
22

[9] S.Naik, F.Agricola, and W.Maly,Failure analysis of high-density CMOS SRAMs, IEEE De-
sign and Test of Computers, vol.10, no.2, pp.13-23, June, 1993

[10] J,Khare, W.Maly, S.Griep and D.Schmitt-Landsiedel,Yield-oriented computer-aided defect
diagnosis, IEEE Trans. on Semc. Manu., vol.8, no.2, pp.195-206, May, 1995

[11] B.C. Peter, JR and H.F. Walker,The numerical evaluation of the maximum-likelihood esti-
mate of a subset of mixture proportions, Siam J. Appl. Math., 35, pp. 447-452, 1978

[12] A.P. Dempster, N.M. Laird and D.B. Rubin,Maximum-likelihood from incomplete data via
the EM algorithm, J. Royal Statist. Soc. Ser. B, 39, pp. 1-38, 1977

[13] A. Jalubowski, W. Marcinial and H.M. Przewlocki,Diagnostic Measurements in LSI/VLSI
Integreted Circuits Production, World Scientific, 1991

[14]  M.Abramovici, M.A. Breuer and A.D. Friedman,Digital Systems Testing and Testable De-
sign, Computer Science Press, 1990

[15] LOQO an efficient implementation of an interior-point method for large scale linear and/or
quadratic programming problems, available via ftp://elib.zib-berlin.de

[16]  P.Y. Papalambros and D.J. Wilde,Principle of Optimal Design, Cambridge University Press,
1988

[17]  M.H. DeGroot,Probability and Statistics, Adderson-Wesley Publishing Company, Second
Edition

[18]  S.J. Leon,Linear Algebra with Applications, Macmillan Publishing Company, 1990

[19]  S.R. Searle,Linear Models, John Wiley & Sons, Inc., 1971

[20] V.A. Sposito,Linear and Nonlinear Programming, The Iowa State University Press, 1975

[21] Jianlin Yu,Maximum likelihood estimation for failure analysis of SRAM cells using Inductive
Fault Analysis, Master Thesis, University of California Santa Cruz, 1996

[22] B.N. Datta,Numerical Linear Algebra and Applications, Brooks/Cole Publishing Company,
1995

[23] D.W. Hosmer, JR, A comparison of iterative maximum-likelihood estimates of the parameters
of a mixture of two normal distributions under three different types of sample, Biometrics,
29, pp. 761-770, 1973

[24] B.M. Hill, Information for estimating the proportions in mixtures of exponential and normal
distributions, J. Amer. Statist Assoc., 58, pp. 918-932, 1963



21

6 Summary

 In this paper we have described an iterative ML estimation method for failure analysis. We

have numerically compared the ML estimate with other two methods, the least squares and enu-

meration. The results showed that both the least squares and the enumeration estimators didn’t

coincide with MLEs. We analyzed the ill-conditioned problem of a DCM, and illustrated some

"good" or "bad" DCM structures. The elements of the normalized DCM should be well-separated

to guarantee accurate MLEs for defect classes. We also showed how to derive sample size needed

to ensure the expected accuracy of ML estimation. Finally, to illustrate the effectiveness of the

iterative ML algorithm we have provided an experimental example by performing our ML esti-

mation on a real SRAM cell with the assumption that each electrical fault represents a fault

behavior. The ML estimates with such an assumption provide a lower bound on number of sam-

ples needed.
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To avoid fortuitous phenomena of using only one experiment, we performed 20 more exper-

iments using the same assumption and approach. The results are shown in Table 8. From that

table, one can easily see that the estimation accuracies in all experiments accord with the expected

ones with a sample size of 500.

TABLE  8 MLEs for p(d), means of p(d) and average standard deviations of the twenty
experiments

                       short
poly-

      break

ndiff
poly-

pdiff
poly-

m1
poly-

poly
ndiff-

ndiff
m1-

m1
ndiff-

m1
m1-

m2
pdiff-

pdiff ndiff ndc  poly pdiff pdc m1 polyc

0.044 0.0060 0.0611 0.0908 0.0113 0.2601 0.0317 0.1418 0.0031   0.00 0.0352   0.00  0.00 0.0741 0.0581 0.0560

  p(d)_2.

0.052 0.014 0.0377 0.0972 0.01250.2648 0.04220.1255 0.0042 0.00 0.03600.1049 0.00 0.00 0.07810.0691 0.0620

0.064 0.0080 0.0357 0.0976 0.0114 0.2680 0.0541 0.11760.0035   0.00 0.03570.1058   0.00  0.00 0.0753 0.0632 0.0600

0.046 0.0120 0.0439 0.0836 0.0110 0.2592 0.0545 0.1144 0.0033   0.00 0.0417   0.00  0.00 0.0799 0.0699 0.0500

   p(d)_5

0.060 0.0100 0.0440 0.0789 0.01220.2548 0.05270.1312 0.0041 0.00 0.0352 0.1186 0.00 0.00 0.07410.0581 0.0660

0.040 0.0120 0.0356 0.1015 0.0248 0.2823 0.0427 0.12590.0027   0.00 0.0228 0.1423  0.00  0.00 0.0746 0.0463 0.0420

0.060 0.0120 0.0729 0.0584 0.0000 0.2337 0.0383 0.1584 0.0043   0.00 0.0290   0.00  0.00 0.0693 0.0523 0.0640

   P(d)_8

0.042 0.0120 0.0511 0.0828 0.02320.2626 0.04700.1447 0.0026 0.00 0.0224 0.1092 0.00 0.00 0.09760.0409 0.0620

