ~n as follows:p̂i = Prob �amino acid i ��� �; ~n� = Z~p Prob�amino acid i ��� ~p�Prob�~p ��� �; ~n� d~p (6)The �rst term in the integral, Prob �amino acid i �� ~p�, is simply pi, the ith element of the distributionvector ~p. The second term, Prob �~p �� �; ~n�, represents the posterior probability of the distribution ~p underthe Dirichlet density with parameters �, given that we have observed amino acid counts ~n. Taken together,the integral R~p Prob �amino acid i �� ~p�Prob �~p �� �; ~n� d~p represents the contributions from each probabilitydistribution ~p, weighted according to its posterior probability, of amino acid i. An estimate of this type iscalled a mean posterior estimate.3.2.1 Computing probabilities using a single density (pseudocounts)While we �nd the best results in computing these expected amino acid distributions come from employingmixtures of Dirichlet densities, it is enlightening to consider the posterior estimate of an amino acid i in thecase of a single density.In the case of a single-component density with parameters ~�, the mean posterior estimate of the prob-ability of amino acid i is de�nedp̂i = Z~p Prob�amino acid i ��� ~p�Prob�~p ��� ~�; ~n� d~p (7)By Lemma 4 (the proof of which is found in the Appendix) the posterior probability of each distribution~p, given the count data ~n and the density with parameters ~�, is5Note: we could instead choose to select amino acids independently with probability pi; the optimization problemfor optimizing � comes out the same. 9



Lemma 4: Prob�~p ��� ~�; ~n� = �(j~�j+ j~nj)Q20i=1 �(�i + ni) 20Yi=1 p�i+ni�1i. Here, as usual, j~�j =Pi �i, j~nj = Pi ni, and � is the Gamma function, the continuous generalizationof the integer factorial function (i.e., �(x+ 1) = x!).Now, if we substitute pi for Prob �amino acid i �� ~p� and the result of Lemma 4 into equation 7 we havep̂i = Z~p pi �(j~�j+ j~nj)Qj �(�j + nj)Yj p�j+nj�1j d~p: (8)Here, we can pull those terms not depending on ~p out of the integral, obtainingp̂i = �(j~�j+ j~nj)Qj �(�j + nj) Z~p piYj p�j+nj�1j d~p: (9)Now, noting the contribution of the pi term within the integral, and using equation (49) from Lemma2, giving R~pQi p�i�1i d~p = Qi �(�i)�(j~�j) , we havep̂i = �(j~�j+ j~nj)�(j~�j+ j~nj+ 1) �(�i + ni + 1)Qj 6=i �(�j + nj)Qj �(�j + nj) (10)At this point we can cancel out most of the terms, and take advantage of the fact that �(n+1)�(n) = n!(n�1)! =n, obtaining p̂i = ni + �ij~nj+ j~�j (11)These Dirichlet densities can thus be seen as vectors of pseudocounts: probability estimates are formedby adding constants to the observed counts for each amino acid, and then renormalizing. Pseudocountmethods are widely used to avoid zero probabilities in building statistical models. Note, when n = 0, inthe absence of data, the estimate produced is simply �i= j~�j, the normalized values of the parameters ~�,which are the means of the Dirichlet density. This mean, while not necessarily the background frequency ofthe amino acids in the training set, is often a close approximation to it. Thus, in the absence of data, ourestimate of the expected amino acid probabilities will be close to the background frequencies. The simplicityof the pseudocount method is one of the reasons Dirichlet densities are so attractive.Programs to compute the expected amino acid frequencies are available via anonymous ftp from our ftpsite, ftp.cse.ucsc.edu, and on our web site at http://www.cse.ucsc.edu/research/compbio.3.2.2 Computing probabilities using mixture densitiesIn the case of a mixture density, we compute the amino acid probabilities in a similar way:p̂i = Prob �amino acid i ��� �; ~n� = Z~p Prob�amino acid i ��� ~p�Prob�~p ��� �; ~n� d~p (12)As in the case of the single density, we can substitute pi for Prob(amino acid i j ~p). In addition, since �is a mixture of Dirichlet densities, by the de�nition of a mixture (equation 5), we can expand Prob(~p j�; ~n)obtaining p̂i = Z~p pi0@ lXj=1Prob�~p ��� ~�j; ~n�Prob�~�j ��� ~n;��1A d~p (13)10



In this equation, Prob �~�j �� ~n;�� is the posterior probability of the jth component of the density, giventhe vector of counts ~n (equation 16 below). It captures our assessment that the jth component was chosenin step 1 of the stochastic process generating these observed amino acids. The �rst term, Prob(~p j ~�j; ~n),then represents the probability of each distribution ~p, given component j and the count vector ~n.We can pull out terms not depending on ~p from inside the integral, giving usp̂i = lXj=1Prob�~�j ��� ~n;��Z~p piProb(~p j ~�j; ~n)d~p (14)At this point, we use the result from equation (11), and obtain6p̂i = lXj=1Prob �~�j ��� ~n;�� ni + �j;ij~nj+ j~�jj (15)Hence, instead of identifying one single component of the mixture that accounts for the observed data,we determine how likely each individual component is to have produced the data. Each component thencontributes pseudocounts proportional to the posterior probability that it produced the observed counts. Inthis case, when n = 0, p̂i is simplyPj qj�j;i= j~�jj, the weighted sum of the mean of each Dirichlet densityin the mixture.When a component has a very small j~�j, it adds a very small bias to the observed amino acid frequencies.As we show in Section 2, such components give high probability to all distributions peaked around individualamino acids. The addition of such a small bias allows these components to not shift the estimated aminoacids away from conserved distributions, even when relatively small amounts of data are available.By contrast, components having a larger j~�j tend to favor mixed distributions, that is, combinationsof amino acids. In these cases, the individual �j;i values tend to be relatively large for those amino acids ipreferred by the component. When such a component has high probability given a vector of counts, these�j;i have a corresponding in
uence on the expected amino acids predicted for that position. The estimatesproduced may include signi�cant probability for amino acids not seen at all in the count vector underconsideration.Moreover, examining equation 15 reveals a smooth transition between reliance on the prior information,in the absence of su�cient data, and con�dence that the observed frequencies in the available trainingdata represent the expected probabilities in the family as a whole, as the number of observations increases.When the number of observations is small, the mixture prior has the greatest e�ect in determining theposterior estimate. But as the number of observations increases, the ni values will dominate the �i values.Importantly, as the number of observations increases, this estimate approaches the maximum likelihoodestimate, p̂i = ni= j~nj.Thus, in the case of a mixture density, we will �rst want to calculate the quantity Prob �~�j �� ~n;�� foreach j between 1 and l. This quantity is computed from Bayes' rule asProb�~�j ��� ~n;�� = qj Prob �~n �� ~�j ; j~nj�Prob �~n �� �; j~nj� : (16)Prob �~n �� ~�j; j~nj� is the probability of the count vector ~n given the jth component of the mixture, and isderived in Section A.3. The denominator, Prob �~n �� �; j~nj�, is de�nedProb�~n ��� �; j~nj� =Xk qkProb�~n ��� ~�k; j~nj� : (17)6This formula was misreported in previous work (Brown et al., 1993; Karplus, 1995a; Karplus, 1995b).11



3.3 Derivation of Dirichlet DensitiesAs noted earlier, much statistical analysis has been done on amino acid distributions found in particularsecondary structural environments in proteins. However, our primary focus in developing these techniquesfor protein modeling has been to rely as little as possible on previous knowledge and assumptions, andinstead to use statistical techniques that uncover the underlying key information in the data.Consequently, our approach, instead of beginning with secondary structure, is to take unlabeled trainingdata (i.e., columns from multiple alignments with no secondary structure information attached) and attemptto discover those classes of distributions of amino acids that are intrinsic to the data. The statistical methodemployed directly estimates the most likely Dirichlet mixture density through clustering observed counts ofamino acids. In most cases, the common amino acid distributions we �nd are easily identi�ed (e.g., a largenon-polar), but we do not set out a priori to �nd distributions representing known structural environments.Given a set of m columns from a variety of multiple alignments, we tally the frequency of each aminoacid in each column, with the end result being a vector of counts of each amino acid for each column in thedataset. Thus, our primary data is a set of m count vectors. Many multiple alignments of di�erent proteinfamilies are included, so m is typically in the thousands. We �x a numbering of the amino acids from 1 to20, so each count vector has the form ~n = (n1; : : : ; n20), where ni is the number of times amino acid i occursin the column represented by this count vector.We have used Maximum Likelihood to estimate the parameters � of � from the set of count vectors;that is, we seek those parameters that maximize the probability of occurrence of the observed count vectors.We assume the three-stage stochastic model described in Section 3.2 was used independently to generateeach of the count