Dirichlet Mixtures: A Method for Improving Detection of Weak
but Significant Protein Sequence Homology

Kimmen Sjolander! Kevin Karplus Michael Brown
Computer Science Computer Engineering Computer Science
U.C. Santa Cruz U.C. Santa Cruz U.C. Santa Cruz
kimmen@cse.ucsc.edu karplus@cse.ucsc.edu mpbrown@cse.ucsc.edu
Richard Hughey Anders Krogh I. Saira Mian David Haussler
Computer Engineering The Sanger Centre Lawrence Berkeley Laboratory Computer Science
U.C. Santa Cruz England U.C. Berkeley U.C. Santa Cruz
rph@cse.ucsc.edu krogh@sanger.ac.uk saira@cse.ucsc.edu haussler@cse.ucsc.edu

UCSC Technical Report
UCSC-CRL-96-09

Abstract

This paper presents the mathematical foundations of Dirichlet mixtures, which have been used to
improve database search results for homologous sequences, when a variable number of sequences from
a protein family or domain are known. We present a method for condensing the information in a
protein database into a mixture of Dirichlet densities. These mixtures are designed to be combined
with observed amino acid frequencies, to form estimates of expected amino acid probabilities at each
position in a profile, hidden Markov model, or other statistical model. These estimates give a statistical
model greater generalization capacity, such that remotely related family members can be more reliably
recognized by the model. Dirichlet mixtures have been shown to outperform substitution matrices and
other methods for computing these expected amino acid distributions in database search, resulting
in fewer false positives and false negatives for the families tested. This paper corrects a previously
published formula for estimating these expected probabilities; and contains complete derivations of the
Dirichlet mixture formulas, methods for optimizing the mixtures to match particular databases, and
suggestions for efficient implementation.

Keywords: Substitution matrices, pseudocount methods, Dirichlet mixture priors, profiles,
hidden Markov models.

"To whom correspondence should be addressed. Mailing address: Baskin Center for Computer Engineering and
Information Sciences, Applied Sciences Building, University of California at Santa Cruz, Santa Cruz, CA 95064.
Phone: (408) 459-3430, Fax: (408) 459-4829.

1 Introduction

Recently, the first complete genome for a free-living organism was sequenced. On July 28, 1995, The Institute
for Genomic Research (TIGR) announced in Science the complete DNA sequence for Haemophilus influenzae
(R.D.Fleischmann, 1995). Along with this sequence were 1743 protein genes. It is not every day that the
protein databases get such a large influx of novel proteins, and within days protein scientists were hard at
work analyzing the data (Casari et al., 1995). One of the main techniques used to analyze these proteins is
to find similar proteins in the database whose structure or function are already known. When two sequences
share at least 25% residue identity and each is at least 80 residues in length, then the two sequences are
said to be homologous, i.e., they share the same overall structure (Doolittle, 1986). If the structure of one
of the sequences has been determined experimentally, then the structure of the new protein can be inferred
from the other. If one is fortunate, and a large number of homologous sequences are found, then it may be
possible to tackle the somewhat more difficult problem, inferring the new protein’s function(s).

However, requiring a minimum residue identity of 25% can mean that no sequences of known structure
are deemed homologous to the new sequence. Does this mean that we can then assume that the three-
dimensional structure of this new sequence is in a class of its own? This may be the case some fraction of the
time. But it is more likely that some remote homolog exists in the database, sharing a common structure,
but having less than 25% residue identity.

Moreover, the problem of finding homologous sequences, close or remote, is not limited to the case where
one has a single protein. One may have several sequences available for a given family, but expect that other
family members exist in the databases, and want to locate these putative members. Finding these remote
homologs is one of the primary motivating forces behind the development of new types of statistical models
for protein families and domains in recent years. It is also a key motivation for the work presented here.

1.1 Database search using statistical models

Statistical models for proteins are objects, like profiles, that capture the statistics defining a protein family
or domain. Along with parameters expressing the expected amino acids at each position in the molecule or
domain, and possibly other parameters as well, a statistical model will have a scoring function for sequences
with respect to the model. These models come in various forms. Profiles and their many offshoots (Gribskov
et al., 1987; Gribskov et al., 1990; Bucher et al., 1996; Barton and Sternberg, 1990; Altschul et al., 1990;
Waterman and Perlwitz, 1986; Thompson et al., 1994a; Thompson et al., 1994b; Barton and Sternberg, 1990;
Bowie et al., 1991; Liithy et al., 1991; Bucher et al., 1996), Position-Specific Scoring Matrices (Henikoff et
al., 1990), and hidden Markov models (HMMs) (Churchill, 1989; White et al., 1994; Stultz et al., 1993;
Krogh et al., 1994; Hughey, 1993; Baldi et al., 1992; Baldi and Chauvin, 1994; Asai et al., 1993), have all
been proposed and demonstrated effective for particular tasks under certain conditions.

In contrast with homology determination by residue identity, statistical models use a very different
technique to determine whether two sequences share a common structure. During database search with
these models, each sequence in the database is assigned a score, (or, negatively, a cost), generally by adding
the score (or cost) at each position in the model. For instance, a typical cost for aligning residue a at position
i, is — log Prob(a | position i), where the base of the logarithm is arbitrary. A sequence is determined to belong
to the family, or contain the domain, if the cost of aligning the sequence to the model falls below a cutoff.
This cutoff can be determined experimentally, for instance, by setting it to the maximum cost for any of the
known members of the family, or it can be pre-determined?!.

Because these parameters are used to score each sequence in the database, careful tuning of the pa-
rameters representing the expected amino acids becomes essential, and zero probabilities are particularly
problematic. Allowing zero probabilities at positions gives an infinite penalty to sequences having the zero-
probability residues at those positions. Even if a sequence i1s homologous to those used in training the model,
a single mismatch at such a position would render that sequence unrecognizable by the model. On the other
hand, the costs at each position are additive, so small improvements in predicting the expected amino acids at
each position accumulate over the length of the sequence, and can boost a model’s effectiveness significantly.
Since each of these statistical models relies on having sufficient data to estimate its parameters, modeling
protein families or domains for which few sequences have been identified is quite difficult. Methods that

'Two examples of pre-setting the cutoff are choosing a cost that is a certain number of standard deviations below
the mean cost of all the proteins in the database (in which case, the number of standard deviations is pre-determined),
and setting the cutoff based on the statistical significance of choosing the model over a null model.

increase the accuracy of estimating the expected amino acids at each position are thus of primary importance
for these models.

We tread a thin line between specificity and sensitivity in estimating these parameters. If a model is
highly specific, but does not generalize well, it will recognize only a fraction of those sequences in the family.
In database discrimination, this model will generate false negatives—sequences that should be labeled as
family members, but are instead labeled as not belonging to the family. The model is too strict, and
database search with this model produces little new information. The reverse situation occurs when we
sacrifice specificity for sensitivity. In this case, the model categorizes sequences which are not in the family
as family members. These false positives are obtained through models that are too lax, and while true remote
homologs may be included in the set identified as family members, they may be hard to identify as such if
the pool is simply too large. One of the tests of the effectiveness of a statistical modeling technique, in fact,
i1s how well it reduces the numbers of false negatives and false positives in database discrimination.

1.2 TIssues in estimating expected amino acid probabilities

The following examples illustrate the kinds of issues encountered in estimating amino acid probabilities.
In the first scenario, imagine that a multiple alignment of 100 sequences has a column containing only
isoleucine, and no other amino acids. In the second scenario, an alignment of three sequences also has a
column containing only isoleucine, and no other amino acids. If we estimate the expected probabilities of
the amino acids in these columns to be equal to the observed frequencies, then the estimate of the expected
probability of each amino acid ¢ is simply the fraction of times ¢ is observed (i.e., p; = n;/ ||, where n;
is the frequency of amino acid ¢ in the column, and |7] = >, n;). Using this method of estimating the
probabilities, we would assign a probability of 1 to isoleucine and zero to all the other amino acids for both
of these columns. But is this estimate reasonable?

It is illuminating to consider the analogous problem of assessing the fairness of a coin. A coin is said
to be fair if Prob(heads) = Prob(tails) = 1/2. Equivalently, we expect that if we toss a fair coin n times,
obtaining h heads and ¢ tails, we expect h/n and t{/n to each come closer and closer to 1/2 as n approaches
infinity, in accordance with the law of large numbers. Now, if we pick a coin at random, and toss it three
times, and it comes up heads each time, what should our estimate of the probability of heads for this coin
be? If we assume that most coins are fair, then we are unlikely to change this @ prior: assumption based
on only a few tosses. On the other hand, if we toss the coin an additional thousand times and i1t comes up
heads each time, at this point very few of us would insist that the coin was indeed fair. Our estimate of
this coin’s probability of heads 1s going to be 1, or quite close to it. Given an abundance of data, we will
discount any previous assumptions, and believe the data.

In the first scenario, for the column containing 100 isoleucines and no other amino acids, the evidence
is strong that isoleucine is conserved at this position. Allowing any substitutions in this position is clearly
not optimal, and giving isoleucine probability 1, or close to it, appears sensible.

In the second scenario, with an alignment of only three sequences, we cannot rule out the possibility
that proteins in the family not included in the training set may have other amino acids at this position.
In this case, we might not want to assign isoleucine probability 1, and require that all sequences in the
family (or containing the domain) must have an isoleucine at this position. Instead, we might want to use
prior knowledge about amino acid distributions, and modify our estimate about the expected distribution
to reflect that prior knowledge. In this case, we know that where isoleucine i1s found, other hydrophobic
residues are often found, especially leucine and valine. Qur estimate of the expected distribution at this
position would sensibly include these residues, and perhaps the other amino acids as well, albeit with much
smaller probabilities. By contrast, when we have many sequences multiply aligned, we expect the estimate
pi = n;/ || to be a close approximation of the true underlying probabilities, and any prior information about
typical amino acid distributions is relatively unimportant.

Thus, the natural solution is to introduce prior information into the construction of the statistical model,
interpolating smoothly between reliance on the prior information concerning likely amino acid distributions,
in the absence of data, to confidence in the amino acid frequencies observed at each position, given abundant
data. Our aim in this work is to provide a statistically well-founded, Bayesian framework for obtaining this
prior information and for combining this prior information with observed amino acid frequencies.

One final comment concerning skew is in order. A skewed sample can arise in two ways. In the first,
the sample is skewed simply from the luck of the draw. This kind of skew 1s common in small samples, and
is akin to tossing a fair coin three times and observing three heads in a row. The second type of skew is

more insidious, and can occur even when large samples are drawn. In this kind of skew, one subfamily is
over-represented, such that a large fraction of the sequences used to train the statistical model are minor
variants of each other. This disparity among the number of sequences available from different subfamilies
for a given protein is the basis for the widespread use of weighting schemes (Sibbald and Argos, 1990;
Thompson et al., 1994a; Thompson et al., 1994b; Henikoff and Henikoff, 1994). If one has reason to believe
that the available data over-represents some subfamilies, Dirichlet mixtures can be used in conjunction with
any weighting scheme desired to produce more accurate amino acid estimates. Simply weight the sequences
prior to computing the expected amino acids for each position using a Dirichlet mixture. Each column in
the weighted data will be a vector of counts, though probably real-valued rather than integral. Because we
assume weighted data may be used as input, we have incorporated this possibility in the formula given in
Section 3.2 to compute the expected amino acid distributions.

1.3 Obtaining and using prior knowledge of amino acid distributions

Fortunately, even when data from a particular family may be limited, there is no lack of data in the protein
sequence databases concerning the kinds of distributions which are likely or unlikely in particular positions in
proteins. In this work, we have attempted to condense the enormous wealth of information in the databases
into the form of a mixture of densities. These densities assign a probability to every possible distribution of
the amino acids. We use Mazimum Likelihood (Duda and Hart, 1973; Nowlan, 1990; Dempster et al., 1977)
to estimate these mixtures—i.e., we seek to find a mixture that maximizes the probability of the observed
data. Often, these densities capture some prototypical distributions. Taken as an ensemble, they explain
the observed distributions in the databases.

There are many different commonly occurring distributions. Some of these reflect a preference for
hydrophobic amino acids, some for small amino acids, and some for more complex combinations of physio-
chemical features. Certain combinations of these features are commonly found, while others are much rarer.
Degrees of conservation differ, due to the presence or absence of structural or functional constraints. In the
extreme case, when an amino acid is highly conserved at a certain position in the protein family, such as
the proximal histidine that coordinates the heme iron in hemoglobin, the distribution of amino acids in the
corresponding column of the multiple alignment is sharply peaked on that one amino acid, whereas in other
cases the distribution may be spread over many possible amino acids.