0.052 0.0120 0.0487 0.0618 0.0130 0.2878 0.0478 0.13520.0036   0.00 0.0333 0.1361  0.00  0.00 0.0818 0.0368 0.0500

0.06600.0014 0.0541 0.0738 0.0114 0.2772 0.0483 0.1333 0.0057   0.00 0.0234   0.00  0.00 0.0902 0.0578 0.0520

   p(d)_11

0.048 0.0060 0.0442 0.1060 0.01090.2763 0.03660.1661 0.0039 0.00 0.0393 0.0992 0.00 0.00 0.07590.0436 0.0440

0.048 0.0140 0.0376 0.0980 0.0106 0.2637 0.0573 0.12840.0024   0.00 0.0290 0.1155  0.00  0.00 0.0772 0.0524 0.0660

0.044 0.0060 0.0572 0.0958 0.0113 0.2217 0.0552 0.1401 0.0046   0.00 0.0413   0.00  0.00 0.0725 0.0575 0.0520

   p(d)_14

0.040 0.0040 0.0391 0.1007 0.01020.2674 0.05710.1178 0.0056 0.00 0.0411 0.1206 0.00 0.00 0.07180.0585 0.0680

0.038 0.0080 0.0493 0.1187 0.0117 0.2569 0.0569 0.14360.0017   0.00 0.0351 0.1115  0.00  0.00 0.0598 0.0516 0.0640

0.048 0.0140 0.0669 0.0982 0.0128 0.2739 0.0538 0.1300 0.0044   0.00 0.0172   0.00  0.00 0.0711 0.0454 0.0460

   p(d)_17

0.054 0.0040 0.0687 0.0881 0.01170.2607 0.04430.1235 0.0050 0.00 0.0344 0.1064 0.00 0.00 0.08410.0472 0.0680

0.054 0.0100 0.0428 0.0865 0.0122 0.2518 0.0679 0.13600.0047   0.00 0.0178 0.1137  0.00  0.00 0.0813 0.0632 0.0580

0.049 0.0097 0.0496 0.0896 0.0122 0.2632 0.0483 0.1344 0.0037   0.00 0.0319   0.00  0.00 0.0781 0.0535 0.0575

   p(d)_20

0.048 0.0060 0.0486 0.0869 0.01190.2698 0.04490.1307 0.0012 0.00 0.0348 0.1155 0.00 0.00 0.08490.0528 0.0640

0.060 0.0100 0.0530 0.0940 0.0114 0.2716 0.0332 0.14400.0048   0.00 0.0345 0.0924  0.00  0.00 0.0883 0.0469 0.0560

0.0029 0.0089 0.0105 0.00330.0117 0.00760.0101 0.0038 0.00 0.00680.0118 0.00 0.00 0.00670.0079 0.0069

p(d)_1

p(d)_3

p(d)_4

p(d)_6

p(d)_7

p(d)_9

p(d)_10

p(d)_12

p(d)_13

p(d)_15

p(d)_16

p(d)_18

p(d)_19

average
stand. dev.0.0066

mean of
p(d)

0.1266

0.1309

0.1475

0.1186

0.1407

0.1183

0.1187

m2 or
m2c
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we assume the probability distribution in Table 6 is the true value for each defect class, the stan-

dard deviation of each estimated defect class probability is less than 0.03 (see Table 7). This

meets our expectations. Fig. 3 is a histogram of probability distribution of defect classes. It is

obvious that shorts between two metal1 layers are the most likely cause of faults.

TABLE  7   MLE for p(d), standard deviation, diagonal elements of inverse of Fisher
Information matrix,  and sample sizes needed to achieve 0.05 and 0.01 standard deviations

                       short
poly-

      break

p(d)

sample

ndiff
poly-

pdiff
poly-

m1
poly-

poly
ndiff-

ndiff
m1-

m1
ndiff-

m1
m1-

m2
pdiff-

pdiff ndiff ndc  poly pdiff pdc m1 polyc

0.06600.0120 0.4181 0.2655 0.0595 0.6020 0.1117 0.1466 0.0771   0.00 0.1029 0.0000 0.0000 0.2654 0.4459 0.0580

30 5 170 110 30 250 50 60 40  1 50 60 1 1 110 180 30

I
1–

p d( )( )

size (0.05)

 stnd. dev.

sample
700 600 800 10 10 10size (0.01)

0.066 0.012 0.0345 0.0824 0.01110.2682 0.03660.1176 0.0015 0.00 0.0362 0.1101 0.00 0.00 0.09080.0749 0.0580

0.016 0.0020 0.0155 0.0076 0.0011 0.0018 0.0134 0.01240.0015 0.0000 0.0062 0.00990.0000 0.0000 0.0108 0.0249 0.0020

130 4200 2700 6100 1200 1500 1100  1500 2700 4500 600

0.1422

m2 or
m2c

0.25

pr
ob

ab
ili

ty

0.2

0.15

0.1

0.05

0

0.3

poly-
ndiff

poly-
pdiff

poly-
m1

poly-
poly

ndiff-
ndiff

m1-
m1

ndiff-
m1

 m1-
m2

pdiff-
pdiff

 ndiff  ndc m2 or
m2c  poly pdiff pdc  m1 polyc

defect classes

Figure  3. Probability distribution of defect classes
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easier to solve since an electrical fault-to-fault mapping is a many-to-one mapping. After combin-

ing indistinguishable electrical faults which are caused by the same defect classes and combining

indistinguishable defect classes which have the same fault distribution, and then normalizing the

conditional probabilities, we get the assumed normalized DCM shown in Table 5. The blank

entries in the normalized DCM denote corresponding conditional probabilities being zero. ,

