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ABSTRACT

This thesis discusses the need for more sophisticated techniques to determine the physical

structure of ribonucleic acid molecules (RNA) in vivo.  In particular, we emphasize several shortcomings

in current techniques of secondary structure analysis.  These shortcomings commonly stem from each

technique’s focus on individual nucleotide sequences.  While the inclusion of phylogenetic sequence

information in structure determination can alleviate such shortcomings, currently available phylogenetic

techniques require substantial manual intervention.  To automate RNA structure analysis, we develop a

novel technique called the Tree Model that uses phylogenetic data to automatically model secondary

structure evolution over entire families of related RNA sequences.  We test the Tree Model by using it to

find base pairing between multiple alignment columns.

The Tree Model employs Maximum Likelihood inference to generate a model for the evolution of

multiple alignment column pairs.  The course of this evolution is modeled through the use of a Markov

Tree to represent the phylogenetic tree.  The Markov Tree is developed as an extension of the Markov

process to a tree-shaped graph.  For a given multiple alignment column pair, each node of the graph

represents a random variable over possible nucleotide pairs for an individual organism.  Leaf nodes

represent observed sequence data from each organism in the multiple alignment.  Internal nodes represent

“synthetic ancestors” whose sequence information must be inferred from its descendants.  Edges of the

graph represent local genetic relationships between direct descendants that are quantified through a point-

mutation model.  The mutation model’s parameters represent the probability of a child having a specific

nucleotide pair, given the parent’s nucleotides for that column pair.  We explore three methods of deriving

these parameters from the multiple alignment data.

A Tree Model accepts a multiple alignment column pair and generates a probability distribution

over the possible nucleotide pairs for each internal node of its tree.  The probabilities of each possible

evolutionary path through these nodes are then accumulated using Dynamic Programming to determine a

total likelihood for the column pair.  Such likelihoods can be generated for a given pair of columns under

each of several Tree Models.  These probabilities can then be compared to classify the novel column data,

based on the set of multiple alignment columns used to generate each Tree Model’s parameters.

As a test of the Tree Model, we use it to look for base pairings in a family of 1375 16S RNA.

Multiple alignment column data is broken into a training set and a test set for cross validation purposes.

The Tree Model parameters are configured on the training set and then applied to the validation set.  The

test set accuracy of this model in discriminating between base paired and non base paired column duos is

shown to be in excess of 90%.  Accuracy rises to more than 99% when highly conserved column duos are

removed to reduce data degeneracies.  This compares favorably with both the 85% accuracy provided by a

simple frequency based model on the same data, and 60%-80% accuracies reported by other researchers

using energy minimization and manual phylogenetic techniques on similar RNA data.  Finally, we propose

extensive directions for further research.
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1  Introduction

1. 1  General Motivation

The investigation of the structure and function of the human genome is one of the

grand challenges of modern molecular biology [1][2].  As RNA & DNA are believed to

embody the overwhelming majority of genomic functionality, a tremendous amount of

research has been devoted to the investigation of nucleic acid structure and function.

However, while DNA’s role is largely limited to the storage of genetic information, RNA

can self-replicate, store genetic information and build complex proteins.  These

characteristics bring RNA far closer to being a complete life form then DNA, and

indicate that RNA is the more primal form of nucleic acid.  This conception of RNA as

the primal nucleic acid has motivated an acceleration in the effort to understand its

function and structure.  As the phenomenon of nucleotide pairing within biological RNA

molecules is critical to both their structure and their function, nucleotide pairing research

is of central importance in this effort [3].  The current work presents a novel method for

investigating the evolution of such pairing structures in RNA multiple alignments.  This

method, which we call the Tree Model, uses a simple local mutation model to develop a

phylogenetically global evolutionary model for RNA multiple alignment column duos1.

The extension from the local statistics of point-mutation to a global evolutionary model

is accomplished through Maximum Likelihood inference on the structure of a

                                                
1 The term duo is used to refer to a 2-tuple of nucleotide columns in a multiple alignment.  These columns
may or may not interact.  The term “pair” will be reserved for those duos that are believed to interact.
Examples of such interactions include: Watson-Crick pairing, helix endcaps and, potentially, tertiary
structure.  For a more complete definition of interactions included in the term “paired”, please see 3.1
Data Sources, page 73.
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phylogenetic tree.  Once developed, the Tree Model is used to infer the existence,

location and evolutionary behavior of nucleotide column pairs.

Research in molecular biology has made it apparent that the in vivo 3-D structure

of an RNA molecule plays a critical role in its function [4][5].  While a tremendous

amount of nucleotide sequence data has recently become available through initiatives

such as the Human Genome Project (HGP), information on the 3-D structure of RNA

remains sparse.  The techniques of Magnetic Resonance Imaging (MRI) [6], x-ray

crystallography [7] and electron microscopy [8] have each provided some 3-D models of

simple RNA structure.  However, the process of sample preparation requires the

dehydration of the sample, which is expected to have a significant effect on its structure.

Some work has been done towards less destructive electron microscope measurement,

but it is still nascent [9].

Due to the present technical barriers preventing the direct measurement of RNA

3-D structure in vivo, information regarding this structure must be inferred from

available data such as nucleotide sequences [10].  Traditional efforts to derive 3-D

structure from nucleotide data have been labor-intensive, involving a great number of

researcher-hours spent pondering shared structure among a few available sequences.

Automated computational tools that might assist in the process of structural modeling

have become available but have shown only a modest potential.  Such conventional tools

for performing RNA modeling have been derived from principles of the physical

chemistry of large molecules called macromolecules.
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The most fundamental theoretical tools for the investigation of atomic

interactions in a molecule are the equations governing quantum mechanics.  While the

smallest molecules might be computationally amenable to quantum modeling, biological

RNA molecules grossly exceed this scale [11].  To reduce the complexity of

macromolecular simulations, a complex molecule may be separated into a relatively

small number of stable molecular groups, each group having only a few degrees of

freedom [12].  However, even limiting each nucleotide in an RNA molecule to five or six

degrees of freedom produces a computationally intractable assemblage for all but the

smallest biological RNA molecules.  Restricting the number of degrees of freedom per

nucleotide further can cripple the ability of a simulation to accurately represent the

complete RNA.  As these classical analytic techniques have proven inadequate for the

modeling of interesting RNA molecules, researchers have investigated simplified

heuristics.

One such heuristic technique for the determination of RNA folding structure

involves the definition and minimization of a global energy metric, such as Gibbs free

energy [13][14].  First, a given molecule’s 3-D structure is coarsely parameterized.

Then, these parameters are iteratively altered to reduce the molecule’s measure under the

energy metric.  Typical methods for finding optimal parameters for such constrained

nonlinear optimization problems include simulated annealing and gradient descent.  This

type of numerical energy minimization has traditionally produced satisfactory solutions

to systems that are intractable to exact analytic modeling.  However, when this type of

analysis was applied to the folding of a single RNA sequence into a single RNA
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molecule, energy degeneracy problems arose.  Under simply defined approximations to

an RNA molecule’s Gibbs free energy, numerous locally optimal solutions appear with

similar energies but significantly differing folding patterns.  The broad variety of

foldings suggested by this technique requires heuristic, and generally manual, post-

processing to produce acceptable results.  This is not particularly surprising, as the

interactions within the RNA molecule are sufficiently complex that computationally

feasible energy potential approximations have a margin of error of approximately 10%

[15].

The modeling techniques currently in use, energy minimization and

macromolecular analysis, both concentrate on finding the 3-D structure for a single RNA

sequence.  It seems, however, that the underlying complexity of the folding process that

determines the 3-D structure is sufficiently great so as to make these methods either

indeterminate or prohibitively costly.  We present a different paradigm for the design of

structure modeling tools, in an effort to overcome these problems.  It is hoped that this

approach will yield more effective tools that will accurately and efficiently automate a

large part of the modeling process.  To avoid the previously discussed degeneracy

problems, this novel approach abandons the detailed physical investigation of a small

number of sequences in favor of statistical inference over thousands of samples.  The

present work seeks to harness the explosion in available primary structure data to provide

folding parameters through the use of Maximum Likelihood inference on a phylogentic

tree.



5
Since the base pairing structure of an RNA molecule in a multiple alignment has

a profound effect on that molecule’s 3-D structure, we apply the fore mentioned

statistical methods to develop a tool for investigating this pairing.  This tool constructs a

complete probabilistic model for the evolution of multiple alignment column duos using

a phylogenetic tree.  The phylogentic tree is modeled as a Markov Tree, a novel

extension of Markov processes to tree-shaped state relationships.  The parameters of the

Markov Tree are estimated over a large fraction of the entire multiple alignment,

resulting in a compact, yet general, model for the evolution of RNA nucleotide duos2

[16]. This model can provide interesting insights into the general process of RNA

development over evolutionary time spans.  In addition, the evaluation of a single

column duo according to the trained parameters of this model produces a Maximum

Likelihood distribution over all of the possible evolutionary paths for that column duo.

Dynamic programming techniques [17] can then be applied to this distribution to

calculate a posterior probability for the evolution of the evaluated column duo.  When

this posterior probability is compared to that produced by a null model for the same

column duo, a simple yet powerful pairing discriminator is formed.

                                                
2 The recent work of Han & Kim (1993) [16] has also used a technique involving a weighted summation
over multiple homologous RNA molecules.  However, their techniques were not probabilistic in nature.
Though it did involve the construction of phylogenetic relationships between closely related sequences, it
did not interpret this tree as a statistical process or use statistical inference to derive results.  Han & Kim
used arbitrarily constructed editing weights and produced variability coefficients that were not amenable to
probabilistic interpretation.  Their work automatically calculated secondary structure for sets of 20 to 40
tRNA molecules with approximately 70% accuracy as opposed to the 90%+ accuracy attained in this work
by the Tree Model (3.9 IO Model).
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1. 2  Technical Overview

1.2. 1  The Modeling Process

The primary result of this work is the development of a tool to detect paired

columns in an RNA multiple alignment.  However, the ultimate goal of the paradigm that

was used to generate this tool is an automated process by which the complete structure of

an RNA family can be automatically constructed from unaligned RNA sequences

(Figure 1-1) [18].  As the secondary structure detection provided by the Tree Model

occupies a position in this hypothetical modeling process, we briefly describe the

Crude Multiple Alignment

Estimate Multiple Alignment
for RNA Family

Estimate Phylogenetic
Tree for RNA Family

Crude Phylogenetic Tree

Structural Modeling
Constraints

Primary Structure for Family
of RNA Molecules

Prior Phylogenetic
Information

Estimate Structure for RNA
Family

Figure 1-1: Generic Algorithm for RNA Structure Determination

This figure coarsely represents a process for the construction of an RNA structure model.  Thick arrows
represent the primary flow of the calculation, while the thin arrows represent data that also influences
calculations.  Currently, a large number of skilled researcher-hours is required for the construction of
such a model.  The current work aims to reduce these subjective factors by automating a piece of the
Estimate Structure module (gray box).  This is accomplished through the use statistical Maximum
Likelihood inference applied to the tremendous amounts of newly available primary sequence
information.  It is hoped that the application of similar techniques to the other parts of the modeling
process can fully automate this algorithm.
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modeling process and show how the current work contributes to it.

Before discussing the details of our automated RNA structure modeler, it is

imperative that we develop a consistent understanding of the formalisms presently used

to represent RNA molecules.  RNA molecules are composed of an ordered chain of

nucleic acid molecules (nucleotides) which are covalently bonded to a linear

phosphate/sugar backbone.  Though the nucleotides themselves are fairly complex

molecules, consisting of approximately 10 to 15 individual atoms [19], internal

nucleotide structure will not play a significant role in the current work.  The internal

structure of the nucleotides may thus be neglected, and the individual nucleotides treated

as unitary.  The four nucleotides typically found in RNA are Adenine (A), Cytosine (C),

Guanine (G) and Uracil (U).  As the phosphate/sugar backbone to which these

nucleotides are attached may be drawn into a linear form, an RNA’s sequence of

nucleotides may be compactly represent as a string over the alphabet (A, C, G, U).  This

string is referred to as the RNA molecule’s sequence, or Primary Structure (Figure 1-

1).  Recent advances in automated sequencing, have provided a wealth of this type of

data.

1.2. 2  The Mutiple Alignment

Certain structurally homologous3  ribosomal RNA are present in all organisms

that synthesize protein [20].  It is thus possible to find structurally homologous RNA

molecules in vastly differing organisms.  Groups of such related RNA molecules are

                                                
3 Structurally homologous RNA molecules are those which have similar shapes.  Evolutionary homologues
share a common ancestry and functional homologues fulfill similar biological roles.



8

called families and include: Transfer RNA (tRNA), Small Subunit RNA (SSU or 16S

RNA) and Large Subunit RNA (LSU or 23S RNA).  The precise number of nucleotides

in each of these molecules varies from organism to organism:  Transfer RNA typically

contains 60-130 nucleotides and is the most well understood; Large Subunit RNA

typically contains 2500-5000 nucleotides; and Small Subunit RNA (used in the current

work) typically contains 1200-2000 nucleotides per molecule.  In order to highlight the

similarities and differences within a given family of RNA sequences, a multiple

alignment is constructed for the family.  Figure 1-2 serves as an example of the primary

sequence information we given to work with and is discussed in the text that follows.

A multiple alignment is a template containing one column for each possible

nucleotide position in a molecule.  Each row of the alignment represents a single species’

contribution (one sequence) to the RNA family.  As the number of columns in the

multiple alignment must be at least as large as the number of nucleotides in the largest

molecule of a family, some spaces are inserted into the sequences of the smaller

molecules from that family.  These spaces are referred to as gaps or deletes.  One primary

purpose of the multiple alignment is to show structural correspondence by displaying

corresponding nucleotides from differing organisms in the same column of the

alignment.  There is often heated debate as to which nucleotides are in “structural

correspondence”, and thus a strong subjective element in multiple alignment

construction.  Once a multiple alignment has been constructed for a given RNA family,

the genetic similarity between aligned sequences may be used to construct a phylogenetic

tree for the corresponding organisms (see Figure 1-3).
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Paired Duos Random Duos

1 2 3 4 1 2 3 4
ID Columns Columns 576 577 578 579 1173 2221 1469 1066

33 to 60 2664 to 2682 561 560 559 558 1211 2153 974 524

1 :???AUUCCGGUU-GAU-CCUG??GG UG??????GAUCACCUCC??????? GA GC UA CG GU CG -A CA
2 :???AUUCCGGUU-GAU-CCCGCCGG UG??????GAUCACCUCC??????? GA CG CG CG GU CG -A CA
3 :???AUUCCGGUU-GAU-CCCGCCGG UGCGGCUGGAUCACCUCC??????? GA CG CG CG GU CG -A CA
4 :???ACUCCGUUU-GAU-CCUGGCGG UGCGGCUGGAUCACCUCCU?????? GC CG CG CG GG CG -A CA
5 :???AGUCCGUUU-GAU-CCUGGCGG UGCGGCUGGAUCACCUCCU?????? GC UA UA CG GA CG -A CA
6 :???AAUCUGUUU-GAU-CCUGGCAG UG??????GAUCACCUCCU?????? GC UA UA CG GA CG -A CA
7 :???AGUCCGUUU-GAU-CCUGGCGG UGCGGCUGGAUCACCUCCU?????? GC UA UA CG GA CG -A CA
8 :???AUUCUG?UU-GAU-CCUGCCAG UGCGGCUGGAUCACCUCCU?????? AU AU UA CG GG CC -A CA
9 :???AUUCUGGUU-GAU-CCUGCCAG UG??????GAUCACCUCCU?????? AU UA UA CG GG CG -A CA

10 :???AUUCUGGUU-GAU-CCUGCCAG UGCGGCUGGAUCACCUCCU?????? AU AU UA CG GC CG -A CA
11 :???AUUCCGGUU-GAU-CCUGCCGG UGCGGCUGGAUCACCUCCUG????? AU UA UA CG GC CA -A CA
12 :???AUUCCGGUU-GAU-CCUGCCGG UGCGGCUGGAUCACCUCCU?????? AU UA UA CG GC CA -A CA
13 :???AUUCCGGUU-GAU-CCUGCCGG UGCGGCUGGAUCACCUCCU?????? AU UA UA CG GC CU -A CA
14 :???AUUCCGGUU-GAU-CCUGCCGG UGCGGCUGGAUCACCUCCU?????? AU UA UA CG GC CU -A CA
15 :???AUUCCGGUU-GAU-CCUGCCGG UGUGGCUGGAUCACCUCCU?????? AU UA AU CG GC CA -A CA
16 :???AUUCCGGUU-GAU-CCUGCCGG UGCGGCUGGAUCACCUCCU?????? AU UA AU CG GU CG -A CA
17 :???ACUCCGGUC-GAU-CCUGCCGG UGCGGAUGGAUCACCUCC??????? AU GC UA CG GU CG -A GA
18 :???AUUCUGGUU-GAU-CCUGCCAG UGCGGCUGGAUCACCUCCU?????? GC GC UA CG GG CG -A CA
19 :???AUUCCGGUU-GAU-CCUGCCGG UACGGCUCGAUCACCUCCU?????? GA GC UA CG GC CG -A CA
20 :???ACUCCGGUU-GAU-CCUGCCGG UGCGGCUGGAUCACCUCC??????? GA CG CG CG GG CG -A CA
21 :???AAACCGGUU-GAU-CCUGCCGG UGCGGCUGGAUCACCUCC??????? GA GC CG CG GC CG -A CA
22 :UAUGGAGGGUUU-GAU-CCUGGCUC UGCGGCUGGAUCACCUCCUUUCU?? GA GC CG CG GG CG AA CA
23 :AAAUGAGAGUUU-GAU-CCUGGCUC ????????GAUCACCUCCUUUCU?? GA CG CG CG GC CG AA CA
24 :UUAUGAGAGUUU-GAU-CCUGGCUC ????????GAUCACCUCCUUUCU?? GA CG CG CG GG CG AA CA
25 :AAUUGAGAGUUU-GAU-CCUGGCUC UG??????GAUCACCUCCUUUCU?? GA CG CG CG GA CG AA CA
26 :???AUUCCGGUU-GAU-CCUG??GG UG??????GAUCACCUCC??????? GA GC UA CG GU CG -A CA
27 :???AUUCCGGUU-GAU-CCCGCCGG UG??????GAUCACCUCC??????? GA CG CG CG GU CG -A CA
28 :???ACUCCGUUU-GAU-CCUGGCGG UGCGGCUGGAUCACCUCCU?????? GC CG CG CG GG CG -A CA
29 :???AGUCCGUUU-GAU-CCUGGCGG UGCGGCUGGAUCACCUCCU?????? GC UA UA CG GA CG -A CA
30 :???AAUCCGUUU-GAU-CCUGGCGG UG??????GAUCACCUCCU?????? GC UA UA CG GA CG -A CA
31 :???AAUCUGUUU-GAU-CCUGGCAG UG??????GAUCACCUCCU?????? GC UA UA CG GA CG -A CA

ID Organism ID Organism

1 : Methanococcus jannaschii str. JAL-1 (DSM 2661) 17 : Thermoplasma acidophilum str. 122-1B2
2 : Methanococcus voltae str. PS (ATCC 33273) 18 : Archaeoglobus fulgidus str. VC-16 (DSM 4304)
3 : Methanococcus vannielii str. EY33 19 : Thermococcus celer str. VU 13 (DSM 2476)
4 : Methanothermus fervidus 20 : Methanopyrus kandleri str. av19 (DSM 6324)
5 : Methanobacterium formicicum (DSM 1312) 21 : Thermoproteus tenax
6 : Methanobrevibacter ruminantium str. M-1 22 : Thermotoga maritima str. MSB8 (DSM 3109)
7 : Methanobacterium thermoautotrophicum str. Marburg 23 : Streptococcus bovis (ATCC 33317)
8 : Methanospirillum hungatei str. JF1 (DSM 864) 24 : Enterococcus faecalis
9 : Methanogenium cariaci str. JR1 (ATCC 35093) 25 : Leuconostoc mesenteroides subsp. mesenteroides
10 : Methanosaeta concilii str. Opfikon (DSM 2139) 26 : Lactobacillus delbrueckii subsp. lactis
11 : Haloferax volcanii str. DS-2 (ATCC 29605) 27 : Lactobacillus acidophilus (ATCC 4356; NCDO 1748)
12 : Haloferax mediterranei (ATCC 33500) 28 : Pediococcus pentosaceus (ATCC 33316; DSM 20336)
13 : Halobacterium cutirubrum clone lambda-Hc4 29 : Lactobacillus brevis (ATCC 14869; NCDO 1749)
14 : Halobacterium halobium str. R1 30 : Lactobacillus plantarum (ATCC 8014; DSM 20205)
15 : Halobacterium marismortui [gene = rrnB] 31 : Lactobacillus ruminis (ATCC 27780; DSM 20403)
16 : Halococcus morrhuae (ATCC 17082)

Figure 1-2: Sample of Multiple Alignment Data for 16S RNA

Data extracted from the first and last lines of the 16S RNA multiple alignment [40].  The multiple
alignment contains 1380 organisms, each having 2688 columns of RNA data.  Each organism contained in
the alignment is represented by a single row of data.  Most of the data is valid nucleotide data {A,C,G,U}.
There are also gaps labeled “-”.  These are nucleotides are absent for a particular organism.  There are also
several “?” symbols.  These represent positions in the alignment for which the data is uncertain, or for
which the columnar structure of the alignment is questionable.  The first and last few columns are removed
as they contain nearly all ? symbols.  In addition to the raw column data, there are four examples of
column duos that are known to be paired as well as four column duos that were selected at random.  It is
noteworthy that column duo Paired-4 strongly resembles column duo Random-2.  This is an example of
two independently conserved columns seeming nearly indistinguishable from a conserved paired column
duo.  Such degeneracies limit secondary structure determination accuracy as discussed in sections 3.6
Results Format and 4.1 Discussion.
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1.2. 3  The Phylogenetic Tree

A phylogenetic tree is a graph showing a set of evolutionary relationships

between organisms.  The graph consists of nodes, representing organisms, and directed

edges, showing evolutionary relationships from each parent organism to its children.  For

purposes of organizational uniformity, the phylogentic tree is arranged as a binary tree

with each node having either exactly two children or no children (Figure 1-3)).  The

Methanolobus vulcani str. PL-12/M

Methanolobus tindarius str. Tindari 3

Methanohalophilus oregonensis str. WAL1

Methanohalophilus mahii

Methanohalophilus sp. str. SF1

Methanococcoides methylutens str.

Methanosarcina sp. str. WH1

Methanohalobium evestigatum str. Z-7303

Methanohalophilus zhilinae str. WeN5

Methanosarcina barkeri str. 227

Methanosarcina thermophila str. TM-1

Methanosarcina acetivorans str. C2A

Methanolobus siciliae str. T4/M

Methanosarcina frisia str. C16

Figure 1-3: Section of a Phylogenetic Tree

This represents a sub-tree section of a full phylogenetic tree.  Sequenced organisms included in the
multiple alignment are found at the leaves and are identified by rectangular boxes.  Internal nodes
represent “synthetic ancestors” that have never been seen and are represented by rounded boxes.  Due to
technical constraints, the organisms in this tree do not correspond to those found in Figure 1-2: Sample of
Multiple Alignment Data for 16S RNA.  This graph was obtained from the RDP [41] and was constructed
using the fastDNAML technique of [21].  The branch lengths shown here have no particular significance.
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nodes with no children are leaf nodes and correspond to data from the multiple

alignment.  The internal nodes, which have two children each, represent “synthetic

ancestors”.  The precise interpretation of these synthetic ancestors is not completely

clear.  While such internal nodes may be seen as representing progenitor organisms that

are now extinct, their more general interpretation is that they simply serve to quantize

genetic proximity.

Except in those rare cases where the course of an organism’s evolution is known

a priori, the internal elements of a phylogenetic tree are typically inferred from its

multiple alignment by measuring the similarity of an alignment’s sequences.  While

conflicting subjective processes in the construction of multiple alignments have led to a

substantial amount of contention, the disagreements surrounding heuristic construction

of phylogenetic trees can take on a truly internecine character.