With accurate prior information about which kinds of amino acid distributions are reasonable in columns
of alignments, it is possible even with only a few sequences to identify which of the prototypical distribu-
tions characterizing positions in proteins may have generated the amino acids observed in a particular
column of the emerging statistical model. Using this informed guess, we can adjust the expected amino
acid probabilities so that the estimate of the amino acids for that position includes the possibility of amino
acids that may not have been seen at all in that position, but are consistent with observed amino acid
distributions in the protein databases. This has the effect of moving estimated amino acid distributions
toward known distributions, and away from distributions that are unusual biologically. The models pro-
duced are more effective at generalizing to previously unseen data, and are often superior at database
search and discrimination experiments (Karplus, 1995a; Tatusov et al, 1994; Bailey and Elkan, 1995;
Brown et al., 1993).

1.3.1 Comparison with other methods for computing these probabilities

We are certainly not the first group to notice the need for incorporating prior information about such amino
acid distributions into the parameter estimation process. Indeed, our present work has several conceptual
similarities with profile methods, particularly in regard to seeking meaningful amino acid distributions for
use in database search and multiple alignment (Waterman and Perlwitz, 1986; Barton and Sternberg, 1990;
Gribskov et al., 1990; Bowie et al., 1991; Liithy et al., 1991; Claverie, 1993; Claverie, 1994). This work also
has much in common with amino acid substitution matrices, which have been used effectively in database
search and discrimination tasks (Henikoff and Henikoff, 1992; Altschul, 1991).

There are two drawbacks associated with the use of substitution matrices. First, each amino acid has a
fixed substitution probability with respect to every other amino acid. In any particular substitution matrix,
to paraphrase Gertrude Stein, an isoleucine is an isoleucine is an isoleucine. However, an isoleucine seen in one
context, for instance, in a position that is functionally conserved, will have different substitution probabilities
than an isoleucine seen in another context, where any hydrophobic residue may be allowed. Second, only

the relative frequency of amino acids is considered, while the actual number observed is ignored. Thus, in
substitution-matrix-based methods, the expected amino acid probabilities are identical for an apparently
conserved column containing 100 isoleucines (and no other amino acids) and a column containing three
isoleucines, or even a single 1soleucine. All three situations are treated identically, and the estimates produced
are indistinguishable.

The method described here addresses both of these issues. A Dirichlet mixture prior can be decomposed
into individual components, each of which is a probability density over all the possible combinations of amino
acids occurring at positions in proteins. Common distributions, determined by functional or structural
constraints, are captured by these components; these then provide position-specific substitution probabilities.
In producing an estimate for the expected amino acids, the formula employed (equation 15 in Section 3.2)
gives those components which are most likely to have generated the actual amino acids observed the greatest
impact on the estimation.

For example, in Tables 1 and 2 we give a nine-component mixture estimated on the Blocks database
(Henikoff and Henikoff, 1991). In this mixture, isoleucine is seen in several contexts. Component 9 gives
high probability to all conserved distributions (i.e., distributions where a single residue is preferred over
all others). Component 6 represents distributions preferring isoleucine and valine, but allowing leucine and
methionine (i.e., this component gives high probability to aliphatic residues found in beta sheets). Component
5 reverses the order of residues preferred from component 6, preferring leucine and methionine to isoleucine,
and allowing phenylalanine and valine as less likely substitutions. Component 8 favors methionine, but
allows isoleucine and the other aliphatic residues as well as phenylalanine (and a few other residues). (A full
description of how to interpret these mixtures in general is given in Section 2.)

When only one or two isoleucines are observed, the lion’s share of the probability is shared by two
components: component 6 starts off with the highest probability at 0.45, while component 5 comes in second
with just under 0.20 probability. (Components 8 and 9 both have relatively low probability, at 0.12 and 0.08,
respectively.) However, the information in the column increases rapidly as the number of sequences grows,
and the probabilities of each of the components changes. Components 5, 6, and 8 decrease in probability,
while component 9, which favors conserved distributions, grows very rapidly in probability. At ten observed
isoleucines, component 9 has probability 0.62, component 6 has probability 0.24, component 5 has probability
0.07, and component 8 has one of the lowest probabilities of all the components, at 0.002. This process is
demonstrated in Table 3.

The estimates of the expected amino acids reflect the changing contribution of these components. Given
a single observation, isoleucine has probability 0.47, valine has probability 0.15, leucine has probability 0.12,
and methionine has probability 0.03. This reveals the influence of components 5 and 6, with their preference
for allowing substitutions with valine, leucine and methionine. By ten observations, isoleucine has probability
0.94, valine has probability 0.02, leucine has probability 0.01, and methionine has probability 0.003. We can
still see the contribution of component 6, with its bias toward allowing valine to substitute for isoleucine.
But the predominant signal is that isoleucine is required at this position.

Moreover, the second issue—the importance of the actual number of residues observed—is addressed
in the estimation formula as well. Here, as the number of observations increases, the contribution of the
prior information 1is lessened. Even if a mixture prior does not give high probability to a particular type of
distribution, as the number of sequences aligned increases, the estimate for a column becomes more and more
peaked around the maximum likelihood estimate for that column (i.e., p; approaches n;/ |7| as || increases).
Importantly, when the data indicate a residue is conserved at a particular position (i.e., most or all of the
sequences in an alignment contain a given residue in one position, and a sufficient number of observations are
available), the expected amino acid probabilities produced by this method will remain peaked around that
residue, instead of being modified to include all the residues that substitute on average for the conserved
residue, as is the case with substitution matrices. (See, for example, the estimated amino acid probabilities
produced by two substitution matrix-based methods in Tables 4-7.)

Pseudocount methods are a special case of Dirichlet mixtures, where the mixture consists of a single
component. In these methods, a fixed value is added to each observed amino acid count, and then the counts
are renormalized (i.e., p; = (n; + Zz)/(Z] n; + z;), where z; can be the same constant for every amino acid

j, or can vary from one amino acid to the next?. They have some of the desirable properties of Dirichlet

2A comparison of Dirichlet mixtures with data-dependent pseudocount methods is given in (Karplus, 1995a) and
(Tatusov et al., 1994), where Dirichlet mixtures were shown to give superior results.

mixtures, but because they have only a single component, they are unable to represent as complex a set
of prototypical distributions. We include in Tables 4-7 probability estimates for two popular pseudocount
methods which add the same constant for each amino acid, and can thus be called zero-offset methods:
Add-One, where z; = 1 for all ¢, and Add-Share, where z; = 0.05 for all ¢. The Dirichlet density I-comp, a
single-component Dirichlet density estimated on the Blocks database, is also a pseudocount method where
z; 18 a closely related to the background frequency of amino acid .

The work of Liithy, McLachlan, and Eisenberg (Liithy et al., 1991) also has some interesting similarities
to that presented here. They analyzed multiple alignments containing secondary structure information
to construct a set of nine probability distributions, which we call the LME distributions, describing the
distribution of amino acids in nine different structural environments®. LME distributions have been shown
to increase the accuracy of profiles in both database search and multiple alignment by enabling them to take
advantage of prior knowledge of secondary structure.

These distributions cannot always be used, since in many cases structural information is not available,
or the statistical model employed is not designed to take advantage of such information. For example, our
method for training an HMM assumes unaligned sequences are given as input to the program, and that no
secondary structure information for the sequences is available. Thus, distributions associated with particular
secondary structural environments, such as the LME distributions, are inappropriate for our use. Moreover,
we have an additional problem using the LME distributions in this Bayesian framework. As we will show
in Section 3.2, Bayes’ rule requires that in computing the amino acid probabilities the observed frequency
counts be modified less strongly when the prior distribution has a very high variance. Thus, when there is
no measure of the variance associated with a distribution, as i1s the case with the LME distributions, one
must assign a variance arbitrarily in order to use the distribution to compute the expected probabilities.

In this paper, we propose the use of mixtures of Dirichlet densities (see e.g., (Berhardo and Smith,
1994)) as a means of representing prior information about expected amino acid distributions. In Section 2
we give a description of ways to interpret these mixtures. The mathematical foundations of the method
described in this paper are given in Section 3. Dirichlet densities are described in Section 3.1. For those
wishing to use these mixtures, we present in Section 3.2 a Bayesian method for combining observed amino
acids with these priors to produce posterior estimates of the probabilities of the amino acids. Section 3.3
contains the mathematical derivation of the learning rule for estimating Dirichlet mixtures. In Section 4, we
present an overview of work done both at Santa Cruz (Karplus, 1995a; Karplus, 1995b; Brown et al., 1993)
and elsewhere (Tatusov et al., 1994; Bailey and Elkan, 1995; Henikoff and Henikoff, 1995) that demonstrates
the effectiveness of these densities in a variety of statistical models, and the superiority of this technique
in general over others tried. Some pointers to help users avoid underflow and overflow problems, as well as
speed up the computation of mixture estimation, are treated in Section 5.

We also want to emphasize, perhaps obviously, that the method described in this paper is general, and
applies not only to data drawn from columns of multiple alignments of protein sequences, but can be used
to characterize distributions over other alphabets as well. For example, we have done some experiments
developing Dirichlet mixtures for RNA, both for single-column statistics and for pairs of columns, and we
have estimated Dirichlet densities over transition probabilities between states in hidden Markov models.

For a review of the essentials of the HMM methodology we use, including architecture, parameter
estimation, multiple alignments, and database searches, see (Krogh et al., 1994).

*In more recent work, they have used 18 different distributions (Bowie et al., 1991).

2 Interpreting Dirichlet Mixtures

We include in this paper a 9-component mixture estimated on the Blocks database (Henikoff and Henikoff,
1991) which has given some of the best results of any mixture estimated using the techniques described
here*. Table 1 gives the parameters of this mixture.

Since a Dirichlet mixture describes the expected distributions of amino acids in the data used to estimate
the mixture, it 1s useful to look in some detail at each individual component of the mixture to see what
distributions of amino acids it favors.

Two kinds of parameters are associated with each component: the mixture coefficient, ¢, and the &
parameters which define the distributions preferred by the component. For any distribution of amino acids,
the mixture as a whole assigns a probability to the distribution by combining the probabilities given the
distribution by each of the components in the mixture.

One way to characterize a component is by giving the mean expected amino acid probabilities and the
variance around the mean. Formulas to compute these quantities are given in Section 3.1. We can also list
the amino acids for each component in order by the ratio of the mean frequency of the amino acids in a
component to the background frequency of the amino acids. Table 2 lists the preferred amino acids for each
component in the mixture.

The mixture coefficient ¢ associated with a component is equal to the probability of that component
given the data, averaged over all the data—i.e.; it expresses the fraction of the data represented by the
component. In this mixture, the components peaked around the aromatic and the non-polar hydropho-
bic residues represent the smallest fraction of the columns used to train the mixture, and the component
representing all the highly conserved residues (component number 9) represents the largest fraction of the
data.

The value |@] = 2?21 a; 1s a measure of the peakedness of the component about the mean. Higher
values of |@| indicate that distributions must be close to the mean of the component in order to be given high
probability by that component. In our experience, when we allow a large number of components, we often
find that many of the components that result are peaked around individual residues, and have high |&|, but
this may be an artifact of our optimization technique. However, when we estimate mixtures having a limited
number of components (for instance, ten or fewer components), we find that one component tends to have
a very small |&], allowing this component to give high probability to all essentially pure distributions. This
kind of component has high probability in most of the mixtures we have estimated— evidence that nearly
pure distributions are common in the databases we have used to estimate these mixtures. Since the Blocks
database was selected to favor highly conserved columns, it is not surprising that the individual components
of a Dirichlet mixture tuned for the Blocks database also favor conserved columns. Mixtures tuned for the
HSSP set of alignments, which contains full proteins, rather than just highly conserved blocks, show similar
behavior, although the |&] of the components of these mixtures are not quite as low as the |&| of mixtures
estimated on the Blocks database.

We often find that |@| and ¢ are inversely proportional to each other. For instance, the component
in Table 1 which has the largest mixture coefficient (meaning the most common distributions) also has
the smallest value of |&|. The amino acids favored by this component (component 9)—tryptophan, glycine,
proline and cysteine—are indeed the most highly conserved ones. However, as Table 3 shows, this component
gives high probability to pure distributions centered around other residues as well.

Groups of amino acids that frequently substitute for each other will tend to have one component that
assigns a high probability to the members of the group and a low probability to other amino acids. These
components tend to have higher |&|. For instance, in Table 1, the two components with the largest values of
|&| (and so the most mixed distributions) represent the polars and the non-polar hydrophobics, respectively.
A residue may be represented primarily by one component (as proline is) or by several components (as
isoleucine and valine are).