,...,  represent the twenty-five different electrical faults in the SRAM cell. Before combining

indistinguishable electrical faults there were seventy-one electrical faults. In each experiment, we

generated 500 defects using a randomly generated defect class distribution in Table 6. We distrib-

uted 500 defects to each defect class according to the defect class distribution in Table 6 to get the

number of occurrences of each defect class. Due to using a random number generator, the number

of defects in each defect class was seldom exactly the ratio depicted in Table 6. This was to simu-

late the stochastic nature of which defects occur. Then we distributed the generated defects in

each defect class to its corresponding fault behaviors according to the conditional probabilities

 in the DCM to get the number of occurrences of a fault given the number of occurrences of

a defect class. These were distributed using a random number generator as before to simulate the

stochastic nature of which faults occur due to a given defect. Finally we added the numbers of

occurrences of the same fault to generate the total number of occurrences of each fault. The last

column of Table 5 shows one of the generated number of occurrences of each fault using the

above approach with a sample size of 500 defects.

Table 7 shows the results of using the ML estimation on Table 5. We have computed MLE

for each defect class using our iterative ML algorithm, and numerically evaluatedI(p(d)), its condi-

tion number and its inverse for values ofd using MATLAB system. Sample sizes are those needed

to ensure that standard deviation of MLE for  is 0.05 or less by using the equation (2). From

Table 7 one can easily see that the normalized DCM in Table 5 is well-conditioned, and the sam-

ple size needed to ensure 0.05 standard deviation is less than 300. Thus the MLEs are reliable. If

f1

f2 f25

p fi dj( )

p di( )

TABLE  6 The assumed probability distribution of defect classes

                       short
poly-

      break

p(d)

ndiff
poly-

pdiff
poly-

m1
poly-

poly
ndiff-

ndiff
m1-

m1
ndiff-

m1
m1-

m2
pdiff-

pdiff ndiff ndc  m2 m2c  poly pdiff pdc m1 polyc

0.05 0.01 0.05 0.09 0.01 0.27 0.05 0.13 0.00 0.00 0.03 0.02 0.10 0.00 0.00 0.08 0.05 0.06
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TABLE  5  The normalized DCM of the SRAM cell and number of occurrence of each fault

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

f14

f15

f16

f17

f18

f19

f20

f21

f22

f23

f24

f25

                 short
poly-

ndiff
poly-

pdiff
poly-

m1
poly-

poly
ndiff-
ndiff

m1-
m1

ndiff-
m1

m1-
m2

pdiff-
pdiff

ndiff  ndc poly pdiff pdc m1 polyc

   1.0

1.0

0.5957

0.4043

0.6934 0.0774

0.0559

0.1640

0.5675

0.1956

0.1177

0.0078

0.0348

0.2133

0.1582

0.1736

0.0131

0.4685

0.6564

0.2311

 1.0

  33

    6

 3

    39

27

    55

     2

    4

   42

      1

    40

   break

0.3066 0.3448

0.3341

0.2968 0.3319 0.1321

0.1353 0.1125

0.2726

0.5366 0.7929 0.4127

0.7032

0.3340 0.2893

0.9304

0.0296

0.4991

0.4634

0.50090.0696

0.2071 0.1363

   14

   1

   0

   17

     0

    51

     6

   66

   19

   37

  7

 15

 15

 0

m2 or
m2c

1.0

F
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From Table 4 one can easily see that the defect class estimates on  will be more accurate

than on other three DCMs. Thus we prefer to have a SRAM with such normalized DCM as  to

perform failure analysis.

5 An Experimental Example

In this section, we illustrate the use of the ML method described in the previous sections on

a real SRAM cell. The layout of the six-transistor CMOS SRAM cell is drawn for a 0.6  single

poly, double metal CMOS technology. The word line is routed in poly horizontally through the

cell. The bit and bit_bar lines are run vertically in the second metal. The Vdd and GND lines are

horizontally drawn in the first layer metal. The size of the cell is .

As mentioned before, we use Carafe to analyze this cell and extract a list of electrical faults

with probability of the occurrence of each electrical fault. For the experiment in this paper, we ran

Carafe using a defect radius of 3.25 microns. We used a uniform scaling factor between layers to

find the critical area for each defect. The ratio of each defect critical area to the total critical area

is the occurrence probability of an electrical fault if that defect occurs. For the purpose of illustrat-

ing the essential idea behind the ML method, here we assume that each electrical fault has a

unique fault behavior. That is, we use defect-to-electrical fault mapping information instead of

defect-to-fault mapping information to construct the DCM.  This assumption makes the problem

cond(A)              cond(H)                cond(I)

∞ ∞ ∞

∞ ∞ ∞

3.2151e+16 3.2796e+07 1.2821e+07     1.0e+9

3.4767 12.696412.6965    290

TABLE  4  The  of normalized DCM, Hessian matrix and
Fisher Information matrix, and sample sizes of Example 4

condition numbers

∞

∞

sample size
    normalized

DCM

A1

A2

A3

A4

A4

A4

µ

14.1 10.5× µ2



15

That is, if the normalized DCM is well-conditioned, the performance of ML estimation method is

very good in the sense that it converges rapidly to the unique maximum and the rate of conver-

gence is not sensitive to the initial estimates. On the other hand, for the ill-conditioned matrix,

slopes can be steep, thus much larger sample size needed to guarantee the accuracy of the ML

estimation.