1.2. 4  Folding Structure

The final step in the analysis of RNA structure, which is described in Figure 1-1

Estimate Structure, is to look for multiple alignment columns that have statistically

dependent nucleotides.  For example, in column duo Paired-3 of Figure 1-2, we see that

each Uracil nucleotide (U) in column 578 is accompanied by an Adenine nucleotide (A)

in column 559.  While this is some evidence that the two columns are statistically

related, it is not strong evidence as this type of behavior could easily be found at random
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in columns that are not found to change during evolution4.  Stronger evidence for an

inter-column relationship is found in the consistent covariance of the two columns.

When U in column 578 changes to C (Cytosine), we always see a corresponding change

of column 559 from A to G (Guanine).  These correlated changes (UA→CG) are less

likely to occur under an independent (and random) mutation process than if the

corresponding columns are related through pair bonding in properly folded molecules.

The correspondence of the mutations is therefore a strong indication of statistical

dependence.  If we examine the phylogenetic tree and find such parallel mutations are

found within phylogenetically distal groups, then the evidence for a dependency is

extremely strong.  This statistical dependence between two columns in a multiple

alignment, once established, is interpreted as strong evidence for some sort of structural

dependence between the nucleotides inhabiting those columns.  Chemical bonding

between nucleotides is the primary source of such structural dependencies.  As such

chemical bonding can not occur between distal nucleotides, the presence of this bonding

indicates that the nucleotides are proximal when the RNA molecule is folded in vivo.

Through the combination the distance constraints imposed by this chemical bonding

with a priori knowledge of RNA’s physical structure, a 3-D structure for an RNA

molecule can be formed [22].  The calculation of this 3-D structure completes the

Estimate Structure module of the structuring process illustrated in Figure 1-1: Generic

Algorithm for RNA Structure Determination.

                                                
4 This could be the result of a critical structural dependency on the existence of a particular nucleotide in a
particular column.  If such a nucleotide were to mutate, the target of the mutation would quickly die out,
making it vanishingly unlikely that the target’s RNA would be contained in the multiple alignment.
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The techniques described above summarize the process of RNA structure

investigation as illustrated in Figure 1-1.  As mentioned in 1.1 General Motivation this

process requires tremendous amounts of skilled labor, involves subjective and non-

uniform methods and is not feasible for the large amounts of sequence information

becoming available.  To address these shortcomings, various techniques have been

explored to help automate the process of determining: multiple alignments [23][24][25],

phylogenetic trees [26][27][21][28] and nucleotide pairing [29][30][18] .   Whi le

significant progress has been made for both of the first two processes, development of

automated methods for the determination of pairing have met with only a limited

success.

The present work was designed to fill the need for an effective pairing structure

detector.  As this method relies on the results from the Estimate multiple alignment

and Estimate Phylogentic Tree modules of Figure 1-1, it fits clearly within the

Estimate Structure module.  As more sequence data has become available, it has

become plausible to model RNA structure through a statistical description of the known

samples.  Statistical modeling can help circumvent complexity problems in physical

modeling, by strictly limiting the total number of degrees of freedom to those supported

by the data.  Such statistical techniques model molecular physics indirectly by taking the

physical laws as implicit in the evolution of a family of homologous RNA samples.

Rather then having to decide which physical degrees of freedom are unimportant, a

priori, the current work strives to build a statistical model that represents the population

from which a data sample is drawn.  If this task is successfully completed, then the
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relevant physical laws are incorporated implicitly in the model, through the observed

data.  Impossible physical interactions are not generally seen in data samples, and thus

are not incorporated into a model.  Irrelevant physical interactions are eliminated as

irreducible variance of structureless noise.  Such modeling reduces the subjective and

potentially dangerous burden of deciding which approximations to make a priori.

There have recently been several efforts to employ this type of statistical

modeling in the analysis of RNA structure.  Initially, such methods were based on the

RNA version of nucleotide base pairing, as was posited for DNA by Watson & Crick5

[19][31].  In RNA the hydrogen bonds which form nucleotides into Watson-Crick pairs6

are known to have a profound effect on the 3-D structure and function of an RNA

molecule.  When such bonds are found in a helical configuration, they are referred to as

the “secondary structure” of the RNA molecule.  Unlike the primary structure (sequence)

of an RNA molecule, the in vivo secondary structure can not currently be directly

measured, only inferred.  Early modeling efforts concentrated on maximizing the number

of Watson-Crick pairings that could be formed in a multiple alignment.  However, these

efforts were not successful as numerous other interactions were found to have a dramatic

effect on 3-D structure.  Such features include: nucleotide loops, nonpaired end caps for

helices, non-helical hydrogen nucleotide bonds, ionic bonding between nucleotides and

ionic bonding between nucleotides and water.  These features are referred to collectively

                                                
5 It may be amusing for the reader to note that in the original 1953 article published by Watson & Crick,
they explicitly discounted the possibility of helical structure made from ribose sugars rather than
deoxyribose sugars as, “…the extra oxygen atom would make too close a van der Waals contact.”.
6 The hydrogen bonds in Watson Crick base pairs are found between Adenosine-Uracil and Guanine-
Cytosine nucleotide pairs.
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as the tertiary structure of an RNA molecule.  This tertiary structure is believed to be

critical to the 3-D structure of RNA, and embodies much of the complexity that is

difficult to model a priori and has hampered previous efforts.  It is precisely such subtle

complexity which statistical models such as the Tree Model are designed to

accommodate implicitly, rather than a priori.

While there have been some substantial results in the area of statistical RNA

structure analysis, prior work has rested either on a purely columnar analysis of a

multiple alignment, or on a small set of closely related molecules.  Both of these types of

modeling encounter difficulties because they fail to include important information.

Phylogenetic analysis of a small number of closely related molecules does not consider

enough of the entire homologous multiple alignment to provide a stable base of statistics.

Neither does a small sample include enough evolutionary information to be able to derive

a robust model for the general process of nucleic acid mutation, over evolutionary time

spans.  These limitations may evidence themselves as solution degeneracies, similar to

those of the energy minimization technique, or an inability to generalize the model to

larger samples of homologous RNA.  While frequency analysis of complete multiple

alignment columns need not suffer from the phylogentic generalization problem, it does

exclude evolutionary relationships completely.  The evolution of a nucleotide duo in a

multiple alignment can be a critical factor in determining statistical dependency.  Two

column sets from a multiple alignment can have identical nucleotide frequency

distributions, yet have radically differing evolutionary characteristics.  These differing
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evolutionary characteristics can be the key to discriminating between independent

behavior and the dependent behavior that indicates base pairing.

1.2. 5  Tree Model for Structure Detection

The current work overcomes the limitations of algorithms based solely on a

multiple alignment, as well those based on a small, genetically related sample.  The Tree

Model accomplishes this by performing inference on an entire phylogentic tree for each

organism in a multiple alignment that consists of thousands of homologous RNA

sequences.  Thus, the Tree Model is superior to previous work in that it actively and

automatically utilizes a far larger amount of the information generated by previous

elements of the structure modeling process (Estimate Multiple Alignment and

Estimate Phylogentic Tree modules of Figure 1-1).

The Tree Model constructs a complete probabilistic model for the evolution of

multiple alignment column duos, using the phylogenetic tree.  The phylogentic tree is

modeled as a Markov Tree, an extension of Markov processes to tree-shaped state

relationships.  The parameters of the Markov Tree are estimated over a large fraction of

an entire multiple alignment, resulting in a compact, yet general, model for the evolution

of RNA nucleotide duos.  Once the model parameters have been derived, column duos

may be presented to the model to generate an evolutionary model conditioned on that

duo.  Through Maximum Likelihood inference, the novel column duo, along with the

model parameters, serves to fix the nucleotide probability distributions for every leaf in

the tree.  Measurements of relevant evolutionary quantities can then be generated
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through the calculation of an expectation value over the probability distributions.  These

expectation values can be investigated on a column by column basis, or aggregated

across any subset of columns from the multiple alignment to form complete expectation

values for the data set.  Thus, the Tree Model can provide numerous measurements of the

general process of RNA development over evolutionary time spans.  In particular,

dynamic programming is used to efficiently calculate the sum of the posterior

probabilities of each possible evolutionary path.  This produces a posterior probability

for the column duo, given the trained Tree Model.  As Tree Model parameters are

extracted from a training set of multiple alignment column duos, Tree Models can be

constructed to reflect any desired evolutionary characteristic for which a training set

exists.  Two training sets are thus constructed, one from column duos that are known to

be paired (Pair) and another from randomly selected column duos with known column

pairs excluded (Rand).  For every novel column duo, posterior probabilities are

calculated according to each model.  These probabilities can then be compared to

determine whether or not the column duo is paired.  The current work demonstrates such

a detector that is found to have a validation set misclassification rate of less than 10%,

which declined to less than 1% on some filtered data.  This represents a marked

improvement over previous secondary structure detectors based on energy minimization

and heuristic phylogeny comparison that have demonstrated nucleotide pair

misclassification rates ranging from 20% to 30% [15][32].
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2  Theory

In this chapter we derive the specific equations needed to implement the Tree

Model.  The chapter has four sections.  In 2.1 Theoretic Overview we provide a high-

level description of the notation and techniques that will be derived in the remainder of

this chapter.  In 2.2 Frequency Model we derive a simple null model called the

Frequency Model.  This derivation will further familiarize the reader with the notation

and concepts employed in later sections.  In 2.3 Tree Model Topology we develop the

Markov Tree, a Markov process on a tree shaped state structure, which is central to the

probabilistic modeling of phylogenetic trees in the present work.  In the final section, 2.4

Mutation Models, we discuss three point-mutation models that are used to model local

evolutionary relationships between states of the Markov Tree: Q, IO and IOM.

2. 1  Theoretic Overview

In this section we discuss the background required to understand and use the Tree

Model.  First, we develop a general description of the notation used to describe the data.

Second, we present an overview of the sample Frequency Model.  Third, we provide a

high level description of the Tree Model algorithm.  Finally we furnish a brief discussion

of discrimination techniques and over-fitting concerns.

The multiple alignment from Figure 1-2: Sample of Multiple Alignment Data for

16S RNA, serves to show the kind of raw data that we have to work with.  The RNA
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sequence for each organism contributes one line to the multiple alignment.  A column

duo (d) may, thus, be viewed as a length-S vector of nucleotide duos (ds), where S is the

number of organisms represented in the multiple alignment and 1≤s≤S.  Each column in

an alignment is also numbered, allowing the terse representation of a column duo by a

duo of column ID numbers.  This representation is used to construct two similarly sized

sets of column duos.  The first set contains duos that are known to be paired.  The second

set contains duos that are selected independently and at random from the entirety of the

multiple alignment.  All column duos that are known column pairs are immediately

removed from the second set.  The specific question we are to answer is whether a

column duo is more likely to have been drawn from the population that generated the

paired sample, or the population that generated the nonpaired sample.

The simplest model evaluated here is the Frequency Model.  This model does not

make use of the phylogenetic tree.  Since the Frequency Model only examines the

distribution of nucleotides in a novel column duo d, and not the genetic relationships of

their contributing organisms, this model is used as a null model against which the more

sophisticated phylogentic tree based models are measured.  The Frequency Model is

developed using the same notation that is used for deriving the more complex models.  It

is hoped that the derivation of this relatively simple model will help the reader become

more comfortable with our notation, facilitating the comprehension of the more

demanding derivations of the IO Model.

The Tree Model is a general, statistical model of the evolution of RNA based on a

phylogenetic tree.  However, the formal derivation of Tree Model statistics is performed
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within the context of base pairing detection.  Though the resultant algorithms are

generalizable to other purposes, this work will tailor them to the determination of base

pairing in column duos of a multiple alignment.

The Tree Model uses a number of free parameters that control its statistical

treatment of evolution.  These parameters are collectively referred to as the mutation

model, or simply as the Model.  The parameters of the Model are extracted from a given

set of training column duos Dtrain.  The training process seeks to manipulate the Model

parameters so as to maximize P(Dtrain|Model).  Each Model is tuned to detect

membership in a particular population of data.  To perform discrimination between

several populations of data, a sample is taken from each population, and a model tailored

to that sample.  As we are primarily concerned with discrimination between paired

column duos and nonpaired column duos we need only choose two training samples.

The first training sample is drawn from the population of column duos that are known to

be paired (Pair), and the second at random from column duos not known to be paired

(Rand).  The models that are trained with these data sets are deferred to as ModelPair and

ModelRand.  To classify a novel column duo d, P(d|ModelPair) and P(d|ModelRand) are

compared.  Column duo d is then assigned to the population whose corresponding model

produced the higher likelihood7 for d.

                                                
7 A likelihood comparison is used here instead of a posterior probability comparison.  This substitution is
made because likelihoods are easier to calculate and the similarity in test set size for Rand and Pair
produces a negligible difference between the two comparisons.  See 2.2.2 Discrimination for more details
on this issue.
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To evaluate the accuracy of this classifier, each complete set of Rand and Pair

column duos is broken into two disjoint groups, Dtrain and Dtest .  The Dtrain group is used

to establish a Model’s parameters, while Dtest is used as cross validation to evaluate the

trained Model and to measure over-fitting.

2. 2  Frequency Model

This section provides a theoretical description of the Frequency Model.  It is

broken into three parts.  In 2.2.1 Derivation of Frequency Model, we introduce the

notation, motivation and construction of the model.  By the end of the first part we have

derived a method for obtaining posterior probabilities for a given column duo according

to both a random model and a paired model.  In 2.2.2 Discrimination, we discuss some

considerations regarding the use of these probabilities to classify the duo.  Finally, in

2.2.3 Motivation for Markov Trees, some theoretical weaknesses of the Frequency Model

are discussed.  A desire to overcome these weaknesses provides a motivation for the

development of a more complex model, the Tree Model.  In addition, section 2.3.4

Notation Summary provides a comprehensive listing of the notation used in the

following derivations as a reference aid.

2.2. 1  Derivation of Frequency Model

The Frequency Model calculates column duo probabilities P(d|Model), based

solely on the distribution of nucleotide duos in the column duo (d) [10].  It is thus

insensitive to the ordering of the nucleotide duos within a given column duo.  To train

this model, a probability distribution over the possible nucleotide duos is generated from
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a count of the number of each type of nucleotide duo in Dtrain.  The data likelihood

P(d|Model) is then calculated as the product of the individual probabilities for each

nucleotide duo in d.  Given a numbering of the S organisms composing the rows of a

multiple alignment (s:1≤s≤S), we can refer to each organism’s contribution to a column

pair d as ds.  Thus, ds represents the specific nucleotide duo contributed by organism s to

column duo d.  Treating each nucleotide duo as an independent observation, the

probability P(d|Model) can be calculated as P Model( | )d s

s S1≤ ≤
∏ .

In turn, P(ds|Model) is generated from the renormalized distribution of observed

nucleotide duos in all of the column duos of Dtrain.  To obtain these model probabilities

we first define a frequency distribution over the 16 possible nucleotide duos 0≤l≤15, $φl

= [ ]1 iff  =   0 otherwised ls

d dd D s
train

,
∈∈

∑∑ .  We can then define8 P(ds|Model) ≡ ϕl = $ $φ φl l
l

∑ .

The distribution ϕl is, thus, the Maximum Likelihood estimate of P(ds=l|Dtrain).

There are on the order of 1000 organisms in the multiple alignment used in this

work.  If we assume that the nucleotide duos are uniformly distributed in the multiple

alignment, we might expect to see values for P(d|Model) of P Model( | )d s

s1 1000≤ ≤
∏  ≈

( / )1 16
1 1000≤ ≤
∏
s

 = (1/16)1000 or approximately 10-1200.  As numbers of such magnitude exceed

the native floating point precision of most currently available digital computers, it is

                                                
8 If the amount of data is small, or some transitions are found to have nearly 0 frequency, then a more
sophisticated technique such as the Laplacian Estimator might be used to convert frequency to probability.
This would take into account the finite amount of data used in the calculation.  Such a correcting factor
was not considered necessary in the current experiments.
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convenient to adopt a formalism from information theory to represent such small

numbers by their negative log likelihood (NLL).  The NLL value of a probability p is

-log2(p).  So long as we use the logarithmic base of 2, this NLL has an information

theoretic interpretation as the mean number of bits required to encode an event of

probability p.  Typical NLL values for the Frequency Model might then be on the order

of -log2((1/16)1000) or about 4000 bits for a column duo.  To further reduce this to a more

intuitive level, the NLL value is normalized against the number of nucleotides found in

valid9 nucleotide duos in the column duo.  For our “typical” column duo of 1000

nucleotide duos this leaves us with 4000 bits / (2×1000) nucleotides or about 2

bits/base10.  The value of 2 bits/base might seem familiar.  One of the simplest

representational models for RNA sequences symbolizes each of the 4 types of

nucleotides by placing them in correspondence with the 4 possible combinations of 2

bits.

When representing Frequency Model values of P(d|Model) as NLL values, we can

rewrite our equation of P(d|Model)  = P Model( | )d s

s
∏ ,  as NLL(P(d|Model)) =

-log2( P Model( | )d s

s
∏ ) = −∑ log (P Model2 ( | ))d s

s

.  Alternatively, if there are nl of each

nucleotide duo (0≤l≤15) in column duo d, then P(d|Model) could also be written as

[ ]− ⋅∑ nl l
l

log (2 ϕ ) , which is far more computationally efficient.  Now that we have

                                                
9 A nucleotide duo is considered valid if both of its nucleotides are elements of {A ,C, G, U}.  Nearly all
column duos contain some invalid characters (“-” or “?”).  Nucleotide duos containing one or more of
these invalid characters are ignored by both the posterior probability calculations and the NLL
normalization.
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described how to train a Frequency Model from a set of column duos (Dtrain), and to

obtain the posterior probability P(d|Model) for a novel column duo d, we may investigate

applications for such probabilities.

2.2. 2  Discrimination

In order to perform discrimination for a model class (in this case, the Frequency

Model) we need to tailor a set of model parameters for each classification category.  Our

present goal is the separation of paired multiple alignment column duos from nonpaired

duos.  We are given representative samples of each column duo population, namely Pair

from the paired population (PopPair) and Rand from the nonpaired population (PopRand).

Each of these samples is broken into a training set (Dtrain) and a validation set (Dtest.).  We

then use the training data to configure two sets of model parameters.  The first set of

model parameters is calculated using Dtrain(Pair) and the second set is calculated using

Dtrain(Rand).  The models employing each parameter set will be referred to as ModelPair

and ModelRand respectively.  Given these models and a novel column duo d, which we

wish to classify, we compute the data likelihoods P(d|ModelPair) and P(d|ModelRand) as

described above.  Classification then proceeds by comparing these probabilities and

assigning d to the column duo population whose model generates the larger data

likelihood (or lower NLL value)11, that is d∈ Pair iff P(d|ModelPair) > P(d|ModelRand) and

d∈ Rand otherwise.

                                                                                                                                              
10 The term “base” is used interchangeable with the term “nucleotide” in this work.
11 The larger probability corresponds to a smaller NLL value as p1>p2  →  log2(p1)>log2(p2)   →
-log2(p1)<-log2(p2)  →  NLL(p1)<NLL(p2).
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This classification scheme is not in strict accordance with the Bayesian model, as

it compares data likelihoods (P(d|Model)) rather than posterior model probabilities

(P(Model|d)).  This substitution of likelihoods for posterior probabilities is not general.

However, in the present work, l ikelihood comparison provides a very good

approximation of posterior probability comparison.

When we use a likelihood based classifier, we are effectively asking the, “Which

data population, PopRand or PopPair, would be more likely to include d ?”.  However, this

is not exactly the question we want to answer.  We really want the answer to the

question, “To which population is d more likely to belong?”.  This second question is

analogous to classification based on the models posterior probability, P(Model|d).  In

order to answer the second question, we need some information regarding the relative

sizes of PopRand or PopPair.  This need is demonstrated by the following example.

Let us choose two columns from the multiple alignment at random and call them

column duo d.  Assume our models produce P(d|ModelPair)=.99 and P(d|ModelRand) =

.003.  As these data likelihoods come from differing models, their probabilities need not

sum to 1.  Given no other information about the population from which d is drawn

(Popd), we would probably argue that d is a paired duo.  However, we have some

information about Popd.  Namely, we are told that d was selected at random from the

columns of the multiple alignment..  As there are 2,688 columns in the multiple

alignment, there are at most 1,344 paired column duos.  This leaves approximately

2,6882-1,344 = 7,224,000 possible unpaired column duos.  Given that the populations

which generated Rand and Pair (PopRand and PopPair) are disjoint (PopRand∩PopPair=∅ )
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and complete (∀ d, d∈ PopRand∪ PopPair), it seems a priori that d is overwhelmingly likely

to have come from PopRand with a probability of 7,224,000/(7,224,000+1,344) = 99.98%.

The task left to us is how to combine this a priori information about Popd, with

P(d|Model) to figure out population d is more likely to have come from (P(Model|d)).

Bayes rule provides the solution to this problem in its statement of the relation:

P(Model|d) = P(d|Model)⋅P(Model)/P(d).

We have been given P(d|ModelRand) & P(d|ModelPair).  The probability P(Model)

represents the a priori probability of d being drawn from Model, given only our

information about Popd.  The quantity P(d) represents the overall probability of observing

d.  Given that the two populations PopRand and PopPair are disjoint and complete, P(d)

may be calculated as:

P(d) = P(d|ModelRand)⋅P(ModelRand) + P(d|ModelPair)⋅P(ModelPair).

For the present example, the posterior probabilities may now be calculated using

Bayes Rule as follows.

P(ModelRand) = 7,224,000/(7,224,000+1,344)= .9998
P(ModelPair) = 1,344/(7,224,000+1,344) = .0002
P(d|ModelRand) = .003
P(d|ModelPair) =.99
P(d) = .9998⋅.003 + .0002⋅.99 = .0031974

P(ModelRand|d) = .9998⋅.003/.0031974 = 93.8%
P(ModelPair|d) = .0002⋅.99/.0031974 = 6.2%
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Because the two populations are disjoint and complete;

P(ModelRand|d)+P(ModelPair|d)

must sum to 1.  The result that P(ModelRand|d) > P(ModelPair|d) clearly indicates that d

should be classified as having come from PopRand rather than PopPair.  The overwhelming

preponderance of random nucleotide duos in our Popd has clearly outweighed the

likelihood’s indication that d comes from PopPair .

The above example, while informative, seems to counter our presumption that a

likelihood comparison is acceptable for the present work.  The example is presented to

build an intuition for the type and magnitude of effects that might be invoked through

the use of likelihood comparisons rather than posterior probability comparisons.  In the

present work, preliminary calculations were performed over similar sized data sets of 695

Rand column duos and 634 Pair column duos (3.3 Preliminary Q Model Study).  In this

preliminary work, over 99% of the column duos had data likelihoods that differed by

more than a factor of two, and over 90% differed by more than a factor of 1,000.  In the

light of these overwhelming likelihoods, the prior probabilities on the order of

634/(634+695) ≈ 48% (Pair) and 695/(634+695) ≈ 52% (Rand) were deemed negligible.

When the data was again filtered, after the preliminary model calculations (3.4

Secondary Data Preprocessing), the size of the Pair data set was effectively halved.

This resulted in a change in the model priors to P(ModelRand) = 695/(317+695) ≈ 69%

and  P(ModelPair) = 317/(317+695) ≈ 31%.  These prior probabilities were still

considered negligible for the final experiments.  This assumption was borne out by a
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sample posterior probability calculation that showed the difference of less than 0.05%

accuracy between simple discriminators based on posterior probability and likelihood (6

Appendix B: Posterior Probability Classifier for IO).

Nonlinearities in the preliminary Q Model results indicated that the simple

probability comparison described above might not be an effective classifier.  Thus, a

neural network model was also used to determine column duo classifications.  To

preserve data integrity, this classifier was not trained on the validation data.  This

nonlinear classifier was found to reduce classification error in the IO Model from 11.2%

for the simple classifier 11.2% to 9.3%.  Details regarding the design, training and use of

this discriminator are provided in section 3.5 Classifiers.