*A close variant of this mixture was used in experiments elsewhere (Tatusov et al., 1994; Henikoff and Henikoff,
1995)

3 Mathematical Foundations
3.1 What are Dirichlet densities?

A Dirichlet density p is a probability density over the set of all probability vectors ¢ (i.e., p; > 0 and
Yupi=1) (Berger, 1985; Santner and Duffy, 1989). In the case of proteins, with a 20-letter alphabet,
P ="pi1,...,p20 and p; = Prob(amino acid ¢). Here, each vector frepresents a possible probability distribution
over the 20 amino acids. A Dirichlet density has parameters & = ay, ..., as, o; > 0. The value of the density

for a particular vector p’is
20 -1
Hi:l p;

pp) === (1)

where 7 is the normalizing constant that makes p integrate to unity. The mean value of p; given a Dirichlet
density with parameters & is «;/ |&| (where |&] = >, ;). The mean value for §'is

Epi = aif |d] (2)

The second moment Ep; p;, for the case ¢ # j is given by

oo
Epipj = o (3)
T lal (@l + 1)
When i = j, the second moment Ep? is given by
oy (Ozl' + 1)
Ep} = e (4)
] (] + 1)

In the case of a mixture prior, we assume that p is a mixture of Dirichlet densities; and hence has the

form
p=qpi+...+aqp (5)

where each p; is a Dirichlet density specified by parameters &; = (o; 1, ..., ; 20) and the numbers ¢1,..., ¢
are positive and sum to 1. A density of this form is called a mizture density (or, in this specific case, a
Dirichlet mizture density), and the ¢; values are called mizture coefficients. Each of the densities p; is called
a component of the mixture.

The mean of a mixture 1s the weighted sum of the means of each of the components in the mixture,
weighted by their mixture coefficients. That is, Ep; = Z]' gioy i/ |d;).

We use the symbol © to refer to the entire set of parameters defining a prior. In the case of a mixture,
O =4dy,...,8, q1 ..., q, whereas in the case of a single density, © = &.

3.2 Computing Expected Amino Acid Probabilities

As described in Section 1, in predicting the expected probabilities of amino acids at each position in a protein
family or domain, one is often hampered by insufficient or skewed data. The amino acid frequencies in the
available data may be far from accurate reflections of the amino acid frequencies in all the family members.

Fortunately, we are in a position to take advantage of information contained in a Dirichlet prior. As we
explained in Section 3.1, a Dirichlet density with parameters © = &y, ..., &, q1 ..., ¢; defines a probability
distribution pg over all the possible distributions of amino acids. Given a column in a multiple alignment,
we can combine the information in the prior with the observed amino acid counts to form estimates p; of
the probabilities of each amino acid ¢ at that position. These estimates, p1, ..., pao, of the actual p; values
will differ from the estimate p; = n;/ ||, and should be much better when the the number of observations
1s small.

Let us suppose that we fix a numbering of the amino acids from 1 to 20. Then, each column in a multiple
alignment can be represented by a vector of counts of amino acids of the form @ = (nq1, ..., nap), where n;
1s the number of times amino acid ¢ occurs in the column represented by this count vector.

At this point, we must explain some assumptions we have made concerning how the observed data were
generated. The mathematical formulae for estimating and using Dirichlet mixture priors described in the
following sections follow directly from these assumptions. We assume that the hidden process generating
each count vector 77, can be modeled by the following stochastic process®:

1. First, a component j from the mixture © is chosen at random according to the mixture coefficient ¢;.

2. Then a probability distribution p'is chosen independently according to Prob (]7| O_Z]'), the probability
defined by component j over all such distributions.

3. Finally, the count vector 7 is generated according to the multinomial distribution with parameters p.

Obviously, when © consists of a single component, the first step 1s trivial, since the probability of the
single component is 1. In this case, the stochastic process consists of steps 2 and 3.

We can now define the estimated probability p; of amino acid ¢, given a Dirichlet density with parameters
O and observed amino acid counts 7 as follows:

p; = Prob (amino acid ¢

o, ﬁ) = /4Prob (amino acid i
7

7) Prob (7] ©,7) df (6)

The first term in the integral, Prob (amino acid ¢ |]7), is simply p;, the i*® element of the distribution
vector p. The second term, Prob (]7| 0O, ﬁ), represents the posterior probability of the distribution p"under
the Dirichlet density with parameters O, given that we have observed amino acid counts 7. Taken together,
the integral fﬁ Prob (amino acid ¢ |]7) Prob (]7| 0O, ﬁ) dp represents the contributions from each probability
distribution p, weighted according to its posterior probability, of amino acid i. An estimate of this type is
called a mean posterior estimate.

3.2.1 Computing probabilities using a single density (pseudocounts)

While we find the best results in computing these expected amino acid distributions come from employing
mixtures of Dirichlet densities, it is enlightening to consider the posterior estimate of an amino acid ¢ in the
case of a single density.

In the case of a single-component density with parameters &, the mean posterior estimate of the prob-
ability of amino acid 7 is defined

pi = / Prob (amino acid ¢
7

7) Prob (7| &) di (7)

By Lemma 4 (the proof of which is found in the Appendix) the posterior probability of each distribution
P, given the count data 7 and the density with parameters & is

®Note: we could instead choose to select amino acids independently with probability p;; the optimization problem
for optimizing © comes out the same.

Lemma 4:

2~ - 20
Prob (]3’ a, ﬁ) = M Hp;l,+n,—1
i=1

12, 7 (i + s

Here, as usual, |&| =), o, |7i| = >, ny, and 7 is the Gamma function, the continuous generalization
of the integer factorial function (i.e., 7 (x + 1) = a!).
Now, if we substitute p; for Prob (amino acid ¢ |]7) and the result of Lemma 4 into equation 7 we have

?(|@] + |n|) widniol o
; Xg 7 d g 8
pi / H (aj +ny) - Pi P (8)

Here, we can pull those terms not depending on p out of the integral, obtaining

- |a|+|n| / ajn=1 4
_ 9
b H (aj + 1) H ®)
Now, noting the contribution of the p; term within the integral, and using equation (49) from Lemma

2, giving J;sz p?’_l dp = %, we have

(@A) e+ DT 7 (e +ny)

Coor(al+ A+ 1) I1; 7 (a +nj)
At this point we can cancel out most of the terms, and take advantage of the fact that F%?:)l) = (nT1)! =
n, obtaining
. n; + o
Pi = = (11)
7| + ||

These Dirichlet densities can thus be seen as vectors of pseudocounts: probability estimates are formed
by adding constants to the observed counts for each amino acid, and then renormalizing. Pseudocount
methods are widely used to avoid zero probabilities in building statistical models. Note, when n = 0, in
the absence of data, the estimate produced is simply «;/|&|, the normalized values of the parameters &,
which are the means of the Dirichlet density. This mean, while not necessarily the background frequency of
the amino acids in the training set, is often a close approximation to it. Thus, in the absence of data, our
estimate of the expected amino acid probabilities will be close to the background frequencies. The simplicity
of the pseudocount method is one of the reasons Dirichlet densities are so attractive.

Programs to compute the expected amino acid frequencies are available via anonymous ftp from our ftp
site, ftp.cse.ucsc.edu, and on our web site at http://www.cse.ucsc.edu/research/compbio.

3.2.2 Computing probabilities using mixture densities

In the case of a mixture density, we compute the amino acid probabilities in a similar way:

p; = Prob (amino acidi | ©, ﬁ) = /Prob (amino acid i]7) Prob (ﬁ‘ 0, ﬁ) dp (12)
7

As in the case of the single density, we can substitute p; for Prob(amino acid ¢ |p). In addition, since ©

is a mixture of Dirichlet densities, by the definition of a mixture (equation 5), we can expand Prob(p'| ©, 77)

obtaining

i, @) d (13)

1
ZProb (ﬁ‘ aj, ﬁ) Prob (07]
ji=1

10

In this equation, Prob (O_Z]' | i, @) is the posterior probability of the jth component of the density, given
the vector of counts 7 (equation 16 below). It captures our assessment that the j' component was chosen
in step 1 of the stochastic process generating these observed amino acids. The first term, Prob(p|&;, 1),
then represents the probability of each distribution p, given component j and the count vector 7.

We can pull out terms not depending on p from inside the integral, giving us

{
pi = Prob (&j ‘ﬁ @) / piProb (7| &;, 7)df (14)
j:l ﬁ

At this point, we use the result from equation (11), and obtain®

!
pi = ZProb (O_Zj
ji=1

Hence, instead of identifying one single component of the mixture that accounts for the observed data,
we determine how likely each individual component is to have produced the data. Each component then
contributes pseudocounts proportional to the posterior probability that it produced the observed counts. In
this case, when n = 0, p; is simply Z]' gjo; i/ |&;], the weighted sum of the mean of each Dirichlet density
in the mixture.

When a component has a very small |&], it adds a very small bias to the observed amino acid frequencies.
As we show in Section 2, such components give high probability to all distributions peaked around individual
amino acids. The addition of such a small bias allows these components to not shift the estimated amino
acids away from conserved distributions, even when relatively small amounts of data are available.

By contrast, components having a larger |&| tend to favor mixed distributions, that is, combinations
of amino acids. In these cases, the individual «; ; values tend to be relatively large for those amino acids ¢
preferred by the component. When such a component has high probability given a vector of counts, these
a; ; have a corresponding influence on the expected amino acids predicted for that position. The estimates
produced may include significant probability for amino acids not seen at all in the count vector under
consideration.

Moreover, examining equation 15 reveals a smooth transition between reliance on the prior information,
in the absence of sufficient data, and confidence that the observed frequencies in the available training
data represent the expected probabilities in the family as a whole, as the number of observations increases.
When the number of observations is small, the mixture prior has the greatest effect in determining the
posterior estimate. But as the number of observations increases, the n; values will dominate the «; values.
Importantly, as the number of observations increases, this estimate approaches the maximum likelihood
estimate, p; = n;/ |7].

Thus, in the case of a mixture density, we will first want to calculate the quantity Prob (O_Zj | i, @) for
each j between 1 and [. This quantity is computed from Bayes’ rule as

= @) _ 4 Prob (ﬁ | &j, |ﬁ|)
’ Prob (7t | 0, |i)

N+ g
7] + |

7, @) (15)

(16)

Prob (O_Zj

Prob (ﬁ | aj, |ﬁ|) is the probability of the count vector 7 given the j** component of the mixture, and is
derived in Section A.3. The denominator, Prob (ﬁ | 0, |ﬁ|), is defined

Prob (ﬁ ‘ o, |ﬁ|) =3 gProb (ﬁ ‘ ar, |ﬁ|) . (17)
k

6This formula was misreported in previous work (Brown et al., 1993; Karplus, 1995a; Karplus, 1995b).

11

3.3 Derivation of Dirichlet Densities

As noted earlier, much statistical analysis has been done on amino acid distributions found in particular
secondary structural environments in proteins. However, our primary focus in developing these techniques
for protein modeling has been to rely as little as possible on previous knowledge and assumptions, and
instead to use statistical techniques that uncover the underlying key information in the data.

Consequently, our approach, instead of beginning with secondary structure, is to take unlabeled training
data (i.e., columns from multiple alignments with no secondary structure information attached) and attempt
to discover those classes of distributions of amino acids that are intrinsic to the data. The statistical method
employed directly estimates the most likely Dirichlet mixture density through clustering observed counts of
amino acids. In most cases, the common amino acid distributions we find are easily identified (e.g., a large
non-polar), but we do not set out a priori to find distributions representing known structural environments.

Given a set of m columns from a variety of multiple alignments, we tally the frequency of each amino
acid in each column, with the end result being a vector of counts of each amino acid for each column in the
dataset. Thus, our primary data is a set of m count vectors. Many multiple alignments of different protein
families are included, so m is typically in the thousands. We fix a numbering of the amino acids from 1 to
20, so each count vector has the form @ = (ny, ..., nag), where n; is the number of times amino acid ¢ occurs
in the column represented by this count vector.