The simple example below illustrates the conditions of several DCM structures.

Example 4. Let’s suppose there are three possible faults and three defect classes with proba-

bilities in each DCM  fori = 1,2,3,4. Matrix  is the normalized version of matrix .

 = ⇒  =

 = ⇒  =

 = ⇒  =

 = ⇒  =

The computed condition numbers for each normalized DCM are shown in Table 4. The con-

dition number of a matrix is computed using interactive MATLAB program. Assume that the val-

ues of , ,  for  and  are0, 0, 1 and0.28, 0.21, 0.51 respectively. Sample sizes are

those needed to ensure that the standard deviation of each MLE of  is 0.1 or less. They are

determined using the largest sample size among the components of probability vector .

A' i A i A' i

A'1

1
18
------ 2

18
------ 3

18
------

1
18
------ 2

18
------ 3

18
------

1
18
------ 2

18
------ 3

18
------

A 1

1
3
--- 1

3
--- 1

3
---

1
3
--- 1

3
--- 1

3
---

1
3
--- 1

3
--- 1

3
---

A'2

1
18
------ 1

18
------ 1

18
------

2
18
------ 2

18
------ 2

18
------

3
18
------ 3

18
------ 3

18
------

A2

1
6
--- 1

6
--- 1

6
---

1
3
--- 1

3
--- 1

3
---

1
2
--- 1

2
--- 1

2
---

A'3

1
45
------ 2

45
------ 3

45
------

4
45
------ 5

45
------ 6

45
------

7
45
------ 8

45
------ 9

45
------

A3

1
12
------ 2

15
------ 1

6
---

1
3
--- 1

3
--- 1

3
---

7
12
------ 8

15
------ 1

2
---

A'4

1
45
------ 9

45
------ 6

45
------

4
45
------ 2

45
------ 8

45
------

7
45
------ 5

45
------ 3

45
------

A4

1
12
------ 9

16
------ 6

17
------

1
3
--- 1

8
--- 8

17
------

7
12
------ 5

16
------ 3

17
------

p d1( ) p d2( ) p d3( ) A3 A4

p di( )

p d( )
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                                                     =

where . It is an  symmetric matrix. If we use 2-norm the condition num-

ber,cond(H), of the Hessian matrix is

cond(H) =  =

 We can also use Fisher Information to estimate the condition of the log function. Recall that

we have mixture model defined as . The Fisher Information matrix

 is defined in [17] as:

 =

Since  is a probability function, we have

 =

Since the condition number of  can reflect the limits of accuracy of the condition

number of Hessian matrix [1], we can measure the ill-conditioning of the log function by comput-

ing Fisher Information matrix instead of Hessian matrix.

By using Fisher Information, we can also derive Cramer-Rao lower bound for the variances

of the MLEs for  as follows [17]:

(2)

where  is thejth diagonal element of the inverse of the Fisher Information matrix. Thus

the variances of the MLEs for  cannot be smaller than the reciprocal of the Fisher information

in the sample. From equation (2) we can derive a lower bound on sample size needed for a given

standard deviation.

The performance of our estimates largely depends on the condition of the Fisher Informa-

tion matrix. Since the condition number of the normalized DCM is directly proportional to that of

the Fisher Information matrix, the condition of the inherent normalized DCM will play an impor-

tant role in determining the accuracy of the MLEs of the probability distribution of defect classes.

∇∇T
p Fi( ) log p fi( )

i 1=

m

∑

∇∇T

p di( ) p dj( )∂

2

∂
∂

 
 
 

= n n×

H p d( )( ) 2 H
1–

p d( )( ) 2
σ1 the largest singular value( )

σn the smallest singular value( )
-----------------------------------------------------------------------------

p fi( ) p dj( ) p fi dj( )j 1=
n∑=

I p d( )( )

I p d( )( ) E ∇∇T
logp fi( )–

p fi( )

I p d( )( ) ∇∇T
logp fi( ) 

 
p fi( )

i 1=

m

∑–

I p d( )( )

p d( )

var p dj( )( ) 1

Fi
i 1=

m

∑
---------------≥ I

1–
p d( )( ) j j

I
1–

p d( )( ) j j

p d( )
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A = F =

The results are shown in Table 3.

From above examples, one can easily see that the solutions of both constrained least squares

and enumerative methods are not always coincide with MLEs which are our expected solutions.

Thus these two methods are not ML estimation methods forp(d). The reason why the least squares

is not ML estimation may be that linear modelAD = F +  (  are random measurement errors)

does not reflect stochastic nature ofD andF, and improperly compensates for this by adding a

measurement error vector . Both the least squares and the enumeration methods provide

estiamtes ofD, not those of the underlying defect distribution causingD, which arep(d).

4 Conditioning of the Maximum Likelihood Estimation

The termconditioning andcondition are used to indicate how sensitive the solution of a

problem may be to small perturbations in the input data. A problem is ill conditioned if relatively

slight perturbations in the data can produce large changes in the solution. The ill-conditioning of

an optimization problem is usually measured by the condition number of Hessian matrix of the

function to be optimized[1][16]. In our case, the Hessian is given by

H(p(d)) =

0.37 0.002 0.183

0.105 0.087 0.333

0.05 0.444 0.147

0.235 0.301 0.003

0.24 0.166 0.334

10

10

6

2

2

EE

  0.3543   0.0823   0.5634LSE

MLE

p d1( ) p d2( ) p d3( )Method
value of

likelihood function

1.482e-21

1.648e-21

1.655e-21

TABLE  3 The computational results of Least Squares Estimate (LSE), Enumerative Estimate
(EE) and Maximum Likelihood Estimate (MLE) for Example 3

0.2667 0.0666 0.6667

0.2710 0.0770 0.6520

ε ε

ε

∇T
L p d( )( )∇
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The results are shown in Table 11.