2.2. 3  Motivation for Markov Trees

The Frequency Model is quite simple.  To obtain this simplicity, a number of

questionable assumptions are made.  Potentially, the most crippling of these assumptions

is the assumption that each of the S nucleotide duos that compose d are independent.  For

this independence assumption to be true, each organism that contributes to a column duo

in a multiple alignment must be drawn randomly and independently from some

stationary statistical distribution.  Given the RNA sequence similarities between related

families of organisms, this proposition is absurd.

The inaccurate assumption of statistical independence between nucleotides leads

to two important flaws in this model.  First, the assumption of independence can lead to

unwarranted statistical biases due to statistically dependent clustering of the data.
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Second, the denial of a dependent structure prevents the Frequency Model from

specifically exploiting data dependencies for modeling purposes.

The multiple alignment is constructed from the sequences of numerous related

organisms.  These organisms tend to be found in genetically similar family groups.

Within one group, there may be far less nucleotide sequence variance then between two

differing families.  The decision of how many closely related organisms from each family

to include in a multiple alignment is not necessarily based on a desire to provide a

statistically balanced sample over the multiple alignment.  Organisms may be included in

a multiple alignment due to their availability, phenotype, or their potential use to the

sequencing party.  This can provide a very biased sample of nucleotides from which to

build a model.  No model that is derived from a training set of data can be free of

systematic sample set biases in the choice of training set.  However, the Frequency

Model’s reliance on independence between nucleotide duos exacerbates its sensitivity to

duo dependence by counting each contribution to the training set as equal, and

completely ignoring the family bias problem.

Rather then being a problem, family sequence biases can be exploited to increase

modeling accuracy.  The Frequency Model is barred from any such modeling by its

assumption of independence.  The Frequency Model’s probability calculations reduce to

a summation over the number of nucleotide duos of each type.  This prevents the

exploitation of any information about the location of nucleotide duos within a column

duo.  If phylogenetic family groups are clustered together in the multiple alignment, then

we expect to see ranges of similarly distributed sequences.  However, the one
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dimensional listing of organisms required by the multiple alignment is inadequate for the

branching structure of family relationships.  These family relationships are represented

more accurately by the phylogenetic tree.

The following example demonstrates how a model that takes into account the

phylogenetic relationships between organisms can serve to increase model accuracy over

the Frequency Model.  For this example, we limit our nucleotide duos to AU and GC

only. The multiple alignment consists of four organisms numbered 1, 2, 3, and 4 four

multiple alignment columns.  The four columns are clustered into two column duos

labeled Case 1 and Case 2.  As the nucleotide duo frequency distribution is identical in

both duos (50% AU and 50% GC), any discriminator based solely on the frequency

GC GC AU AU

Case 1: Single Mutation

1 2 3 4
Organism ID

(AU)(GC)

(??)

AUAUGC GC

(??)

Case 2: Multiple Mutations

1 2 3 4
Organism ID

(??)

(??)

Alignment Data

Organism
ID

1
2
3
4

Case
1

GC
GC
AU
AU

Case
2

GC
AU
GC
AU

Figure 2-1: Exploiting Phylogenetic Distribution Bias

Examples of data that are irresolvable under models based solely on nucleotide duo frequency
distributions. These examples, however, are quite distinguishable under a model that also takes into
account the evolution of the column duo.  Each leaf represents a single organism’s contribution to a
multiple alignment column duo.  Parenthetical base duos are estimated from children, while leaf duos are
directly observed data.  A “?” represents an unknown base.  Each case might represent a different column
duo from a multiple alignment with Case 2 showing strong evidence of base pairing and Case 1 showing
weak evidence for such pairing. Arrows represent the direction of evolution.
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statistics would have to classify the two cases identically.  However, a model taking into

account the evolution of the nucleotides may come to a very different conclusion.

The above graph represents an imaginary phylogenetic tree with four organisms

in it.  The leaf nodes of each tree represent the nucleotide duos that compose a single

multiple alignment column duo of length four (S=4).  Each internal node represents the

common ancestor of its child nodes and the arrows represent evolutionary decendency.

The genetic makeup of the ancestors represented by the internal nodes is unknown and

can only be inferred from that of their descendants.

The Case 1 data is likely to have been generated by a single mutation from the

unknown root ancestor.  While we can not be certain that only one mutation occurred,

having two children with the same nucleotide duo is strong evidence that the parent

shared that duo as well.  In contrast, the tree shown in Case 2 can not be generated

without at least two separate mutation events.  As there is a tendency for a Watson-Crick

(AU and CG) paired nucleotides to mutate to another Watson-Crick pair, the

independent observation of two such mutations is stronger evidence of pairing than the

observation of a single such event.  Thus, we would expect that Case 2 would be more

likely to be classified as paired then Case 1.

The Tree Model is developed to quantitatively exploit the evolutionary structure

displayed in Figure 2-1 by modeling the evolutionary relationships between organisms’

RNA sequences.  To this end we construct the Markov Tree, which serves as the central

engine of the Tree Model.  The Markov Tree represents the process of evolution as a
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Markov process originating from the unknown common ancestral “root” of a

phylogenetic tree and terminating with the known organisms in the “leaves” of the tree.

We expect to see the Tree Model outperform the Frequency Model in two particular

ways.  First, we expect an increase in the ability of the Tree Model to represent the

population from which the training set is drawn.  This would be observed as a higher

P(Dtest|Model) for the Tree Model then for the Frequency Model.  Second, we expect to

see better differentiation between ModelRand and ModelPair for the Tree Model then for the

Frequency Model.  This will be observed as a higher accuracy in the discrimination

between paired and nonpaired column duos.

2. 3  Tree Model Topology

This section is developed in five subsections.  In 2.3.1 Phylogenetic Tree we

introduce and describe the phylogenetic tree.  In 2.3.2 Markov Model we review the

properties of Markov Models that are relevant to the derivation of the Markov Tree.  In

2.3.3 Markov Tree we develop the Markov Tree by applying the inference methods of

Markov processes to the topology of the phylogenetic tree.  In 2.3.4 Notation Summary

we provide a concise notation summary for easy reference.  Finally, in 2.3.5 Tree Model

Sample Calculation, we calculate an example of discrimination using the Markov Tree.

This example includes a complete sample computation of a posterior probability for a

column duo, P(d|Model).
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2.3. 1  Phylogenetic Tree

As we will describe a mathematical model based on the evolutionary relationships

embodied in a phylogentic tree, it is important to develop both an intuitive understanding

of the tree (Figure 2-2) and a convenient notation with which to describe the model.  A

phylogenetic tree is a directed graph representing the evolution of all known organisms

from a single progenitor organism.  This graph conforms to the combinatoric definition

of a tree in that it is completely connected, and contains no cycles.  In particular, a

Methanolobus vulcani str. PL-12/M

Methanolobus tindarius str. Tindari 3

Methanohalophilus oregonensis str. WAL1

Methanohalophilus mahii

Methanohalophilus sp. str. SF1

Methanococcoides methylutens str.

Methanosarcina thermophila str. TM-1

Methanosarcina sp. str. WH1

Methanosarcina barkeri str. 227

Methanohalobium evestigatum str. Z-7303

Methanohalophilus zhilinae str. WeN5

A13

A14

Methanosarcina acetivorans str. C2AA15

A10

Methanolobus siciliae str. T4/MA16

Methanosarcina frisia str. C16A17

A7

A6

A18

A19

A20

A21

A5

A4

A11

A8

A3

A22

A23

A24

A25

A26

A12

A9

A2

A1

A0

Figure 2-2: Nodal Notation for Phylogenetic Tree

This represents a sub-tree of a full phylogenetic tree [41].  This figure represents the same organisms as
Figure 1-3: Section of a Phylogenetic Tree, however, in Figure 2-2 nodes are labeled to demonstrate the
notation.  The root node A0 represents the primeval ancestor from which all of the life represented in this
tree descended.
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phylogenetic tree is a binary tree where each node in the tree has either two descendants

or none.  Nodes with two descendants are referred to as “internal nodes”, while nodes

with no descendants are referred to as “leaf nodes”.

In a phylogenetic tree, all of the known organisms are found at the leaves.

Internal nodes represent “synthetic ancestors”.  While these synthetic ancestors might be

taken as organisms that are believed to have existed but have not been observed, they

more generally represent some degree of unexplained commonality between their

children.  Synthetic ancestors serve to group genetically similar organisms into proximal

areas of the tree.

One objection to this scheme is that it does not allow a known organism to be a

direct descendent of another known organism.  There is strong biological evidence that

the ancestor species of some currently living species still persist.  This shortcoming is

overcome when the concept of branch length is introduced later with the IOM Model

2.4.4 IOM Model.  At that point it will become clear that the phylogenetic tree described

above can also represent such ancestral relationships.

Notationally, each node in the tree is given a unique label12,  Ai.  A given the

multiple alignment column duo fixes the nucleotides at the leaf nodes.  The internal

nodes represent random variables that could take on the value of any possible nucleotide

                                                
12 As the phylogenetic tree is a binary tree, the number of total nodes and the number of branches are fixed
by the number of leaves.  If there are x leaves, then there are x-1 internal nodes, 2x-1 total nodes and 2x-2
branches.  When nodes are labeled Ai, i will range from 0 to 2x-2, inclusively.
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duo.  The probability distribution over nucleotide duos for each internal node is

determined by the data at the root and leaf nodes, as described in 2.3.3 Markov Tree.

2.3. 2  Markov Model

The statistical inference used to develop the Tree Model derives from the

calculation techniques used in Markov Models.  As such, we digress into a brief

discussion of Markov processes.  We will subsequently employ existent formalisms and

intuitions about Markov models in our Tree Model construction.  A full treatment of

Markov processes is not given here, see [33] for a tutorial.  Instead we focus on the

aspects of first-order Markov models that we will employ in the derivation of the Markov

Tree.  These characteristics include initial state assumptions, limited memory capacity,

state transition probabilities and limited statistical independence between states.

State(M)
=w0

State(M)
=w1

State(M)
=w2

State(M)
=w3

Four State, first order Markov Model (M)

Represents possible state transitions

State(M)=wx:  Markov Model M is in state wx

Figure 2-3: First Order Markov Model

Example of a first-order Markov model M.  The model has 4 states w0 to w3 and is completely connected in
that any state can transition to any other state with some (possibly 0) probability.
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A first-order Markov model M ( Figure 2-3)  is general ly def ined as a

mathematical 4-tuple {W, X, Y, Z} where W is a set of states (|W| = 4 in this case), X is

set of possible transitions between states (X⊆ W×W) between states, Y∈ W is an initial

state and Z⊆ W is a set of terminal states.  Notationally, Mt is a random variable over W

indicating the state of M at time t.  Thus, P(Mt=wl|X,Y,Z) represents the probability that

the model M is found in state wl at integral time step t>0.  At t=0 the initial state may be

defined deterministically as M0 = Y, or probabilistically as P(M0=wl) = P(Y=wl).  The

transition matrix Xl,m, represents the probability per unit time that M in state wl will be

found in state wm one time step later, or:

Xl,m ≡ P(Mt+1=wl|Mt+1=wm,Y,Z).

Given a probability distribution over states at some time t, P(Mt=wl), we can calculate the

state probability distribution at time t+1 as:

P(Mt+1=wl) =

[ ]P P( | ) ( )M w M w M wt l t m t m
m

+ = = ⋅ =∑ 1  =

[ ]X M wl m t m
m

, ( )⋅ =∑ P .

This is referred to as the Markov induction property.

The above inductive step of the Markov model embodies several features that are

critical to our later derivations.  First, the initial state at t=0 must be defined in order to

determine the state probabilities at a later time.  In the first-order Markov model this

initial state distribution is given as part of the model.  Second, this model has only a

limited memory capacity.  The only contextual information passed from one time period

to the next is the state of the system itself.  Third, probability distribution over the
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possible values for Mt+1 (P(Mt+1=wm)) is completely determined by the probability

distribution over Mt (P(Mt=wl)) and the model parameter Xl,m (P(Mt+1=wm|Mt=wl)).  It

does not matter which route through the model states was taken to get to the state

distribution P(Mt+1=wm).  This property, while relatively obvious, is crucial to

computational efficiency.  Otherwise we might have to maintain a set of possible path

histories that could grow exponentially with increasing t.  Finally, the state transition

matrix is a relatively compact (|W|×|W|) structure that embodies all of the dynamic

behavior of the system.  If we were interested in the state distribution ∆t time steps in the

future, we could raise the transition matrix X to the power of ∆t and apply it to the

current state distribution to obtain the state distribution at ∆t time steps in the future.

Also, future state distributions in a Markov model have a limited form of statistical

independence over time.  That is, given a state probability distribution over Mt, P(Mt=wl),

the distribution (over n),

P(Mt-1=wn|Mt=wl∧ Mt+1=wm) = P(Mt-1=wn|Mt=wl)

and

P(Mt+1=wm|Mt=wl∧ Mt-1=wn) = P(Mt+1=wm|Mt=wl)

While this characteristic may seem a trifling extension of the limited memory property of

Markov models, its analogous implications for the Tree Model will be imperative for

computational viability.
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2.3. 3  Markov Tree Synthesis

We now have described the biological phylogenetic genetic tree (2.3.1), and the

Markov process we intend to implement on that tree (2.3.2).  Now we combine them to

derive the Markov Tree that plays a critical role in our development of the Tree Model.

Our treatment of the probabilities derived from the Markov Tree will be identical

to the treatment of the probabilities P(d|Model) from 2.2 Frequency Model.  However,

now we use a more sophisticated model that takes into account phylogenetic

dependencies between organisms.  We will thus be replacing the likelihood P(d|Model)

generated by the Frequency Model with P(d|tree∧ Model). Separate versions of the

mutation model, Model, will be trained as ModelRand and ModelPair.  These will be used to

A0=0 A0=1

A1=1 A2=1A2=0A1=0

Two State, Three Node, Markov Tree

Represents a possible state transition.

Ai=l :  Node Ai of Markov Tree is in state l.

Figure 2-4: Markov Tree Model

Only a limited number of state transitions are allowable in the Markov Tree.  The Markov Tree can have
no cycles.  States in the Markov Tree are organized into nodes where each node (Ai) represents a discrete
random variable.  In this figure, each random variable can take on the value 0 or 1.  In a biological
application, each possible value for the random variable might correspond to a nucleotide duo such as AU
or GC.  As all nodes in the tree represent data P(Ai=0)+P(Ai=1) = 1 for all Ai.  Another unusual feature of
the Markov Tree is that state transitions can only take place from the states of a parent node to the states
of its child nodes.
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produce P(d|ModelRand) and P(d|ModelPair) that will be compared to form a pairing

discriminator.

For the Markov Tree derivation, it is convenient to draw several analogies

between the Markov Tree and the Markov Model.  It is also useful to limit the scope of

the derivation to calculations on a single, given, column duo d of the multiple alignment.

This assignment fixes the contribution of each organism (s) to the tree to a single

nucleotide duo ds∈ d.  These duos are found at the leaf nodes of the tree.  Each tree node

Ai corresponds to a discrete random variable over the 16 possible nucleotide duos.  This

is conveniently thought of as each Ai having 16 possible states, as we can then depict the

probability distribution over the states l (0≤l≤15) of  Ai as  P(Ai=l).  Probabilities

conditioned on Ai=l can also be represented.  One of the most important of these13 is

P(d(Ai)|Ai=l) which represents the probability of all column duos contributed by

organisms in the phylogenetic tree that are descended from Ai (d(Ai)), given that Ai is in

state l.

Our goal is to compute P(d), the likelihood of all of the nucleotide data at the

leaves of the tree.  If we knew P(d|A0=l) for each l, then we could easily calculate P(d),

since14 P(d)= [ ]P P( ( )| ) ( )d A A l A l
l

0 0 0= ⋅ =∑ .  As it is relatively easy to derive a value

for P(A0=l); we will tackle that first, before the more complex calculation of

                                                
13 Conditioning on the phylogenetic tree and mutation model parameters is not explicitly expressed in the
clause P(Ai=l|d).  However, under the Tree Model, this probability does presuppose knowledge of both the
tree and the mutation model.  To avoid the cumbersome necessity of writing our P(Ai=l|d∧ tree∧ model),
our  remaining references to probabilities will presuppose conditioning on the tree and model.  This does
not affect our essential mathematics but does simplify our notation.
14 As Ai = A0 (the root node), d(Ai) is all of the data descended from the root node that is all of the data, d.
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P(d(A0)|A0=l).  We take as our a priori state probability distribution, the same nucleotide

duo distribution generated by the Frequency Model.  This distribution was produced

from a renormalized count of the nucleotide duos in the training set Dtrain and represented

by P(A0=l) = ϕl.  Our probability estimate P(d) now becomes [ ]P( ( )| )d A A l l
l

0 0 = ⋅∑ ϕ .

However, this derivation still requires knowledge of P(d(Ai)|Ai=l), for the root node

where i=0.

We next derive some notation that we will need to break P(d(A0)|A0=l) down into

an iterative calculation that will terminate in the leaves of the tree.  The above chart

(Figure 2-5) shows the relationship among three specific nodes (Ai, Aj and Aj), the root

node A0 and the column duo d where d =  d(-Ai)Ád(Ai) = d(-Ai)Ád(Aj)Ád(Ak).  In this

figure, the Markov Tree is partitioned into several distinct sections where Ai is the direct

parent of Aj and Ak.  The symbol d(Aj) represents all of those nucleotide duos ds ∈  d that

are contributed by organisms descended from node Aj, while d(Ak) represents those duos

descended from Ak .  In addition d(-Ai) = d(-Ai)’Ád(-Ai)” represents the nucleotide duos

from all of those branches of the phylogenetic tree that are “outside” of the sub-tree

whose root is at Ai.  If i=0, then Ai is the root node A0 and d(-Ai) is the null set, as all data

is descended from the root node.
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Given the relationships depicted in Figure 2-5, we now derive the general

expression for P(d(Ai)|Ai=l).  We replace d(Ai) with d(Aj)∧ d(Ak), thus transforming,

P(d(Ai)|Ai=l) into

P(d(Aj)∧ d(Ak)|Ai=l)

Figure 2-5: Phylogenetic Tree Node Structure

All nodes and data descend from the root node A0.  The complete column duo d consists of a set of
nucleotide duos contained in leaf node sets: d(-Ai)’, d(Aj), d(Ak) and d(-Ai)”.  Here d(Aj) and d(Ak) represent
all of the leaf node data descended from Ai in the phylogenetic tree as d(Ai)=d(Aj)∧ d(Ak).  Internal nodes
Aj, and Ak are the sole children of Ai.  The leaf nodes in d(-Ai)’ and d(-Ai)” contain all of the nucleotide
duos that are not directly descended from Ai to the left and right of Ai in the Tree.  As d(-Ai)’ and d(-Ai)”
are never found independently in the following derivations, they are referred to collectively as d(-Ai),
where d(-Ai)= d(-Ai)’ ∧  d(-Ai)”.  In set theory notation d(-Ai)=d/d(Ai).
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We can use conditional decomposition to rewrite

P(d(Aj)∧ d(Ak)|Ai=l) as

P(d(Aj)|d(Ak)∧ Ai=l)⋅P(d(Ak)|Ai=l).

As any data in d(Aj) must be descended from Aj, and similarly, data in d(Ak) must come

from Ak, we can rewrite

P(d(Aj)|d(Ak)∧ Ai=l)⋅P(d(Ak)|Ai=l) as

P P( ( ) | ( ) ) ( ( ) | )d A A m d A A l d A A n A lj j k i
m

k k i
n

∧ = ∧ =




⋅ ∧ = =



∑ ∑ .

This sort of expansion is referred to as conjunctive inference.  Through another

application of conditional decomposition we can rewrite this as:

[ ]P P( ( )| ( ) ) ( | ( ) )d A A m d A A l A m d A A lj j k i j k i
m

= ∧ ∧ = ⋅ = ∧ =




⋅∑

[ ]P P( ( )| ) ( | )d A A n A l A n A lk k i k i
n

= ∧ = ⋅ = =



∑ .

At this point, we can leverage the Markov model independence property.  In

section 2.3.2 Markov Model we pointed out the seemingly trivial Markov Model

property that, given a state probability distribution over Mt, P(Mt=wl), the distribution

(over n)

P(Mt-1=wn|Mt=wl∧ Mt+1=wm) = P(Mt-1=wn|Mt=wl) and

P(Mt+1=wm|Mt=wl∧ Mt-1=wn) = P(Mt+1=wm|Mt=wl).

Markov Trees have a similar property.  Namely, that given Aj=n,  any data d(Aj)

descended from a node Aj is independent of any state information outside the sub-tree

descended from Aj.  As we are looking at this derivation as a Markov process with an

increasing t, Aj corresponds to Mt from the first-order Markov model.  Similarly, d(Aj)
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corresponds to the state information of Mt’, for t’> t.  State probability distributions

outside the sub-tree originating at Aj correspond to Mt’’ , for t’ ’< t.  This allows that

P(d(Aj)|Aj=m∧ d(Ak)∧ Ai=l) = P(d(Aj)|Aj=m)

as d(Ak) and Ai are outside the sub-tree rooted at Aj.  Thus, d(Ak) and Ai can not affect

P(d(Aj)) once the state of Aj is given.  Similarly,

P(d(Ak)|Ak=n∧ Ai=l)

is independent of Ai=l and therefore is equal to

P(d(Ak)|Ak=n).

While, P(Aj=m|d(Ak)∧ Ai=l) is equal to P(Aj=m|Ai=l).  This leaves us with P(d(Ai)|Ai=l) =

[ ]P P( ( )| ( ) ) ( | ( ) )d A A m d A A l A m d A A lj j k i j k i
m

= ∧ ∧ = ⋅ = ∧ =




⋅∑

[ ]P P( ( )| ) ( | )d A A n A l A n A lk k i k i
n

= ∧ = ⋅ = =



∑

 =

[ ] [ ]P P P P( ( )| ) ( | ) ( ( )| ) ( | )d A A m A m A l d A A n A n A lj j j i
m

k k k i
n

= ⋅ = =




⋅ = ⋅ = =



∑ ∑ .

We have now reduced our original probability P(d(Ai)|Ai=l) to a calculation that

relies solely on probabilities over Ai’s children, P(d(Aj)|Aj=m) & P(d(Ak)|Ak=n), and our

model’s state transition probabilities P(Aj=m|Ai=l) & P(Ak=n|Ai=l).  As the tree model

uses a uniform state transition probability for all nodes in the tree, we can represent the

probability P(Aj=m|Ai=l) as a matrix indexed by l and m (ρl,m).  The source of this

distribution will be addressed in great detail later in this work in section 2.4 Mutation

Models.  At the current level of abstraction, just accept that we have generated this
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transition matrix from measurements made on Dtrain..  This further reduces our statement

of P(d(Ai)|Ai=l) from

[ ] [ ]P P P P( ( )| ) ( | ) ( ( )| ) ( | )d A A m A m A l d A A n A n A lj j j i
m

k k k i
n

= ⋅ = =




⋅ = ⋅ = =



∑ ∑  to

[ ] [ ]P P( ( )| ) ( ( )| ), ,d A A m d A A nj j l m
m

k k l n
n

= ⋅




⋅ = ⋅



∑ ∑ρ ρ .

Our derivation has only relied on the relative positions of Ai, Aj and Ak .  As our

derivation did not rely on any particular position for Ai within the tree, we may merely

set i=0 and recursively calculate P(d(A0)|A0=l).  This recursive calculation will eventually

require some P(d(Aj)|Aj=m) and P(d(Ak)|Ak=n) where one or both of Aj and Ak are leaf

nodes.  The leaf nodes represent the genetic contributions of known organisms, thus

these nodes are in a completely determined state.  The state distribution for some leaf

node Ak , where Ak represents some organism numbered s in the phylogenetic tree, is

given by

P(d(Ak)|Ak=n) = 1 iff n corresponds to nucleotide duo ds

and 0 otherwise.

This is illustrated by the following figure (Figure 2-6).
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As the probability P(d(Ai)|Ai=l) plays a critical role in further derivations and

experiments, we develop some special notation for it.  We thus define Id(Ai=l)  ≡

P(d(Ai)|Ai=l).  Where d is clear from context, it may be omitted as I(Ai=l).  Because this

probability calculation requires the knowledge of only those data inside the sub-tree

Node Ai in tree: Internal node, “Synthetic Ancestor”

P(Ai = AA)
=?