vectors in our observed set of count vectors. Under this assumption of independence, theprobability of the entire set of observed frequency count vectors is equal to the product of their individualprobabilities. Thus, we seek to �nd the model that maximizes Qmt=1 Prob �~nt �� �; j~ntj�. Since the negativelogarithm of the probability is inversely proportional to the probability, this is equivalent to �nding the ~�that minimizes the objective functionf(�) = � mXt=1 logProb�~nt ��� �; j~ntj� : (18)In the simplest case, we have simply �xed the number of components l in the Dirichlet mixture to aparticular value and then estimated the 21l � 1 parameters (twenty �i values for each of the components,and l � 1 mixture coe�cients). In other experiments, we tried to estimate l as well. Unfortunately, even for�xed l, there does not appear to be an e�cient method of estimating these parameters that is guaranteed toalways �nd the maximum likelihood estimate. However, a variant of the standard estimation-maximization(EM) algorithm for mixture density estimation works well in practice7. EM has been proved to result incloser and closer approximations to a local optimum with every iteration of the learning cycle; a globaloptimum, unfortunately, is not guaranteed (Dempster et al., 1977)8.As the derivations that follow can become somewhat complex, we provide two tables in the Appendixto help the reader follow the derivations. Table 8 contains a summary of the notation we use and Table 9contains an index to where certain key quantities are derived or de�ned.In this section we give the derivation of the procedure to estimate the parameters of a mixture prior.As we will show, the case where the prior consists of a single density follows directly from the general caseof a mixture. In the case of a mixture, we have two sets of parameters to estimate: the ~� parameters foreach component, and the q, or mixture coe�cient, for each component. In the case of a single density, weestimate only the ~� parameters.In our practice, we estimate these parameters in a two-stage process: �rst we estimate the ~�, keepingthe mixture coe�cients q �xed, then we estimate the q, keeping the ~� parameters �xed. This two-stageprocess is iterated until all estimates stabilize.7An introduction to this method of mixture density estimation is given in the book by Duda and Hart (Duda andHart, 1973). We have modi�ed their procedure to estimate a mixture of Dirichlet rather than Gaussian densities.8This method for parameter estimation has also been used for other problems in biosequence analysis (Lawrenceand Reilly, 1990; Cardon and Stormo, 1992). 12



3.3.1 Deriving the ~� parametersSince we require that the �i be strictly positive, and we want the parameters upon which we will do gradientdescent to be unconstrained, we reparameterize, setting �j;i = ewj;i , where wj;i is an unconstrained realnumber. Then, the partial derivative of the objective function (equation 18) with respect to wj;i is@f(�)@wj;i = � mXt=1 @ log Prob �~n �� �; j~nj�@�j;i @�j;i@wj;i (19)Here, we introduce Lemma 5 (the proof of which is found in the Appendix), givingLemma 5: @ log Prob �~n �� �; j~nj�@�j;i = Prob�~�j ��� ~n;�� @ log Prob �~n �� ~�j; j~nj�@�j;ito obtain @f(�)@wj;i = � mXt=1 Prob�~�j ��� ~nt;�� @ logProb �~nt �� ~�j; j~ntj�@�j;i @�j;i@wj;i (20)Using the fact that @�j;i@wj;i = �j;i, and introducing Lemma 6 (the proof of which is found in the Appendix)givingLemma 6: @ log Prob �~n �� ~�; j~nj�@�i = 	(j~�j) �	(j~nj+ j~�j) + 	(ni + �i) �	(�i) (21)we obtain@f(�)@wj;i = � mXt=1 �j;iProb�~�j ��� ~nt;�� (	(j~�jj)� 	(j~ntj+ j~�jj) + 	(nt;i + �j;i) �	(�j;i)) (22)In optimizing the ~� parameters of the mixture, we do gradient descent on the weights ~w, taking a stepin the direction of the negative gradient (controlling the size of the step by the variable �, 0 � �� 1) duringeach iteration of the learning cycle. Thus, the gradient descent rule in the mixture case can now be de�nedas follows:wnewj;i := woldj;i � � @f(�)@wj;i (23):= woldj;i + � mXt=1 �j;iProb�~�j ��� ~nt;��) (	(j~�jj)� 	(~nt + j~�jj) + 	(nt;i + �j;i)� 	(�j;i)) (24)Now, letting Sj =Pmt=1Prob �~�j �� ~nt;��, this iswnewj;i := woldj;i + � �j;i  Sj (	(j~�jj)� 	(�j;i)) + mXt=1 Prob �~�j ��� ~nt;�� (	(nt;i + �j;i)�	(~nt + j~�jj)!(25)In the case of a single density, Prob(~� j~n;�) = 1 for all vectors ~n, thus Sj =Pmt=1 Prob �~� �� ~nt;�� = m,and the gradient descent rule for a single density can be written aswnewi := woldi + � �i  m (	(j~�j)�	(�i)) + mXt=1 (	(nt;i + �i)�	(~nt + j~�j))! (26)After each update of the weights, the ~� parameters are reset, and the process continued until the changein the objective function falls below some pre-de�ned cuto�.13



3.3.2 Mixture coe�cient estimationIn the case of a mixture of Dirichlet densities, the mixture coe�cients, q, of each component are alsoestimated. However, since we require that the mixture coe�cients must be non-negative and sum to 1,we �rst reparameterize, setting qi = Qi= jQj, where the Qi are constrained to be strictly positive, andjQj =PiQi. As in the �rst stage, we want to maximize the probability of the data given the model, whichis equivalent to minimizing the objective function (equation 18), f(�) = �Pmt=1 logProb �~nt �� �; j~ntj�. Inthis stage, we take the derivative of f with respect to Qi. However, instead of having to take iterative stepsin the direction of the negative gradient, as we did in the �rst stage, we can set the derivative to zero, andsolve for those qi = Qi= jQj that maximize the probability of the data. As we will see, however, the new qiare a function of the previous qi; thus, this estimation process must also be iterated.Taking the gradient of f with respect to Qi, we obtain@f(�)@Qi = � mXt=1 @ logProb �~nt �� �; j~ntj�@Qi (27)This allows us to focus on the partial derivative of the log likelihood of a single count vector with respectto Qi. By Lemma 8 (the proof for which is found in Section A.8),Lemma 8: @ logProb �~n �� �; j~nj�@Qi = Prob �~�i �� ~n;��)Qi � 1jQjWhen we sum over all observations ~n, we obtain that in the case of a mixture,@f(�)@Qi = � mXt=1 Prob �~�i �� ~nt;��)Qi � 1jQj! (28)= mjQj � Pmt=1Prob �~�i �� ~nt;��Qi (29)Since the gradient must vanish for those mixture coe�cients giving the maximum likelihood, we set thegradient to zero, and solve. Thus, the maximum likelihood setting for qi isqi := QijQj (30):= 1m mXt=1 Prob �~�i ��� ~nt;��) (31)Note that since PiPmt=1 Prob �~�i �� ~nt;�� = Pmt=1Pi Prob �~�i �� ~nt;�� = Pmt=1 1 = m, the mixturecoe�cients sum to 1, as required.Since the reestimated mixture coe�cients are functions of the old mixture coe�cients, we iterate thisprocess until the change in the objective function falls below the prede�ned cuto�.In summary, when estimating the parameters of a mixture prior, we alternate between reestimatingthe ~� parameters of each density in the mixture, by gradient descent on the ~w, resetting �j;i = ewj;i aftereach iteration, followed by re-estimating and resetting the mixture coe�cients as described above, until theprocess converges. 14



4 ResultsThe problem of estimating expected distributions over the amino acids in the absence of large amountsof data is not unique to hidden Markov models. Thus other researchers have experimented with Dirichletmixture priors, both those which we reported in (Brown et al., 1993), and those which we developed andmade available afterwards. In addition to the experiments we reported in (Brown et al., 1993), and which wesummarize below, three independent groups of researchers, (Tatusov et al., 1994; Heniko� and Heniko�, 1995;Bailey and Elkan, 1995), used these mixtures in database search and discrimination experiments, while thework of Karplus (Karplus, 1995a; Karplus, 1995b) is more information theoretic, comparing the number ofbits to encode the posterior probability estimates of the amino acids given di�erent methods and di�erentsample sizes.4.1 HMM experimentsIn our original paper on the use of Dirichlet mixture priors (Brown et al., 1993), we described a series ofexperiments on building HMMs for the EF-hand motif. EF-hands are an approximately 29-residue structurepresent in cytosolic calcium-modulated proteins (Nakayama et al., 1992; Persechini et al., 1989; Moncriefet al., 1990). We chose EF-hands to demonstrate the ability of mixture priors to compensate for limitedsample sizes because the motif's small size allowed many experiments to be performed relatively rapidly.For these experiments we used the June 1992 database of EF-hand sequences maintained by Kretsinger andco-workers (Nakayama et al., 1992). We extracted the EF-hand structures from each of the 242 sequencesin the database, obtaining 885 EF-hand motifs having an average length of 29. HMM training sets wereconstructed by randomly extracting subsets of size 5, 10, 20, 40, 60, 80, and 100.The Dirichlet priors we used for these experiments were derived from two sources of multiple alignments:a subset of alignments from the HSSP database suggested in (Sander and Schneider, 1991) and multiplealignments we generated using HMMs to model the kinase, globin, and elongation factor families (Haussleret al., 1993; Krogh et al., 1994).Using the maximum likelihood procedure described in Section 3.3 we