Example 2. Given the normalized DCMA and vectorF as follows:

A = F =

The results are shown in Table 2.

Example 3. Given the normalized DCMA and vectorF as follows:

1.  The LSE’s results were obtained by using a public domain software package LOQO[15]. The LSE and EE’s
results were converted into by using the approximate formula .

0.9693   0.0307

0

0

LSE

MLE

p d1( ) p d2( ) p d3( )Method value of
likelihood function

1.112e-10

1.316e-10

1.338e-10

0

TABLE  1 The computational results of Least Squares Estimate (LSE), Enumerative
Estimate (EE) and Maximum Likelihood Estimate (MLE) for Example 1

EE 0.8571

0.8839

0.1429

0.1161

D j p dj( ) p dj( ) Dj F
ii 1=

m∑⁄=

0.35 0.41 0.1

0.4 0.33 0.74

0.25 0.26 0.16

10

15

5

EE

0   0.6250   0.3750

  0

LSE

MLE

p d1( ) p d2( ) p d3( )Method
value of

likelihood function

4.850e-14

4.850e-14

4.851e-14

TABLE  2 The computational results of Least Squares Estimate (LSE), Enumerative
Estimate (EE) and Maximum Likelihood Estimate (MLE) for Example 2

0.0003

0.6333 0.3667

0.6287 0.3710
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1) Compute the probability for each fault

2) Recompute the probability for each defect class

 =

This iterative procedure should always converge to a global maximum since the Hessian

matrix of the log-likelihood function  is always negative definite. The convergence proof

is the same as for other maximum-likelihood estimate problems [1]. If there exist several points

that fall into the same maximum, the starting estimates of defect class probabilities will play an

important role in deciding the solutions. Note that the initial estimates of mixture proportions

 cannot be zero in our algorithm, because otherwise  will always be zero in the itera-

tion.

If the sample size in the defect estimate is large, a modified version of EM called -

update algorithm can be used to speed up the convergence with small extra computational cost.

The new update uses the following formula:

 =

where the parameter  is called the learning rate. When  = 1 this gives the standard EM update.

In practice, the -update algorithm can use either fixed scheduling for  e.g.  = 2.5 or line-

searches to find the best choice of  on each iteration. For the ideas behind the -update algo-

rithm please refer to Helmbold[3].

The following three small examples compare the numerical results of the ML method with

other two methods, the least squares estimate (LSE) and the enumeration estimate (EE). For the

detailed description of these two methods please see [21].

Example 1. Given the normalized DCMA and vectorF as follows:

A = F =

p̂ fi( ) p
ϒ( )

dj( )
j 1=

n

∑= p fi dj( )

p
ϒ 1+( )

dj( ) p
ϒ( )

dj( )
p Fi( ) p fi dj( )

p̂ fi( )
------------------------------------

i 1=

m

∑

L p d( )( )

p 0( ) d( ) p d( )

EMη

p
ϒ 1+( )

dj( ) p
ϒ( )

dj( ) η L p ϒ( ) d( ) 
 

j 1–∇ 
 

1+ 
 

η η

EMη η η

η EMη

0.6 0.1 0.2

0.2 0.3 0.8

0.2 0.6 0.0

20

7

1
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where  is the number of occurrences of fault . We define the log-likelihood function

                                                           =

                                                           =

where  = . Since maximizing the log-likelihood function maximizes the likelihood

function, our objective can be to find the mixture coefficients , ,...,  that maxi-

mize either the likelihood or the log-likelihood function.

Maximum likelihood estimation based on such a mixture model puts our defect class esti-

mate within the framework of standard statistical theory. The gradient ascent iterative

schemes[1][11][16] and Expectation-Maximization (EM) algorithm[12] are two commonly used

techniques to solve this mixture proportion estimate problem. The iterative algorithm for our

defect class estimate problem is based on standard EM method. That is, on the th iteration, we

choose the new update  as

 =

where  is thejth element of the row vector  at probability vector , and

 is the gradient of partial derivatives with respect to the elements of . That is

                                =

Our ML estimation algorithm starts with the initial estimates of the probabilities of defect

classes  forj=1, 2,..., n, and then updates the  estimates by iterating the following two

steps:

L' p d( )( ) p fi( )
Fi

i 1=

m

∏=

Fi fi

L p d( )( ) 1

Fi
i 1=

m

∑
--------------- log L' p d( )( )=

1

Fi
i 1=

m

∑
--------------- Fi log p fi( )

i 1=

m

∑

p Fi( ) log p fi( )
i 1=

m

∑

p Fi( ) Fi Fii 1=

m

∑⁄

p d1( ) p d2( ) p dn( )

γ

p
ϒ 1+( )

dj( )

p
ϒ 1+( )

dj( ) p
ϒ( )

dj( ) L p
ϒ( )

d( ) 
 

j∇

L p
ϒ( )

d( ) 
 

j∇ L p d( )( )∇ p
ϒ( )

d( )

L p d( )( )∇ p d( )

L p d( )( )∇
p d1( )∂

∂
L p d( )( )

p d2( )∂
∂

L p d( )( ) …
p dn( )∂

∂
L p d( )( ), , , 

 =

p Fi( ) p fi d1( )

p fi( )
-------------------------------------

i 1=

m

∑
p Fi( ) p fi d2( )

p fi( )
-------------------------------------

i 1=

m

∑ …
p Fi( ) p fi dn( )

p fi( )
-------------------------------------

i 1=

m

∑, , ,
 
 
 

p
0( )
dj( ) p dj( )
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problem by using a mixture model. Mixtures of distributions, in particular normal distributions,

have been used extensively as models in a wide variety of important practical situations where

data can be viewed as arising from two or more populations mixed in varying proportions. The

mixture model is given by[1]

where  is a mixture probability density or distribution function, , , ...,  refer to

t component probability density or distribution functions, and , , ...,  aret proportions or

coefficients with constraints  and . The usual mixture estimation method is the res-

olution of a mixture into its separate components on the basis of sample data.