0

To

Root
Node

Node Aj in tree: Leaf Node, “Nicotiana tabacum --
chloroplast” (GU)

Node Ak in tree: Leaf Node, “Glycine max --
chloroplast” (UA)
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1
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Figure 2-6: Phylogenetic Tree Leaves

Two sibling leaves of the phylogenetic tree and their parent node for column duo (89,168).  The
probability distribution over leaf states is defined by the nucleotides in the column duo.  The distribution
over states in the parent node is determined from the leaves by maximum likelihood inference through the
mutation model which determines ρl,m.
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descended from Ai, the distribution is referred to as the inside distribution over i for Ai

and d.  A concise summary of the derivation of this inside probability follows:

P(d) ≡ [ ]P P( ( )| ) ( )d A A l A l
l

0 0 0= ⋅ =∑ ....................Definition.

= [ ]P( ( )| )d A A l l
l

0 0 = ⋅∑ ϕ .....................................Definition of ϕl.

= [ ]I A ld l
l

( )0 = ⋅∑ ϕ ..............................................Definition of Id(Ai=l).

Next, we develop a recursive definition of Id(Ai=l) that uses only fixed model parameters
and nodes that are closer to the leaves then Ai.  We then establish the base case where Ai

is a leaf node.

Id(Ai=l) ≡ P(d(Ai)|Ai=l) ..............................................Definition of Id(Ai=l).  If Ai is not a
leaf node, see following recursive
definition.  If Ai is a leaf node, then
Id(Ai=l) = 1 if Ai’s organism supplies
nucleotide pair l t o  d a n d  0
otherwise.

=P(d(Aj)∧ d(Ak)|Ai=l) .............................................Definition of d(Ai), d(Aj) & d(Ak).

=P(d(Aj)|d(Ak)∧ Ai=l)⋅P(d(Ai)|Ai=l). .......................Conditional Decomposition.

= P P( ( ) | ( ) ) ( ( ) | )d A A m d A A l d A A n A lj j k i
m

k k i
n

∧ = ∧ =




⋅ ∧ = =



∑ ∑

.............................................................................Markov conjunctive inference.

= [ ]P P( ( )| ( ) ) ( | ( ) )d A A m d A A l A m d A A lj j k i j k i
m

= ∧ ∧ = ⋅ = ∧ =




⋅∑

[ ]P P( ( )| ) ( | )d A A n A l A n A lk k i k i
n

= ∧ = ⋅ = =



∑

.............................................................................Conditional Decomposition
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[ ] [ ]P P P P( ( )| ) ( | ) ( ( )| ) ( | )d A A m A m A l d A A n A n A lj j j i
m

k k k i
n

= ⋅ = =




⋅ = ⋅ = =



∑ ∑

.............................................................................Markov independence property.

= [ ] [ ]I A m I A nd j l m
m

d k l n
n

( ) ( ), ,= ⋅




⋅ = ⋅



∑ ∑ρ ρ ..........Definition15 of Id and ρ.

Equation 2-1: Summary Derivation of Inside Probability Distribution

2.3. 4  Notation Summary

Tree...........................Phylogenetic tree.

Pair & Rand..............Sample set of multiple alignment column duos representing paired data or randomly
selected unpaired data.

PopPair & PopRand.......The Populations from which samples Pair and Rand are respectively drawn.

∧ ................................Logical conjunction (“and” operation).

Ai , Aj & Ak.................Nodes in the Markov Tree generated from the phylogenetic tree.  Where there is an
ancestral relationship between the nodes, Ai is the parent of Aj and Ak.

l,m,n ..........................Represent states of nodes Ai, Aj and Ak respectively.  States are numbered 0 to 15
and correspond to the 16 possible nucleotide duos: AA, AC, AG, AU, CA, CC, CG,
CU, GA, GC, GG, GU, UA, UC, UG & UU respectively.

d ................................A multiple alignment column duo.  This is a nucleotide duo vector of length S,
where S is the number of organisms in the multiple alignment.  Each organism
contributes one nucleotide duo to this vector.

ds ...............................Nucleotide duo s of column duo d.

d(Ai)...........................Those nucleotide duos in column duo d that correspond to leaves of the Tree that
are descended from node Ai.

d(-Ai) .........................Those nucleotide duos in column duo d that correspond to leaves of the Tree that
are not descended from node Ai , d(-Ai) = d/d(Ai).

D................................A set of multiple alignment column duos, also referred to as a data set.

Dtrain...........................A data set which is used to derive mutation model parameters.

Dtest............................A data set which is used for cross validation on a mutation model trained with a
Dtrain.  Each Dtrain has a corresponding Dtest that is drawn randomly from the same
population as Dtrain , but is necessarily disjoint from Dtrain.

Id(Ai=l) ......................P(d(Ai)|Ai=l).  If Ai is not a leaf node, this is defined recursively.  If Ai is a leaf node
then Id(Ai=l) is 1 if Ai’s organism contributes nucleotide pair l, to d and 0 otherwise

Model........................A given mutation model, one of: Frequency, Q, IO or IOM (see 2.4 Mutation
Models).

                                                
15 If one of Ai’s children, say Aj is invalid, then there is no d(Aj).  In this case P(d(Ai)|Ai=l) = P(d(Ak)|Ai=l) =

I
d

A
k

n
l nn

( )
,

= ⋅∑ ρ
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ModelRand...................Or ModelPair. A mutation model trained on a data set which is known to be paired

(Pair) or not known to be paired (Rand).

ϕ l(Model)..................The a priori probability of state l for any node in a Tree evaluated under Model.
This is a vector of length 16 whose components sum to 1.  Each component
corresponds to one of the 16 possible nucleotide duos.  Generally this is derived
from a renormalized count of the number of each kind of nucleotide duo found in
Dtrain for Model.  Where Model is clear from context, this may be abbreviated as ϕ l

(see 2.2.1 Derivation of Frequency Model).

ρl,m(Model)................The a priori state transition probability from state l in a parent node to state m in a
child node for Model.  This is calculated in differing ways for differing mutation
models.  Where Model is clear from context, this may be abbreviated as ρl,m.  For
the IO mutation model this corresponds to the expectation value for
P(Aj=m|Ai=lÁTreeÁModelÁDtrain) over all nodes Ai, Aj ∈  Tree, where Ai is the parent
of Aj, see 2.4.3 IO Model.

ρl,m(r,Model).............For the IOM mutation model, the state transition matrix ρ is also a function of the
length of the branch connecting two directly related nodes Ai and Aj.  The parameter
r is used to indicate a bin number corresponding to a range of branch lengths, for
which this ρ is applicable.  See 2.4.4 IOM Model for more details on this parameter.
Where r or Model are clear from context, they may be omitted, and ρ will be
referred to as ρl,m.

Table 2—1: Notation Summary

2.3. 5  Tree Model Sample Calculation

As the recursive definition of P(d|tree∧ model) is rather complex, an example is

presented here to show this recursive process in action.  In order to focus on the process,

the complexity of the model is reduced.  The Phylogenetic tree has only four organisms,

and thus four leaves and three internal nodes.  This example reflects the tree shown in

Figure 2-7: Tree Model Example Genetic Data.  For simplicity, only two possible

nucleotide duos are allowed at each node, AU or GC.
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The state transition matrix ρ and root node state distribution ϕ are approximated

from actual 16S RNA data16 (see Table 2—2: Mutation Model Parameters for Example).

As described in the 2.2 Frequency Model both ModelRand and ModelPair are presented and

P(d|tree∧ model) is calculated for each model on each of the two example column duos.

                                                
16 These transition probabilities are from the IO Model as calculated in section 3.9 IO Model after
normalization to account for the use of only 4 of 256 transition probabilities.

GC GC AU AU

Case 1: Single Mutation

1 2 3 4
Organism ID

(AU)(GC)

(??)

AUAUGC GC

(??)

Case 2: Multiple Mutations

1 2 3 4
Organism ID

(??)

(??)

Alignment Data

Organism
ID

1
2
3
4

Case
1

GC
GC
AU
AU

Case
2

GC
AU
GC
AU

Figure 2-7: Tree Model Example Genetic Data

This figure represents the data used in this example.  One phylogenetic tree with simulated nucleotide duo
information for four organisms, for each of two multiple alignment column duos (Case 1 and Case 2).  The
purpose of this example will be to calculate P(d(A0)|treeÁmodel) for the given model parameters.

Paired Model
P( AU→AU ) = .954 P( AU→GC ) = .046 P( AU ) = .182
P( GC→AU ) = .011 P( GC→GC ) = .989 P( GC ) = .818

Nonpaired (Random) Model
P( AU→AU ) = .975 P( AU→GC ) = .025 P( AU ) = .361
P( GC→AU ) = .027 P( GC→GC ) = .973 P( GC ) = .639

Table 2—2: Mutation Model Parameters for Example

These numbers were derived from actual results obtained from the 2.4.3 IO Model.  The probability of no
mutation occurring was maintained and the residual probability assigned to a mutation to the
complimentary nucleotide duo.  For the a priori state distribution, the relative proportions of AU and GC
were maintained from the IO Model calculations, scaled up to total 100%.
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First we apply the multiple alignment nucleotide duos to the leaf nodes, then we

calculate probabilities for the internal nodes of each model.  This calculation requires the

computation of P(d(Ai)|Ai=n), for every state n of each node Ai in the tree,.  This

calculation begins at the leaves of the tree and progresses up to its root node.  To save

space, only one example of such a calculation (Case 1 data, Paired model) is given here.

The others follow similarly.

P(d(A3)|A3=AU)
= 0.00

P(d(A3)|A3=GC)
= 1.00

A 3
P(d(A4)|A4=AU)

= 0.00
P(d(A4)|A4=GC)

= 1.00

A 4

P(d(A5)|A5=AU)
= 1.00

P(d(A5)|A5=GC)
= 0.00

A 5
P(d(A6)|A6=AU)

= 1.00
P(d(A6)|A6=GC)

= 0.00

A 6

P(d(A2)|A2=AU)
= 0.9101

P(d(A2)|A2=GC)
= 0.0001

A 2

P(d(A1)|A1=AU)
= 0.0021

P(d(A1)|A1=GC)
=.9781

A 1

P(d(A0)|A0=AU)
= .0408

P(d(A0)|A0=GC)
= .0098

A 0

P( |Model) = P( )| = Model) P( = |Model)

(.0408  .182) +  (.0098  .818) =  .021

0
0,1

0d d A A l A l
l

( 0 ∧ ⋅

⋅ ⋅
=
∑

Figure 2-8: Calculation Tree for Example (Case 1, ModelPair)

This tree shows the calculation process used to compute the posterior data probability P(d|tree∧ model) for
the column duo d described in Figure 2-7: Tree Model Example Genetic Data.  The leaf nodes are
initialized from the known nucleotide duo values.  Other probabilities are derived from descendants
according to the inference equation developed above in Equation 2-1: Summary Derivation of Inside
Probability Distribution.



51
The calculations of P(d|Model) as described by the example in Figure 2-8 leaves

us with the following results (Table 2—3):

The Frequency Model cannot distinguish between the column duos from Case 1

and Case 2 as it must assign them equal probabilities, based on their identical nucleotide

distributions.  On the other hand, the Tree Model does distinguish between the two cases

assigning Case 2 a higher probability (lower NLL) according to TreePair than TreeRand.   It

can therefore be classified as a paired column duo.  Alternatively, the single conserved

mutation in Case 1 is not sufficient evidence to generate a more favorable probability

from ModelPair than from ModelRand, thus, Case 1 is classified as unpaired.  The data

from Case 1 may have come from a part of the RNA molecule that is evolutionarily

stable, but suffered a random mutation at an early genetic ancestor.

P(d|Model) for Model Type
Data d TreePair TreeRand FreqPair FreqRand

Case 1 .02101 .02364 .05321 .02216
Case 2 .00073 .00066 .05321 .02216

NLL(P(d|Model)) for Model Type, (bits/base)
Data d TreePair TreeRand FreqPair FreqRand

Case 1 0.697 0.675 0.529 0.687
Case 2 1.302 1.321 0.529 0.687

Table 2—3: Example Posterior Probability Result Summary

Summary of data likelihoods according to Markov Trees derived from Rand and Pair data.  A sample
calculation using the Frequency Model (2.2 Frequency Model) is also made using the same nucleotide duo
frequency distribution as was used for the Markov Tree calculations.
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The reader may find it unexpected that the Frequency Model provided data

likelihoods that were about as high, or higher than those computed from the Markov

Tree.  This would tend to indicate that the Frequency Model is more accurately

representing the sample data.  The explanation for this lies in the fact that a mutation is a

relatively rare event.  From the statistics in Table 2—2, we would expect to see a

mutation rate (per branch of the Markov Tree) of 0.182⋅0.046+0.818⋅0.011 = 1.7% for

paired column duos and 0.361⋅0.025+0.639⋅0.027 = 2.6% for nonpaired column duos.

Thus, our sample data is improbable in that it contains one or two mutations for only

three branches.  Given such improbable data, it is not surprising that the Frequency

Model, which is insensitive to such mutation events, provided a higher data likelihood

than the Markov Tree.

2. 4  Mutation Models

Up to this point, we have concentrated on developing the Tree Markov Model

formalism that we use to derive P(d|treeÁmodel).  We have assumed that the evolutionary

model parameters ϕl ≡ P(Ai=l|Model) and ρ ≡ P(Aj=m|Ai=l∧ Model) were somehow

derived from the training set Dtrain.  In this section, we formulate the derivation of these

parameters and discuss the roles that they play in modeling the evolutionary process in a

Markov Tree.

This section is broken up into four subsections.  In 2.4.1 Rho and Phi (ρ and ϕ)

we review the specific form of the mutation models’ parameters and discusses their

meanings.  In 2.4.2 Q Model, we present the Q mutation model which derives ρ from a
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biological interpretation of state transitions as a point-mutation process.  In 2.4.3 IO

Model, we present the IO Model which calculates ρ through a purely statistical process

of Expectation Maximization over a training set of column duos.  In 2.4.4 IOM Model,

the final subsection, we incorporate phylogenetic tree branch lengths into the IO Model

to create the most sophisticated mutation model in this work, the IOM Model.

2.4. 1  Rho and Phi (ρ and ϕ)

A local mutation model represents the process of nucleotide evolution between a

parent organism and its children.  This process is represented in two probability

distributions P(Ai=l|tree∧ Model) and P(Am=j|Ai=l∧ tree∧ Model).  For a given model, these

distributions are represented by the 16-element vector ϕl and the 16×16 matrix ρl,m,

respectively.  As ϕl is computed in an identical fashion for each Model presented herein,

the distinguishing characteristics of each model are represented completely in the

calculation of ρl,m.  As ϕl is the simpler distribution, it will be discussed first.

The probability distribution ϕl ≡ P(Ai=l|model) over 0≤l≤15, represents the a

priori state distribution for all nodes in the Markov Tree.  As described in the derivation

of the Frequency Model, this distribution is computed through a maximum likelihood

estimation over the training set of column duos Dtrain.  The values in ϕl are computed by

normalizing a simple count of the number of each type of nucleotide duo found in Dtrain.

For each value of l, $fl  is equal to the number of nucleotide duos of type l found in Dtrain,

thus ϕl = $ $
'

'

f fl l
l
∑ .  The interpretation of this distribution is very straightforward.  Given
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only that column duo d is selected at random from the population that generated Dtrain,

our best Maximum Likelihood guess of the state distribution of a random node Ai in the

Markov Tree operating on d would be that P(Ai=l) = ϕl.  While it seems that such a

distribution must have a profound impact on each step of a Markov Tree based

calculation, we see that this is not the case.  Nearly all of our calculations are conditioned

on the assumption of a given column duo d and progress iteratively from this known leaf

data.  Thus, we are only required to rely on ϕl as a boundary condition at the root node.

The assertion of P(A0=l) = ϕl for the Markov Tree’s root and the nucleotide duos ds at the

Markov Tree’s leaves, constitute a complete set of boundary conditions for the Markov

Tree.  These boundary conditions allow us to fix the state (nucleotide duo) probability

distributions throughout the rest of the tree using the state transition matrix ρ for

Maximum Likelihood inference on the architecture of the tree.

The state transition matrix ρ is significantly more complex than ϕ, in both

calculation and interpretation.  As with ϕ,  ρ is extracted from calculation over the

training set Dtrain where  ρl,m is an approximation to the expectation value of

P(Aj=m|Ai=lÁtreeÁD), where D is the population from which Dtrain is drawn.  This is the

expectation value of the probability that a child node Aj will be found in state m, given

that its direct parent node Ai was found in state l.  Each node in a phylogenetic tree

represents an organism either synthetic, for internal nodes, or observed, for leaf nodes.

Thus, the biological interpretation of ρl,m is the probability that an organism (Aj) which

evolved directly from another organism (Ai) has a particular nucleotide duo (m) in a
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particular column duo of the multiple alignment, given that its parent had some given

nucleotide duo (l) in that same column.  While mathematically ρl,m is interpreted as a

conditional probability distribution, it is also a reasonable definition of a point-mutation

model.  Both interpretations of ρl,m are critical to the subsequent work and should be

thoroughly understood before continuing.

According to the above definitions, ρl,l can be interpreted as the probability per

branch of the phylogenetic tree, that nucleotide duo of type l does not mutate, to some

new nucleotide duo.  We can thus represent the mutation rate per branch of the

phylogenetic tree, for nucleotide type l, as 1-ρl,l.  If each branch of the phylogenetic tree

is taken to represent a certain amount of chronological time, then this could represent a

mean rate of mutation per unit of time, for nucleotide type l.  We could similarly

interpret 1- [ ]ϕ ρl l l
l

⋅∑ ,  as the mean mutation rate per unit of time over all nucleotide

duos.

While this biological interpretation of ρl,m will be important to our derivation of

ρl,m from Dtrain, and thus our original search for P(d|tree∧ Model), it may also be of

significant interest to researchers in the field of evolutionary molecular biology.  In

particular, the methods used to derive ρl,m for the IO and IOM Models will also provide

an improved means for determining a plethora of other interesting evolutionary

characteristics, including: columnar mutation rates, ancestral nucleotide distributions for
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closely related organisms and mean dependence of nucleotide mutation rates on

evolutionary time span (phylogenetic branch length)17.

Returning to the problem of deriving P(d|tree∧ Model), we are left with two

similar interpretations for ρl,m which we can leverage to derive its components.  The Q,

IO and IOM mutation models each derive ρl,m in a different way.  The Q Model is the

most primitive and assumes an a priori mutation rate q which is used along with ϕl to

approximate ρl,m.  In this case, ρl,m is derived according to the biological interpretation of

ρl,m as the measurement of evolutionary change per branch of the phylogenetic tree.  The

IO Model computes the components of ρl,m through a more statistical interpretation of

ρl,m as the conditional probability distribution P(Aj=m|Ai=l∧ tree).  To generate ρl,m under

this model, we begin with a Q Model approximation for ρl,m.  We then employ an

iterative process of Expectation Maximization to calculate the total number of state

transitions actually observed in the Tree Model over some training set of column duos

Dtrain.  This count of state transitions between nodes is then normalized to become the

new estimate for ρl,m.  The reestimation calculation is then repeated using the new ρl,m

until no significant change is observed in ρl,m.  Finally, the IOM Model uses nearly the

same technique to evaluates ρl,m as does the IO Model.  However, unlike both the IO and

the Q Models, IOM takes into account varying phylogentic tree branch length in its

reestimation of ρl,m.  Each branch of the phylogenetic tree has been assigned an

evolutionary length by the program that generated the tree [41].  This branch length

                                                
17  It is expected that the statistics gathered from this process will be superior to those gathered directly
from measurements of a multiple alignment column duo in the same way that the Tree Model was able to
resolve structure that the Frequency Model was not.  The precise methods used to make such
measurements will be discussed in 2.4.3 IO Model.
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represents a measure of genetic difference between a child organism and its parent.

Under the interpretation of this length as a measure of time, the IOM Model groups

branches of similar length.  Each branch length group is then used to calculate a separate

ρl,m.  This allows for a crude variation of mutation rate with increasing evolutionary

distance without having to state the form of the variation a priori.  The IOM Model also

addresses the problem of having sequence data from both parent organisms and their

descendants in the phylogenetic tree at the same time.  This problem is alleviated through

the device of zero-length branches.  For a detailed description of how this is

accomplished, see 2.4.4 IOM Model.

2.4. 2  Q Model

The Q Model leverages the biological interpretation of ρ to approximate its

components ρl,m.  Under this interpretation, a generic mutation probability per branch is

given a priori as q [34][35].  If no mutation occurs between a child (Aj) and its parent

(Ai), then we would expect the parent’s state distribution to be the same as that of its

child.  This is represented as an identity transition matrix P(Ai=l|Aj=m∧ d∧ no mutation) =

ρl,m
no mutation = 1 if l=m and 0 otherwise.  We model the case that a “mutation”18 does

occur as a state change to one drawn randomly from the models a priori state

distribution.  This is represented by the state transition matrix ρl,m
mutation = P(Aj=m|model)

=  ϕm .  As we are interested in forming a transition matrix, embodying both the

possibility of mutation, and the possibility of conservation (non-mutation) we take our

                                                
18 .  The term “mutation” is used loosely in the context of the Q Model transition function.  The result state
of a “mutation” modeled by the random selection of a new state according to ϕm, could be any state.  As it
is possible to randomly select the original state, a state change is not guaranteed under a Q Model
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composite ρ to be a linear combination of the two transition matrices blended according

to q as ρl,m = (q)⋅ρl,m
mutation + (1-q)⋅ρl,m

no mutation.

The above probability distribution (Equation 2-2) was proposed by Felsenstein

[34] for use in phylogenetic tree construction.  While this Q Model is relatively crude

and requires an empirical determination of the optimal value for q, it does serves as a

plausible preliminary estimate for ρ.  Tree Model calculations derived using this estimate

for ρ serve as a basis against which to measure the performance of the more detailed IO

and IOM Models.  One serious argument against this model is that there is no a priori

reason to believe that the result of a mutation event can be accurately drawn at random

from the stationary distribution ϕl.  This would indicate that ∀ l,l’,m,l≠m,l’ ≠m ρl,m = ρl’,m,

which seems intuitively unlikely.

For the purpose of comparison with IO and IOM Models, the Q Model has 16

degrees of freedom.  This is because ϕ has 16 independent parameters which are

normalized to unity, reducing the number of degrees of freedom in ϕ  by 1.   The

                                                                                                                                              
“mutation”.

ρ
ϕ

ϕl m

m

m

q l m

q q l m, ( )
≡

⋅ ≠
⋅ + − =

if 

if 1

Equation 2-2: Q Model Mutation Probabilities

The mutation probability parameter q represents the probability per branch that a point-mutation will
occur.  If no mutation occurs, a child’s state distribution is the same as its parents.  If a “mutation” does
occur the child’s state distribution is set to equal the a priori state distribution  ϕ.  This does allow l = m
(no change) as a possible result from a mutation event.  As it is not known a priori whether or not a
mutation event occurs, a linear superposition of these possibilities is used at each state transition.
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mutation rate parameter q adds one additional degree of freedom.  Thus, the number of

degrees of freedom is |q|+|ϕ| = 1+(16-1) = 16.

2.4. 3  IO Model

Since the IO Model is appreciably more complex than the Q Model, its derivation

is broken into four separate subsections.  In 2.4.3.1 IO Model Overview we provide a

general overview of the reestimation process used to calculate ρ from Dtrain.  In 2.4.3.2

Frequency Reestimation we derive the specific cumulative frequency function that is

renormalized to form ρ.  In 2.4.3.3 Outside Probability we derive a new state probability

distribution called the “outside” distribution that is critical for the calculation of the

cumulative frequency function.  In 2.4.3.4 Summary we combine the derivations of the

previous subchapters into a compact representation for the reestimation process.