estimated the parameters of aone-component and a nine-component Dirichlet mixture density from the 5670 count vectors obtained fromthe HSSP multiple alignments. We call these Dirichlet mixtures HSSP1, and HSSP9 respectively. Similarexperiments were done for the HMM alignments, obtaining Dirichlet mixture priors with one component andnine components (HMM1, HMM9).In addition to the priors we estimated via maximum likelihood estimation, we tested the e�ectivenessof some additional priors: the standard uniform prior called Add-One (see Section 1.3.1), priors obtaineddirectly from amino acid distributions estimated by L�uthy, McLachlan, and Eisenberg (which we call theLME distributions) for nine di�erent structural environments (1991), and a 29-component EF-hand customprior in which each component is derived from a column in our EF-hand multiple alignment. The priorderived from the nine-component LME distributions was obtained by forming Dirichlet densities for eachof the nine LME amino acid distributions with the same means as the original distributions. Since there isno measure of the expected variance around the mean associated with these distributions, we arbitrarily setthe j~�j for each component to 10, and set the mixture coe�cients uniformly. The 29-component EF-handcustom prior was designed to determine a bound on the best possible performance for any Dirichlet mixturefor this family.For each training set size and each prior, several HMMs were built using the method described in(Krogh et al., 1994). We evaluated each HMM on a separate test set containing EF-hand sequences notin the training set, yielding an average negative log likelihood (NLL) score over all test sequences for eachmodel. Lower scores represent more accurate models. For every combination of training sample size andprior used, we took the average test-set NLL score across all models, and the standard deviation of thetest-set NLL scores.In these experiments, the EF-hand custom prior performed the best, followed by HMM9, HSSP9, LME9,HMM1 and HSSP1. Add-One performed the worst. For example, at 20 training sequences, the average test-set NLL score for HMMs trained using HMM9 was lower than the average NLL score for the HMMs trainedusing the Add-One prior for all training set sizes up to 60. Details of the results of these experiments aregiven in (Brown et al., 1993).9In retrospect, the high j~�j of the LME prior may have handicapped this density in these experiments; j~�j closerto 1 might have been more e�ective. 15



In our previous work, the NLL score has always been almost perfectly correlated with superior multiplealignments and database search. To further demonstrate the latter point, we tested some of the HMMs builtfrom various priors on their ability to discriminate sequences containing the EF-hand domain from those notcontaining the domain. To do this we choose models built from training samples of sizes 5, 10, and 20, usingthe Add one, HMM1, HMM9 and EF-hand custom priors. For each sample size and prior, we built an HMMas above and then used it to search the SWISS-PROT database for sequences that contain the EF-handmotif, using the method described in (Krogh et al., 1994). The results of these database discriminationexperiments con�rmed the ordering of the priors by NLL score. Unfortunately, only one test was done foreach combination of sample size and prior, so the results are not as statistically signi�cant as those for NLLscore.Finally, we note that in these experiments, data used to train HMM1 and HMM9 contained no EF-hand-speci�c proteins, yet these mixtures still produced a substantial increase in performance for the EF-HandHMMs estimated using these priors. This con�rmed that these priors do indeed capture some universalaspect of amino acid distributions that are meaningful across di�erent protein families.4.2 Experiments with other statistical modelsKarplus's work, (Karplus, 1995a; Karplus, 1995b), compared the relative costs of encoding multiple align-ments using the estimated posterior probabilities p̂i of each amino acid i in samples of various sizes drawnfrom count vectors from the BLOCKS database (Heniko� and Heniko�, 1991) for several methods10. Karplusnoted the sample size(s) for which each method was superior to the others, and whether a method's posteriorprobability estimate approaches the maximum-likelihood estimate in the limit, as the number of observationsgrows unboundedly large. Karplus compared several methods:1. Zero-o�set (of which one variant is the popular `Add-One') where a small positive constant is addedto all amino acid counts.2. Pseudocounts, in which a di�erent positive value is added for each amino acid, rather than one �xedconstant for all amino acids.3. Gribskov pro�le, or average score method, where the scores are logarithmic, comparing the probabilityestimate of an amino acid in a particular context to the global (or background) probability of thatamino acid. This method has been used by various researchers (Tatusov et al., 1994; Gribskov et al.,1984), employing any of several scoring matrices, such as the popular Dayho� (Dayho� et al., 1978)and Blosum (Heniko� and Heniko�, 1992) matrices.4. Substitution matrices, which encode the cost for substituting amino acid i for amino acid j, andcomparing two variants on this basic technique, adding scaled counts and/or pseudocounts. Thesemethods are similar to those employed in method 3 above, but use matrix multiplication to computeProb(amino acid i) rather than logProb(amino acid i) scores.5. Dirichlet mixture priors, with several mixture priors compared against each other.For this problem, Dirichlet mixtures were always superior for sample sizes 2 or more, and were veryclose to optimal for sample size 1 (where substitution matrices were optimal), and sample size zero (wherepseudocount methods based on background frequency were optimal).Tatusov, Altschul and Koonin propose a technique in (Tatusov et al., 1994) for iterative re�nement ofprotein pro�les that is able to start with very few aligned sequences (or even a single protein segment),and repeatedly compute a probability distribution over the amino acids for each column in the alignment,search a sequence database for protein segments that match the amino acid distributions speci�ed by themodel, according to some criterion, and multiply align all new protein segments to the model, until no newsequences scoring above a given cuto� are found. They tested several methods for estimating the expecteddistributions over the amino acids in the �rst part of this iterative model-building process. The resultingmodels were then tested at database discrimination tasks, and their relative performances compared. Themethods compared in this paper were:10More recently, Karplus duplicated these experiments on columns drawn from the HSSP protein database, andcon�rmed a similar ordering of these methods. Also, the 9-component Dirichlet density reported in Section 2 of thispaper performs very well in his tests for all sample sizes tested.16



1. Average score method, incorporating the use of amino acid substitution matrices, such as PAM(Altschul, 1991), or BLOSUM (Heniko� and Heniko�, 1992) (identical to the third method testedby Karplus);2. Log-odds Bayesian prediction using pseudocounts (identical to the second method tested by Karplus);3. Data-dependent pseudocount method, where the pseudocounts are calculated using a substitution ma-trix (equivalent to one of the substitution matrix methods tested by Karplus);4. Dirichlet mixture method, which incorporates a Dirichlet mixture prior into the log-odds Bayesianprediction method.Tatusov et al. reported that the use of Dirichlet mixture priors (speci�cally, a nine-component mixtureprior estimated from the Blocks database (Heniko� and Heniko�, 1991) quite similar to Blocks9 given inTables 1 and 2, resulted in protein models with the highest accuracy in database discrimination, yieldingthe fewest false negatives and false positives overall of any of the methods compared.Steven and Jorja Heniko� conducted a series of tests on the same methods, using a testing strategysimilar to that described in (Heniko� and Heniko�, 1994) and con�rm these results (personal communication).Good results with these mixtures are also reported by (Wang et al., To appear), who, in a related set ofexperiments, created an expanded set of blocks using the same mixtures used in (Tatusov et al., 1994), andthen used these blocks to classify protein sequences.In (Bailey and Elkan, 1995), the authors report several extensions to their motif-�nding tool MEMEwhich incorporate prior information into the parameter estimation process. While the authors did not com-pare di�erent methods for computing posterior estimates of amino acid densities (the other prior informationintroduced concerned motif width, presence or absence of the motif in sequences being searched, and whether,as in the case of DNA sequences, the motif is expected to be a palindrome), they reported that the use ofa Dirichlet mixture prior (in this case, a 30-component mixture estimated from the BLOCKS database)boosted their protein database search accuracy signi�cantly, especially in the case where few (< 20) trainingsequences were available.