We have used Maximum Likelihood to estimate the parameters © of p from the set of count vectors;
that is, we seek those parameters that maximize the probability of occurrence of the observed count vectors.
We assume the three-stage stochastic model described in Section 3.2 was used independently to generate
each of the count vectors in our observed set of count vectors. Under this assumption of independence, the
probability of the entire set of observed frequency count vectors is equal to the product of their individual
probabilities. Thus, we seek to find the model that maximizes [],~, Prob (ﬁt | 0O, |ﬁt|) Since the negative
logarithm of the probability is inversely proportional to the probability, this is equivalent to finding the &
that minimizes the objective function

f(©) =— ilog Prob (ﬁt
t=1

o, |ﬁt|) . (18)

In the simplest case, we have simply fixed the number of components [in the Dirichlet mixture to a
particular value and then estimated the 21/ — 1 parameters (twenty «; values for each of the components,
and { — 1 mixture coefficients). In other experiments, we tried to estimate { as well. Unfortunately, even for
fixed [, there does not appear to be an efficient method of estimating these parameters that is guaranteed to
always find the maximum likelihood estimate. However, a variant of the standard estimation-maximization
(EM) algorithm for mixture density estimation works well in practice’. EM has been proved to result in
closer and closer approximations to a local optimum with every iteration of the learning cycle; a global
optimum, unfortunately, is not guaranteed (Dempster et al., 1977)3.

As the derivations that follow can become somewhat complex, we provide two tables in the Appendix
to help the reader follow the derivations. Table 8 contains a summary of the notation we use and Table 9
contains an index to where certain key quantities are derived or defined.

In this section we give the derivation of the procedure to estimate the parameters of a mixture prior.
As we will show, the case where the prior consists of a single density follows directly from the general case
of a mixture. In the case of a mixture, we have two sets of parameters to estimate: the & parameters for
each component, and the ¢, or mixture coefficient, for each component. In the case of a single density, we
estimate only the & parameters.

In our practice, we estimate these parameters in a two-stage process: first we estimate the &, keeping
the mixture coefficients ¢ fixed, then we estimate the ¢, keeping the & parameters fixed. This two-stage
process is iterated until all estimates stabilize.

TAn introduction to this method of mixture density estimation is given in the book by Duda and Hart (Duda and
Hart, 1973). We have modified their procedure to estimate a mixture of Dirichlet rather than Gaussian densities.

8This method for parameter estimation has also been used for other problems in biosequence analysis (Lawrence
and Reilly, 1990; Cardon and Stormo, 1992).

12

3.3.1 Deriving the & parameters

Since we require that the a; be strictly positive, and we want the parameters upon which we will do gradient
descent to be unconstrained, we reparameterize, setting a;; = €¥#¢ where w;; is an unconstrained real
number. Then, the partial derivative of the objective function (equation 18) with respect to w; ; is

of(0) _ _i dlog Prob (i | 0,7]) da;

6wm»

(19)
1 60@'72' 6w]'72'

Here, we introduce Lemma 5 (the proof of which is found in the Appendix), giving

Lemma 5:

dlog Prob (7 | 0, i)
6(1]'72'

= Prob (& | 7,0) 0 log Prob (i | ;, |ii])

6(1]'72'
to obtaln

dlog Prob (i, | &;, |it]) da;

3w] Z Z Prob (a] iy, @) (20)

Using the fact that a]v - =y, and introducing Lemma 6 (the proof of which is found in the Appendix)
giving

60@'] 6w]']

Lemma 6:

dlog Prob (7 | a, |7)

r. = W(|&]) = (|| + |d]) + ¥(n; + a;) — () (21)
we obtain
df(© - L - L
a{i. .) =~ ajProb (ai ‘ it 9) (W15]) = W (|| + |a;]) + W(nei + aji) — U(ey)) (22)
It t=1

In optimizing the & parameters of the mixture, we do gradient descent on the weights 0, taking a step
in the direction of the negative gradient (controlling the size of the step by the variable 9, 0 < n < 1) during
each iteration of the learning cycle. Thus, the gradient descent rule in the mixture case can now be defined
as follows:

WY = old _ n @ (23)

7,2 7,2 aw] i

w4 Za] Prob (@ | ,0)) (W 1) = (it +181) + Wlnes +) = Wlay)) (24)
Now, letting S; = thl Prob ozj | iy, © , this is
Wl = gy (Sj (W(1;1) = W) + Y Prob (& [,0) (W(nei + aj) = Wi + |&j|>)
t=1
(25)

In the case of a single density, Prob(@ |77, ©) = 1 for all vectors 7, thus S; = >_7* | Prob (62 | i, @) =m,
and the gradient descent rule for a single density can be written as

W= w4, (m< (&) — W(a) +Z (nes +) <ﬁt+|&|>>) (26)

After each update of the weights, the & parameters are reset, and the process continued until the change
in the objective function falls below some pre-defined cutoff.

13

3.3.2 Mixture coefficient estimation

In the case of a mixture of Dirichlet densities, the mixture coefficients, ¢, of each component are also
estimated. However, since we require that the mixture coefficients must be non-negative and sum to 1,
we first reparameterize, setting ¢; = @;/|Q]|, where the @; are constrained to be strictly positive, and
|@Q] =", Q. As in the first stage, we want to maximize the probability of the data given the model, which
is equivalent to minimizing the objective function (equation 18), f(©) = —> -, log Prob (ﬁt | 0, |ﬁt|) In
this stage, we take the derivative of f with respect to ;. However, instead of having to take iterative steps
in the direction of the negative gradient, as we did in the first stage, we can set the derivative to zero, and
solve for those ¢; = @;/|@| that maximize the probability of the data. As we will see, however, the new ¢;
are a function of the previous ¢;; thus, this estimation process must also be iterated.
Taking the gradient of f with respect to ;, we obtain

9f(©) = dlogProb (i, | ©,|i,])
9Q; =-2 9Q;

t=1

(27)

This allows us to focus on the partial derivative of the log likelihood of a single count vector with respect
to ;. By Lemma 8 (the proof for which is found in Section A.8),
Lemma 8:
dlog Prob (7 | 0, i) _ Prob (& | it,0)) 1
Qi B Qi (@]

When we sum over all observations i, we obtain that in the case of a mixture,

0f©) _ _i(Prob(&i|ﬁt,®)) 1) (28)

%0, e T
m > e, Prob (& | iy, ©) 5
mo_ 9
Q| Qi (29)

Since the gradient must vanish for those mixture coefficients giving the maximum likelihood, we set the
gradient to zero, and solve. Thus, the maximum likelihood setting for ¢; is

- (30)

4 =
Q]
1 m
= —ZProb (O?Z'
m
t=1

Note that since . > 7" Prob (O_Zi | ﬁt,G)) =Y e, > Prob (O_Zi | ﬁt,G)) = Y 1o, 1 = m, the mixture
coefficients sum to 1, as required.

Since the reestimated mixture coefficients are functions of the old mixture coefficients, we iterate this
process until the change in the objective function falls below the predefined cutoff.

In summary, when estimating the parameters of a mixture prior, we alternate between reestimating
the & parameters of each density in the mixture, by gradient descent on the 7, resetting o ; = e*4¢ after
each iteration, followed by re-estimating and resetting the mixture coefficients as described above, until the
process converges.

ﬁt,e)) (31)

14

4 Results

The problem of estimating expected distributions over the amino acids in the absence of large amounts
of data is not unique to hidden Markov models. Thus other researchers have experimented with Dirichlet
mixture priors, both those which we reported in (Brown et al., 1993), and those which we developed and
made available afterwards. In addition to the experiments we reported in (Brown et al., 1993), and which we
summarize below, three independent groups of researchers, (Tatusov et al., 1994; Henikoff and Henikoff, 1995;
Bailey and Elkan, 1995), used these mixtures in database search and discrimination experiments, while the
work of Karplus (Karplus, 1995a; Karplus, 1995b) is more information theoretic, comparing the number of
bits to encode the posterior probability estimates of the amino acids given different methods and different
sample sizes.

4.1 HMM experiments

In our original paper on the use of Dirichlet mixture priors (Brown et al., 1993), we described a series of
experiments on building HMMs for the EF-hand motif. EF-hands are an approximately 29-residue structure
present in cytosolic calcium-modulated proteins (Nakayama et al., 1992; Persechini et al., 1989; Moncrief
et al., 1990). We chose EF-hands to demonstrate the ability of mixture priors to compensate for limited
sample sizes because the motif’s small size allowed many experiments to be performed relatively rapidly.
For these experiments we used the June 1992 database of EF-hand sequences maintained by Kretsinger and
co-workers (Nakayama et al., 1992). We extracted the EF-hand structures from each of the 242 sequences
in the database, obtaining 885 EF-hand motifs having an average length of 29. HMM training sets were
constructed by randomly extracting subsets of size 5, 10, 20, 40, 60, 80, and 100.

The Dirichlet priors we used for these experiments were derived from two sources of multiple alignments:
a subset of alignments from the HSSP database suggested in (Sander and Schneider, 1991) and multiple
alignments we generated using HMMs to model the kinase, globin, and elongation factor families (Haussler
et al., 1993; Krogh et al., 1994).

Using the maximum likelihood procedure described in Section 3.3 we estimated the parameters of a
one-component and a nine-component Dirichlet mixture density from the 5670 count vectors obtained from
the HSSP multiple alignments. We call these Dirichlet mixtures HSSP1, and HSSPY respectively. Similar
experiments were done for the HMM alignments, obtaining Dirichlet mixture priors with one component and
nine components (HMM1, HMM).

In addition to the priors we estimated via maximum likelihood estimation, we tested the effectiveness
of some additional priors: the standard uniform prior called Add-One (see Section 1.3.1), priors obtained
directly from amino acid distributions estimated by Liithy, McLachlan, and Eisenberg (which we call the
LME distributions) for nine different structural environments (1991), and a 29-component EF-hand custom
prior in which each component is derived from a column in our EF-hand multiple alignment. The prior
derived from the nine-component LME distributions was obtained by forming Dirichlet densities for each
of the nine LME amino acid distributions with the same means as the original distributions. Since there is
no measure of the expected variance around the mean associated with these distributions, we arbitrarily set
the |&@| for each component to 10, and set the mixture coefficients uniformly. The 29-component EF-hand
custom prior was designed to determine a bound on the best possible performance for any Dirichlet mixture
for this family.

For each training set size and each prior, several HMMs were built using the method described in
(Krogh et al., 1994). We evaluated each HMM on a separate test set containing EF-hand sequences not
in the training set, yielding an average negative log likelihood (NLL) score over all test sequences for each
model. Lower scores represent more accurate models. For every combination of training sample size and
prior used, we took the average test-set NLL score across all models, and the standard deviation of the
test-set NLL scores.

In these experiments, the EF-hand custom prior performed the best, followed by HMM9, HSSP9, LME?,
HMM1 and HSSP1. Add-One performed the worst. For example, at 20 training sequences, the average test-
set NLL score for HMMs trained using HMMO9 was lower than the average NLL score for the HMMs trained
using the Add-One prior for all training set sizes up to 60. Details of the results of these experiments are
given in (Brown et al., 1993).

°In retrospect, the high |&@| of the LME prior may have handicapped this density in these experiments; |@| closer
to 1 might have been more effective.

15

In our previous work, the NLL score has always been almost perfectly correlated with superior multiple
alignments and database search. To further demonstrate the latter point, we tested some of the HMMs built
from various priors on their ability to discriminate sequences containing the EF-hand domain from those not
containing the domain. To do this we choose models built from training samples of sizes 5, 10, and 20, using
the Add one, HMM1, HMM9 and EF-hand custom priors. For each sample size and prior, we built an HMM
as above and then used it to search the SWISS-PROT database for sequences that contain the EF-hand
motif, using the method described in (Krogh et al., 1994). The results of these database discrimination
experiments confirmed the ordering of the priors by NLL score. Unfortunately, only one test was done for
each combination of sample size and prior, so the results are not as statistically significant as those for NLL
score.

Finally, we note that in these experiments, data used to train HMM1 and HMM9 contained no EF-hand-
specific proteins, yet these mixtures still produced a substantial increase in performance for the EF-Hand
HMMs estimated using these priors. This confirmed that these priors do indeed capture some universal
aspect of amino acid distributions that are meaningful across different protein families.

4.2 Experiments with other statistical models

Karplus’s work, (Karplus, 1995a; Karplus, 1995b), compared the relative costs of encoding multiple align-
ments using the estimated posterior probabilities p; of each amino acid ¢ in samples of various sizes drawn
from count vectors from the BLOCKS database (Henikoff and Henikoff, 1991) for several methods'?. Karplus
noted the sample size(s) for which each method was superior to the others, and whether a method’s posterior
probability estimate approaches the maximume-likelihood estimate in the limit, as the number of observations
grows unboundedly large. Karplus compared several methods:

1. Zero-offset (of which one variant is the popular ‘Add-One’) where a small positive constant is added
to all amino acid counts.