2.4.3.1 IO Model Overview

The IO Model is so named for to its similarity to the Inside-Outside method for

the training of Stochastic Context Free Grammars [36]  [ 37].  This model directly

estimates the parameters of ρl,m from a given Markov Tree and a training set of column

duos referred to as Dtrain.  This model is significantly more complex then the Q Model as

each element of the 16×16 state transition matrix ρl,m is reestimated independently.  As

each row l of the matrix  ρl,m is required to be normalized, one degree of freedom is

removed for each of the 16 rows in the 256-element matrix.  This yields a total number

of degrees of freedom for the IO Model of |ϕ| + |ρ| = (16-1) + (256-16) = 255, which is

much larger than the 16 degrees of freedom of the Q Model.
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The parameters ϕ and ρ of the IO Model are initialized from the corresponding

parameters of the Q Model.  A value for q is given a priori, ϕ is extracted from Dtrain as

for the Frequency Model and these are combined to construct the initial estimate for ρl,m.

We now present each element d∈ Dtrain at the leaves of the tree and use dynamic

programming to fill in the conditional state probability distributions P(Ai=l|d) at each

node.  Once this calculation is complete, we aggregate the number of times that we

observe a state transition from each state l of a parent node Ai to each state m of a child

node Aj.

As the Markov Tree is probabilistic, state transitions are not observed as discrete

events.  Rather, they are observed as probabilities that a particular state was occupied

P(Ai=l|d), multiplied by the probability that a particular transition was made from a state

l of Ai to some state m of its child Aj, P(Aj=m|Ai=l∧ d).  Thus the number of transitions

observed between each pair of states (l,m), from parent node Ai to its child Aj, is

represented as P(Aj=m|Ai=l∧ d)⋅P(Ai=l|d).  Further, we know that P(Aj=m|Ai=l∧ d)⋅P(Ai=l|d)

is equal to P(Aj=m∧ Ai=l|d) by conditional decomposition.  Such transitions are referred

to as fractional transitions as the sum of all fractional transitions to states of a given child

Aj from its parent Ai must total to 1.  These fractional transitions are then aggregated over

all child-parent combinations in the Markov Tree.  This aggregation is equivalent to the

summation P

 parent of 

( | )
,

A l A m di j
i j

A Ai j

= ∧ =∑  = $ ( ),f dl m .  The matrix  $ ( ),f dl m  then contains

the relative frequencies of the state transition l→m in the Markov Tree generated by d.
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These transitions are then be accumulated over all d∈ Dtrain. to form $ $ ( ), ,f f dl m l m

d Dtrain

=
∈
∑ .

As we are summing over all d∈ Dtrain, and Dtrain is assumed to be drawn at random from

the population of column duos that we are attempting to model, no additional weighting

is required to reflect P(d|Model).  This is because d is expected to appear in Dtrain

approximately as often as it appears in the population from which Dtrain is drawn.  Thus,

the frequency statistics generated from measurements on d will automatically be

weighted by the number of times that d appears in Dtrain.

Once we have $ ,f l m , we can normalize it to obtain our next estimate for ρl,m as

$ $
, , '

'

f fl m l m
m
∑ .  This iterative reestimation process for ρl,m represents the heart of the

Expectation Maximization method [38].  This method is guaranteed to produce a model

which locally maximizes P(Dtrain|model) over the components of ρl,m.

2.4.3.2 Frequency Reestimation

The reestimation procedure described above relies on the computation of the

probability distribution P(Ai=l∧ Aj=m|d).  In this section we attempt to formulate this

probability distribution in terms of Model parameters, and the boundary conditions of

the phylogenetic tree at its leaves (d).  We will discover that we can not do this directly

and will, instead rely on the calculation of two recursively defined probability

distributions.  Both of the recursive calculations needed to derive the distributions will

eventually terminate with either a model parameter (ϕ), or a boundary condition at a tree

leaf (d).
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P(Ai=l∧ Aj=m|d) ................................................................... Initial quantity.

= P(Ai=l∧ Aj=m|d)⋅P(d)/P(d) .............................................Multiplicative Identity.
= P(Ai=l∧ Aj=m∧ d)/P(d) ...................................................Bayes’ Rule.

Note: P(d) is simply defined as [ ]I A ld i l
l

( )= ⋅∑ ϕ , as in 2.3 Tree Model Topology.

= P(Ai=l∧ Aj=m∧ d(-Ai)∧ d(Ai))/P(d) ..................................Definition of d (Figure 2-5).
= P(Aj=m∧ d(Ai)|Ai=l∧ d(-Ai))⋅P(Ai=l∧ d(-Ai))/P(d) ............Conditional Decomposition.
= P(Aj=m∧ d(Ai)|Ai=l)⋅P(Ai=l∧ d(-Ai))/P(d) .......................Markov Independence on Ai..

= P(d(Ai)|Aj=m∧ Ai=l)⋅P(Aj=m|Ai=l)⋅P(Ai=l∧ d(-Ai))/P(d) .. Conditional Decomposition.
= P(d(Ai)|Aj=m∧ Ai=l)⋅ρl,m⋅P(Ai=l∧ d(-Ai))/P(d) .................Definition of ρl,m.

= P(d(Aj)∧ d(Ak)|Aj=m∧ Ai=l)⋅ρl,m⋅P(Ai=l∧ d(-Ai))/P(d) ......d(Ai) = d(Aj)∧ d(Ak).
= P(d(Aj)|Aj=m∧ Ai=l)⋅P(d(Ak)|Aj=m∧ Ai=l)⋅ρl,m⋅P(Ai=l∧ d(-Ai))/P(d)
........................................................................................Independence of d(Aj)  and

d(Ak) given Ai=l.

= P(d(Aj)|Aj=m)⋅P(d(Ak)|Aj=m∧ Ai=l)⋅ρl,m⋅P(Ai=l∧ d(-Ai))/P(d)

........................................................................................Independence of d(Aj)  and
Ai=l given Aj=m.

= Id(Aj=m)⋅P(d(Ak)|Aj=m∧ Ai=l)⋅ρl,m⋅P(Ai=l∧ d(-Ai))/P(d) .. Definition of Id(Aj=m).
= P(d(Ak)|Aj=m∧ Ai=l)⋅Id(Aj=m)⋅ ρl,m⋅P(Ai=l∧ d(-Ai))/P(d) . Rearrange terms.
= P(d(Ak)|Ai=l)⋅Id(Aj=m)⋅ρl,m⋅P(Ai=l∧ d(-Ai))/P(d).............Independence of Aj=m and

d(Ak) given Ai=l.

= P( ( )| )A n d A A lk k i
n

= ∧ =∑ ⋅Id(Aj=m)⋅ρl,m⋅P(Ai=l∧ d(-Ai))/P(d)

........................................................................................Conjunctive Inference.

= [ ]P P( ( )| ) ( | )d A A n A l A n A lk k i k i
n

= ∧ = ⋅ = =∑ ⋅Id(Aj=m)⋅ρl,m⋅P(Ai=l∧ d(-Ai))/P(d)

........................................................................................Conditional Decomposition.

= [ ]P( ( )| ) ,d A A n A lk k i l n
n

= ∧ = ⋅∑ ρ ⋅Id(Aj=m)⋅ρl,m⋅P(Ai=l∧ d(-Ai))/P(d)

........................................................................................Definition of ρl,n.
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= [ ]P( ( )| ) ,d A A nk k l n

n

= ⋅∑ ρ ⋅Id(Aj=m)⋅ρl,m⋅P(Ai=l∧ d(-Ai))/P(d)

........................................................................................Independence between Ai and
d(Ak) given Ak=n.

= [ ]I A nd k l n
n

( ) ,= ⋅∑ ρ ⋅Id(Aj=m)⋅ρl,m⋅P(Ai=l∧ d(-Ai))/P(d) . Definition of Id(Ak=n).

Equation 2-3: IO Model Transition Frequency Reestimation Derivation (Part I)

By the end of Equation 2-3 we have reduced our state transition frequency

measurement to summations over model parameters (ρ), previously derived values (P(d)

and Id(Aj=m)), and P(Ai=l∧ d(-Ai)).  This last term is troubling as it is not readily

reducible to model parameters and boundary values.  If we can calculate this probability

distribution, our frequency reestimation will be complete.  Fortunately, there is such a

calculation.

Just as the inside distribution was defined for a given node state Ai=l as a

recursive calculation on the nodes of the sub-tree rooted at Ai, we can define a

corresponding recursive calculation, which we will call the outside distribution.  This

distribution is over the states of a given node, such as Ai, however, it involves only those

nodes outside of the sub-tree roots at Ai.  Clearly it is just such a calculation that is

needed to derive P(Ai=l∧ d(-Ai)) from the boundary conditions outside of Ai, namely d(-

Ai).
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2.4.3.3 Outside Probability

The outside distribution Od(Ai=l) ≡ P(Ai=l∧ d(-Ai)) will take into account all of the

leaf node data that fall outside of d(Ai).  As we will see, the calculation of Od(Ai=l) will

proceed recursively beginning at the root node and working towards the leaves.  This is

exactly the opposite direction that the inside calculation took.  Because the inside

probability distribution relies solely on model parameters and known boundary

conditions, it will be assumed that this distribution has already been calculated at every

node.  This is necessary, as we will be using the inside distribution in our formulation of

the outside distribution.  In addition, it will conserve our notation if we define our

outside distribution on Od(Aj=m) rather than Od(Ai=l).  This is merely a notational

convenience and has no underlying mathematical significance.  Once this distribution is

calculated, we will plug it into the missing step in the frequency estimation and we will

be able to completely reestimate the IO Model ρ parameters.

We begin with the unresolved reduction from our previous transition frequency

calculation, namely19:

Od(Aj=m) ≡ P(Aj=m∧ d(-Ai)∧ d(Ak)).
= ∧ ∧ − ∧∑ P( )A =m A=l d A d Aj i i k

l

( ) ( ) ..................Conjunctive Inference.

= ∧ ∧ − ⋅ ∧ −∑ P( | ) PA =m d A A=l d A A=l d Aj k i i i i
l

( ) ( ) ( ( ))

................................................................................Conditional Decomposition.

= ∧ ∧ − ⋅∑ P( ( | )A =m d A A=l d A O A=lj k i i i
l

) ( ) ( ) ......Definition of Outside.

                                                
19 Please note that we have redefined our node notation here.  In the transition frequency reestimation, we
were left with P(Ai=l∧ d(-Ai)) unresolved.  As we have relabeled Ai as Aj for notational convenience, d(-Ai)
must be relabeled as d(-Ai)∧ d(Ak).  This can be made more clear by a glance at Figure 2-4: Markov Tree
Model.  If we relabel the node Ai as Aj, then the leaf nodes that were previously covered by d(-Ai) will now
include the new d(-Ai) as well as the data descended from the new Ak, that is d(Ak).
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= ∧ − ∧ ⋅ ∧ − ⋅∑ P( | ) P( | )A =m A=l d A d A d A A=l d A O A=lj i i k k i i i

l

( ) ( ) ( ) ( ) ( )

................................................................................Conditional Decomposition.

= ⋅ ⋅ ∧ −∑ P( | ) P( | )A =m A=l O A=l d A A=l d Aj i i k i i
l

( ) ( ) ( )

................................................................................Independence of d(-Ai), d(Ak) and
Aj given Ai=l.

= ⋅ ⋅ ∧ −∑ ρl m i k i i
l

O A=l d A A=l d A, ( ) ( ) ( )P( | ) ............Definition of ρl,m.

= ⋅ ⋅ ∧ ∧ −



∑∑ ρl m i k k i i

nl

O A=l d A A=n A=l d A, ( ) ( ) ( )P( | )

................................................................................Conjunctive Inference.

[ ]= ⋅ ⋅ ∧ ∧ − ⋅ ∧ −



∑∑ ρl m i k k i i k i i

nl

O A=l d A A=n A=l d A A=n A=l d A, ( ) ( ) ( ) ( )P( | ) P( | )

................................................................................Conditional Decomposition.

[ ]= ⋅ = ⋅ = ∧ = ∧ − ⋅ = =



∑∑ ρl m i k k i i k i

nl

O A l d A A n A l d A A n A l, ( ) ( ( )| ( )) ( | )P P

................................................................................Indep. of d(-Ai) and Ak given Ai=l .

[ ]= ⋅ = ⋅ = ⋅ = =



∑∑ ρl m i k k k i

nl

O A l d A A n A n A l, ( ) ( ( )| ) ( | )P P

................................................................................Independence of  d(Ak)  g iven
Ak=n.

[ ]= ⋅ = ⋅ = ⋅







∑∑ ρ ρl m i k l n

nl

O A l I A n, ,( ) ( ) ..............Definition of ρl,n
20.

Equation 2-4: IO Model Outside Probability Distribution Derivation

The final form of the derivation of Equation 2-4 gives us a recursive formula for

the calculation of the outside probabilities in terms of model parameters, inside

probabilities and previously calculated outside probabilities.  However, we still have not

established the recursive terminating condition at the root node.  This anchor step is:

                                                
20 If Aj has no valid sibling Ak then there is no d3 = d(Ak).  In this case Od(Aj=m) ≡ P(Aj=m∧ d(-Ai)∧ d(Ak))
becomes P(Aj=m∧ d(-Ai)) = ( , ( ))ρl m Od Ai l

l
⋅ =∑ .
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O A=m d A d A A=mk( ) P( )0 0 0≡ − ∧ ∧( ) ( )

= P(A=m0 ) ..............................................................As A0 is the root node, it has no
sibling node Ak and d(Ak) is null.
Similarly, as A0 has no parent
node, so d(-A0) is null.

= ϕm ........................................................................Definition of ϕm.

2.4.3.4 Summary

In section 2.4.3.2 Frequency Reestimation we established our state transition

probability estimation as ρl,m = $ $
, , '

'

f fl m l m
m
∑ , where $ $ ( ), ,f f dl m l m

d Dtrain

=
∈
∑ .  We have further

established that $ ( ),f dl m  =

P

 parent of 

( | )
,

A l A m di j
i j

A Ai j

= ∧ =∑  =

[ ]I A nd k l n
n

( ) ,= ⋅∑ ρ ⋅Id(Aj=m)⋅ρl,m⋅P(Ai=l∧ d(-Ai))/P(d).

With the addition of our newly derived outside probability distribution and an

expansion of the P(d) term, $ ( ),f dl m  may be conclusively rewritten as:

[ ]I A nd k l n
n

( ) ,= ⋅∑ ρ ⋅Id(Aj=m)⋅ρl,m⋅Od(Ai=l)/ [ ]I A ld i l
l

( )= ⋅∑ ϕ

Equation 2-5: IO Model Transition Frequency Reestimation Derivation (Part II)

2.4. 4  IOM Model

While the IO Model expands significantly on the adaptability of the Q Model, it

still leaves open the problem of broadly differing branch lengths in the phylogenetic tree.

The IO Model treats all branch lengths in the phylogenetic tree as having equal length.

These branch lengths represent the amount of genetic diversity between a child organism
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and its parent.  If mutation is taken to be a stochastic process, then it is reasonable to

assume that a larger branch length represents a greater amount of chronological time.

The branch lengths found in our phylogenetic tree span five orders of magnitude.  It is

reasonable to expect that providing some model variance to represent this range would

lead to an increase in modeling accuracy.  In addition, there remains the unresolved

problem of observed organisms that are descended from other observed organisms.  As

the organization of the phylogenetic tree forces all observed organism data to be at the

leaves of the tree, it seems that no observed organism may be represented as the

descendent of another.  Clearly there is biological evidence to contradict this structure.

The IOM Model (Inside-Outside-Multiple) is designed to address both the branch length

variance issue and the decendency issue.  This is accomplished through the modeling of

differing phylogenetic branch lengths (r) with differing state transition matrices ρl,m(r).

Our concept of evolutionary time assumes that there is some underlying point-

mutation process occurring continuously with time.  Let us define a matrix M, similar to

our ρl,m matrix, which represents the probability per unit of evolutionary time ∆t that a

given nucleotide duo type l will mutate into a nucleotide duo type m.  If the mutation

process corresponds to our model, we would expect that observed mutation rate could be

modeled over any time period T as M(T/∆t).  This M would thus embody both long and

short time period behavior for such randomly selected mutations.  This kind of process

corresponds exactly to the first-order Markov process described in section 2.3.2 Markov

Model.
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Given such a mutation process, as well as a measure of evolutionary time for each

branch length on our tree, we would expect that we could reestimate the matrix M as well

as the branch lengths of each branch in the Markov Tree.  A problem arises, however, in

the transition frequency reestimation process of the IO Model.  In the reestimation

equations derived above (section 2.4.3.2), we assume that all observed transition counts

in the tree occur over the same period of time.  This is embodied in the equation

P

 parent of 

( | )
,

A l A m di j
i j

A Ai j

= ∧ =∑  = $ ( ),f dl m ,

where all node descendant (Ai parent of Aj) are considered equally related.  In a model

that takes into account relative branch lengths (evolutionary time), the state transitions

observed between a given Ai and Aj are drawn from a mutation process over a potentially

unique amount of evolutionary time Ti,j.  Thus, each unique combination nodes i,j could

yield an estimate for the generic mutation rate M over a different time scale.  When we

are done aggregating the fractional state transitions in the Markov Tree we will thus have

a series of estimates for M over differing scales of time in the form of M(T1/∆t), M(T2/∆t),

M(T3/∆t)… where each T1, T2, T3… represent the evolutionary time between a unique pair

of nodes (i1, j1), (i2, j2), (i3, j3)…  While such a computation could easily be performed, it

is unclear how the resulting estimates could be combined into a single estimate for M.

Many techniques are known for exponentiating and taking the roots of such square

matrices.  These could be combined, for example, to take the geometric mean of the

observed matrices.  However, there is no method known to the author for combining

these matrices into a single estimate of M that preserves the behavior of M(T/∆t) over both
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long and short time periods.  This task is made particularly complex by the presence of

uncertainty in the estimation data.

To circumvent this issue, a nonparametric method was chosen that did not rely on

the explicit exponentiation of M.  This method allows variation of ρi,j with differing

branch lengths by grouping the branches into bins based on their branch lengths.  Bin

boundaries are collateral, non-overlapping and constructed so as to provide

approximately the same number of branches in each bin.  The set of all bins is defined as

R, while each bin r is enumerated such that 0 ≤ r ≤ (|R|-1).  All of the branches within a

given group r, are then treated as having the same branch length.  Within each branch

length range, the transition probability reestimation proceeds exactly as with the IO

Model.  The single difference is that only branches within r contribute to the reestimation

of ρi,j(r).  While this process is crude, it allows for a variation of the mutation frequency

matrix ρi,j(r) with greatly differing evolutionary spans21.  In some ways, this non-

parametric method is potentially preferable to one that requires a particular form of time

variation for ρi,j(r).  While the non-parametric method employed here allows for only a

crude time variation of ρi,j(r), it does allow the form of the variation to be completely

driven by the training data.  This form can then be examined to gain further

understanding regarding the time variance of ρi,j.  A more restrictive parameterization of

ρi,j(r) runs the risks of misfitting the data or mismodeling the evolutionary process.  The

                                                
21 While not explored in this work, the comparisons of the mutation matrices ρi,j(r) for differing r may
provide interesting insights into the way molecular RNA evolution occurs on differing time scales.  In
particular, a comparison of the eigenvectors and eigenvalues of these matrices could provide evidence for
or against the hypothesis that molecular evolution is a stateless process, and thus representable over any
time scale by a mutation rate matrix M raised to some evolutionary time component T (MT).
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current model for ρi,j(r) might provide the information needed to build an accurate

parametric model for ρi,j(r).  Furthermore, the present model for ρi,j(r) allows us to

elegantly resolve the problem of concurrently observed ancestors and descendants in the

phylogenetic tree.

The use of differing branch lengths to represent differing degrees of evolutionary

time allows us to represent such ancestral relationships among observed organisms

through the device of 0 length branches.  The setting of a branch length to 0 indicates

that there is no difference between an ancestor organism and its descendent, as no

evolutionary time had passed.  As shown below in Figure 2-9, any ancestral relationship

can be represented in our phylogenetic tree, while limiting observed organisms to the leaf

nodes.  In the IOM Model, a special bin (r=0) is set aside to represent 0 length branches.

This matrix ρi,j(0) is set to the identity matrix a priori to prevent any transitions from

taking place as ρi,j(0) = 1 iff i=j, and 0 otherwise.  This process is described graphically

in the following figure.

Aj AiAk

Ai-1

Ai-2

Aj

Ai

Ak

3.5 0.5 0

3.5 0.5

0

⇔

Figure 2-9: Use of Zero Length Branches in Phylogenetic Tree

The above phylogenetic trees are computationally identical.  Rectangular boxes represent observed
organisms, while boxes with rounded corners represent internal “synthetic ancestors”.  The device of zero-
length branches can be used to move observed ancestors (Ai) into leaf nodes.  When the branch length is 0,
then no evolutionary time is considered to have passed.  Nodes connected by branches of length 0 must
have the same state distribution.  Observed organisms can not be connected by branches of length 0 unless
their genetic makeups are identical.
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We expect that the increased complexity of the IOM Model over the IO Model

will yield additional modeling accuracy.  However, this increased complexity does not

come without additional cost.  The IO Model provided |ϕ|+|ρ| = (16-1) + (256-16) = 255

degrees of freedom.  For an IOM Model with |R| bins, we would have  |ϕ|+(|R|-1)⋅|ρ|

degrees of freedom.  The magnitude |R| is decremented by one because ρl,m(0) is forced to

unity, and thus provides no additional freedom.  For the experiments in this work, |R| = 7.

This the IOM Model has nearly 1,455 degrees of freedom, nearly 6 times as many as

does the IO Model.  With so many degrees of freedom the specter of over-fitting arises

and we must ask whether our model is really capturing salient characteristics of the

Dtrain’s population.  Perhaps we are merely encoding the exact information of Dtrain in the

parameters of the Model.  To maintain vigilance against this possibility, the available

data sets are broken into disjoint training and validation sets.  The difference between

each Model’s performance on training data is diligently compared to its performance on

the validation data.  If the performance on the two data sets begins to diverge, we expect

that we are over-fitting the data.  However, at this point our subject matter has left the

proper realm of our theoretical development for Chapter 2: Theory.  We are now ready to

move into the experimental domain of Chapter 3:  Experiments.  Model validation,

parameter selection and other such important issues will be addressed therein.
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3  Experiments

This chapter is broken into ten sections which follow the experimental

development of the Tree Model.  In 3.1 Data Sources, we discuss the source and format

of the multiple alignment, phylogenetic tree, paired and random column duos used in

these experiments.  After obtaining the data, it had to be filtered as described in 3.2

Preliminary Data Preprocessing to remove unusable sections.  This filtered data was

then tentatively evaluated under the Q Model described in 3.3 Preliminary Q Model

Study to obtain an approximately optimal value for q.  The results of the initial Q Model

investigation indicated a need for cross validation and some further filtering of the data,

as described in 3.4 Secondary Data Preprocessing.  In addition, the initial Q Model

results  exhibited certain nonlinearities which were addressed through the development

of a more sophisticated classification scheme set forth in 3.5 Classifiers.  As the results

presented here are relatively complex, 3.6 Results Format provides a brief overview of

the graphical, and statistical format which will be used to present the final results.

Finally, the results of each Model are reviewed and discussed briefly in the last four

sections:  3.7 Frequency Model,  3.8 Q Model,  3.9 IO Model  and  3.10 IOM Model.

3. 1  Data Sources

All of the data used in the following experiments was obtained through the

Ribosomal Data Project (RDP) of the University of Chicago, Urbana-Champaign  [39].

In particular, we used data from prokaryotic Small Subunit (SSU) RNA also known as

16S RNA.  This family of ribosomal RNA was selected because it has nearly as many
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known sequences as the shorter tRNA, yet is approximately 25 times as long, providing a

greater challenge for structural modeling.