Now we use the above mixture model to describe our defect estimate problem. First let

, i = 1, 2,..., m, denote the probability of a fault , ,j = 1, 2,..., n, denote the probability

of a defect class . Then we have the mixture model

in which  refers to the mixture's probability distribution,  refers to component proba-

bility distribution, which is known to us, and  refer to the coefficients, Thus  and

=1. Recall that =1, thus we have

 =

                                                     =

                                                     =

Hence in the above mixture model we have component probability distributions given and

only the mixture coefficients are unknown. Our goal is to find the mixture coefficients ,

,...,  which maximize the likelihood of the sample under the mixture distribution

. To get this, we denote  and define the likeli-

hood function  to be

f x( ) pi fi x( )
i 1=

t

∑=

f x( ) f1 x( ) f2 x( ) ft x( )

p1 p2 pt

pi 0≥ pi 1=i 1=
t∑

p fi( ) fi p dj( )

dj

p fi( ) p dj( ) p fi dj( )
j 1=

n

∑=

p fi( ) p fi dj( )

p dj( ) p dj( ) 0≥

p dj( )j 1=
n∑ p fi dj( )i 1=

m∑

p fi( )
i 1=

m

∑ p dj( ) p fi dj( )
j 1=

n

∑
i 1=

m

∑

p dj( ) p fi dj( )
i 1=

m

∑ 
 
 

j 1=

n

∑

p dj( ) 1=
j 1=

n

∑

p d1( )

p d2( ) p dn( )

p dj( ) p fi dj( )j 1=
n∑ p d( ) p d1( ) p d2( ) … p dn( ), , ,( ) T=

L'
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 =  =

Thus we have  = 1. Note that  is the probability of fault  if acritical defect in

defect class  occurs.

Our goal in this work is to find the most likely distribution of spot defects in the fabrication

line based on the observed fault behaviors. That is, the maximum likelihood estimators (MLE) of

the underlying probability distribution that causeD, given the DCM and the occurrence numbers

F. This is similar to finding the MLEs forD. Please note thatD can be used to estimate defect den-

sities. If we let A be the normalized DCM, that is

then we can express the resulting stochastic process in terms ofD by using matrix notation as fol-

lowings:

AD = E[F] (1)

That is, if given matrixA and vectorD, it is expected to produce vectorF, the number of

occurrences of the observable fault behaviorsf. E[F] denotes the expected values ofF. Note that

some elements in matrix A may be zero. That is, if existence of a defect class  cannot cause

occurrence of a fault , then the corresponding . Further note that we are assuming that

only one defect is present in a single cell. That is,  are mutually exclusive in the pres-

ence of a fault behavior. This is a reasonable assumption for small cells such as SRAM cells. Thus

we have

 =

Based on the above formulation of the problem, we propose a statistical method to solve the

estimation problem in the next section.

3 Maximum Likelihood Estimation

In this section, we introduce an ML estimation method to solve our defect class estimation

p fi dj( )
p fi dj,( )
p dj( )

--------------------
p fi dj,( )

p fk dj,( )
k 1=

m
∑

--------------------------------

p fi dj( )
i 1=

m
∑ p fi dj( ) fi

d j

A

p f1 d1( ) p f1 d2( ) … p f1 dn( )

p f2 d1( ) p f2 d2( ) … p f2 dn( )

… … … …
p fm d1( ) p fm d2( ) … p fm dn( )

=

dj

fi p fi dj( ) 0=

d1 d2 … dn, , ,

Fi
i 1=

m

∑ Dj
j 1=

n

∑
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These defect classes are indistinguishable using their fault behaviors. This reduces diagnosis reso-

lution. Those faults that caused by the same defect classes are combined into the same row. This

has no affect on diagnosis ability. The resulting reduced matrix is calleddefect classification

matrix (DCM). If n different defect classes may causem different fault behaviors, the correspond-

ing DCM is shown in Fig.2.

 Our goal in this work is to determine which defect classes are the most likely causes of the

observed faults given the DCM and the number of occurrences of each fault in a wafer or series of

wafers. That is, we must translate the results of observed fault behaviors into the most likely prob-

ability distribution of the defect classes. Due to the random nature of structural defects in an IC

and the fact that multiple defect classes can cause the same fault, the problem of finding the most

likely distribution of defect classes must be solved as a statistical optimization problem.