2. Pseudocounts, in which a different positive value is added for each amino acid, rather than one fixed
constant for all amino acids.

3. Gribskov profile, or average score method, where the scores are logarithmic, comparing the probability
estimate of an amino acid in a particular context to the global (or background) probability of that
amino acid. This method has been used by various researchers (Tatusov et al., 1994; Gribskov et al.,
1984), employing any of several scoring matrices, such as the popular Dayhoff (Dayhoff et al., 1978)
and Blosum (Henikoff and Henikoff, 1992) matrices.

4. Substitution matrices, which encode the cost for substituting amino acid ¢ for amino acid j, and
comparing two variants on this basic technique, adding scaled counts and/or pseudocounts. These
methods are similar to those employed in method 3 above, but use matrix multiplication to compute
Prob(amino acid ¢) rather than log Prob(amino acid 7) scores.

5. Dirichlet mizture priors, with several mixture priors compared against each other.

For this problem, Dirichlet mixtures were always superior for sample sizes 2 or more, and were very
close to optimal for sample size 1 (where substitution matrices were optimal), and sample size zero (where
pseudocount methods based on background frequency were optimal).

Tatusov, Altschul and Koonin propose a technique in (Tatusov et al., 1994) for iterative refinement of
protein profiles that is able to start with very few aligned sequences (or even a single protein segment),
and repeatedly compute a probability distribution over the amino acids for each column in the alignment,
search a sequence database for protein segments that match the amino acid distributions specified by the
model, according to some criterion, and multiply align all new protein segments to the model, until no new
sequences scoring above a given cutoff are found. They tested several methods for estimating the expected
distributions over the amino acids in the first part of this iterative model-building process. The resulting
models were then tested at database discrimination tasks, and their relative performances compared. The
methods compared in this paper were:

190More recently, Karplus duplicated these experiments on columns drawn from the HSSP protein database, and

confirmed a similar ordering of these methods. Also, the 9-component Dirichlet density reported in Section 2 of this
paper performs very well in his tests for all sample sizes tested.

16

1. Awverage score method, incorporating the use of amino acid substitution matrices, such as PAM
(Altschul, 1991), or BLOSUM (Henikoff and Henikoff, 1992) (identical to the third method tested
by Karplus);

2. Log-odds Bayesian prediction using pseudocounts (identical to the second method tested by Karplus);

3. Data-dependent pseudocount method, where the pseudocounts are calculated using a substitution ma-
trix (equivalent to one of the substitution matrix methods tested by Karplus);

4. Durichlet muizture method, which incorporates a Dirichlet mixture prior into the log-odds Bayesian
prediction method.

Tatusov et al. reported that the use of Dirichlet mixture priors (specifically, a nine-component mixture
prior estimated from the Blocks database (Henikoff and Henikoff, 1991) quite similar to Blocks9 given in
Tables 1 and 2, resulted in protein models with the highest accuracy in database discrimination, yielding
the fewest false negatives and false positives overall of any of the methods compared.

Steven and Jorja Henikoff conducted a series of tests on the same methods, using a testing strategy
similar to that described in (Henikoff and Henikoff, 1994) and confirm these results (personal communication).
Good results with these mixtures are also reported by (Wang et al., To appear), who, in a related set of
experiments, created an expanded set of blocks using the same mixtures used in (Tatusov et al., 1994), and
then used these blocks to classify protein sequences.

In (Bailey and Elkan, 1995), the authors report several extensions to their motif-finding tool MEME
which incorporate prior information into the parameter estimation process. While the authors did not com-
pare different methods for computing posterior estimates of amino acid densities (the other prior information
introduced concerned motif width, presence or absence of the motifin sequences being searched, and whether,
as in the case of DNA sequences, the motif is expected to be a palindrome), they reported that the use of
a Dirichlet mixture prior (in this case, a 30-component mixture estimated from the BLOCKS database)
boosted their protein database search accuracy significantly, especially in the case where few (< 20) training
sequences were available.

17

5 Implementation details
Implementing Dirichlet mixture priors for use in hidden Markov models or other stochastic models of bio-
logical sequences is not difficult, but there are many details that can cause problems if not handled carefully.
This section will split the implementation details into two groups: those that are essential for get-
ting working Dirichlet mixture code (Section 5.1), and those that increase efficiency, but are not essential

(Section 5.2).
5.1 Essential details

In Section 3.2, we gave the formulas for computing the amino acid probabilities in the cases of a single
density (equation 11) and of a mixture density (equation 15).

For a single Dirichlet component, the estimation formula is trivial:
n; + o
|7l + |a]
and no special care is needed in the implementation. For the case of a multi-component mixture, the

implementation is not quite so straightforward.
As we showed in the derivation of equation 15,

1
pi = ZProb (O_Zj
ji=1
— | —

The interesting part for computation comes in computing Prob (ozj n, @), whose formula 1s repeated
here from Equation 16:

pi = (32)

N + oy

e 33
LN (33)

7, @)

Prob (7 | &, |7
Prob (07] i @) _ 4;Pro (11 | ay,ln|) (34)
Prob (n | 0, |n|)
We can expand Prob (ﬁ | 0, |ﬁ|) using equation 17 to obtain
Prob (07] i 6) _ _ 4;Prob (i | @, |7]) (35)

k=1 xProb (i | &, [ii])

Note that this is a simple renormalization of ¢;Prob (ﬁ | aj, |ﬁ|) to sum to one. Rather than carry the

normalization through all the equations, we can work directly with Prob (ﬁ | aj, |ﬁ|), and put everything
back together at the end.
First, we can expand it using Lemma 3 (the proof of which is found in Section A.3):

S =) - 2+ D)7 () ”H‘%z)
i . 36
O[]’ |n|) (|n| 4 |O[] H 7 nZ (OZ]J’) ()

Prob (ﬁ

If we rearrange some terms, we obtain

-7 (ng i) (| 77+ 1
Prob (7 | @, 1) = 11 (i £ o) (7"“]') ﬂ”' . (37)
Pl +1a) T 7 (egq) T 7 (i +1)
The first two terms are most easily expressed using the Beta function: B(z) = %, where, as usual,

|Z] = 3, x;. This simplifies the expression to

& |7‘i|) _ B(id+a;) 7(d+1) (38)
" B(d;) TL7(Mmi+1)

The remaining Gamma functions are not easily expressed with a Beta function, but they don’t need to

be. Since they depend only on 7 and not on j, when we do the normalization to make the Prob (O_Zj | i, @)
sum to one, this term will cancel out, giving us

Prob (ﬁ

B ﬁ-l—é?j
4 §3<aj>)

] B(iitdxr)
k=1 Gk %(gk) :

Prob (O_Zj ‘ i, @) = (39)

18

Plugging this formula into Equation 33 gives us

Zl . B(ﬁ-l—é?j) ni+ag

i=1 9 TB(E,) [AHIA,]
pi = - S (40)
Yok=1 0k Bn(aj)k
Since the denominator of Equation 40 is independent of i, we can compute p; by normalizing
1
= S (41)
- B(@;) [+ |aj]
to sum to one. That 1s,
R Xi
Pi= —m—— - (42)
k=1 Xk

The biggest problem that implementors run into is that these Beta functions can get very large or very
small—outside the range of the floating-point representation of most computers. The obvious solution is to
work with the logarithm of the Beta function:

logB(z) = log

Zlog (z()) — log? (|2]) .

Most libraries of mathematical routines include the 1gamma function which implements log 7 (#), and so using
the logarithm of the Beta function is not difficult.

We could compute each X; using only the logarithmic notation, but it turns out to be slightly more
convenient to use the logarithms just for the Beta functions:

Y. = Z oz]+n Q5 4 Ny
C T &Y TB@E) @+

— Zq.eaogB(aﬁﬁ)—logB(aj)) Qi T
~ |a; |+ |7

Some care 1s needed in the conversion from the logarithmic representation back to floating-point, since
the ratio of the Beta functions may be so large or so small that it cannot be represented as floating-point
numbers. Luckily, we do not really need to compute X;, only p; = X; /Zk 1 Xz. This means that we
can multiply X; by any constant and the normalization will eliminate the constant. Equivalently, we can
freely subtract a constant (independent of j and ¢) from log B(&; + i) — log B(&;) before converting back to
floating-point.

If we choose the constant to be max; (log B(&; + i) — log B(&;)), then the largest logarithmic term will
be zero, and all the terms will be reasonable.!!

5.2 Efficiency improvements

The previous section gave simple computation formulas for p; (Equations 42 and 41). When computations of
p; are done infrequently (for example, for profiles, where p; only needs to be computed once for each column
of the profile), those equations are perfectly adequate.

When recomputing p; frequently, as may be done in a Gibbs sampling program or training a hidden
Markov model, it is better to have a slightly more efficient computation. Since most of the computation
time is spent in the 1gamma function used for computing the log Beta functions, the biggest efficiency gains
come from avoiding the 1gamma computations.

1We could still get floating-point underflow to zero for some terms, but the § computation will still be about as
good as can be done within floating-point representation.

19

If we assume that the «;; and ¢; values change less often than the values for 7 (which is true of almost
every application), then it is worthwhile to precompute log B(&;), cutting the computation time almost in
half.

If the n; values are mainly small integers (0 is common in all the applications we’ve looked at), then it
is worth pre-computing log? (o, ;), log 7 (e + 1), log? («vj; + 2), and so on, out to some reasonable value.
Precomputation should also be done for log 7 (|&;|), log? (|&;| + 1), log? (|&;] + 2), and so forth. If all the @
values are small integers, this precomputation almost eliminates the 1gamma function calls.

In some cases, it may be worthwhile to build a special-purpose implementation of log? (#) that caches
all calls in a hash table, and does not call 1gamma for values of that it has seen before. Even larger savings
can be had when z is close to previously computed values, by using interpolation rather than calling 1gamma.

20

6 Conclusions and Future Research

Dirichlet mixture priors have been demonstrated to be more effective at forming accurate estimates for
expected amino acid distributions than substitution matrix-based methods, pseudocounts, and other such
methods. In particular, the method presented in this paper has been shown to fix two primary weaknesses of
substitution matrix-based methods: focusing only on the relative frequency of the amino acids while ignoring
the actual number of amino acids observed, and having fixed substitution probabilities for each amino acid.
One of the potentially most problematic consequences of these drawbacks is that substitution matrix-based
methods do not produce estimates that are conserved, or mostly conserved, where the evidence is clear that
an amino acid is conserved.

The method presented here addresses these issues. Given abundant training data, the estimate produced
by these methods is very close to the actual frequencies observed. When little data is available, the amino
acids predicted are those that are known to be associated in different contexts with the amino acids observed.
In particular, when evidence exists that a particular amino acid 1s conserved at a given position, the expected
amino acid estimates reflect this preference.

In database search for homologous sequences, Dirichlet mixtures have been shown to maximize sensitivity
without sacrificing specificity. As a result experiments using Dirichlet mixtures to estimate the expected
amino acid distributions in a variety of statistical models for proteins result in fewer false negatives and false
positives than when other methods are used.

The methods employed to estimate and use these mixtures have been shown to be firmly based on
Bayesian statistics. While no biological knowledge has been introduced into the parameter-estimation pro-
cess, the mixture priors that result agree with accepted biological understanding.

In order to be able to use these mixtures to find true remote homologs, mixtures should be estimated
on alignments containing more distant homologs, rather than estimated from databases where fairly close
homologs are aligned, as is the case for both the BLOCKS and HSSP databases. Another key area needing
research is the weighting of sequences to remove bias. Previous work has concentrated on relative weighting
schemes; but the total weight is also relevant when using Dirichlet mixtures.

Since the method for estimating these mixtures (EM) is sensitive to the initial parameter settings, we
are exploring heuristics that enable us to explore the parameter space more effectively, and obtain better
mixtures. We are also exploring methods to compensate for the assumption that each column is generated
independently, which although simplifying the math, is without biological basis. However, as the detailed
analysis of Karplus (Karplus, 1995a; Karplus, 1995b) shows, the Dirichlet mixtures already available are
close to optimal as far as their capacity for assisting in computing estimates of amino acid distributions,
given a single column context. Thus, further work in this area will perhaps profit by focusing on obtaining
information from relationships among the sequences (for instance, as revealed in a phylogenetic tree), or in
inter-columnar interactions.