Three essential data files were retrieved from the RDP: a multiple alignment

(SSU_Prok.gb) [40], the phylogenetic tree (SSU_Prok.newick) [41] and a list of column

duos which are known to be paired (pairs) [43].  These files were from revision 3.0 of the

RDP database.  All of the experimental results derived herein stem solely from these

three data files.  The multiple alignment data file fixed the SSU primary sequence data

into 2688 columns and contained alignments for 1381 organisms.  This alignment is, at

the time of this writing, a comprehensive listing of sequenced 16S RNA.  Alignment has

been performed by hand through contributions of numerous research biologists over

years of work.  The phylogenetic tree data file contained 1376 organisms and was

generated by the fastDNAml program, version 1.0.6 [21], which is also available from

the RDP.  The phylogenetic tree and multiple alignment had 1375 organisms in common,

the rest of the data was disregarded.  The paired column duo file contained a list of

2-tuples of column identification numbers for those multiple alignment columns that are

believed to chemically interact.  These column pairs included column duos that are

believed to compose: helixes (secondary structure), end-caps for helixes and individual

pairs (tertiary structure).  The paired column duo data did not include any duos related

solely by ternary (3 nucleotide) interactions.
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3. 2  Preliminary Data Preprocessing

Several aspects of the initial data received from the RDP made it difficult to use.

To insure a uniform data set for experimentation, several preprocessing steps proved

necessary.

First, the organism names in the phylogenetic tree data file had to be coordinated

with the names in the multiple alignment.  Since the naming conventions were similar,

but not exactly the same, and there was no common keying field, name space

coordination was accomplished by hand through the addition of a tag line to each entry

in the multiple alignment data file [42].  This line contained the phylogenetic tree’s

organism name for each corresponding multiple alignment sequence.

Next, a list of random column duos was generated to sample the nonpaired

(Rand) population.  All paired column duos (Pair) [43] found in the nonpaired sample

were removed22.  Since there were more symbols in the multiple alignment than the

nucleotide designators (A, C, G, U), both Pair and Rand data were filtered to insure a

certain amount of valid data in each column duo.  Additional characters included

symbols representing gaps (-), omissions (.) and uncertain sequencing data (Y, R, N).

In all Models, only “valid” nucleotide duos contributed to the probability

calculations.  A nucleotide duo was considered valid if each of its constituent bases was

one of {A, C, G, U}.  Both Rand and Pair were filtered to insure that each column duo

                                                
22 Only duos from the nonpaired set which were found in the paired set were removed.  If a nonpaired duo
had one column in common with a paired duo, it was not removed from the nonpaired data set.  A
nonpaired column duo could have both of its columns present in paired duos, so long as those columns
were not themselves paired.  This filtering was chosen to represent experimental conditions where the Tree
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contained at least 75% valid nucleotide duos.  This process reduced Rand and Pair from

3500 and 944 column duos to 695 and 634 column duos respectively.  In probability

calculations, non-valid duos in a column duo were treated as nonexistent23.  All resultant

NLL scores for column duos were then normalized by the number of nucleotides in valid

nucleotide duos for each column duo.  This normalization maintained a consistent

interpretation of NLL as the mean number of bits of information per valid base in the

data set.

3. 3  Preliminary Q Model Study

After the data had been filtered, the preliminary studies using the Q Model were

performed in order to determine a working value for the mutation frequency parameter q.

NLL values for both Rand and Pair data were calculated under using q values of: 0.99,

0.9, 0.5, 0.1, 0.01, 0.001, 0.0001 and 0.00001.  Since no cross validation was being

implemented at this phase of the work, all column duos were included in the calculations

used to generate the following results.  In this preliminary work, a Dirichlet mixture was

used to determine the values for ϕ, which was combined with q to construct ρ. The

Dirichlet values were drawn from earlier work by Brown et. al. [44].  The actual values

used are available in Table 3—1 and Table 3—4.

                                                                                                                                              
Model would be exhaustively scanning a multiple alignment for possible paired column duos.
23 For leaf nodes of a Markov Tree, a node is considered valid if its corresponding nucleotide duo is valid.
For internal nodes, the node is valid if either of its children are valid. Please refer to footnote 15 on page
47 for calculation of the inside probability distribution when one child is invalid.  Please refer to footnote
20 on page 65 for calculation of outside probability when a sibling node is invalid.  State transition
frequency estimations omit from summation any fractional state transition to an invalid child.
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As there was no Dtrain available at this point in the experimentation, ModelRand

was constructed by calculating ϕ using the relative individual nucleotide frequency from

Preliminary Q-Model Results for q=.01 (9.8% error)
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Figure 3-1: Preliminary Q Model Study - Result Sample for q=0.01

The Negative Log Likelihood (NLL) scores reported here represent the difference in mean values or,
NLL(P(d|ModelRand)) - NLL(P(d|ModelPair)) for a given column duo d.  Note that most of the column duos
are at the far edges of the graphs where the bars go off the end of top of the y-axis by more than an order
of magnitude.  Classification error is calculated as the total overlap between these the two distributions
divided by 2 (see Equation 3-1: Preliminary Q Study Error Calculation).

Base Relative
Name Freq.
A 0.26
C 0.21
G 0.18
U 0.20

Table 3—4:
Nucleotide Relative

Frequency

This is renormalized to compute
the Independent or null model ϕ for
the preliminary Q Model study.

Left Right Base
Base A C G U
A 0.160 0.135 0.193 1.591
C 0.177 0.135 3.404 0.163
G 0.219 1.719 0.247 0.533
U 2.616 0.152 0.784 0.249

Table 3—1: Nucleotide Pair Relative Frequency

This distribution is renormalized to compute the Dependent
model ϕ for the preliminary Q Model study.
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Table 3—4 under the assumption of nucleotide independence24.   ModelPair was

constructed by taking  ϕ  to be the nucleotide duo distribution for paired duos found in

Table 3—1.  For each of the two models, -log2(P(d|tree∧ Model)) was calculated for each

column duo (d) in both the Pair and Rand data sets.  For each d, the NLL value under

ModelPair was subtracted from the NLL value under ModelRand.  This yielded a net score

that was expected to be less than zero for nonpaired column duos, and greater than zero

for paired column duos25.  Each net NLL score was then divided by the number of valid

bases in valid nucleotide duos for the column duo to determine the mean NLL score in

units of bits of per base.

The above graph (Figure 3-1) represents the NLL scores for q=0.01, as applied to

ModelRand and ModelPair.  Similar NLL score distributions were calculated for each of

several values of the model parameter q.  To determine the error rate for each

distribution, the percentage of overlap between the distributions was calculated as

follows.

                                                
24 The nucleotide independence assumption is that for a nucleotide duo xy, P(xy) = P(x)⋅P(y).
25 If P(d|Model(Pair)) < P(d|Model(Rand)), then NLL(P(d|Model(Pair))) > NLL(P(d|Model(Rand))) and
thus NLL(P(d|Model(Rand))) - NLL(P(d|Model(Pair))) < 0.  This is basically a posterior probability
classifier.

N Number of Bins of NLL scores.
Un(n) Percentage of unpaired data that is in bin n.
Pr(n) Percentage of paired data that is in bin n.

Error Rate =  
1

2 1

⋅
≤ ≤
∑Min(Un(n),Pr(n))
n N

Equation 3-1: Preliminary Q Study Error Calculation
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These error rates were calculated for each q value (0.00001, 0.0001, 0.001, 0.01,

0.1, 0.5, 0.9 and 0.99).  The results of these error calculations are as follows (Figure 3-

2):

According to the above, the value of q = 0.01 was found to provide the lowest

error rate.  Consequently, this value was used as an initial estimate of the value of q for

the following Q Model studies.

3. 4  Secondary Data Preprocessing

After the preliminary Q Model studies were completed, both the Rand and Pair

data sets were filtered again; this time to insure uniqueness and remove column duos that
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were inverses of one another26.  This additional filtering did not effect Rand, which

remained at 695 column duos.  However, by eliminating inverses in Pair, that data was

effectively halved, leaving 317 column duos.  These remaining duos were oriented

consistently, with the column having the lower column ID number to the left.  This is

considered biologically plausible due to the inherent direction in an RNA nucleotide

sequence induced by asymmetry in the molecule’s phosphate backbone.

To address concerns of over-fitting in the more complex IO and IOM Models, it

was decided that cross validation should be implemented.  To this end, Rand and Pair

were each divided randomly into 4 sets of approximately equal size (Rand: 173, 173,

173, 176;  Pair: 79, 79, 79, 80).  Cross validation was implemented by training on three

of the four sets, and then validating on the fourth.  Each possible combination of three

training sets and one validation set will be referred to as a partition.  Partitions are

numbered Rand1-Rand4 and Pair1-Pair4.  A partition’s number corresponds to the

number of that partition’s validation set.

The training and testing of the nonlinear classifier (see 3.5 Classifiers) required

training examples, as well as test examples from both Rand and Pair.  This provided

sixteen groups of train/test data, one group for each combination of one Rand and one

Pair partition.  The same three sets from each partition that was were to derive a Model

were also used to train the classifier.  The fourth set from each partition served as the

validation (test) set for both the model, and the classifier.  This preserved validation

                                                
26 A column duo is stored as an ordered 2-tuple of column identification numbers x,y.  If y,x is also found
in the data set, it was removed.  All tuples were then arranged with the lower column identification number
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integrity while allowing each column duo to serve as validation data for some training

set.

3. 5  Classifiers

Once a Model had been constructed from a training set, it was used to produce

likelihoods for each d∈ Dtest, P(d|Model∧ Tree).  Up to this point, d was classified based

on the Model that provided the higher likelihood.  If P(d|ModelRand) > P(d|ModelPair) then

d was classified as nonpaired, otherwise it was classified as paired27.  This classification

scheme will be referred to as the “simple discriminator”.  During the preliminary Q

                                                                                                                                              
first, i.e. x,y where x<y.  Column duos of the form x,x were removed as well.
27 Please see sections 2.2.2 Discrimination and 6 Appendix B: Posterior Probability Classifier for IO for a
justification of the use of likelihoods (P(d|Model)), rather than posterior model probabilities (P(Model|d)).

IOM Model Validation Set Linearity 
Away From Origin

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

0.5 1.0 1.5

Random Model NLL (bits/base)

P
ai

r 
M

od
el

 N
LL

 (
bi

ts
/b

as
e)

Rand Data Pair Data X=Y
        

IOM Model Validation Set 
NonLinearity Near Origin

0.03

0.05

0.07

0.09

0.11

0.13

0.15

0.17

0.03 0.08 0.13

Random Model  NLL (bi ts /base)

Rand Data Pair Data X=Y

Figure 3-3: Typical Nonlinearity Near Origin for NLL Values

While a direct comparison of posterior probabilities is suitable for tuples with relatively small posterior
probabilities (large NLLs), it serves as a poor classifier for higher probabilities (small NLLs).  These
graphs represent the probability generated for each given column duo by each model .  The X=Y line
represents the boundary for the simple classifier.  These plots contain about 50% of the total data from the
IOM Model calculations.  For a complete chart of these results which includes the data in this chart, please
see Figure 3-11: IOM Model Results Graphical Summary.
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Model study, it was found that there were certain nonlinearities in the distribution of the

data points that might foil the simple classifier (see Figure 3-3).  In particular, NLL

values from both data sets tended to be unexpectedly low, according to ModelPair, when

the data was highly probable according to both Models.  This did not come as a complete

surprise as the data sets contained a number of highly conserved column duos that are

assigned high likelihoods under both ModelPair and ModelRand.  These dada are nearly

indistinguishable under the Tree Model.  The problems arising from this sort of data are

discussed at considerable length in 4 Discussion and Conclusion

P(d|ModelRand)

P(d|ModelPair)
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Figure 3-4: Neural Net Discriminator

A four layer, feed forward, neural net is used to aid in discrimination.  Raw NLL values are fed into the
input units.  The linear activation function in Layer 2 serves to rescale the NLL scores.  Layers 3 and 4
provide the actual discrimination computation.  Learning is accomplished through a classical back
propagation technique.  The Output layer training values are tuples of either (0,1) or (1,0) which indicate
paired or nonpaired data respectively.  Novel inputs produce a tuple of real numbers that represents the
strength of the net’s belief that the input data are from a paired or nonpaired column duo respectively.
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To overcome this difficulty, a second, nonlinear discriminator was implemented

as an artificial neural network (ANN or “Neural Net Discriminator”, see Figure 3-4).

This class of discriminator is capable of finding locally optimal classification strategies

given even a strongly nonlinear training set.  In addition, the classification strategy found

by the neural network was derived from a training set of exemplars and required virtually

no manual intervention.

The primary difficulty in implementing the neural network discriminator was the

selection of training and test data.  Since this type of network required examples from

both Rand and Pair, careful preparation of training and test set partitions was required to

prevent any contamination of the validation data from the training set.  The network was

trained and tested 16 times, corresponding to each of the 16 possible combinations of

Pair & Rand data partitions (see 3.4 Secondary Data Preprocessing).  Network training

was performed on the same elements used to train Model, and tested on Model’s

validation column duos.

For each individual train/test cycle, each element of the ANN training set

consisted of two NLL values for d according to ModelPair and ModelRand and an

additional 2-tuple containing the correct classification of d.  This 2-tuple consisted of

(1,0) if the d was nonpaired column duo and (0,1) if d was paired.  After training was

complete, the classifier would accept two NLL values generated by ModelPair and

ModelRand for a novel column duo d.  The ANN then produced a real valued output

2-tuple (X,Y) where X was the network’s belief that d was not paired and Y was the

network’s belief that d was paired.  Due to the network architecture and choice of
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training techniques, X and Y fell within the constraints that 0≤X,Y≤1 and X + Y = 1.

Final classification of d was done by comparing X and Y and predicting that d belonged

the data class corresponding to the output with the larger magnitude.

The Neural Network Discriminator performed as expected, providing superior

discrimination performance on all of the training data (up to 26% fewer errors).  The

ANN also significantly improved discrimination performance on validation data for the

IO and IOM Models  (up to 17% fewer errors).  However, the ANN actually decreased

the validation set classification accuracy for the Q and Frequency Models (13% & 5%

more errors).  This degradation in validation set discrimination is attributed to the

ANN’s over fitting of the relatively simple Q and Frequency Model training sets.  Please

see the following table for a more complete description of the ANN’s performance.

Model Mean Training Error % Mean Validation Error %

Type Simple ANN ∆ Simple ANN ∆

Frequency 13.74 11.88 1.86 14.38 15.09 -0.71

Q 14.87 13.02 1.85 14.77 16.70 -1.93

IO 8.65 6.37 2.28 11.27 9.34 1.93

IOM 9.42 7.21 2.21 12.38 10.50 1.88

Table 3—2: Discrimination Error for Simple Classifier vs. ANN Classifier

All numbers listed are percentages. Numbers listed under “Simple” and “ANN” columns are the
misclassification rates of each discriminator, for each evolutionary model.  The “Improve” column is the
percentage reduction in the misclassification rates from the Simple classifier to the ANN classifier.  In
every case, the ANN classifier decreases discrimination error against the Simple classifier for the training
set.  However, the validation data classification error rate increases for the Q & Frequency Models,
presumably due to the over learning on the part of the ANN model.
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As an in depth treatment of Artificial Neural Networks (ANN’s) is not within the

scope of this work, interested parties are referred to [45] and [46] for a general treatment

of ANN’s.  The network configuration and computation was programmed in PlaNet [47].

3. 6  Results Format

The results for each Model class (Frequency, Q, IO & IOM) are summarized in its

own section (3.7,  3.8,  3.9 &  3.10).  In each of these sections, there is a numerical

summary of the results for the corresponding model, as well as a graphical summary.

The numerical summary presents the performance of the model in terms of mean

posterior probability and classification accuracy, for both the training data and the test

data of Rand & Pair.  The graphical summary presents a coarse visual representation of

each models encoding and classification performance.

The mean data likelihood for each set is represented in units of bits per base

(NLL).  The lower the NLL value, the greater the mean probability of the data given the

model, and thus the better the fit of the model to the data.  In general, the NLL values

derived from training set data measure how well the model fits the training data.  The

NLL values derived from for validation data measure how well the model generalized to

the training sample’s generating population.  A substantial increase in mean NLL values

between the training set and the testing set is often an indication that the model is over-

learning.  Over-learning occurs when a model begins to represent statistical fluctuations

in the training sample that are not representative of the population from which the

sample was drawn.
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In the results section for each model, there is also a numerical summary of the

classification accuracy for each of the two classifiers described in 3.5 Classifiers.  This

summary displays the number of nucleotide duos from each of the Rand and Pair data

sets, and how they were classified.  Data sets are presented in columns (“Actual”) with a

differing evaluation model on each row (“Predicted”).  This a count in the Pair column

and Rand row represents a paired column duo which was classified as nonpaired by the

discriminator

Training data is displayed separately from validation data.  A substantial drop in

classification accuracy from the training set to the validation set is a likely indicator of

over-learning by the classifier.  This is relevant only for the neural net discriminator as

the simple discriminator is not trained.  It is realistic to expect the optimal validation

classification accuracy to be lower than the neural net training accuracy and higher than

the greater of the simple classifier accuracy, and the neural net validation accuracy.

It may seem odd that the total number of column duos represented in the data

columns of the classification summaries are greater than the number of column duos in

the data set.  This is due to the cross validation data partitioning described in 3.4

Secondary Data Preprocessing.  According to this data partitioning, each data type

(Rand/Pair) is partitioned four different ways.  In each of the four partitionings, all of

column duos are separated into two sets with 75% of the data for training and a disjoint

25% for validation.  As each of Pair and Rand are configured into four such

partitionings, there are sixteen possible combinations of one Rand partition and one Pair

partition.  A classifier is trained and tested separately for each of these sixteen
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combinations.  The results are then accumulated for Rand and Pair across all sixteen

partition combinations.  Separation between training set statistics and validation set

statistics is maintained across this accumulation.  For the Rand data set of 695 unique

column duos, the number of counts in the Actual columns of the classification summary

will be 16⋅(695⋅25%) = 2,780 validation duos and 16⋅(695⋅75%) = 8,340 training duos.

Clearly, each validation set column duo is used in discrimination four times, once with

each Pair partition.  Each training duo is used in discrimination twelve times, three times

with each Rand partition.  Similarly the number of counts in the Actual columns for the

317 column duo Pair data set are: 16⋅(317⋅25%) = 1,268 for the validation set and

16⋅(317⋅75% ) = 3,804 for the training set.

In addition to the numerical results, the results summary section for each model

class contains a chart that summarizes model performance for the validation results for

that model.  This graph is relatively complex and requires some explanation. As outlined

above, each validation set column duo d generates four validation probability tuples, for

example i f  d∈ D(Pai r )  then we would have the four  tup les (P(d|ModelPair),

P(d|Model(RandX)) for (1≤X≤4).  Each of these four tuples would be plotted as a

separate point with the NLL generated by ModelRand model as the X-axis coordinate and

the NLL generated ModelPair as the Y-axis coordinate.  As we expect to see data from the

paired data set (d) generate P(d|ModelPair) > P(d|ModelRand), we would expect this data to

cluster below the X=Y line28.  Similarly, we would expect to see data drawn from Rand

                                                
28 We are plotting NLL values rather then probabilities. For a given probability p, NLL(p) = -log2(p).  Thus
a higher probability indicates a lower NLL value.  Thus a datum with a high likelihood under a given
model will be found near the origin of the axis corresponding to that model.
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cluster above the X=Y line.  In general, this was found to be the case.  In addition, the

data was found to cluster strongly near the origin on both axes.  To compensate for this,

the graphs are plotted in log-log format to provide for a more uniform graphical

distribution29.  To allow for direct comparisons, all of these charts use the same scaling

and numerical X and Y-axis range (0.01 to 10).  In the case of the Frequency Model

results, however, all of the data was found to cluster in a relatively small region, and thus

a linear-linear detail of the area of interest is included.

In all of these charts, there is a secondary Y axis providing some additional

information about the accuracy of the simple classifier.  The separation between the

Rand and Pair data sets seems to decrease closer to the origin.  This seems to indicate

that the classification accuracy could be increased by ignoring certain data elements that

had high probabilities according to both ModelPair and ModelRand.   This would

correspond to a three way classification scheme that would classify each column duo d

into one of three classes: Paired, Rand and Unknown.   The thick gray line labeled

Accuracy on Figure 3-5: Sample Graphical Summary, indicates the classification

accuracy of the Simple Classifier.  Each point on this line represents the cumulative

classification accuracy for all data to right of that point (duos with larger ModelRand NLL

values).  This line is used to show how model classification accuracy improves as data

with lower Rand Model NLL values are excluded from the classification validation set.

                                                
29 Due to a 4000 data point limitation in the graphing software (Microsoft’s Excel), 25% of the data tuples
were removed at random to keep the number of plotted points below the maximum allowed.  As these
points were selected at random, their removal is not expected to affect the shape of the distributions,
though there is a chance that individual, potentially interesting, outliers might be absent.
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This use of Random Model NLL scores may seem arbitrary, however, there is a

theoretical motivation for it.  The Random Model NLL value for a column duo d is a
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Figure 3-5: Sample Graphical Summary

The data for this plot (400 duos) was generated synthetically to highlight the chart chart’s characteristics.
For actual Tree Model data, a tuple of per base NLL values are computed for each column duo according
to ModelPair and ModelRand.  A simple classifier assigns the data to the model with the higher probability
(lower NLL value).  The area above the X=Y line is the region of Rand Data classification, and the region
below the X=Y line is the region of Paired Data classification.  The synthetic data above does reflect lower
classification accuracy near the origin.  Each point on the gray line represents the classification accuracy
(right hand Y-axis) of all data points to its right, thus showing how the simple discriminator’s accuracy
increases as points near the origin are excluded as ambiguous.  The gray squares are dividers that mark
every 10% of the data points excluded (every 40 data points).
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reasonable, though crude, indication of the number of mutations that d has undergone

during its evolution.  Because the Tree Model bases its calculations predominantly on the

mutation process, column duos that are highly conserved and thus experience few

evolutionary changes, may be far more difficult to classify then those which mutate

frequently.  By this reasoning, such slowly mutating column duos might be excluded as

classification candidates.

As the ModelRand is trained from a set of non-paired columns drawn randomly

from the multiple alignment, it is a reasonable approximation of the mean evolutionary

process for a given mutation model class (Frequency, Q, IO or IOM).  By measuring the

state transition rates from the IO Model, the mean mutation rate per branch of the

phylogenetic tree is calculated to be approximately30 0.03.  Unlike the q parameter in the

Q Model, this is the a priori probability that over a given phylogenetic tree branch a

given parental nucleotide pair will change to a different nucleotide pair in a given child.

Any evolutionary model with similar mutation rates will thus penalize the probability of

column duos that have high mutation rates with high NLL values.  The magnitude of this

penalty will be approximately -log2(0.03) = 1.58 bits per mutation.  Assuming that the

distribution of individual nucleic acids is relatively uniform, each base that does not

mutate would contribute approximately -log2(1.0-0.03) = 0.044 bits per non-mutation

branch.  As the Phylogentic Tree is a binary tree31 there are approximately twice as many

                                                
30 For brevity, the calculation of this value is not shown.  It is derived from the state transition counts for
training set 1 of the Rand data.  The nucleotide conservation rate was 96.51%, and thus the mutation rate
was 3.49% that is approximated as 3% for this rough calculation.
31 Each node is either a leaf node or has exactly 2 children.  Thus, if there are N leaves there are N-1
internal nodes, for a total of 2N-1 nodes and 2N-2 branches (transitions).
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branches as there are leaves, and each valid leaf contains two bases.  Thus, to the extent

that the mean NLL per base over a column duo is greater than

0.044 bits/branch × (# of branches / # of bases) ≈ 0.044 bits/base,

the NLL of the column duo derives predominately from the mutations encountered,

rather than the static nucleotide composition of the columns32.  As the Rand Model NLL

values are uniformly above 0.03 bits/base, and the vast majority are above 0.044

bits/base, they are a reasonable estimator of the number of mutations encountered in a

column duo’s evolution.  These NLL values are thereby anticorrelated with the strength

of the conservation in the column duo.  The interpretation of ModelRand NLL value as a

measure of genetic stability, is invoked to construct the accuracy line, which successively

excludes the most conserved remaining data (as measured by random model NLL on the

X-axis of the graph) as the line progresses to the right.  The increase in discrimination

accuracy with increasing exclusion of conserved column pairs may be a more

informative measure of the resolving power of the model, then the model’s overall

accuracy.  To facilitate the interpretation of this accuracy line, square markers are placed

for each 10% of the data that is excluded.  Thus, if there are 100 data points, solid

squares will be found on the cumulative accuracy line at the first X-axis data position

(0% excluded), the 11’th (10% excluded), the 21’st (20% excluded) and so forth until the

last at the 91’st position (90% excluded).