 Let  denote a fault behavior,  denote a defect class,  denote the number of occur-

rences of the fault , and  denote the number of occurrences of the defect class. Suppose

there arem different fault behaviors , and the number of occurrences off is

. Throughout this paper we assume that a vector is a column vector.

denotes the transpose of a vector, and we use bold letters to denote vectors. Let

 denote then different defect classes that may cause them faults. The number

of occurrences of defect classesd is . The entry in the DCM, , fori =

1, 2,..., m, j = 1, 2,..., n, is the joint probability of a fault  and a defect in defect class . We can

obtain this information by means of the Inductive Fault Analysis tool Carafe and circuit simulator

tool SPICE introduced in the last section. By using Bayes’ formula, we get the conditional proba-

bility

p f1 d1,( ) p f1 d2,( ) … p f1 dn,( )

p f2 d1,( ) p f2 d2,( ) … p f2 dn,( )

… … … …
p fm d1,( ) p fm d2,( ) … p fm dn,( )

f1

f2

...
fm

d1
d2

... dn

Figure  2.  The defect classification matrix (DCM)

fi d j Fi

fi Dj d j

f f1 f2 … fm, , ,( )T=

F F1 F2 … Fm, , ,( ) T= …( )T

d d1 d2 … dn, , ,( )T=

D D1 D2 … Dn, , ,( )T= p fi dj,( )

fi d j
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fault is called acritical defect. Throughout this paper the term defect implies a critical defect. The

term fault behavior, or fault, is used to describe the behavior of a circuit with an electrical fault.

Stuck-at faults, transition faults, state coupling faults, data retention faults, high quiescent power

supply current, or any combination are examples of faults in a SRAM. A fault occurs as a result of

one or more defects. For example, a defect that bridges two metal layers and causes an electrical

short may cause a fault behavior of excess quiescent power supply current when the two metal

layers have different voltages applied to them in the fault-free circuit. It is clear that usually more

than one class of defect may cause the same electrical fault and hence the same fault behavior.

To correctly perform defect diagnosis, we first need mapping information between defect to

fault behavior. Carafe[2], an IFA software package, is an ideal tool to obtain defect-to-electrical

fault mapping information. It simulates the results of spot defects on the physical layout of the IC

to generate a list of electrical faults with the probability of the occurrence of each electrical fault,

based on the manufacturing process specifications and defect attributes. A circuit simulation of

each electrical fault is run using SPICE to determine the fault behavior caused by each electrical

fault. This program flow is shown in Fig.1.

The result of above program flow is defect-to-fault mapping information and the probability

that a fault occurs due to the presence of each defect class. These can be organized into a matrix

where each row represents one of the faults and each column one of the defect classes. The entry

in the ith row and thejth column represents the joint probability of a faulti and a defect from

defect classj. We combine defect classes with the same fault distribution into the same column.

Carafe
  Electrical faults
 for each defect

SPICE for each

   defect
  attributes

manufacturing
process
specifications

 Physical
 design

Fault behavior

electrical fault

Figure  1.  Program flow from physical design of circuit to fault behaviors
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The main drawback of the above mentioned approaches is that they perform defect diagno-

sis based on the assumption that a fault behavior is caused only by single defect type, or that the

defect type with the greatest critical area causes the observed fault behavior. The defect diagnosis

method described in this paper can be applied to the situation in which a single fault behavior can

be caused by multiple defect types. The remaining part of this paper is organized as follows: The

problem is formulated in section 2. Section 3 describes the ML estimation procedure. Section 4

considers the conditioning of the ML estimation. An experimental example is illustrated in sec-

tion 5. Finally, section 6 gives a summary.

2  Problem Formulation

In this paper we use the following terminology.Defects are deviations from the ICs’ physi-

cal design caused by perturbations or contaminants in the manufacturing process. We assume that

the IC design is correct. According to Jalubowski et al. [13] three types of IC chip defects affect

the yield: 1) Structural defects, 2) Parametric defects, and 3) Gross manufacturing errors. The

gross manufacturing errors result from serious operator's errors, or from major equipment break

downs. Such errors are easily diagnosed and will not be discussed here. Parametric defects are

errors in manufacturing process or improper silicon substrate parameters. The presence of this

type of defect affects all chips in a large area of the silicon wafer. Parametric defects are usually

easily detected and diagnosed since they occur to a large portion of the IC. Structural defects, also

called random defects, are changes in the physical properties of an IC in a small physical area.

They may be caused by particulate contamination on silicon wafers and photomasks, or local

defects of silicon substrates. The number of structural defects may be large even in a stable and

well organized manufacturing environment. These defects may cause shorts between conducting

regions or across the dielectric layers, breaks in the conducting layer, excessive leakage currents

of p-n junctions, or excessive resistance of the contact between conducting layers. In this paper,

we only consider structural defects. The termdefect class in this paper will be used to refer to a

group of same type of defect. For example, all shorts between metal1 and metal2 are caused by

defects in a single defect class and all shorts between metal1 and poly are caused by defects in

another defect class.

An electrical fault is the change in the electrical description of the circuit due to a defect,

such as a short circuit, an open circuit, or missing transistor. A defect that causes an electrical
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answering a sequence of questions that is supposed to eliminate unlikely reasons. An important

feature of this classification is that nodes (that is, reasons for yield losses) at the higher levels of

this hierarchy are easy to classified while nodes at the lower levels require special analysis to dis-

tinguish between the various groups of reasons which can provide more detailed information than

those at the higher levels. This approach can diagnose all categories of defect and process insta-

bilities. The problem is that it requires considerable certainty or experience to use this methodol-

ogy.

Kwon and Walker [8] presented a method of estimating defect densities through the use of

production functional test data. Their method first generates a POF (probability of failure) matrix

using defect and fault simulations with a stop criterion such as failing test pattern number, then

collects failure patterns (the combinations of failing test patterns) and their counts of occurrences

from production functional testing with the same stopping criterion. The resulting defect densities

are derived using least squares fit. This procedure is similar to the method we present in this

paper. The advantage of their method is that it can use the product itself as a defect monitor, thus

saving silicon area. The disadvantages are the sample size (the number of unique failure patterns)

depends on the complexity of the product, and the results derived by using a least squares fit may

be not accurate as we show later.