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5 Implementation detailsImplementing Dirichlet mixture priors for use in hidden Markov models or other stochastic models of bio-logical sequences is not di�cult, but there are many details that can cause problems if not handled carefully.This section will split the implementation details into two groups: those that are essential for get-ting working Dirichlet mixture code (Section 5.1), and those that increase e�ciency, but are not essential(Section 5.2).5.1 Essential detailsIn Section 3.2, we gave the formulas for computing the amino acid probabilities in the cases of a singledensity (equation 11) and of a mixture density (equation 15).For a single Dirichlet component, the estimation formula is trivial:p̂i = ni + �ij~nj+ j~�j ; (32)and no special care is needed in the implementation. For the case of a multi-component mixture, theimplementation is not quite so straightforward.As we showed in the derivation of equation 15,p̂i = lXj=1Prob�~�j ��� ~n;�� ni + �j;ij~nj+ j~�jj : (33)The interesting part for computation comes in computing Prob �~�j �� ~n;��, whose formula is repeatedhere from Equation 16: Prob�~�j ��� ~n;�� = qjProb �~n �� ~�j; j~nj�Prob �~n �� �; j~nj� : (34)We can expand Prob �~n �� �; j~nj� using equation 17 to obtainProb�~�j ��� ~n;�� = qjProb �~n �� ~�j; j~nj�Plk=1 qkProb �~n �� ~�k; j~nj� : (35)Note that this is a simple renormalization of qjProb �~n �� ~�j; j~nj� to sum to one. Rather than carry thenormalization through all the equations, we can work directly with Prob �~n �� ~�j; j~nj�, and put everythingback together at the end.First, we can expand it using Lemma 3 (the proof of which is found in Section A.3):Prob�~n ��� ~�j; j~nj� = �(j~nj+ 1)�(j~�jj)�(j~nj+ j~�jj) Yi �(ni + �j;i)�(ni + 1)�(�j;i) : (36)If we rearrange some terms, we obtainProb �~n ��� ~�j; j~nj� = Qi �(ni + �j;i)�(j~nj+ j~�jj) �(j~�jj)Qi �(�j;i) �(j~nj+ 1)Qi �(ni + 1) : (37)The �rst two terms are most easily expressed using the Beta function: B(x) = Qi �(xi)�(j~xj) , where, as usual,j~xj =Pi xi. This simpli�es the expression toProb�~n ��� ~�j; j~nj� = B (~n+ ~�j)B (~�j) �(j~nj+ 1)Qi �(ni + 1) : (38)The remaining Gamma functions are not easily expressed with a Beta function, but they don't need tobe. Since they depend only on ~n and not on j, when we do the normalization to make the Prob �~�j �� ~n;��sum to one, this term will cancel out, giving usProb�~�j ��� ~n;�� = qj B(~n+~�j )B(~�j )Plk=1 qk B(~n+~�k)B(~�k) : (39)18



Plugging this formula into Equation 33 gives usp̂i = Plj=1 qj B(~n+~�j)B(~�j) ni+�j;ij~nj+j~�j jPlk=1 qk B(~n+~�k)B(~�k) : (40)Since the denominator of Equation 40 is independent of i, we can compute p̂i by normalizingXi = lXj=1 qj B(~n+ ~�j)B(~�j) ni + �j;ij~nj+ j~�jj (41)to sum to one. That is, p̂i = XiP20k=1Xk : (42)The biggest problem that implementors run into is that these Beta functions can get very large or verysmall|outside the range of the 
oating-point representation of most computers. The obvious solution is towork with the logarithm of the Beta function:logB(x) = log Qi � (x(i))� (j~xj)= Xi log � (x(i)) � log � (j~xj) :Most libraries of mathematical routines include the lgamma function which implements log �(x), and so usingthe logarithm of the Beta function is not di�cult.We could compute each Xi using only the logarithmic notation, but it turns out to be slightly moreconvenient to use the logarithms just for the Beta functions:Xi = Xj qj B(~�j + ~n)B(~�j) �j;i + nij~�jj+ j~nj= Xj qje(logB(~�j+~n)�logB(~�j)) �j;i + nij~�jj+ j~nj :Some care is needed in the conversion from the logarithmic representation back to 
oating-point, sincethe ratio of the Beta functions may be so large or so small that it cannot be represented as 
oating-pointnumbers. Luckily, we do not really need to compute Xi, only p̂i = Xi=P20k=1Xk. This means that wecan multiply Xi by any constant and the normalization will eliminate the constant. Equivalently, we canfreely subtract a constant (independent of j and i) from logB(~�j + ~n)� logB(~�j) before converting back to
oating-point.If we choose the constant to be maxj (logB(~�j + ~n)� logB(~�j)), then the largest logarithmic term willbe zero, and all the terms will be reasonable.115.2 E�ciency improvementsThe previous section gave simple computation formulas for p̂i (Equations 42 and 41). When computations ofp̂i are done infrequently (for example, for pro�les, where p̂i only needs to be computed once for each columnof the pro�le), those equations are perfectly adequate.When recomputing p̂i frequently, as may be done in a Gibbs sampling program or training a hiddenMarkov model, it is better to have a slightly more e�cient computation. Since most of the computationtime is spent in the lgamma function used for computing the log Beta functions, the biggest e�ciency gainscome from avoiding the lgamma computations.11We could still get 
oating-point under
ow to zero for some terms, but the p̂ computation will still be about asgood as can be done within 
oating-point representation.19



If we assume that the �j;i and qj values change less often than the values for ~n (which is true of almostevery application), then it is worthwhile to precompute logB(~�j), cutting the computation time almost inhalf.If the ni values are mainly small integers (0 is common in all the applications we've looked at), then itis worth pre-computing log�(�j;i), log �(�j;i + 1), log �(�j;i + 2), and so on, out to some reasonable value.Precomputation should also be done for log�(j~�jj), log�(j~�jj+ 1), log�(j~�jj+ 2), and so forth. If all the ~nvalues are small integers, this precomputation almost eliminates the lgamma function calls.In some cases, it may be worthwhile to build a special-purpose implementation of log �(x) that cachesall calls in a hash table, and does not call lgamma for values of x that it has seen before. Even larger savingscan be had when x is close to previously computed values, by using interpolation rather than calling lgamma.