                                                
32 Plus a small factor to determine the initial configuration of the system.  This decreases quickly as 1/N
where N is the number of evolutionarily unchanged base duos.  As this approximation is for columns that
are highly conserved, and thus relatively stable over evolutionary periods, this factor is neglected.
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3. 7  Frequency Model

The Frequency Model is the simplest model class.  It is used as a “null” model

against which to compare other models.  The Frequency Model computes posterior

probabilities for a given column duo d based on the assumption that all nucleotide duos

d∈ D are independent observations drawn from the distribution ϕl(Dtrain), P(d|Model) =

ϕ
d

d d

s
s ∈
∏ , or alternatively NLL(P(d|Model)) = −

∈
∑ log ( )2 ϕ

d
d d

s

s

.  As in all models discussed

in this work, ϕl is the nucleotide frequency distribution found in the training set for a

given data class (Rand or Pair).  If d∈ Dtrain then the nucleotide duos ds∈ d were included

in the calculation of ϕ.  If d∈ Dtest, or from the data class opposite that of d, then d is not

used in the calculation of ϕ.  The independent model mentioned below differs from the

dependent model in the calculation of ϕ.  In the independent model, the probability

distribution over nucleotide duos is computed from the marginal probability distribution

over individual nucleotides, assuming that the marginal nucleotide distributions are

statistically independent.  Thus, for a given nucleotide duo xy which corresponds to state

l, ϕl = P(xy) = P(x)⋅P(y).  An independent model is constructed for the Frequency Model

only as a verification of the hypothesis that randomly selected column duos will produce

a nucleotide duo distribution that is similar to the independent joint distribution of

individual nucleotides.  This hypothesis is borne out by the following tables that show

that NLL scores generated by the independent and dependent ModelRand are quite similar.
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One common null model used in NLL calculations for RNA is to merely assume

that all nucleotides are drawn independently from a uniform distribution. This would

yield a per base NLL value of -log2(1/4) = 2 bits/base.  It is interesting to note that the

Pair Model statistics are an extremely poor representation of the Rand data class,

requiring 3 bits/base for the data.  This is significantly worse than the simpler 2 bits/base

null model.  This distribution is so bad that the independent probability distribution

generated by the Pair Model is a better measure of the Rand data class (2.1 bits/base)

than the dependent model (3.0 bits/base). The 2 bits/base model is upheld by the

statistics generated by the Rand Model indicating a nearly uniform NLL score of 1.9-2.0

bits per base over all data sets.  In the case of a model being applied to its own training

data, the NLL scores in Table 3—3: Frequency Model NLL Summary may be interpreted

as the entropy, or self information content, of that training set.  For the pairwise model,

this is 1.3 bits/base, indicating a strong, but not perfect trend towards pairing in

nucleotide duos in paired column duos.

Frequency Model (dependent)
NLL Validation Set Training Set

(bits/base) Rand Data Pair Data Rand Data Pair Data
Rand Model 1.996 1.906 1.978 1.906
PairModel 3.007 1.390 3.007 1.244

Frequency Model (independent)
NLL Validation Set Training Set

(bits/base) Rand Data Pair Data Rand Data Pair Data
Rand Model 1.990 1.960 1.981 1.960
PairModel 2.059 2.037 2.060 1.887

Table 3—3: Frequency Model NLL Summary
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The classification accuracy table (Table 3—4) shows some unusual features as

well.  This table shows that the classification accuracy for the nonlinear classifier (Neural

Net Discriminator) is actually worse than the simple classifier for the validation set.

While no definitive explanation for this was sought, it seems likely that this was due to

over fitting of the training data by the network.  As shown in Figure 3-6: Frequency

Model Results Graphical Summary (detail),  the c luster ing of  data is  fa i r ly

straightforward.  The Neural Network complexity needed to fit the more complex IO &

IOM Model results, probably goes to fit noisy fluctuations in the training set.  This

enhances training set discrimination at a cost in validation set accuracy.  The over-fitting

hypothesis is supported by the neural network classification accuracies that are higher

than the simple classifier for the training sets, but slightly lower for the validation sets.

Frequency Model Classification Accuracy - Simple Discriminator
Actual (train) Actual (validate)

Predicted Rand Pair Rand Pair
Rand 6912 241 2291 89
Pair 1428 3563 489 1179

Accuracy 86.26% 85.72%

Frequency Model Classification Accuracy - Neural Net Discriminator
Actual (train) Actual (validate)

Predicted Rand Pair Rand Pair
Rand 7382 485 2459 290
Pair 958 3319 321 978

Accuracy 88.12% 84.91%

Table 3—4: Frequency Model Classification  Summary
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The above graph (Figure 3-6) indicates that the Random represents all of the data

in 1.6 to 2.4 bits/base.  Much of the discrimination capability comes from the paired

model statistics that spread column duo encodings from 0.5 to 5.5 bits/base.  The results

from this model also differ from those of the Q, IO and IOM Models in that they are
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Figure 3-6: Frequency Model Results Graphical Summary (detail)

See also 7 Appendix C: Data Separation Charts , page 140 for seperation chart of this data.
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clustered in a relative small region.  For comparison purposes, the following graph is

drawn to the same scale as the graphs for other models (Figure 3-7).  Clearly, only a tiny

fraction of the total scale is used to represent all of the available data.

Frequency Model Validation Results

0.01

0.1

1

10

0.01 0.1 1 10

Random Model NLL (bits/base)

P
ai

r 
M

o
d

el
 N

L
L

 (
b

it
s/

b
as

e)

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

S
im

p
le

 C
la

ss
if

ie
r 

A
cc

u
ra

cy
 %

Rand Data Pair Data X=Y Accuracy

Figure 3-7: Frequency Model Results Graphical Summary



96

3. 8  Q Model

The results from Figure 3-2: Preliminary Q Model Error Rates indicate that the

optimal value for the q parameter is around 0.01.  To the order of magnitude calculations

that were performed, this is consistent with the mutation rate parameter of 0.03 obtained

from the IO Model in 3.5 Classifiers.  An additional exploratory value of q=0.0001 was

attempted and found to have a marginally better cross validation discrimination

accuracy.  However it had far higher NLL values, and the difference in classification

accuracy was deemed sufficiently small to be insignificant.  Thus, the performance of the

Q Model at q=0.01 is considered to be more indicative of its peak performance.  For a

summary of results for q=0.0001, please see 5 Appendix A.  Due to resource constraints,

it was not feasible to explore other values of q for this work.

The difference in NLL values between the Frequency Model (Table 3—3) and the

Q Model (Table 3—5) are striking.  While the Frequency Model provided validation

NLLs on the order 2.0 bits/base for Rand column duos under ModelRand and 1.4 bits/base

for Pair column duos under ModelPair, the Q Model produces 0.39 and 0.32 bits/base

respectively.  This tremendous savings indicates that even for such a crude local

Q Model (dependent)

NLL Training Set Validation Set

(bits/base) Rand Data Pair Data Rand Data Pair Data

Rand Model 0.389 0.329 0.389 0.329

PairModel 0.462 0.306 0.462 0.320

Table 3—5: Q Model NLL Summary for q=0.01
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evolution model as the Q Model, the phylogenetic tree holds a tremendous amount of

information.

The validation set NLLs for a given data set indicate the degree to which a model

fits the data population.  However, it is the difference between the NLL values generated

by ModelRand and ModelPair on the same data that should be indicative of the

discrimination power of the Model.  For the Q Model, we see a much better fit of the

model to the data than we saw in the Frequency Model.  However, we see very little

differentiation in NLL values produced by ModelRand and ModelPair, on the same data.

This leaves us with a discrimination capability that is similar to that of the Frequency

Model, about 85% accuracy (Table 3—6).

Q Model Classification Accuracy - Simple Discriminator

Actual (train) Actual (validate)

Predicted Rand Pair Rand Pair

Rand 8172 1638 2729 547

Pair 168 2166 51 721

Accuracy 85.13% 85.23%

Q Model Classification Accuracy - Neural Net Discriminator

Actual (train) Actual (validate)

Predicted Rand Pair Rand Pair

Rand 7888 1129 2620 517

Pair 452 2675 160 752

Accuracy 86.98% 83.28%

Table 3—6: Q Model Classification Summary for q=0.01
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As the following graph indicates (Figure 3-8), all data points are clustered

sharply around the X=Y line, and are somewhat difficult to distinguish.  It is thus not

surprising under such a simple distribution that the Neural Network’s 17% validation set

error rate is so much higher than the 13% training set error rate.  This 17% validation

error rate is even higher than the Simple Discriminator error rate of 15%.  This is strong

Q Model Validation Set Results
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Figure 3-8: Q Model Results Graphical Summary for q=0.01

See also 7 Appendix C: Data Separation Charts , page 141 for seperation chart of this data.
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evidence of over learning in the training of the Neural Network.  It might reasonably be

assumed that the validation accuracy of an optimal classifier would lie somewhere in the

range between the accuracy of the Neural Network on the training data and its accuracy

on the validation data.

We can see, from the above chart both data sets are clustered tightly around the

X=Y line.  This indicates poor distinction between Rand and Pair under the Q Model.

What is more difficult to see is that this indeterminacy is most severe near the origin.  As

points lying near the origin are excluded, the classification accuracy rises from its base

rate of 85%, to 89% with 10% excluded, 95% with 30% excluded to 98% with 50%

excluded.  It is reasonable to ask why these data points are so difficult to classify.  Data

points near the origin are those with relatively high probabilities according to both

models (Rand and Paired).  In general, these are the data points with few mutations, as

transition to a differing nucleotide pair is a relatively rare event (see 3.5 Classifiers & 3.6

Results Format).  As the Tree Model derives the bulk of its efficacy from making

approximations of the evolutionary history of a column duo, those duos with little

mutation in their evolution have few distinguishing characteristics.  For these column

duos, only the composition of the column duo remains as a distinguishing factor.  At this

point the Q Model is expected to perform differentiation with accuracy similar to that of

the Frequency Model.  For example, a perfectly uniform column duo provides little

information to indicate whether it is composed of two randomly selected columns that

are independently conserved, or whether it is a highly conserved paired column duo.
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3. 9  IO Model

The IO Model was initialized from the state transition matrix ρ generated by the

Q Model with q set to 0.0001.  This model was then trained through repeated

reestimation of the probability transition matrix ρ (2.4.3 IO Model) for approximately 10

iterations at which point the change in training set NLL value was less than 0.01%.  The

resultant values for ρ were then saved and applied to the validation data as described

above.

The difference between the Q Model (Table 3—5) and IO Model (Table 3—7)

NLL values for each data set on its own validation data is relatively small.  The Rand

data NLL values dropped from 0.389 to 0.316 bits/base while those of the Paired Data

dropped from 0.320 to 0.283 bits/base.  This shows nowhere near the dramatic shift that

was observed between the Frequency Model (treeless) and the Q Model (uses tree).

What is more significant is the change in the separation between mean ModelPair &

ModelRand NLLs on the same data.  For the IO Model validation set, the difference

between the ModelRand NLL and ModelPair NLL was 0.180 bits/base for Rand data and

0.081 bits/base for Pair data.  This is a tremendous improvement from the Q Model’s

IO Model (dependent)
NLL Validation Set Training Set

(bits/base) Rand Data Pair Data Rand Data Pair Data
Rand Model 0.316 0.364 0.313 0.365
PairModel 0.496 0.283 0.495 0.260

Table 3—7: IO Model NLL Summary
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differences of 0.073 and 0.009 bits/base.  These differences represent the separation of

the centroids of Rand and Pair data clusters, on the graphical summaries.  For tightly

clustered data, this separation is expected to indicate the resolving power of the model.

Another effect we did not see in either of the simpler Frequency or Q Models is

the beginning of over fitting in the NLL values.  For ModelRand and ModelPair results we

see a degradation in NLL values between the Training Set and the Validation set of 0.003

and 0.023 bits/base respectively.

IO Model Classification Accuracy - Simple Discriminator

Actual (train) Actual (validate)

Predicted Rand Pair Rand Pair

Rand 7443 153 2462 134

Pair 897 3651 318 1134

Accuracy 91.35% 88.83%

IO Model Classification Accuracy - Neural Net Discriminator

Actual (train) Actual (validate)

Predicted Rand Pair Rand Pair

Rand 7970 404 2626 224

Pair 370 3400 154 1044

Accuracy 93.63% 90.66%

Table 3—8: IO Model Classification Summary
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As might be expected from the marked increase in data cluster centroid

separation, we do see a strong increase in accuracy over the Q Model.  Validation set

error drops from approximately33 15% to 9%.  For the first time we also see possible

                                                
33 As the validation accuracy of the Neural Network classifier was lower than the accuracy of the Simple
classifier, the accuracy of the Simple classifier was thought to be a more accurate representation of overall
resolving power.  Thus the simple classifier’s statistics are used for comparison.
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Figure 3-9: IO Model Results Graphical Summary

See also 7 Appendix C: Data Separation Charts , page 142 for seperation chart of this data.
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results of over learning displayed in the Simple Discriminator, whose error rate rises

from 9% to 11% between training set and validation set.  In the Q and Frequency Models

no such change was evident.  This is clearly not a result of over-learning in classifier

training, as the simple classifier is not trained.  Rather, it is more indication of the

beginning of some over-learning of the IO Model.

As with the Q Model, the IO Model’s classification accuracy rises dramatically as

degenerate data near the origin is excluded (Figure 3-9).  Simple Discriminator

classification accuracy rates rise from an 89% baseline, to 92% with 10% exclusion,

97% with 30% exclusion and over 99% with 50% exclusion.  It is important to reiterate

that the above graph is rendered in log-log scale, thus a spatial difference of 0.003

bits/base near the lower left  edge of the data would appear as large as a difference of 1.0

bits/base near the upper right edge of the data.  Despite this monumental change in

scaling, data points clustered near the origin appear far closer to the X=Y line then those

far from the origin.  This indicates a tremendous increase in resolving power as the

number of mutations in a column duo increase.  In particular, the capacity of the Pair

Model to reject elements of the Rand Data set has increased, as is indicated by the broad

fan of Rand Model data points in the upper left region of the graph.  As there is no

similar spread of points to the lower right of the X=Y line, it may be conjectured that

most of the discrimination is coming from the Paired Model, as the Rand Model fits both

Pair and Rand data equally well.
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3. 1 0  IOM Model

For the IOM experiments the number of transition matrices was arbitrarily chosen

to be 7.  This allowed one identity matrix for zero-length branches, one matrix to model

outliers with near-zero branch lengths, and five matrices for the bell shaped distribution

containing the remaining branch lengths (Figure 3-10).  Each matrix accounted for 236,

20, 499, 499, 499, 499, 496 branches respectively.
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Figure 3-10: Phylogenetic Tree Branch Length Distribution

The dark curve represents the branch length frequency distribution, by length.  As the range of branch
lengths is broad, a logarithmic scaling is used on the X-axis.  This means that bins containing the same
number of branches may not appear to have the same area under the frequency density curve.  The height
of the gray bars may be read on the Y-axis as the number of branches in the bin whose ceiling is the X-axis
location of the gray bar.  As branches of length zero may not be represented on a logarithmic plot, the
length zero bin is represented as a point near 1e-7 on the X-axis.
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In the above figure, the X-axis is in a logarithmic scale, thus the area under the

density curve may not be equal for bins that contain equal numbers of branches.  The

height of the gray bin markers is a correct representation of the number of branches in a

bin, and the location of a bin marker on the X-axis is the location of the upper boundary

of the bin.

The change in NLL results between the IO Model (Table 3—7) the IOM Model

(Table 3—9) was disappointing.  Despite the greater complexity of IOM, and its

potentially greater evolutionary accuracy, only modest improvements in NLL values were

observed.  Validation NLLs for Rand and Pair data sets dropped from 0.313 and 0.260

bits/base to 0.302 and 0.252 bits/base respectively.  The separation between mean NLL

values between ModelPair and ModelRand, over the same data, did increase from the IO

modem to the IOM Model.  The difference in the mean NLL values for Rand data

increased from 0.182 bits/base to 0.239 bits/base, and for Pair data the difference

increased from 0.105 to 0.111 bits/base.  While this seems to indicate an increase in the

resolving power, the following accuracy results show that this is not the case.

A negligible increase in NLL values between training and validation data served

to lower fears of over fitting.  Despite an approximately 6-fold increase in the number of

IOM Model (dependent)
NLL Validation Set Training Set

(bits/base) Rand Data Pair Data Rand Data Pair Data
Rand Model 0.305 0.363 0.302 0.363
PairModel 0.541 0.281 0.541 0.252

Table 3—9: IOM Model NLL Summary
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model parameters, the difference between Training and Validation NLL values remained

constant at 0.003 bits/base between IO and IOM on Rand data.  The NLL separation for

Pair increased slightly from 0.023 to 0.029 bits/base.

While an increasing separation in mean NLLs between ModelPair and ModelRand,

might be expected to indicate an increase in resolving power, we actually observe a

uniform decrease in classification accuracy (Table 3—10).  Validation set accuracy for

the Simple Discriminator dropped from 89% to 88% between IO and IOM, while the

Neural Net Discriminator accuracy dropped from 91% to 90%.  Though this drop may

not seem significant, it is still disheartening given that an increase had been expected.

IOM Model Classification Accuracy - Simple Discriminator
Actual (train) Actual (validate)

Predicted Rand Pair Rand Pair
Rand 7405 209 2439 160
Pair 935 3595 341 1108

Accuracy 90.58% 87.62%

IOM Model Classification Accuracy - Neural Net Discriminator
Actual (train) Actual (validate)

Predicted Rand Pair Rand Pair
Rand 7917 452 2609 254
Pair 423 3352 171 1014

Accuracy 92.79% 89.50%

Table 3—10: IOM Model Classification Summary.
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A comparison between the scatter plots for the IO (Figure 3-9) and IOM Model

(Figure 3-11) serves to resolve some of the questions regarding the lack of increase in

resolving power between the IO and IOM Models.

IOM Model Validation Set Results
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Figure 3-11: IOM Model Results Graphical Summary

See also 7 Appendix C: Data Separation Charts , page 143 for seperation chart of this data.
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The fan of Rand points in the upper left corner of the plot is more uniformly

distributed in the IOM chart then it is in the IO chart.  In the IO chart, more of these

points clustered closer to the X=Y axis.  This accounts for a greater variance in Rand

Model scores.  We find that correctly classified points were being driven further into

their classification zone (away from the X=Y axis), while the resolution of ambiguous

points was not being increased.  As most of our errors came from points near the origin,

which have low NLL values from both models, the increasing certainty about relatively

well classified points served to separate data cluster centroids, without increasing their

classification error rate.  This is supported by a comparison of the accuracy lines on plots

of the IO and IOM data.  For small X-axis values, the accuracy line is about 1% lower on

the IOM chart then it is on the IO chart.  However as more ambiguous points are

removed, the difference in classification accuracy quickly diminishes until, at the 50%

exclusion marker, the lines meet.  At the far right of the chart, IOM accuracy is slightly

higher than IO accuracy, with IOM reaching 100% accuracy after 80% of the data has

been excluded while IO does not reach this accuracy even at 90% exclusion.
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4  Discussion and Conclusion

This final chapter is broken into four sections.  In 4.1 Discussion, we summarize

and compare the most important quantitative results from the experimental section.

Results from the IO and IOM Models are given the most attention.  In 4.2 Algorithm

Speed and Size we provide an informal derivation of the asymptotic resource use of the

Tree Model, as well as the actual running time needed to compute the experiments in this

work.  In 4.3 Author’s Note and Conclusion we review the results of this work

qualitatively and informally in the context of modeling processes in general.  Finally, in

4.4 Future Directions we propose some follow-on and closely related research and

propose new applications for the Tree Model.

4. 1  Discussion

This subsection provides a comparative summary of our experimental work.

First, the issue of discrimination accuracy is addressed focusing mainly on the IO and

IOM Models.  The major sources of ambiguity in the data are addressed.  Next, the NLL

values generated by the Models are discussed.  As these NLL values are derived directly

from data likelihoods, the NLLs represent how well a given model fits a training set

(training data NLL) or the population from which the training data is drawn (validation

data NLL).  This section closes with a reconciliation of the IOM Model’s superior data

modeling with its less impressive discrimination capability.
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It is critical to note that nearly all of the Tree Model classification error comes

from the regions where both ModelPair and ModelRand accept the data with high

probability (low NLLs).  This effect becomes progressively more evident as the

sophistication of the mutation models increases.  Overall, the RNA structure is highly

conserved across RNA evolution: the IO Model produces a mean phylogenetic tree

mutation rate of 0.03 mutation/branch.  This mutation rate is consistent with the 0.01

mutation/branch order of magnitude calculation for q.  Thus, mutations are relatively rare

and much of the NLL value comes from these mutations during evolution.  To this

extent, the NLL values for the models trained on randomly selected data may be used as

a rough approximation of the mutation frequency for a given column duo.

Clearly, the Tree Models discriminate more poorly when the data is relatively

uniform, with few mutations and low NLL values.  This makes a certain amount of

intuitive sense, as the observation of a highly conserved column duo such as AU (a

classic Watson-Crick base pair) gives little information as to whether the duo is highly

conserved because it is paired, or highly conserved because its constituent columns are

conserved independently.  While such a conserved column duo will generate a

marginally lower NLL under a paired mutation model than under a random one, the

difference is small and thus the discrimination ability poor.  However, the knowledge of

this phenomenon could be used to place confidence bounds on discrimination

predictions.  Such bounds would be parameterized by the NLL values of ModelRand, as

well as the difference in NLL values between models.
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The increase in prediction accuracy with decreasing pair conservation, as

approximated by ModelRand NLL, clearly demonstrates the superior resolving power of

the more complex mutation models.  As each column duo was used exactly once as

validation data, there were a total of 1012 column duos used for validation, 317 of these

were paired and 695 were unpaired.  When 45% of the most conserved data was removed

(557 duos remaining), both the IO and IOM Models were able to correctly identify the

remaining data with greater than 99% accuracy.  The Q Model did not reach this

accuracy until 75%  of the most conserved data had been removed (253 remaining duos),

and the Frequency Model did not reach a 99% accuracy level even after 90% of the most

conserved data had been removed (101 remaining duos).  This is clear evidence of the

accuracy gains that may be realized when phylogenetic bias in the mutation statistics is

considered through the use of the Tree Model.  These values compare favorably with the

70%-80% accuracies obtained by previous methods of secondary structure detection

[32][48].

The use of a neural network as a nonlinear classifier provided some additional

accuracy over a simple NLL comparison classifier for the IO and IOM Models.

However, error rates for the Frequency and Q Models actually rose when this technique

was applied from 14% to 15% and 14% to 17% respectively.  As the complexity of the

mutation model grew, so did the effectiveness of this nonlinear classifier.  The IO

Model’s error rate dropped from 11.27% to 9.34%, and the IOM Model’s error rate

dropped from 12.38% to 10.50% accounting for 17% and 15% of the total residual error,

respectively  (see Table 4—1).
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While there were some concerns of over-fitting the Neural Network training data,

the 3% increase in error between the training set and the validation set is also reflected in

the simple NLL-based discriminator.  This tended to indicate that the mild over-fitting

observed was occurring in the modeling of the Markov Tree, rather than in the training

Model Training Data Error % Validation Data Error %

Type Simple ANN Simple ANN

Frequency 13.74 11.88 14.38 15.09

Q 14.87 13.02 14.77 16.70

IO 8.65 6.37 11.27 9.34

IOM 9.42 7.21 12.38 10.50

Table 4—1: Tree Model Classification Error Summary

All numbers listed are percentages. Numbers listed under “Simple” and “ANN” columns are the
misclassification rates of each discriminator, for each evolutionary model.  This table is excerpted from
Table 3—2: Discrimination Error for Simple Classifier vs. ANN Classifier.