21

Acknowledgments

We gratefully acknowledge the input and suggestions of Stephen Altschul, Tony Fink, Lydia Gregoret, Steven
and Jorja Henikoff, Graeme Mitchison, and Chris Sander. Special thanks to friends at Laforia, Université de
Pierre et Marie Curie, in Paris, and the Biocomputing Group at the European Molecular Biology Laboratory
at Heidelberg, who provided workstations, support, and scientific inspiration during the early stages of writing
this paper. This work was supported in part by NSF grants CDA-9115268, IRI-9123692, and BIR-9408579;
DOE grant 94-12-048216, ONR grant N00014-91-J-1162, NIH grant GM17129, a grant from the Danish
Natural Science Research Council, a National Science Foundation Graduate Research Fellowship, and funds
granted by the UCSC Division of Natural Sciences. This paper i1s dedicated to the memory of Tal Grossman,
a dear friend and a true mensch.

22

References

Altschul, Stephen F.; Gish, Warren; Miller, Webb; Meyers, Eugene W.; and Lippman, David J. 1990. Basic local
alignment search tool. JMB 215:403-410.

Altschul, Stephen F. 1991. Amino acid substitution matrices from an information theoretic perspective. JMB
219:555-565.

Asai, K.; Hayamizu, S.; and Onizuka, K. 1993. HMM with protein structure grammar. In Proceedings of the Hawait
International Conference on System Sciences, Los Alamitos, CA. IEEE Computer Society Press. 783-791.

Bailey, Timothy L. and Elkan, Charles 1995. The value of prior knowledge in discovering motifs with MEME. In
ISMB-95, Cambridge, England. 77

Baldi, P. and Chauvin, Y. 1994. Smooth on-line learning algorithms for hidden Markov models. Neural Computation
6(2):305-316.

Baldi, P.; Chauvin, Y.; Hunkapiller, T.; and McClure, M. A. 1992. Adaptive algorithms for modeling and analysis
of biological primary sequence information. Technical report, Net-ID, Inc., 8 Cathy Place, Menlo Park, CA 94305.

Barton, G. J. and Sternberg, M. J. 1990. Flexible protein sequence patterns: A sensitive method to detect weak
structural similarities. JMB 212(2):389-402.

Berger, J. 1985. Statistical Decision Theory and Bayesian Analysis. Springer-Verlag, New York.
Berhardo, J.M. and Smith, A.F.M. 1994. Bayesian Theory. John Wiley and Sons, first edition.

Bowie, J. U.; Luthy, R.; and Eisenberg, D. 1991. A method to identify protein sequences that fold into a known
three-dimensional structure. Science 253:164-170.

Brown, M. P.; Hughey, R.; Krogh, A.; Mian, 1. S.; Sjolander, K.; and Haussler, D. 1993. Using Dirichlet mixture
priors to derive hidden Markov models for protein families. In Hunter, L.; Searls, D.; and Shavlik, J., editors 1993,
ISMB-93, Menlo Park, CA. AAAT/MIT Press. 47-55.

Bucher, Philipp; Karplus, Kevin; Moeri, Nicolas; and Hoffman, Kay 1996. A flexible motif search technique based
on generalized profiles. Computers and Chemistry 20(1):3-24.

Cardon, L. R. and Stormo, G. D. 1992. Expectation maximization algorithm for identifying protein-binding sites
with variable lengths from unaligned DNA fragments. JMB 223:159-170.

Casari, G.; Andrade, M.; Bork, P.; Boyle, J.; Daruvar, A.; Ouzounis, C.; Schneider, R.; Tamames, J.; Valencia, A.;

and Sander, C. 1995. Scientific correspondence to nature. Nature.
Churchill; G. A. 1989. Stochastic models for heterogeneous DNA sequences. Bull Math Biol 51:79-94.

Claverie, Jean-Michael 1993. Information enhancement methods for large scale sequence analysis. Computers and
Chemistry 17(2):191-201.

Claverie, Jean-Michael 1994. Some useful statistical properties of position-weight matrices. Computers and Chem-
istry 18(3):287-294.

Dayhoff, M. O.; Schwartz, R. M.; and Orcutt, B. C. 1978. A model of evolutionary change in proteins. In Atlas of
Protein Sequence and Structure. National Biomedical Research Foundation, Washington, D. C. chapter 22, 345-358.

Dempster, A. P.; Laird, N. M.; and Rubin, D. B. 1977. Maximum likelihood from incomplete data via the FM
algorithm. J. Roy. Statist. Soc. B 39:1-38.

Doolittle, R. F. 1986. Of URFs and ORFs: A primer on how to analyze derived amino acid sequences. University
Science Books, Mill Valley, California.

Duda, R. O. and Hart, P. E. 1973. Pattern Classification and Scene Analysis. Wiley, New York.
Gradshteyn, I. S. and Ryzhik, I. M. 1965. Table of Integrals, Series, and Products. Academic Press, fourth edition.

Gribskov, M.; Devereux, J.; and Burgess, R. 1984. The codon preference plot: Graphic analysis of protein coding
sequences and prediction of gene expression. NAR 12:539-549.

Gribskov, Michael; McLachlan, Andrew D.; and Eisenberg, David 1987. Profile analysis: Detection of distantly
related proteins. PNAS 84:4355-4358.

Gribskov, M.; Luthy, R.; and Eisenberg, D. 1990. Profile analysis. Methods in Fnzymology 183:146-159.

Haussler, D.; Krogh, A.; Mian, I. S.; and Sjolander, K. 1993. Protein modeling using hidden Markov models:
Analysis of globins. In Proceedings of the Hawaii International Conference on System Sciences, volume 1, Los
Alamitos, CA. IEEE Computer Society Press. 792-802.

Henikoff, Steven and Henikoff, Jorja G. 1991. Automated assembly of protein blocks for database searching. NAR
19(23):6565-6572.

Henikoff, Steven and Henikoff, Jorja G. 1992. Amino acid substitution matrices from protein blocks. PNAS
89:10915-10919.

23

Henikoff, Steven and Henikoff, Jorja G. 1994. Position-based sequence weights. JMB 243(4):574-578.

Henikoff, Steven and Henikoff, Jorja G. 1995. Personal communication.

Henikoff, Steven; Wallace, James C.; and Brown, Joseph P. 1990. Finding protein similarities with nucleotide
sequence databases. Methods in Enzymology 183:111-132.

Hughey, Richard 1993. Massively parallel biosequence analysis. Technical Report UCSC-CRL-93-14, University of
California, Santa Cruz, CA.

Karplus, Kevin 1995a. Regularizers for estimating distributions of amino acids from small samples. In ISMB-95,
Cambridge, England.

Karplus, Kevin 1995b. Regularizers for estimating distributions of amino acids from small samples. Technical Report
UCSC-CRL-95-11, University of California, Santa Cruz. URL ftp://ftp.cse.ucsc.edu/pub/tr/ucsc-crl-95-11.ps.Z.
Krogh, A.; Brown, M.; Mian, I. S.; Sjolander, K.; and Haussler, D. 1994. Hidden Markov models in computational
biology: Applications to protein modeling. JMB 235:1501-1531.

Lawrence, C. E. and Reilly, A. A. 1990. An expectation maximization (EM) algorithm for the identification and
characterization of common sites in unaligned biopolymer sequences. Proteins 7:41-51.

Luthy, R.; McLachlan, A. D.; and Eisenberg, D. 1991. Secondary structure-based profiles: Use of structure-
conserving scoring table in searching protein sequence databases for structural similarities. Proteins: Structure,
Function, and Genetics 10:229-239.

Moncrief, N. D.; Kretsinger, R. H.; and Goodman, M. 1990. Evolution of EF-hand calcium-modulated proteins. I.
relationships based on amino acid sequences. Journal of Molecular Fvolution 30:522-562.

Nakayama, S.; Moncrief, N. D.; and Kretsinger, R. H. 1992. Evolution of EF-hand calcium-modulated proteins. ii.
domains of several subfamilies have diverse evolutionary histories. Journal of Molecular Evolution 34:416-448.

Nowlan, S. 1990. Maximum likelihood competitive learning. In Touretsky, D.; editor 1990, Advances in Neural
Information Processing Systems, volume 2. Morgan Kaufmann. 574-582.

Persechini, A.; Moncrief, N. D.; and Kretsinger, R. H. 1989. The EF-hand family of calcium-modulated proteins.
Trends in Neurosciences 12(11):462-467.

R.D.Fleischmann, 1995. Whole-genome random sequencing and assemply of haemophilus influenzae rd. Science
269:496-512.

Sander, C. and Schneider, R. 1991. Database of homology-derived protein structures and the structural meaning of
sequence alignment. Proteins 9(1):56-68.

Santner, T. J. and Duffy, D. E. 1989. The Statistical Analysis of Discrete Data. Springer Verlag, New York.

Sibbald, P. and Argos, P. 1990. Weighting aligned protein or nucleic acid sequences to correct for unequal repre-
sentation. JMB 216:813-818.

Stultz, C. M.; White, J. V.; and Smith, T. F. 1993. Structural analysis based on state-space modeling. Protein
Science 2:305-315.

Tatusov, Roman L.; Altschul, Stephen F.; and Koonin, Eugen V. 1994. Detection of conserved segments in proteins:
Iterative scanning of sequence databases with alignment blocks. PNAS 91:12091-12095.

Thompson, Julie D.; Higgins, Desmond G.; and Gibson, Toby J. 1994a. Improved sensitivity of profile searches
through the use of sequence weights and gap excision. CABIOS 10(1):19-29.

Thompson, Julie D.; Higgins, Desmond G.; and Gibson, Toby J. 1994b. CLUSTAL W: Improving the sensitivity
of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties, and weight
matrix choice. NAR 22(22):4673-4680.

Wang, Jason T.L.; Marr, Thomas G.; Shasha, Dennis; Shapiro, Bruce; Chirn, Gung-Wei; and Lee, T.Y. ppear.

Complementary classification approaches for protein sequences. Protein Engr.
Waterman, M. S. and Perlwitz, M. D. 1986. Line geometries for sequence comparisons. Bull. Math. Biol. 46:567-577.

White, James V.; Stultz, Collin M.; and Smith, Temple F. 1994. Protein classification by stochastic modeling and
optimal filtering of amino-acid sequences. Mathematical Biosciences 119:35-75.

24

7 Tables
| Blocks9

Blocks9.1 | Blocks9.2 | Blocks9.3 | Blocks9.4 | Blocks9.5 Blocks9.6 | Blocks9.7 | Blocks9.8 | Blocks9.9
q 0.178091 0.056591 0.0960191 | 0.0781233 | 0.0834977 | 0.0904123 0.114468 0.0682132 0.234585
|c_v'| 1.180650 1.355830 6.664360 2.081410 2.081010 2.568190 1.766060 4.987680 0.099500
A 0.270671 0.021465 0.561459 0.070143 0.041103 0.115607 0.093461 0.452171 0.005193
C 0.039848 0.010300 0.045448 0.011140 0.014794 0.037381 0.004737 0.114613 0.004039
D 0.017576 0.011741 0.438366 0.019479 0.005610 0.012414 0.387252 0.062460 0.006722
E 0.016415 0.010883 0.764167 0.094657 0.010216 0.018179 0.347841 0.115702 0.006121
F 0.014268 0.385651 0.087364 0.013162 0.153602 0.051778 0.010822 0.284246 0.003468
G 0.131916 0.016416 0.259114 0.048038 0.007797 0.017255 0.105877 0.140204 0.016931
H 0.012391 0.076196 0.214940 0.077000 0.007175 0.004911 0.049776 0.100358 0.003647
I 0.022599 0.035329 0.145928 0.032939 0.299635 0.796882 0.014963 0.550230 0.002184
K 0.020358 0.013921 0.762204 0.576639 0.010849 0.017074 0.094276 0.143995 0.005019
L 0.030727 0.093517 0.247320 0.072293 0.999446 0.285858 0.027761 0.700649 0.005990
M 0.015315 0.022034 0.118662 0.028240 0.210189 0.075811 0.010040 0.276580 0.001473
N 0.048298 0.028593 0.441564 0.080372 0.006127 0.014548 0.187869 0.118569 0.004158
P 0.053803 0.013086 0.174822 0.037661 0.013021 0.015092 0.050018 0.097470 0.009055
Q 0.020662 0.023011 0.530840 0.185037 0.019798 0.011382 0.110039 0.126673 0.003630
R 0.023612 0.018866 0.465529 0.506783 0.014509 0.012696 0.038668 0.143634 0.006583
S 0.216147 0.029156 0.583402 0.073732 0.012049 0.027535 0.119471 0.278983 0.003172
T 0.065438 0.018153 0.445586 0.071587 0.035799 0.088333 0.065802 0.358482 0.003690
\% 0.065438 0.036100 0.227050 0.042532 0.180085 0.944340 0.025430 0.661750 0.002967
W 0.003758 0.071770 0.029510 0.011254 0.012744 0.004373 0.003215 0.061533 0.002772
Y 0.009621 0.419641 0.121090 0.028723 0.026466 0.016741 0.018742 0.199373 0.002686

Table 1: Parameters of Mixture Prior Blocks9

This table contains the parameters defining a nine-component mixture prior estimated on unweighted columns from
the Blocks database. The first row gives the mixture coefficient (g¢;) for each component. The second row gives the
|&@ = >, a; for each component. This value reflects how peaked the distribution is around the mean. The higher
the value of |&|, the lower the variance around the mean. Rows A (alanine) through Y (tyrosine) contain the values
of each of the components’ & parameters for that amino acid.