 S.Naik et al. [9] and J.Khare et al. [10] developed a failure analysis method for CMOS

SRAMs using realistic defect modeling and results of functional and  testing. Their method

first constructed a defect-to-bitmap signature vocabulary or dictionary (a bitmap signature is actu-

ally a pattern of failing bits in the memory core) using simulation techniques, then the signature

derived from SRAM testing was used to match a predetermined pattern in the developed defect-

to-signature vocabulary that corresponds to the defect type causing the fault. This methodology

was shown to be efficient in their experiments. However there are some problems. First, there is

great possibility that a signature generated during actual diagnostic testing may not find a match-

ing signature in the pre-stored vocabulary. Second, it is inevitable that more than one defect may

have the same signature in this limited vocabulary. Third, their method excluded from the vocab-

ulary all faults which affect single cells since they have the same bitmap signature. This discarded

source of information would otherwise be very useful for revealing the most likely defect types

causing yield loss if the tests were supplemented in the ways described in this paper.

IDDQ
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to physically deprocess the SRAM chip to find the defect that causes the SRAM to fail. This can

be done by determining the possible electrical behaviors of the SRAM in the presence of classes

of defects so that for these defects it is unnecessary to physically deprocess the chip if there is

only a single defect type that can cause the observed electrical behavior. How to use IFA software

to do this can be found in Lepejian et al. [4]. The approach described in this paper extends this

methodology to cases in which a single fault behavior may have been caused by multiple defect

types. That is, by using the maximum likelihood (ML) estimation, it can be determined which

defect class is most likely to have caused a fault when several defect classes are possible candi-

dates. The presence of these defects are therefore more quickly diagnosed so that the yield can be

improved more cost effectively.

The topic of process diagnosis has been discussed in a number of papers. Here we briefly

review recent research on structural defect diagnosis that is pertinent to this paper.

W.Lukaszek et al. [5] and E.M.J.G.Bruls et al. [6] described how to design test structures for

the purposes of CMOS process diagnosis and monitoring in the development or pilot production

stage of product evolution. Test structures are specially designed process monitors which are fab-

ricated by the same process used to fabricate IC products. Two types of test structures are com-

monly used in the industry: comb structure, for detecting shorts, and string structure, for detecting

opens. Usually these two structures are combined to detect both short and open circuits. Test

structures can be arranged in several ways based on their purpose. They may be implemented and

collected in test chips which then replace some of the production chips on a wafer, or in the devel-

opment phase of process, they are implemented on process validation wafers which are consist of

test chips only. Defect diagnosis using test structures can be easy and quick due to the simple reg-

ular structures of these test vehicles. The main drawback of using test structures for defect diag-

nosis is that one type of test structures can be used to analyze only one specific defect class. Thus

a set of test structures is needed for the whole process flow with each type of test structure used

for a specific step in the process flow. Therefore, large silicon area is used to implement test struc-

tures which is undesirable in a manufacturing process, especially in a mature phase.

W.Maly et al. [7] used a hierarchical classification of the reasons causing yield losses to con-

duct yield diagnosis. The classification has the form of a tree in which each node represents a

group of reasons with certain common characteristics. The yield diagnosis was performed by
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1 Introduction and Review of Previous Work

The yield of an Integrated Circuit (IC) fabrication line is the percentage of the manufactured

ICs that are good. It is the most comprehensive measure of quality of the IC manufacturing pro-

cess. One of the major goals of semiconductor manufacturers is to increase the yield in their fab

lines. This increases their profit by increasing the revenue to manufacturing-cost ratio.

Due to imperfections of the manufacturing process, various defects are present in ICs. To

increase the factory's yield, engineers must know in which phase of the manufacture of the ICs the

defects are being introduced so that the causes of the defects can be eliminated or reduced. This is

traditionally done by isolating the defects’ location on the IC and destructively removing portions

of the chip in that location until the defect is found. This is calleddeprocessing the chip. After the

defect is found it can be determined which process step it was introduced and which machines

need to be adjusted or cleaned to raise the yield. Since defects are often smaller than a micron (1/

1000 of a millimeter) in diameter this is a very time consuming and costly process, and sometimes

the defect is not found during deprocessing.

Static Random Access Memories (SRAMs) are often used as process monitors since the

location of the defect can usually be isolated to a row or column in the IC, or to a single SRAM

cell. This reduces the time spent looking for the defect considerably and thus reduces the cost of

failure analysis. But it doesn’t totally eliminate the disadvantages of deprocessing. Inductive Fault

Analysis (IFA) software coupled with other analysis software can reduce the frequency of having
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ABSTRACT

This paper presents an iterative maximum likelihood (ML) estimation method for statistical

analysis of yield loss. By means of Inductive Fault Analysis (IFA) and circuit simulation, the map

between defects and corresponding fault behaviors can be constructed for process-monitor

SRAMs. Using the data from a tester describing the number of times each fault behavior occurs,

the most likely causes of low yield can be identified automatically using the approaches presented

in this paper without the need for physically deprocessing the defective SRAMs. To our knowl-

edge the application of ML method using a mixture model on yield diagnosis has not appeared

before in the literature.

Keywords: Maximum likelihood (ML) estimation, Inductive Fault Analysis (IFA), defect, fault,

probability distribution, mixture model, Hessian matrix, Fisher Information matrix