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6 Conclusions and Future ResearchDirichlet mixture priors have been demonstrated to be more e�ective at forming accurate estimates forexpected amino acid distributions than substitution matrix-based methods, pseudocounts, and other suchmethods. In particular, the method presented in this paper has been shown to �x two primary weaknesses ofsubstitution matrix-based methods: focusing only on the relative frequency of the amino acids while ignoringthe actual number of amino acids observed, and having �xed substitution probabilities for each amino acid.One of the potentially most problematic consequences of these drawbacks is that substitution matrix-basedmethods do not produce estimates that are conserved, or mostly conserved, where the evidence is clear thatan amino acid is conserved.The method presented here addresses these issues. Given abundant training data, the estimate producedby these methods is very close to the actual frequencies observed. When little data is available, the aminoacids predicted are those that are known to be associated in di�erent contexts with the amino acids observed.In particular, when evidence exists that a particular amino acid is conserved at a given position, the expectedamino acid estimates re
ect this preference.In database search for homologous sequences, Dirichlet mixtures have been shown to maximize sensitivitywithout sacri�cing speci�city. As a result experiments using Dirichlet mixtures to estimate the expectedamino acid distributions in a variety of statistical models for proteins result in fewer false negatives and falsepositives than when other methods are used.The methods employed to estimate and use these mixtures have been shown to be �rmly based onBayesian statistics. While no biological knowledge has been introduced into the parameter-estimation pro-cess, the mixture priors that result agree with accepted biological understanding.In order to be able to use these mixtures to �nd true remote homologs, mixtures should be estimatedon alignments containing more distant homologs, rather than estimated from databases where fairly closehomologs are aligned, as is the case for both the BLOCKS and HSSP databases. Another key area needingresearch is the weighting of sequences to remove bias. Previous work has concentrated on relative weightingschemes, but the total weight is also relevant when using Dirichlet mixtures.Since the method for estimating these mixtures (EM) is sensitive to the initial parameter settings, weare exploring heuristics that enable us to explore the parameter space more e�ectively, and obtain bettermixtures. We are also exploring methods to compensate for the assumption that each column is generatedindependently, which although simplifying the math, is without biological basis. However, as the detailedanalysis of Karplus (Karplus, 1995a; Karplus, 1995b) shows, the Dirichlet mixtures already available areclose to optimal as far as their capacity for assisting in computing estimates of amino acid distributions,given a single column context. Thus, further work in this area will perhaps pro�t by focusing on obtaininginformation from relationships among the sequences (for instance, as revealed in a phylogenetic tree), or ininter-columnar interactions.
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7 TablesBlocks9Blocks9.1 Blocks9.2 Blocks9.3 Blocks9.4 Blocks9.5 Blocks9.6 Blocks9.7 Blocks9.8 Blocks9.9q 0.178091 0.056591 0.0960191 0.0781233 0.0834977 0.0904123 0.114468 0.0682132 0.234585j~�j 1.180650 1.355830 6.664360 2.081410 2.081010 2.568190 1.766060 4.987680 0.099500A 0.270671 0.021465 0.561459 0.070143 0.041103 0.115607 0.093461 0.452171 0.005193C 0.039848 0.010300 0.045448 0.011140 0.014794 0.037381 0.004737 0.114613 0.004039D 0.017576 0.011741 0.438366 0.019479 0.005610 0.012414 0.387252 0.062460 0.006722E 0.016415 0.010883 0.764167 0.094657 0.010216 0.018179 0.347841 0.115702 0.006121F 0.014268 0.385651 0.087364 0.013162 0.153602 0.051778 0.010822 0.284246 0.003468G 0.131916 0.016416 0.259114 0.048038 0.007797 0.017255 0.105877 0.140204 0.016931H 0.012391 0.076196 0.214940 0.077000 0.007175 0.004911 0.049776 0.100358 0.003647I 0.022599 0.035329 0.145928 0.032939 0.299635 0.796882 0.014963 0.550230 0.002184K 0.020358 0.013921 0.762204 0.576639 0.010849 0.017074 0.094276 0.143995 0.005019L 0.030727 0.093517 0.247320 0.072293 0.999446 0.285858 0.027761 0.700649 0.005990M 0.015315 0.022034 0.118662 0.028240 0.210189 0.075811 0.010040 0.276580 0.001473N 0.048298 0.028593 0.441564 0.080372 0.006127 0.014548 0.187869 0.118569 0.004158P 0.053803 0.013086 0.174822 0.037661 0.013021 0.015092 0.050018 0.097470 0.009055Q 0.020662 0.023011 0.530840 0.185037 0.019798 0.011382 0.110039 0.126673 0.003630R 0.023612 0.018866 0.465529 0.506783 0.014509 0.012696 0.038668 0.143634 0.006583S 0.216147 0.029156 0.583402 0.073732 0.012049 0.027535 0.119471 0.278983 0.003172T 0.065438 0.018153 0.445586 0.071587 0.035799 0.088333 0.065802 0.358482 0.003690V 0.065438 0.036100 0.227050 0.042532 0.180085 0.944340 0.025430 0.661750 0.002967W 0.003758 0.071770 0.029510 0.011254 0.012744 0.004373 0.003215 0.061533 0.002772Y 0.009621 0.419641 0.121090 0.028723 0.026466 0.016741 0.018742 0.199373 0.002686Table 1: Parameters of Mixture Prior Blocks9This table contains the parameters de�ning a nine-component mixture prior estimated on unweighted columns fromthe Blocks database. The �rst row gives the mixture coe�cient (qj) for each component. The second row gives thej~�j = Pi �i for each component. This value re
ects how peaked the distribution is around the mean. The higherthe value of j~�j, the lower the variance around the mean. Rows A (alanine) through Y (tyrosine) contain the valuesof each of the components' ~� parameters for that amino acid.This mixture is available via anonymous ftp from our ftp site, ftp.cse.ucsc.edu, and on our web site athttp://www.cse.ucsc.edu/research/compbio.
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Analysis of 9-Component Dirichlet Mixture Prior Blocks9Comp. Ratio (r) of amino acid frequency relative to background frequency8 � r 4 � r � 8 2 � r � 4 1 � r � 2 1=2 � r < 1 1=4 � r < 1=2 1=8 � r < 1=4 r < 1=81 SAT CGP NVM QHRIKFLDW EY2 Y FW H LM NQICVSR TPAKDGE3 QE KNRSHDTA MPYG VLIWCF4 KR Q H NETMS PWYALGVCI DF5 LM I FV WYCTQ APHR KSENDG6 IV LM CTA F YSPWN EQKRDGH7 D EN QHS KGPTA RY MVLFWIC8 M IVLFTYCA WSHQRNK PEG D9 PGW CHRDE NQKFYTLAM SVITable 2: Preferred amino acids of Blocks9The function used to compute the ratio of the frequency of amino acid i in component j relative to thebackground frequency predicted by the mixture as a whole is �j;i=j~�jjPk qk�k;i=j~�kj .An analysis of the amino acids favored by each component reveals the following:1. Component 1 favors small neutral residues.2. Component 2 favors the aromatics.3. Component 3 gives high probability to most of the polar residues (except for C, Y, and W). Sincecysteine can play two roles, either as a disul�de, or as a free thiol, in this component it is apparentlyappearing in its disul�de role.4. Component 4 gives high probability to positively charged amino acids (especially K and R) andQ|favoring residues with long sidechains that can function as hydrogen donors.5. Component 5 gives high probability to residues that are both large and non-polar.6. Component 6 prefers I and V (aliphatic residues commonly found in Beta sheets), and allows substi-tutions with L and M.7. Component 7 gives high probability to negatively charged residues, allowing substitutions with certainof the hydrophilic polar residues.8. Component 8 gives high probability to methionine, but allows substitution with most neutral residues,especially the aliphatics.9. Component 9 gives high probability to distributions peaked around individual amino acids (especiallyP, G, W, and C).