This mixture is available via anonymous ftp from our ftp site,
http://www.cse.ucsc.edu/research /compbio.

25

ftp.cse.ucsc.edu,

and on our

web site at

Analysis of 9-Component Dirichlet Mixture Prior Blocks9

Comp. Ratio (r) of amino acid frequency relative to background frequency
S<r [4<r<8|2<r<4] 1<r<2 I2<r<1 /i<r<1/2 [1/8<r<1/i] r<1/8
1 SAT CGP NVM QHRIKFLDW EY
2 Y FW H LM NQICVSR TPAKDGE
3 QE KNRSHDTA MPYG VLIWCF
4 KR Q H NETMS PWYALGVCI DF
5 LM 1 FV WYCTQ APHR KSENDG
6 v LM CTA F YSPWN EQKRDGH
7 D EN QHS KGPTA RY MVLFWIC
8 M IVLFTYCA WSHQRNK PEG D
9 PGW CHRDE NQKFYTLAM SVI

Table 2: Preferred amino acids of Blocks9

The function used to compute the ratio of the frequency of amino acid ¢ in component j relative to the

background frequency predicted by the mixture as a whole is

a;,i/185]

o Groki/dx]

An analysis of the amino acids favored by each component reveals the following:

1.
2.
3.

Component 1 favors small neutral residues.
Component 2 favors the aromatics.

Component 3 gives high probability to most of the polar residues (except for C, Y, and W). Since
cysteine can play two roles, either as a disulfide, or as a free thiol, in this component it is apparently
appearing in its disulfide role.

Component 4 gives high probability to positively charged amino acids (especially K and R) and
Q—favoring residues with long sidechains that can function as hydrogen donors.

5. Component 5 gives high probability to residues that are both large and non-polar.

6. Component 6 prefers T and V (aliphatic residues commonly found in Beta sheets), and allows substi-

tutions with L and M.

Component 7 gives high probability to negatively charged residues, allowing substitutions with certain
of the hydrophilic polar residues.

. Component 8 gives high probability to methionine, but allows substitution with most neutral residues,

especially the aliphatics.

. Component 9 gives high probability to distributions peaked around individual amino acids (especially

P, G, W, and C).

26

Posterior Probability of the components of Blocks9

Ile | Blocks9.1 | Blocks9.2 | Blocks9.3 | Blocks9.4 | Blocks9.5 | Blocks9.6 | Blocks9.7 | Blocks9.8 | Blocks9.9
1 0.0550 0.0238 0.0339 0.0200 0.1941 0.4529 0.0157 0.1215 0.0831
2 0.0548 0.0222 0.0108 0.0142 0.1738 0.4843 0.0122 0.0668 0.1609
3 0.0547 0.0212 0.0042 0.0111 0.1538 0.4656 0.0102 0.0383 0.2409
4 0.0537 0.0200 0.0019 0.0090 0.1356 0.4311 0.0088 0.0231 0.3168
5 0.0520 0.0188 0.0009 0.0075 0.1197 0.3929 0.0076 0.0146 0.3860
6 0.0500 0.0176 0.0005 0.0063 0.1059 0.3558 0.0067 0.0096 0.4477
7 0.0478 0.0165 0.0003 0.0053 0.0941 0.3216 0.0059 0.0065 0.5020
8 0.0455 0.0154 0.0002 0.0046 0.0839 0.2909 0.0053 0.0046 0.5496
9 0.0433 0.0144 0.0001 0.0040 0.0753 0.2637 0.0047 0.0033 0.5913
10 0.0412 0.0135 0.0001 0.0035 0.0678 0.2396 0.0042 0.0024 0.6277

Table 3: The posterior probability of each component (Prob (O_Zj | i, @)), equation 16) in Blocks9 given 1 to
10 isoleucines. Initially, component 6, which favors I and V, 1s most likely. But, as more isoleucines are seen
without any valines, component 9, which favors distributions peaked around a single residue, becomes more

likely.

27

Methods used to estimate amino acid probabilities
Pseudocount methods Substitution Matrices Dirichlet densities
Amino Acid | Add_one | Add_share | Blosum62 Subst 1-comp Blocks9
A 0.047619 0.025000 0.036775 0.023388 0.042183 0.037347
C 0.047619 0.025000 0.037993 0.007416 0.010497 0.009717
D 0.047619 0.025000 0.019712 0.005109 0.025597 0.008526
E 0.047619 0.025000 0.019217 0.008594 0.029950 0.012252
F 0.047619 0.025000 0.054988 0.022703 0.021800 0.027068
G 0.047619 0.025000 0.015991 0.008718 0.035132 0.012359
H 0.047619 0.025000 0.018971 0.004003 0.012552 0.006202
I 0.095238 | 0.525000 | 0.232458 | 0.565594 | 0.518022 | 0.470946
K 0.047619 0.025000 0.023046 0.009486 0.029355 0.014450
L 0.047619 | 0.025000 | 0.098515 | 0.105160 | 0.046082 | 0.117353
M 0.047619 0.025000 0.085919 0.025844 0.014432 0.029961
N 0.047619 0.025000 0.019068 0.007490 0.022574 0.010000
P 0.047619 0.025000 0.022365 0.006738 0.018882 0.008189
Q 0.047619 0.025000 0.022265 0.006414 0.019882 0.010463
R 0.047619 0.025000 0.020627 0.008294 0.025707 0.012287
S 0.047619 0.025000 0.025767 0.012484 0.034161 0.019641
T 0.047619 0.025000 0.045341 0.022306 0.030533 0.027728
\% 0.047619 | 0.025000 | 0.140556 | 0.137617 | 0.039777 | 0.148299
\ 0.047619 0.025000 0.023772 0.002822 0.006091 0.003858
Y 0.047619 0.025000 0.036653 0.009820 0.016790 0.013352

Table 4: Estimated amino acid probabilities using various methods, given one isoleucine.

Tables 4, 5, 6 and 7 give amino acid probability estimates produced by different methods, given a varying
number of isoleucines observed (and no other amino acids). Methods used to estimate these probabilities
are Add_one which adds 1 to each count, and then renormalizes; Add_share, which adds 0.05 to each count,
and renormalizes; Blosum62, which does Gribskov average score (Gribskov et al., 1987) using the Blosum-62
matrix (Henikoff and Henikoff, 1992) (natural log base, 3 decimal places); Subst, which does matrix multiply
with an optimized matrix. 7-comp, which is a single-component Dirichlet density optimized for the Blocks
database (Karplus, 1995a); Blocks9, which is the nine-component Dirichlet mixture given in Tables 1 and 2.

28

Methods used to estimate amino acid probabilities
Pseudocount methods Substitution Matrices Dirichlet densities
Amino Acid Add_one Add_share Blosum62 Subst 1-comp Blocks9
A 0.043478 0.012500 0.036775 0.023388 0.021437 0.017725
C 0.043478 0.012500 0.037993 0.007416 0.005335 0.005062
D 0.043478 0.012500 0.019712 0.005109 0.013008 0.003382
E 0.043478 0.012500 0.019217 0.008594 0.015221 0.004413
F 0.043478 0.012500 0.054988 0.022703 0.011079 0.012761
G 0.043478 0.012500 0.015991 0.008718 0.017854 0.005918
H 0.043478 0.012500 0.018971 0.004003 0.006379 0.002293
I 0.173913 0.762500 0.232458 0.565594 0.755058 0.736501
K 0.043478 0.012500 0.023046 0.009486 0.014918 0.004964
L 0.043478 0.012500 0.098515 0.105160 0.023419 0.059162
M 0.043478 0.012500 0.085919 0.025844 0.007334 0.014584
N 0.043478 0.012500 0.019068 0.007490 0.011472 0.003835
P 0.043478 0.012500 0.022365 0.006738 0.009596 0.003860
Q 0.043478 0.012500 0.022265 0.006414 0.010104 0.003694
R 0.043478 0.012500 0.020627 0.008294 0.013064 0.004495
S 0.043478 0.012500 0.025767 0.012484 0.017361 0.007892
T 0.043478 0.012500 0.045341 0.022306 0.015517 0.012980
\% 0.043478 0.012500 0.140556 0.137617 0.020215 0.089090
\ 0.043478 0.012500 0.023772 0.002822 0.003095 0.001704
Y 0.043478 0.012500 0.036653 0.009820 0.008533 0.005685

Table 5: Estimated amino acid probabilities using various methods, given three isoleucines. See the caption
for Table 4 for details.

Methods used to estimate amino acid probabilities
Pseudocount methods Substitution Matrices Dirichlet densities
Amino Acid Add_one Add_share Blosum62 Subst 1-comp Blocks9
A 0.040000 0.008333 0.036775 0.023388 0.014370 0.010315
C 0.040000 0.008333 0.037993 0.007416 0.003576 0.003050
D 0.040000 0.008333 0.019712 0.005109 0.008720 0.002014
E 0.040000 0.008333 0.019217 0.008594 0.010203 0.002471
F 0.040000 0.008333 0.054988 0.022703 0.007426 0.007256
G 0.040000 0.008333 0.015991 0.008718 0.011968 0.003864
H 0.040000 0.008333 0.018971 0.004003 0.004276 0.001283
I 0.240000 0.841667 0.232458 0.565594 0.835808 0.845797
K 0.040000 0.008333 0.023046 0.009486 0.010000 0.002645
L 0.040000 0.008333 0.098515 0.105160 0.015699 0.033869
M 0.040000 0.008333 0.085919 0.025844 0.004917 0.008248
N 0.040000 0.008333 0.019068 0.007490 0.007690 0.002169
P 0.040000 0.008333 0.022365 0.006738 0.006432 0.002433
Q 0.040000 0.008333 0.022265 0.006414 0.006773 0.001987
R 0.040000 0.008333 0.020627 0.008294 0.008757 0.002480
S 0.040000 0.008333 0.025767 0.012484 0.011637 0.004445
T 0.040000 0.008333 0.045341 0.022306 0.010402 0.007471
\% 0.040000 0.008333 0.140556 0.137617 0.013550 0.054004
\ 0.040000 0.008333 0.023772 0.002822 0.002075 0.001004
Y 0.040000 0.008333 0.036653 0.009820 0.005720 0.003195

Table 6: Estimated amino acid probabilities using various methods, given five isoleucines. See the caption
for Table 4 for details.

29

Methods used to estimate amino acid probabilities

Pseudocount methods Substitution Matrices Dirichlet densities
Amino Acid Add_one Add_share Blosum62 Subst 1-comp Blocks9
0.033333 0.004545 0.036775 0.023388 0.007878 0.003909
0.033333 0.004545 0.037993 0.007416 0.001960 0.001229
0.033333 0.004545 0.019712 0.005109 0.004780 0.000921
0.033333 0.004545 0.019217 0.008594 0.005593 0.001031
0.033333 0.004545 0.054988 0.022703 0.004071 0.002629
0.033333 0.004545 0.015991 0.008718 0.006561 0.002006
0.033333 0.004545 0.018971 0.004003 0.002344 0.000554
0.366667 0.913636 0.232458 0.565594 0.909991 0.942399
0.033333 0.004545 0.023046 0.009486 0.005482 0.001015
0.033333 0.004545 0.098515 0.105160 0.008606 0.011797
0.033333 0.004545 0.085919 0.025844 0.002695 0.002855
0.033333 0.004545 0.019068 0.007490 0.004216 0.000893
0.033333 0.004545 0.022365 0.006738 0.003526 0.001182
0.033333 0.004545 0.022265 0.006414 0.003713 0.000772
0.033333 0.004545 0.020627 0.008294 0.004801 0.001026
0.033333 0.004545 0.025767 0.012484 0.006380 0.001732
0.033333 0.004545 0.045341 0.022306 0.005702 0.002782
0.033333 0.004545 0.140556 0.137617 0.007428 0.019612
0.033333 0.004545 0.023772 0.002822 0.001137 0.000441
0.033333 0.004545 0.036653 0.009820 0.003136 0.001216

KE<HNBOUZE D R~OQREIO®

Table 7: Estimated amino acid probabilities using various methods, given ten isoleucines. See the caption
for Table 4 for details.