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Posterior Probability of the components of Blocks9# Ile Blocks9.1 Blocks9.2 Blocks9.3 Blocks9.4 Blocks9.5 Blocks9.6 Blocks9.7 Blocks9.8 Blocks9.91 0.0550 0.0238 0.0339 0.0200 0.1941 0.4529 0.0157 0.1215 0.08312 0.0548 0.0222 0.0108 0.0142 0.1738 0.4843 0.0122 0.0668 0.16093 0.0547 0.0212 0.0042 0.0111 0.1538 0.4656 0.0102 0.0383 0.24094 0.0537 0.0200 0.0019 0.0090 0.1356 0.4311 0.0088 0.0231 0.31685 0.0520 0.0188 0.0009 0.0075 0.1197 0.3929 0.0076 0.0146 0.38606 0.0500 0.0176 0.0005 0.0063 0.1059 0.3558 0.0067 0.0096 0.44777 0.0478 0.0165 0.0003 0.0053 0.0941 0.3216 0.0059 0.0065 0.50208 0.0455 0.0154 0.0002 0.0046 0.0839 0.2909 0.0053 0.0046 0.54969 0.0433 0.0144 0.0001 0.0040 0.0753 0.2637 0.0047 0.0033 0.591310 0.0412 0.0135 0.0001 0.0035 0.0678 0.2396 0.0042 0.0024 0.6277Table 3: The posterior probability of each component (Prob �~�j �� ~n;��), equation 16) in Blocks9 given 1 to10 isoleucines. Initially, component 6, which favors I and V, is most likely. But, as more isoleucines are seenwithout any valines, component 9, which favors distributions peaked around a single residue, becomes morelikely.
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Methods used to estimate amino acid probabilitiesPseudocount methods Substitution Matrices Dirichlet densitiesAmino Acid Add one Add share Blosum62 Subst 1-comp Blocks9A 0.047619 0.025000 0.036775 0.023388 0.042183 0.037347C 0.047619 0.025000 0.037993 0.007416 0.010497 0.009717D 0.047619 0.025000 0.019712 0.005109 0.025597 0.008526E 0.047619 0.025000 0.019217 0.008594 0.029950 0.012252F 0.047619 0.025000 0.054988 0.022703 0.021800 0.027068G 0.047619 0.025000 0.015991 0.008718 0.035132 0.012359H 0.047619 0.025000 0.018971 0.004003 0.012552 0.006202I 0.095238 0.525000 0.232458 0.565594 0.518022 0.470946K 0.047619 0.025000 0.023046 0.009486 0.029355 0.014450L 0.047619 0.025000 0.098515 0.105160 0.046082 0.117353M 0.047619 0.025000 0.085919 0.025844 0.014432 0.029961N 0.047619 0.025000 0.019068 0.007490 0.022574 0.010000P 0.047619 0.025000 0.022365 0.006738 0.018882 0.008189Q 0.047619 0.025000 0.022265 0.006414 0.019882 0.010463R 0.047619 0.025000 0.020627 0.008294 0.025707 0.012287S 0.047619 0.025000 0.025767 0.012484 0.034161 0.019641T 0.047619 0.025000 0.045341 0.022306 0.030533 0.027728V 0.047619 0.025000 0.140556 0.137617 0.039777 0.148299W 0.047619 0.025000 0.023772 0.002822 0.006091 0.003858Y 0.047619 0.025000 0.036653 0.009820 0.016790 0.013352Table 4: Estimated amino acid probabilities using various methods, given one isoleucine.Tables 4, 5, 6 and 7 give amino acid probability estimates produced by di�erent methods, given a varyingnumber of isoleucines observed (and no other amino acids). Methods used to estimate these probabilitiesare Add one which adds 1 to each count, and then renormalizes; Add share, which adds 0:05 to each count,and renormalizes; Blosum62, which does Gribskov average score (Gribskov et al., 1987) using the Blosum-62matrix (Heniko� and Heniko�, 1992) (natural log base, 3 decimal places); Subst, which does matrix multiplywith an optimized matrix. 1-comp, which is a single-component Dirichlet density optimized for the Blocksdatabase (Karplus, 1995a); Blocks9, which is the nine-component Dirichlet mixture given in Tables 1 and 2.
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Methods used to estimate amino acid probabilitiesPseudocount methods Substitution Matrices Dirichlet densitiesAmino Acid Add one Add share Blosum62 Subst 1-comp Blocks9A 0.043478 0.012500 0.036775 0.023388 0.021437 0.017725C 0.043478 0.012500 0.037993 0.007416 0.005335 0.005062D 0.043478 0.012500 0.019712 0.005109 0.013008 0.003382E 0.043478 0.012500 0.019217 0.008594 0.015221 0.004413F 0.043478 0.012500 0.054988 0.022703 0.011079 0.012761G 0.043478 0.012500 0.015991 0.008718 0.017854 0.005918H 0.043478 0.012500 0.018971 0.004003 0.006379 0.002293I 0.173913 0.762500 0.232458 0.565594 0.755058 0.736501K 0.043478 0.012500 0.023046 0.009486 0.014918 0.004964L 0.043478 0.012500 0.098515 0.105160 0.023419 0.059162M 0.043478 0.012500 0.085919 0.025844 0.007334 0.014584N 0.043478 0.012500 0.019068 0.007490 0.011472 0.003835P 0.043478 0.012500 0.022365 0.006738 0.009596 0.003860Q 0.043478 0.012500 0.022265 0.006414 0.010104 0.003694R 0.043478 0.012500 0.020627 0.008294 0.013064 0.004495S 0.043478 0.012500 0.025767 0.012484 0.017361 0.007892T 0.043478 0.012500 0.045341 0.022306 0.015517 0.012980V 0.043478 0.012500 0.140556 0.137617 0.020215 0.089090W 0.043478 0.012500 0.023772 0.002822 0.003095 0.001704Y 0.043478 0.012500 0.036653 0.009820 0.008533 0.005685Table 5: Estimated amino acid probabilities using various methods, given three isoleucines. See the captionfor Table 4 for details. Methods used to estimate amino acid probabilitiesPseudocount methods Substitution Matrices Dirichlet densitiesAmino Acid Add one Add share Blosum62 Subst 1-comp Blocks9A 0.040000 0.008333 0.036775 0.023388 0.014370 0.010315C 0.040000 0.008333 0.037993 0.007416 0.003576 0.003050D 0.040000 0.008333 0.019712 0.005109 0.008720 0.002014E 0.040000 0.008333 0.019217 0.008594 0.010203 0.002471F 0.040000 0.008333 0.054988 0.022703 0.007426 0.007256G 0.040000 0.008333 0.015991 0.008718 0.011968 0.003864H 0.040000 0.008333 0.018971 0.004003 0.004276 0.001283I 0.240000 0.841667 0.232458 0.565594 0.835808 0.845797K 0.040000 0.008333 0.023046 0.009486 0.010000 0.002645L 0.040000 0.008333 0.098515 0.105160 0.015699 0.033869M 0.040000 0.008333 0.085919 0.025844 0.004917 0.008248N 0.040000 0.008333 0.019068 0.007490 0.007690 0.002169P 0.040000 0.008333 0.022365 0.006738 0.006432 0.002433Q 0.040000 0.008333 0.022265 0.006414 0.006773 0.001987R 0.040000 0.008333 0.020627 0.008294 0.008757 0.002480S 0.040000 0.008333 0.025767 0.012484 0.011637 0.004445T 0.040000 0.008333 0.045341 0.022306 0.010402 0.007471V 0.040000 0.008333 0.140556 0.137617 0.013550 0.054004W 0.040000 0.008333 0.023772 0.002822 0.002075 0.001004Y 0.040000 0.008333 0.036653 0.009820 0.005720 0.003195Table 6: Estimated amino acid probabilities using various methods, given �ve isoleucines. See the captionfor Table 4 for details. 29



Methods used to estimate amino acid probabilitiesPseudocount methods Substitution Matrices Dirichlet densitiesAmino Acid Add one Add share Blosum62 Subst 1-comp Blocks9A 0.033333 0.004545 0.036775 0.023388 0.007878 0.003909C 0.033333 0.004545 0.037993 0.007416 0.001960 0.001229D 0.033333 0.004545 0.019712 0.005109 0.004780 0.000921E 0.033333 0.004545 0.019217 0.008594 0.005593 0.001031F 0.033333 0.004545 0.054988 0.022703 0.004071 0.002629G 0.033333 0.004545 0.015991 0.008718 0.006561 0.002006H 0.033333 0.004545 0.018971 0.004003 0.002344 0.000554I 0.366667 0.913636 0.232458 0.565594 0.909991 0.942399K 0.033333 0.004545 0.023046 0.009486 0.005482 0.001015L 0.033333 0.004545 0.098515 0.105160 0.008606 0.011797M 0.033333 0.004545 0.085919 0.025844 0.002695 0.002855N 0.033333 0.004545 0.019068 0.007490 0.004216 0.000893P 0.033333 0.004545 0.022365 0.006738 0.003526 0.001182Q 0.033333 0.004545 0.022265 0.006414 0.003713 0.000772R 0.033333 0.004545 0.020627 0.008294 0.004801 0.001026S 0.033333 0.004545 0.025767 0.012484 0.006380 0.001732T 0.033333 0.004545 0.045341 0.022306 0.005702 0.002782V 0.033333 0.004545 0.140556 0.137617 0.007428 0.019612W 0.033333 0.004545 0.023772 0.002822 0.001137 0.000441Y 0.033333 0.004545 0.036653 0.009820 0.003136 0.001216Table 7: Estimated amino acid probabilities using various methods, given ten isoleucines. See the captionfor Table 4 for details.
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A Appendixj~xj =Pi xi, where x is any vector.~n = n1; : : : ; n20 is a vector of counts from a column in a multiple alignment.~nt is the tth such observation in the data set.j~nj =Pi ni, the number of amino acids observed in a given column of a multiple alignment.j~ntj =P20i nt;i is the number of amino acids observed in the tth count vector (~nt).~p = (p1; : : : ; p20),P pi = 1, pi � 0, are the parameters of the multinomial distributions from which the ~nare drawn.P is the set of all such ~p.~� = (�1; : : : ; �20) s.t. �i > 0, are the parameters of a Dirichlet density.j~�j =P20i=1 �i is a measure of the peakedness of the Dirichlet density with parameters (�1; : : : ; �20).~�j are the parameters of the jth component of the Dirichlet density.�j;i is the value of the ith parameter of the jth component of the Dirichlet mixture.�i is the value of the ith element of a Dirichlet density.qj = Prob(~�j) is the mixture coe�cient of the jth component of the mixture.� = fq1; : : : ; ql; ~�1; : : : ; ~�lg = all the parameters of the Dirichlet mixture.~w = (w1; : : : ; w20), are unconstrained values upon which we do gradient descent during training. After eachtraining cycle, �j;i is set to ewj;i .wj;i is the value of the ith parameter of the jth weight vector. The nomenclature weights comes from arti�cialneural networks.m = the number of columns from multiple alignments used in training.l = the number of components in the mixture.� = eta, the learning rate used to control the size of the step taken during each iteration of gradient descent.Table 8: Summary of notation.
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f(�) = �Pmt=1 log(Prob �~nt �� �; j~ntj�) (18)(the objective function minimized)�(j~nj+ 1) = n! (for integer n � 0) (45)(Gamma function)	(x) = @ log �(x)@x = �0(x)�(x) (65)(Psi function)Prob �~n �� ~p; j~nj� = �(j~nj+ 1)Q20i=1 pnii�(ni+1) (46)(the probability of ~n under the multinomial distribution with parameters ~p)Prob �~n �� ~�; j~nj� = �(j~nj+1) �(j~�j)�(j~nj+j~�j) Q20i=1 �(ni+�i)�(ni+1)�(�i) (54)(the probability of ~n under the Dirichlet density with parameters ~�)Prob �~n �� �; j~nj� =Plk=1 qk Prob(~n j ~�k; j~nj) (17)(the probability of ~n given the entire mixture prior)Prob �~�j �� ~n;�� = qj Prob(~n j ~�j ;j~nj)Prob�~n���;j~nj� (16)(shorthand for the posterior probability of the jth component of the mixturegiven the vector of counts ~n)Table 9: Index to key derivations and de�nitions.
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A.1 Lemma 1. Prob (~n j ~p; j~nj) = �(j~nj+ 1)Q20i=1 pnii�(ni+1)Proof:For a given vector of counts ~n, with pi being the probability of seeing the ith amino acid, and j~nj = Pi ni,there are j~nj!n1!n2!:::n20 ! distinct permutations of the amino acids which result in the count vector ~n. If we allow forthe assumption that each column is generated independently, then each such permutation has probability Q20i=1 pnii .Thus, the probability of a given count vector ~n given the multinomial parameters ~p isProb�~n ��� ~p; j~nj� = j~nj!n1!n2! : : : n20! 20Yi=1 pnii (43)= j~nj! 20Yi=1 pniini! (44)Since we may need to handle real-valued data (such as that obtained from using a weighting scheme on thesequences in the training set), we introduce the Gamma function, the continuous generalization of the integer factorialfunction, �(n+ 1) = n! (45)Substituting the Gamma function, we obtain the equivalent formProb�~n ��� ~p; j~nj� = �(j~nj+ 1) 20Yi=1 pnii�(ni + 1) (46)
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A.2 Lemma 2. Prob (~p j ~�) = �(j~�j)Q20i=1 �(�i) Q20i=1 p�i�1iProof:Under the Dirichlet density with parameters ~�, the probability of the distribution ~p (where pi � 0, andPi pi = 1)is de�ned as follows: Prob(~p j ~�) = Q20i=1 p�i�1iR~p2PQi p�i�1i d~p (47)We introduce two formulas concerning the Beta function|its de�nition (Gradshteyn and Ryzhik, 1965, p. 948):B(x; y) = Z 10 tx�1(1� t)y�1 dt= �(x)�(y)�(x+ y)and the combining formula (Gradshteyn and Ryzhik, 1965, p. 285):Z b0 tx�1(b� t)y�1 dt = bx+y�1B(x;y) :This allows us to write the integral over all ~p vectors as a multiple integral, rearrange some terms, and obtainZ~p2PYi p�i�1i d~p = B(�1; �2 + : : :+ �20)B(�2; �3 + : : :+ �20) : : :B(�19; �20) (48)= Qi �(�i)�(j~�j) (49)This allows us to now give an explicit de�nition of the probability of the point ~p given the Dirichlet density withparameters ~�: Prob(~p j ~�) = �(j~�j)Q20i=1 �(�i) 20Yi=1 p�i�1i (50)
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A.3 Lemma 3. Prob (~n j ~�; j~nj) = �(j~nj+1)�(j~�j)�(j~nj+j~�j) Q20i=1 �(ni+�i)�(ni+1)�(�i)Proof:Since Prob�~n ��� ~�; j~nj� = Z~p2P Prob�~n ��� ~p; j~nj�Prob(~p j ~�) d~p (51)Substituting equations (46) and (50) into equation (51), we obtainProb�~n ��� ~�; j~nj� = Z~p2P �(j~nj+ 1)�(j~�j)Q20i=1(�(ni + 1)�(�i)) 20Yi=1 pni+�i�1i d~p (52)Pulling out terms not depending on ~p from inside the integral, and using the result from Equation (49), weobtain = �(j~nj+ 1)�(j~�j)Q20i=1(�(ni + 1) �(�i))Q20i=1 �(ni + �i)�(j~nj+ j~�j) (53)At this point, we can simply rearrange a few terms and obtain the equivalent formProb�~n ��� ~�; j~nj� = �(j~nj+ 1)�(j~�j)�(j~nj+ j~�j) 20Yi=1 �(ni + �i)�(ni + 1)�(�i) (54)
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A.4 Lemma 4. Prob (~p j ~�;~n) = �(j~�j+j~nj)Q20i=1 �(�i+ni) Q20i=1 p�i+ni�1iProof:By Bayes' Rule, the probability of the distribution ~p, given the Dirichlet density with parameters ~�, and theobserved amino acid count vector ~n is de�nedProb�~p ��� ~�; ~n� = Prob �~n �� ~p; ~�; j~nj�Prob �~p �� ~��Prob �~n �� ~�; j~nj� (55)However, once the point ~p is �xed, the probability of ~n no longer depends on ~�. Hence,Prob �~p ��� ~�; ~n� = Prob �~n �� ~p; j~nj�Prob �~p �� ~��Prob �~n �� ~�; j~nj� (56)At this point, we apply the results from previous derivations for quantities Prob �~n �� ~p; j~nj� (equation 46),Prob �~p �� ~�� (equation 50), and Prob �~n �� ~�; j~nj� (equation 54). This gives usProb�~p ��� ~�; ~n� = � �(j~nj+1)Qi �(ni+1) Qi pnii �� �(j~�j)Qi �(�i) Qi p�i�1i ��(j~nj+ j~�j)Qi �(ni + 1)�(�i)�(j~nj+ 1) �(j~�j)Qi �(ni + �i) (57)Most of the terms cancel, and we haveProb�~p ��� ~�; ~n� = �(j~�j+ j~nj)Q20i=1 �(�i + ni) 20Yi=1 p�i+ni�1i (58)Note that this is the expression for a Dirichlet density with parameters ~� and ~n. This property, that the posteriordensity of � is from the same family as the prior, characterizes all conjugate priors, and is one of the properties thatmake Dirichlet densities so attractive.