30

A Appendix

|£] = >, zi, where z is any vector.

. = n1,...,n20 is a vector of counts from a column in a multiple alignment.

@i: is the ¢ such observation in the data set.

|7 = Zl ni, the number of amino acids observed in a given column of a multiple alignment.

|| = Z?O n¢,; is the number of amino acids observed in the +* count vector (724).

7 =(p1,---,p20), Zpi =1, p; > 0, are the parameters of the multinomial distributions from which the 7@
are drawn.

P is the set of all such 7.

a = (ai1,...,a2) s.t. a; > 0, are the parameters of a Dirichlet density.

& = 2?21 a; is a measure of the peakedness of the Dirichlet density with parameters (aq, ..., a2).

a; are the parameters of the 7" component of the Dirichlet density.

oy 1s the value of the i'" parameter of the j'* component of the Dirichlet mixture.

a; is the value of the i*® element of a Dirichlet density.

g; = Prob(d;) is the mizture coefficient of the 7" component of the mixture.

© ={q,...,q,0d1,...,0;} = all the parameters of the Dirichlet mixture.

@ = (ws,...,wa), are unconstrained values upon which we do gradient descent during training. After each
training cycle, o ; is set to e”51.

w;; 1s the value of the i'" parameter of the ;" weight vector. The nomenclature weights comes from artificial
neural networks.

m = the number of columns from multiple alignments used in training.

[= the number of components in the mixture.

1 = eta, the learning rate used to control the size of the step taken during each iteration of gradient descent.

Table 8: Summary of notation.

31

Prob (i | ©,)

Prob (&; | #,©)

= - Z:Zl log(Prob (ﬁt | o, |ﬁt|))

(the objective function minimized)

=n! (for integer n > 0)
(Gamma function)
— Adlog'(z) __ (=

oz - T(=)
(Psi function)

L 20 _pt
=17+ DI, mos
(the probability of 7 under the multinomial distribution with parameters p)
— Ldal+n ra)) H20 I(nita;)

T([A[+[a]) i=1 Tn A1) (e . . .
(the probability of 7 under the Dirichlet density with parameters &)

= 3\ _, ax Prob(i | &, |7])

(the probability of i given the entire mixture prior)

_ g Probgaja; |
Prob (ﬁ|®,|ﬁ|)

(shorthand for the posterior probability of the 7" component of the mixture
given the vector of counts i)

(18)

(45)

(65)

(46)

(54)

Table 9: Index to key derivations and definitions.

32

A.1 Lemma 1. Prob (7 | 7, |7]) = I'(|7] + 1) [T Pl

i=1 T'(n;+1)
Proof:
For a given vector of counts @, with p; being the probability of seeing the ' amino acid, and |7 = Zl n;,
there are udl) distinct permutations of the amino acids which result in the count vector #. If we allow for

niing!...ng
the assumption that each column is generated independently, then each such permutation has probability H?gl pit.

Thus, the probability of a given count vector # given the multinomial parameters § is

| 3
pil) = ot L ()

20 .
b,
n;!
i=1

(44)

= Ja!

Since we may need to handle real-valued data (such as that obtained from using a weighting scheme on the
sequences in the training set), we introduce the Gamma function, the continuous generalization of the integer factorial

function,
?(n+1) =mn! (45)

Substituting the Gamma function, we obtain the equivalent form

Prob (ﬁ

20 s

- | = — P,

P,|n|) = ?(|n|+1)HW (46)
=1 !

33

A.2 Lemma 2. Prob (p| d) = _rish 12, pst
Hi:l INCH)
Proof:

Under the Dirichlet density with parameters &, the probability of the distribution 7 (where p; > 0, and Zl pi=1)
is defined as follows:

Hgo poil
Prob(§| &) = ——=——— (47)
Joer 1Ll ™ di

We introduce two formulas concerning the Beta function—its definition (Gradshteyn and Ryzhik, 1965, p. 948):

1
B(z,y) = /tm_l(l—t)y_ldt
0

(=) (y)

" (x)?
?(z+y)

and the combining formula (Gradshteyn and Ryzhik, 1965, p. 285):

b
/ T o —)T dt =0TV T B(x, y)
0

This allows us to write the integral over all § vectors as a multiple integral, rearrange some terms, and obtain

/ Hp?’_ldﬁ B(a/1,a/2—|—...-|—£1/20)B(a/2,a/3-|—...-|—a/20)...B(a/19,a/20) (48)
pEP

- H(ﬁ)))

This allows us to now give an explicit definition of the probability of the point " given the Dirichlet density with
parameters &’

20

34

S o IN{i I'(la I'(n;+a;
A.3 Lemma 3. Prob (7 | @,]i|) = % 1%, W

Proof:
&,|ﬁ|) :/ Prob (ﬁ
peP

Since
Prob (ﬁ
Substituting equations (46) and (50) into equation (51), we obtain

1]} Prob(7| @) di (51)

217+ D2 (& 0
Prob (ﬁ a, |ﬁ|) — - (7] +)7 (|4]) Hp:;,+a,—1 a7 (52)
per [Lioy (7 (i + 1) 7 (a0)) 13

Pulling out terms not depending on § from inside the integral, and using the result from Equation (49), we

obtain "o
__rga+nergan Il Peit o) (53)

T2, (7 (i +1) 7 (as)) (A +]8])

At this point, we can simply rearrange a few terms and obtain the equivalent form

20
oo +1)7(|d (ni -I—az
a,|n|) — (| | | | H n) (54)

Prob (ﬁ

||+|a|

35

A.4 Lemma 4. Prob(p|a, i) =) I172, pf e

[1,2, Tlentns) -
Proof:

By Bayes’ Rule, the probability of the distribution 7, given the Dirichlet density with parameters &, and the
observed amino acid count vector 7 is defined

= ﬁ’) _ Prob |p, ,|ﬁ|) Prob p | a (55)

Prob (7
e (p Prob ﬁ | a, n|)

However, once the point 'is fixed, the probability of @ no longer depends on &. Hence,

—

= _’) _ Prob (ﬁ | 7, |n|) Prob (17| Ey’)
a Prob (7 | &, |7)

Prob ((56)

At this point, we apply the results from previous derivations for quantities Prob (ﬁ | 7, |ﬁ|) (equation 46),
Prob p | d) (equation 50), and Prob n | |n| (equation 54). This gives us

L (ﬁ%ﬁiﬂ vy) (I{j';‘;';) IT,»:) (] + 1&1) [T, ? (ni 4+ 1)7 (1)
) = 77+ D T (&N TL, 7 (ne + o)

Prob ((57)

Most of the terms cancel, and we have

Prob (17

2(la+17) T
JEN o n itn;—1
a,n) = =, Hp? +n (58)
Hi:l : (ai + n’) i=1
Note that this is the expression for a Dirichlet density with parameters @ and 7. This property, that the posterior
density of p is from the same family as the prior, characterizes all conjugate priors, and is one of the properties that
make Dirichlet densities so attractive.

36

dlog Prob(ie,|7|)
doy g

dlog Prob(ila,,|7l)
doy g

A.5 Lemma 5.
Proof:

The derivative of the logarithm of the probability of each individual observation # given the mixture with respect
to oy ; 1s:

= Prob(a; | 7,0)

dlog Prob (it | ©, i) 1 dProb (it | ©, 7)) %
day; ~ Prob (i | ©, i) day; (59)
Applying equation 17, this gives us
dlog Prob (i | ©,|i]) 1 O3y, ax Prob (7 | &, i) (o)
daj,i " Prob (ﬁ | o, |ﬁ|) day ;

Since the derivative of Prob (ﬁ | ag, |ﬁ|) with respect to «;; 1s zero for all & # 7, and the mixture coefficients
(the gx) are independent parameters, this yields

9log Prob (i | ©, i) " dProb (7 | &,,|) (61)
dary i ~ Prob (ﬁ | o, |ﬁ|) dory,i
We rearrange equation (16) somewhat, and replace qj| by its equivalent, obtaining,
Prob (ﬁ ®,|ﬁ|)

dlog Prob (it | ©,[7|) Prob (&, | #,©) oProb (it | &,, i)
|

daj i ~ Prob (i | &, |i) daji
Here, again using the fact that aloigi(m)) = f(lm) ag(f), we obtain the final form

dlog Prob (i | ©, i)

dary;

n,

— Prob (&] . @) dlog Prob (n | aj, |n|)

dary;

37

alog Prob(z|a,|7 . . o
A6 Temmae. 2SPTOPEIN _ gz _ y(ja + () + W(ni +ai) - B(ay)

Proof:

In this proof, we use Lemma 3 giving

20
B EREI(L) nz+az
. 1l) = S A H (s + 17 (o)

Since the derivative of terms not depending on «; are zero, we obtain that for a single vector of counts @,

Prob (ﬁ'

dlog Prob (i | a, |i]) _ Qdlog?(ld]) dlog ?(|7 |—|—|a|) dlog ?(ni+a;) dlog ? () (64)
da; - da; da; da; da; ’
Now, if we substitute the shorthand
dlog ?(z) 7'(x)
¥(z) Jr o7 () (65)
we have
dlog Prob (ﬁ | a, |ﬁ|) . . .

= V(|a@]) = V(7] + [@]) + U(n: + o) — U(ai) (66)

da;

38

AT LemmaT. aProl;g|®,|ﬁ|) _ Prob(ﬁ|&‘i,|ﬁ|)|6;|Prob(ﬁ|®,|ﬁ|)

Proof:
Substituting equation (17), giving Prob (ﬁ | o, |ﬁ|) = Zizl g; Prob(ii | &;, |7t]) and replacing ¢; by @;/|Q)|, this
gives us

oProb (i | ©,17) 9)°,(Q,/1QI)Prob (i | &, i)
aQ; o aQ;

As the derivative of a sum is the sum of the derivatives, we can use the standard product rule for differentiation,
and obtain

(67)

aProb (7 | ©, |7]) aProb (i | &, |i|) .
9Q: - Z [(QJ”QU 50, - + Prob (n

J

1)) “%—C/QJQ')] (6%)

(69)
sProb (ﬁ|d‘j,|ﬁ|)

Since ——g,—— =0 for all j, this gives us
9Prob (it | ©,]i]) aan) 2@/ 19D
J

Taking the derivative of the fraction (@;/|Q|) with respect to Q;, we obtain

9(Q,/1Q1) -1 9Q; 9lQ™

90, 9l 90, 90,

+ @

1
, 18 simply

The first term, |Q|_1 995 is zero when 7 # 1, and 1s |1—| when j = 1. The second term, @, al%_

9@’ Q 9Q;
| Qng. Thus, this is

dProb (i | ©,]i]) Prob (it | &,) .
70, = 0] + ZJ:Prob (n

Here, ¢; = Q;/|Q] allows us to replace Q,/|Q|” with ¢;/ |@Q], giving us

Prob (i | &, |it]) — 3, ¢;Prob (i@ | &;, |ii])

i, |ﬁ|) |‘QC|3; (11)

- (72)
Q|
(73)
At this point, we use equation 17 and obtain
dProb (i | ©,]i|) Prob (i | &, i[) — Prob (i | ©, |ii]))

Qi Q|

39

olog Prob(i|e,#]) Prob(a|i,0)

A.8 Lemma 8. 70, oF - |612_|
Proof:
dlog Prob (i | ©,]il]) 1 aProb (it | ©, 1)) .
0Q: ~ Prob (| ©,) 0Q: %)

Here we use Lemma 7, which allows us to express the derivative with respect to Q; of the log likelihood of a
single observation #, given the mixture, as

dlog Prob (i | ©,]i]) 1 Prob (7 | &, ii|) — Prob (7 | ©,)
9Q ~ Prob (7] ©,]i) QI

_ Prob (ﬁ' ai, | |) “1) /0l (17)
Prob (it | ©, [

Prob (ﬁ d‘,,|ﬁ|) _ Probia,)
Prob (ﬁ|®,|ﬁ|) “

dlog Prob (i | ©,) _ (Prob(a:|i)) 1) /10|
”

3y

If we rearrange equation 16, we obtain

. This allows us to write

aQ;
Now we can use the identity ¢; = Q;/|Q|, obtaining the equivalent

7

dlog Prob (i | ©,]@]) Prob (@i |#,0) 1 o
0Q; B Qi Q] %)

40