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A.5 Lemma 5. @ log Prob�~nj�;j~nj�@�j;i = Prob (~�j j ~n;�) @ log Prob�~nj~�j;j~nj�@�j;iProof:The derivative of the logarithm of the probability of each individual observation ~n given the mixture with respectto �j;i is: @ log Prob �~n �� �; j~nj�@�j;i = 1Prob �~n �� �; j~nj� @Prob �~n �� �; j~nj�@�j;i (59)Applying equation 17, this gives us@ log Prob �~n �� �; j~nj�@�j;i = 1Prob �~n �� �; j~nj� @PLk=1 qk Prob �~n �� ~�k; j~nj�@�j;i (60)Since the derivative of Prob �~n �� ~�k; j~nj� with respect to �j;i is zero for all k 6= j, and the mixture coe�cients(the qk) are independent parameters, this yields@ log Prob �~n �� �; j~nj�@�j;i = qjProb �~n �� �; j~nj� @Prob �~n �� ~�j; j~nj�@�j;i (61)We rearrange equation (16) somewhat, and replace qjProb�~n���;j~nj� by its equivalent, obtaining,@ log Prob �~n �� �; j~nj�@�j;i = Prob �~�j �� ~n;��Prob �~n �� ~�j; j~nj� @Prob �~n �� ~�j; j~nj�@�j;i (62)Here, again using the fact that @ log(f(x))@x = 1f(x) @f(x)@x , we obtain the �nal form@ log Prob �~n �� �; j~nj�@�j;i = Prob�~�j ��� ~n;�� @ log Prob �~n �� ~�j; j~nj�@�j;i (63)
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A.6 Lemma 6. @ log Prob�~nj~�;j~nj�@�i = [	(j~�j)�	(j~nj+ j~�j) + 	(ni + �i)� 	(�i)]Proof:In this proof, we use Lemma 3 givingProb�~n ��� ~�; j~nj� = �(j~nj+ 1) �(j~�j)�(j~nj+ j~�j) 20Yi=1 �(ni + �i)�(ni + 1)�(�i)Since the derivative of terms not depending on �i are zero, we obtain that for a single vector of counts ~n,@ log Prob �~n �� ~�; j~nj�@�i = @ log �(j~�j)@�i � @ log �(j~nj+ j~�j)@�i + @ log �(ni + �i)@�i � @ log �(�i)@�i : (64)Now, if we substitute the shorthand 	(x) = @ log �(x)@x = �0(x)�(x) (65)we have @ log Prob �~n �� ~�; j~nj�@�i = 	(j~�j)�	(j~nj+ j~�j) + 	(ni + �i)�	(�i) (66)
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A.7 Lemma 7. @Prob�~nj�;j~nj�@Qi = Prob�~nj~�i;j~nj��Prob�~nj�;j~nj�jQjProof:Substituting equation (17), giving Prob �~n �� �; j~nj� =Plj=1 qj Prob(~n j ~�j; j~nj) and replacing qj by Qj= jQj, thisgives us @Prob �~n �� �; j~nj�@Qi = @Pj(Qj= jQj)Prob �~n �� ~�j; j~nj�@Qi (67)As the derivative of a sum is the sum of the derivatives, we can use the standard product rule for di�erentiation,and obtain @Prob �~n �� �; j~nj�@Qi = Xj "(Qj= jQj)@Prob �~n �� ~�j; j~nj�@Qi +Prob�~n ��� ~�j; j~nj� @(Qj= jQj)@Qi # (68)(69)Since @Prob�~n��~�j ;j~nj�@Qi = 0 for all j, this gives us@Prob �~n �� �; j~nj�@Qi =Xj Prob �~n ��� ~�j; j~nj� @(Qj= jQj)@Qi (70)Taking the derivative of the fraction (Qj= jQj) with respect to Qi, we obtain@(Qj= jQj)@Qi = jQj�1 @Qj@Qi +Qj @ jQj�1@Qi. The �rst term, jQj�1 @Qj@Qi , is zero when j 6= i, and is 1jQj when j = i. The second term, Qj @jQj�1@Qi , is simply�QjjQj2 . Thus, this is @Prob �~n �� �; j~nj�@Qi = Prob �~n �� ~�i; j~nj�jQj + Xj Prob�~n ��� ~�j; j~nj� �QjjQj2 (71)Here, qj = Qj= jQj allows us to replace Qj= jQj2 with qj= jQj, giving us= Prob �~n �� ~�i; j~nj��Pj qjProb �~n �� ~�j; j~nj�jQj (72)(73)At this point, we use equation 17 and obtain@Prob �~n �� �; j~nj�@Qi = Prob �~n �� ~�i; j~nj�� Prob �~n �� �; j~nj�jQj (74)
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A.8 Lemma 8. @ logProb�~nj�;j~nj�@Qi = Prob�~�ij~n;��Qi � 1jQjProof: @ log Prob �~n �� �; j~nj�@Qi = 1Prob �~n �� �; j~nj� @Prob �~n �� �; j~nj�@Qi (75)Here we use Lemma 7, which allows us to express the derivative with respect to Qi of the log likelihood of asingle observation ~n, given the mixture, as@ log Prob �~n �� �; j~nj�@Qi = 1Prob �~n �� �; j~nj� Prob �~n �� ~�i; j~nj�� Prob �~n �� �; j~nj�jQj (76)=  Prob �~n �� ~�i; j~nj�Prob �~n �� �; j~nj� � 1! = jQj (77)If we rearrange equation 16, we obtain Prob�~n��~�i;j~nj�Prob�~n���;j~nj� = Prob(~�i j ~n)qi . This allows us to write@ log Prob �~n �� �; j~nj�@Qi = �Prob(~�i j ~n)qi � 1� = jQj (78)Now we can use the identity qi = Qi= jQj, obtaining the equivalent@ log Prob �~n �� �; j~nj�@Qi = Prob �~�i �� ~n;��Qi � 1jQj (79)
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