Rand Data Pair Data
Model
Class

Training Set
(bits/base)

Validation
(bits/base) ∆

Training Set
(bits/base)

Validation
(bits/base) ∆

Frequency 1.978 1.996 0.018 1.244 1.390 0.146
Q 0.398 0.398 0.000 0.306 0.320 0.014
IO 0.313 0.316 0.003 0.260 0.283 0.023

IOM 0.302 0.305 0.003 0.252 0.281 0.029

Table 4—2: NLL Overfitting Summary by Model Class

Table shows the mean NLL value (bits/base) for each model on its own data set: ModelRand on Rand Data
and ModelPair on Pair Data.  The greater the difference in NLL scores between the training set and the
validation set, the larger the expected over-fitting.  Beyond the Frequency Model, the more complex the
model, the greater the number of degrees of freedom and the greater the potential for over fitting. The Q
Model has 16 degrees of freedom in q and ϕ.  The IO Model has 255 degrees of freedom in ϕ and ρ.  The
IOM Model has 1,455 degrees of freedom in ϕ and its 6 configurable ρ distributions.  The column labeled
∆ represents the arithmetic difference between the training NLL value and the validation NLL value.
Substantial increases in ∆ may represent over-fitting by the Tree Model.
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of the classifier.  This hypothesis was also supported by the slight increase in the

separation between training set accuracy and  validation set accuracy for the simple

classifier.  This separation rose from 2.6% in IO, with 255 degrees of freedom to 3.0% in

IOM, with 1,455 degrees of freedom.

In general, IOM showed some improvement in NLL values and no improvement

in classification accuracy over IO (see Table 4—2 and Table 4—1 respectively).  The

overall error rate of IOM was marginally higher than that of IO, 10.5% as compared to

9.3%.  However, the error rate for IOM did decline faster than that of IO, as more and

more of the most conserved column duos were excluded from the test set.  The IOM

Model actually had a lower error rate than the IO Model after 50% of the most conserved

data was removed.  In addition, the IOM Model had lower validation set NLL values and

greater mean NLL differentiation between ModelPair and ModelRand.

The mean Rand validation set NLL values were 0.305 bits/base under IOMRand

and 0.541 bits/base under IOMPair as compared with 0.316 bits/base for IORand and 0.496

Model Class Rand
(bits/base)

Pair
(bits/base)

Frequency 1.996 1.390
Q 0.389 0.320
IO 0.316 0.283

IOM 0.305 0.281

Table 4—3: NLL Summary by Model Class

This table summarizes the Validation set results for each model.  It is summarized from Table 4—4 for
clarity.  The values represent mean bits/base of the validation set for each model.  These numbers
summarize how well each model represents the data population from which the training sample is derived.
Lower values represent a better mean fit, and a higher P(Dtest|Model).
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bits/base for IOPair.  As Rand was given a 9% higher NLL by IOMPair than by IOPair, we

may infer that the IOMPair is better able to reject Rand data than IOPair.

The paired validation data was given a 4% lower NLL by IOMPair than by IOPair .

This is evidence indicating that IOM is modeling the population from which Pair is

drawn better than IO does (see Table 4—4).  However, this ability to more accurately

model the Rand and Pair populations did not translate into higher classification

accuracy.  This is consistent with the idea that IOM is more sensitive than IO over more

volatile column duos, while IOM performs no better than IO on more consistent column

duos with few mutations in their evolutionary history.

Rand Data Pair Data
Model
Class

Rand Model
(bits/base)

Pair Model
(bits/base) ∆

Rand Model
(bits/base)

Pair Model
(bits/base) ∆

Frequency 1.996 3.007 1.011 1.906 1.390 0.516
Q 0.389 0.462 0.073 0.329 0.320 0.009
IO 0.316 0.496 0.180 0.364 0.283 0.081

IOM 0.305 0.541 0.236 0.363 0.281 0.082

Table 4—4: Summary of Separation of Mean Data Set NLL Values

This table shows the difference in mean NLL score (bits/base) between different models on the same
validation data.  For the tightly clustered data sets in Q, IO and IOM the larger the ∆, the better the
expected discrimination for that data set.
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4. 2  Algorithm Speed and Size

The calculation of the inside probability

[ ] [ ]I A l I A m I A nd i d j l m
m

d k l n
n

( ) ( ) ( ), ,= = = ⋅




⋅ = ⋅



∑ ∑ρ ρ

(Equation 2-1: Summary Derivation of Inside Probability Distribution)

requires an accumulation of probability from each state (l) of a tree node (Ai) to each

state (m & n) of its descendant’s nodes (Aj &  Ak).  If there are N organisms in the

phylogenetic tree and S states corresponding to the possible nucleotide duos, then this

calculation requires O(NS2) time for each column duo.  If we wish to check every

possible column duo in a multiple alignment of M columns, then our running time will

be bounded in time by O(NS2M2) and space by O(NS2+M2).  Usually S will remain fixed

at 16 for the 16 possible nucleotide duos in RNA.  However, if other symbols such as the

gap symbol are added to the alphabet, this term may grow.

The calculation of the outside probability

[ ]O A m O A l I A nd j l m d i d k l n
nl

( ) ( ) ( ), ,= = ⋅ = ⋅ = ⋅



∑∑ ρ ρ

(Equation 2-4: IO Model Outside Probability Distribution Derivation)

seems to require O(S2) calculations for each state S of each node Ai of the tree, due to its

nested calculation over the inside probabilities of Aj’s sibling, Id(Ak=n)⋅ρl,n,.  This would

yield a complexity of O(NS3) for each column duo.  However, the nested section of this

calculation is also computed during the inside calculation and may be stored for later

use.  This leaves us with O(NS2).  As the inside calculation, which is a prerequisite, is

also O(NS2) we have a total bound on the time to calculate the outside distribution of

O(NS2) per column duo.
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As with the outside distribution calculation, the frequency reestimation formula

[ ]$ ( ) ( ) ( ), , ,f d O A l I A nl m l m d i d k l n
nl

= ⋅ = ⋅ = ⋅



∑∑ ρ ρ

(Equation 2-5: IO Model Transition Frequency Reestimation Derivation (Part II))

appears to require O(S3) operations between each parent and child node (Ai→Aj and

Ai→Ak).  However, at the heart of this equation is the same nested loop over Id(Ak=n)⋅ρl,n

that was found in the outside derivation.  This was stored for us during the inside

calculation, leaving us with an O(NS2) calculation for each column duo in the training

set.

This leaves us with an NLL evaluation algorithm for column duo d that is O(NS2)

in both space and time per column duo.  The training algorithm also requires O(NS2) in

space and time for a column duo.  However, as this algorithm is iterative, it is not

absolutely clear how N a n d  S effect the number of iterations through algorithm

convergence.  For the experiments in chapter 3, the algorithm never required more than a

small number of iterations (7-10) over the training set to converge to a change of less

than 0.01% in the training set NLL values per iteration.

The Tree Model experiments (3 Experiments) were implemented in the Gnu

Project’s gcc (C++) version 2.5.5 on a Digital Equipment Corporation, DECstation

3000/400 APX (with a RISC microprocessor running at over 150 MHz).  The operating

system was DEC’s OSF/1 Version 3.0.  The standard level of compiler optimization was

used (gcc -O).  The resultant program required approximately 1.9 seconds to produce an

NLL value for a column duo of approximately 1000 valid nucleotide duos, under both of

the IO & IOM models.  The program took approximately 5.5 seconds to generate f(d) for
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a single training set column duo, when no other appreciable activity was occurring on the

computer.  To generate two sets of transition matrices (Rand and Pair) over a training set

size of 521+238 = 759 column duos using 10 iterations of expectation maximization,

required approximately 11.6 hours.  The generation of the 174+79 = 253 validation set

NLL values required an additional 8 minutes.  This process was repeated four times,

once for each train/test partition.  The program required approximately 11 megabytes of

memory in which to run, and no excessive virtual memory swapping was observed

during program execution.

While the NLL value generation for the validation set was negligible in the

present work, an exhaustive search for secondary structure using this technique might

prove cumbersome.  Given 2,688 columns is 16S RNA, there would be 2,6882 =

7,225,344 column duos to examine.  On the hardware employed here, this would require

approximately 159 days of uninterrupted CPU time.  This running time is not completely

unreasonable, given that the present level of hardware is available as a workstation.

Nonetheless, the NLL generation for each column duo may be performed concurrently.

Thus, thirty similar workstations should be able to complete such an exhaustive

calculation in 1/30 of the time required by one workstation, or approximately 5.5 days.

Our software was not tuned especially well, and software refinement should be

able to increase performance substantially.  No effort was made to unroll loops, or

replace arrays with pointers.  In addition, the broad range of probabilities encountered

during calculation required a special implementation of floating point numbers.  As

probabilities on the order of 2-1000 are quite commonly encountered during frequency
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reestimation, the standard C Language double precision floating point representation was

insufficient.  To circumvent this problem, a C++ class called Prob was obtained from the

computational biology group at the University of California at Santa Cruz [49].  This

class maintained a logarithmic representation of a number, thus reducing the number’s

precision, but enhancing its range.  This logarithmic representation made multiplication

of probabilities a very cheap operation, but addition expensive.  While this class aided

phenomenally in ease of coding and portability, it might be faster to maintain the

probabilities in a NLL form explicitly, without the overhead of an abstract class.

4. 3  Author’s Note and Conclusion

Well, here we are, nearly at the end of this work.  Before this work continues into

4.4 Future Directions spending several pages talking about what didn’t get done, a little

time is spent in this section ruminating over what has been done.  If the reader is put off

by long sentences, first person narrative, wild conjecture or self congratulatory prose, it is

suggested that the reader skip this section and go on to the critiques presented in 4.4

Future Directions.  This section provides an insight into some of the personal motivation

for, and achievements in, the completion of this work.

I began this document by introducing a relatively new paradigm into the field of

RNA modeling, a field where more traditional techniques rely on physical modeling.

Physical modeling requires a very large number of simplifying assumptions in order to

model any system larger than a single atom (and a simple one at that).  The choice of

these simplifying assumptions must be made a priori through subjective decisions based
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on the particular expertise of the model’s builder.  From a scientist’s perspective, this

process is a little like playing the lottery.  If a researcher makes the correct assumptions,

then the researcher is rewarded with positive results that can bring fame, glory and

continued funding.  If a researcher guesses incorrectly, they can lead an entire branch of

the physical sciences down a blind alley for years.  Especially if they are an authority in

their field.  In addition, extensions can only be made to such physical models by people

deeply schooled in a diversity of fields including: numerical computation, modeling

theory and the specific physical science involved (which in this case is molecular

biology).  In the place of physical modeling, I advocate a new paradigm.  This paradigm

replaces the exciting, technically arcane, labor intensive, fundamentally exploratory and

eminently fundable, procedures of physical modeling with a boring, simple, automatic

and reliable process of statistical modeling.  I certainly hope that this statistical process is

fundable as well.

The statistical paradigm directly addresses issues of generalization, over-fitting

and data support for model complexity.  These issues are implicit in, and ignored by,

most physical modeling techniques.  The techniques of physical modeling were well

suited to situations where a large amount of a priori information had to be employed,

without the benefit of much data, to model a process of great complexity.  However, in

the field of molecular genetics, the plethora of sequence information has obviated the

physical technique to some extent.  Direct probabilistic modeling techniques are now

feasible.  In a sense, the tables have turned.  Formerly the observational statistics of a

system were implicit in a model derived from physical properties.  Now the physical
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properties of a system are implicit in the observational statistics used to derive the model.

An exciting reversal of roles!

As the language of machine learning is the very language of statistical inference,

it is only reasonable to use machine learning techniques whenever they are supported by

a sufficient amount of physical data.  There may always be a margin on the frontiers of

science where sparse observational data, in the face of complex systems, renders physical

modeling mandatory.  However, the application of automated data collection techniques

to fundamental research is continually narrowing that margin.  If the statistical assertions

implicit in physical models are made explicit, then physical properties could easily be

included as a priori information in a statistical model.  Sparse amounts of data could

then be combined with these statistically represented physical laws, to further shrink the

realm over which physical modeling holds primacy.

While the nucleotide base pair detector developed herein is of relatively low

complexity, it serves marvelously as an example of this new paradigm.  Very little

knowledge of chemistry is required to understand the concepts behind the model.  While

the equations of statistical inference were moderately complex to derive, they require

only a cursory grasp of probability theory to understand.  The modeling process arises

directly from the data, requiring no specialized knowledge, tweaking or tuning34.  Only

three parameters were chosen in an ad hoc manner: the number of cross validation

partitions (4), the percentage of valid nucleotides required in a valid column duo (75%),

                                                
34 While this is strictly true, the experiments performed herein utilized a 16S multiple alignment that had
been carefully constructed by both hand tuning and automated techniques [40].  While the Tree Model
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and the number of branch length bins in the IOM model (7).  All other relationships in

the Tree Model were inferred from the data sets.  With somewhat greater resources, all of

the arbitrary parameters could have been selected statistically.  Finally, potential

problems in over-fitting are addressed automatically through cross validation.  While the

comparison of training values with validation values was treated informally here, there

are statistical methods for determining and limiting its effects.

However, all of this wonderful automation comes to naught if the process

performs worse than other currently available processes.  So, how good is the statistical

model provided here?  The answer is very good indeed!  The secondary structure detector

developed here is found to have 90%-99% accuracy in detecting secondary structure.

Techniques based on energy minimization and manual phylogenetic analysis have shown

accuracies of 70%-80%, and require a substantial amount of experienced manual

arrangement.  Not only that, but staggering probabilistic gains in model accuracy are

hidden in the use of NLL values.  The mean Tree Model validation set NLL for a

nucleotide was found to be about 0.3 bits, for both paired (0.28 bits) and nonpaired (0.31

bits) nucleotides.  This translates into a data likelihood of approximately 2-.3 = 81%.

This is compared to the frequency model that generated mean NLL scores around 1.4 bits

for paired nucleotides or 1.9 bits for unpaired nucleotides, or 38% and 27% respectively.

If we look at an entire column in a multiple alignment (about 2000 nucleotides) we find

that the improvement in data likelihood is .812000/.382000 ≈ 10657 for paired nucleotides or

.812000/.272000 ≈ 10954 for unpaired nucleotides.  This is 500 to 1000 orders of magnitude

                                                                                                                                              
could easily be applied a less refined cruder alignment, the accuracy levels may not be as high.
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of data probability that was unaccounted for by the Frequency Model35.  To get such

statistics for the entire multiple alignment, we can make the crude assumption that the

column duos are all independent.  A model assuming some form of dependence should

do better, but even under this relatively weak independence assumption we may raise our

astronomical ratio to the power of approximately 1000 (column duos per alignment) and

arrive at nearly a million orders of magnitude likelihood increase over the entire multiple

alignment!  This means that the observed multiple alignment data is approximately

101,000,000 times more likely under the Tree Model than it was under the Frequency

Model, without substantially overfitting the training set.  Moreover, this Frequency

Model was about as good at ferreting out nucleotide pairing (about 85% accuracy) as

current physical modeling techniques (70-80% accuracy) [15][32][50].

These results are generated by a first generation modeling technique.  A Bayesian

analyst might scoff at the Tree Model’s restricted use of prior information.  Numerous

prior data such as columnar mutation rates and nucleotide dependency between adjacent

columns, are not explicitly exploited by the Tree Model.  To this I say… Excellent!  By

all means, go ahead and develop more accurate priors and evolve the statistical

paradigm!  This model is designed merely as a road sign pointing in an alternative

                                                
35 I do acknowledge a certain amount of hyperbole in this number.  The Frequency Model is relatively
weak from an information-theoretic point of view as it does not use mutual information from neighboring
nucleotide duos within a given column duo, much less any of the more complex frequency weighting
schemes [51][52].  The Tree Model does use this information.  Recent, and very preliminary, results based
on the self-information of each column duo has yeilded some striking results.  Though this self-
information model attained approximately the same discrimination accuracy as the IO Model, its mean
NLL values were much higher.  The NLL values were 0.50 bits per base for paired (dependent) nucleotide
data and .58 bits per base for unpaired (independent) data.  This would reduce the per-column-duo
likelihood advantage of the Tree Model to factors of 10114 & 10164 respectively.



123

direction to current processes, a relatively accessible first step down a long inferential

path.

This is by no means to say that the Tree Model is a toy.  While this pair detector

has significant uses in the area of RNA base pair modeling, its potential for other sorts of

measurement is tremendous.  Remember that during the process of deriving posterior

probabilities for column duos, we calculate a nucleotide duo state distribution for every

ancestor in the phylogenetic tree.  This is a statistical depiction of the entire evolutionary

process for that column duo, from the primordial cell to each and every observed

organism that contributes to the multiple alignment.  Merely using this process to

compute the posterior probability of the column duos is like swatting a fly with a

telephone pole.

Through the use of the probability distributions in this tree, one need no longer be

limited in genetic measurements to a single value for statistics, nor a single arguably

“correct” ancestral nucleotide configuration.  Measurements of genetic quantities such as

mutation rates, genetic composition and phylogenetic branching distances, can now be

calculated as expectation values over all possible evolutionary developments.

Furthermore, instead of calculating a single quantity, one could calculate probability

distributions over a range of possible values.  The replacement of a single arguable

statistic with a distributions over possible values is as fundamental to the analysis of

uncertain data as is the concept of the Gaussian distribution.
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While the grandiose statements made in this section might seem out of character

with the rest of this work… well… they are.  The research leading to this work was

designed to be conservative and self critical so as to present a lower bound on the

reasonable expectations for its type of approach.  However, behind every difficult and

drawn out research effort, there must be at least a flicker of excitement guiding the work

through its darker periods.  While much of the motivating enthusiasm can become

smothered by the rigorous constraints of academia, I felt that this work would not be

complete without a taste of the excitement that drove it to completion.  You will now be

returned to your regularly scheduled academic skepticism.

4. 4  Future Directions

This section provides some potentially interesting areas for future research and is

broken into four sections.  In , we look at some additional tests that could be run using

the current Tree Model to verify its accuracy and generality.  In , we look at some new

experiments which might be run with the Tree Model.  In  , we look at ways that the

Tree Model might be theoretically extended.  Finally, in  , we propose another

application for the Tree Model. In general, each idea for further work is kept to its own

paragraph and no attempt is made to connect the ideas.

4.4. 1  Tree Model Verification

It would be interesting to apply the models generated with 16S data to 23S RNA.

A strong positive result with 23S RNA would provide convincing evidence that the

evolutionary model developed here has general validity.  More detailed studies of the
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tRNA family might as well be able to discern novel tertiary pairing structure, as the

tRNA structure is known well enough to provide a training set of tertiary column duos.

One preliminary test of this method would be to use the nucleotide duo mutual

information content of a column duo as a ModelPair, and the individual nucleotide mutual

information content as a corresponding ModelRand.

During the work leading to 3.3 Preliminary Q Model Study several of the

nucleotide duos that were known to be paired distinguished themselves by scoring very

poorly under QPair values of q > 0.1 .  These columns were found to be composed

predominantly of non-Watson-Crick base pairs (some of these duos were found to be

helix end caps).  These were originally used to construct a third model called ModelExotic .

However due to the small number of these samples (approximately 10) as well time

constraints, the investigation of ModelExotic had to be terminated and these column duos

were returned to the Pair data set.  It might be of interest to perform a similar experiment

by constructing an IO or IOM model solely to represent those column duos from Pair that

scored appreciably better under ModelRand than they did under ModelPair.   Such an

experiment could provide transition matrices that would be particularly useful in

ferreting out the most difficult to detect paired nucleotide duos, and thereby reducing

false negatives under ModelPair.

The Frequency Model is a particularly weak null model as it incorporates neither

mutual information between nucleotide duos in a column duo, nor any explicit weighting

for phylogenetic similarity between organisms [53].  Techniques for addressing these

concerns have been explored in the field of protein structure detection [51][52].  These
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methods involve weights for column duos based on their degree of nucleotide variability,

as well as weighting to help account for the similarity between phylogenetically related

organisms (they do not use a full phylogenetic tree).  Such techniques could be applied to

RNA and used as a stronger non-phylogenetic-tree based opponent for the Tree Model.

It is unclear how much of the effectiveness of the Tree Model stems from our use

of a well developed multiple alignment.  To test the Tree Model with less refined data, a

more primitive multiple alignment could be developed using a completely automated

alignment technique such as those found in [18] and [29].  This alignment could then be

used to test the Tree Model’s performance under more adverse circumstances.

4.4. 2  Experimental Tree Model Extension

The filtering for valid pairs significantly reduced the useful range of testing and

training data, especially for the randomly generated data.  As it is exactly this data that is

to be scanned automatically for pairing structure, some way should be found to expand

the field of valid pairs.  By far, the most commonly rejected symbol was the gap symbol

(-).  While a biological interpretation of this symbol is relatively complex, it should not

be excessively difficult to incorporate this symbol into the known alphabet.  However,

while this extension may be technically simple, the inclusion of gap information in the

pairing decision process might make the resultant model’s decisions too dependent on

structural information introduced during the alignment process.  In particular, a gap

symbol in a multiple alignment does not necessarily correspond to a physical object.

Thus, it would be unclear exactly what the inclusion of this symbol would be modeling.
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Despite these trepidations, the inclusion of gap information in the terminal alphabet

would appreciably expand the range of acceptable data, and would allow the exploitation

of evolutionary nucleotide insertion and deletion information.  One might reasonably

expect that the evolutionary insertion of a gap into a paired column is far less likely to be

genetically stable then the introduction of such a state into an unstable column.  Thus the

evolutionary production of many gaps would be evidence against pairing.  Since the

major source of error stems from a lack of rejection on the part of the models, this should

provide a marked increase in performance.

While it is clear that the Tree Model performs better on column pairs with larger

numbers of mutations in their evolutionary histories, the exact relationship between the

numbers of mutations and discrimination accuracy is not clear.  Further research in this

area could provide estimated probability bounds on column duo classifications.  These

bounds could be included in a context-sensitive model that would take into account the

classifications of adjoining column duos in its determination of pairing status of the

given column duo.  Such a method could provide the templates used by a Stochastic

Context Free Grammar [29] for complete secondary structure determination.

4.4. 3  Theoretical Tree Model Extension

While it does not seem that the overfitting is an issue for the IO or IOM models, it

might become so if these methods are applies to smaller data sets, such as 23S.  In this

case, a variant of the Q Model might serve to bridge the complexity gap between the Q

Model and the IO Model.  This variation would involve the use of 16 ql parameters rather
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than a single value for q.  Each of these would correspond to a particular source state in

the transition matrix ρl,m.  This would allow greater flexibility in the transition matrix

which could then be calculated as ρl,m = ql⋅ϕm for l = m, and ql⋅ϕm+(1-ql) otherwise [53].

The values for ql could then be calculated through Expectation Maximization.

Currently, the branch length is incorporated into the modeling in a relatively

coarse nonparametric manner.  If a provably correct parametric method could be

developed, a common mutation transition function could be developed which

concentrated all of the available sequence data.  There are numerous problems in mixing

counts from differing branch lengths, however, and even theoretically this problem is not

trivial.  If solved, though, this might produce a marked improvement in resolution.  In

addition, a parametric time-mutation model would allow the reestimation of the branch

lengths in the tree.  This could be of tremendous use to biologists, who currently use

more biased statistics derived directly from multiple alignments, as well as individual

expert knowledge, to hand tune their phylogenetic trees.  As more data becomes

available, and the trees grow larger, this hand manipulation will become more and more

cumbersome and techniques for automated generation and refinement of the

phylogenetic trees will become increasingly necessary.

In the current work, both the IO and the IOM Models heavily leverage the mean

model parameters ϕ and ρ to determine P(d|model).  However, the use of these mean

statistics can lower the resolution of the model.  It is quite possible that improved

resolution could be obtained by executing the expectation maximization training
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algorithm on each column duo presented to a model.  This would produce a ρ

specifically tailored to that column duo, d.  Such a method once more raises the specter

of over-fitting the model to each specific column pair.  It may be possible to avoid this,

however, by using only a fraction of the reestimated ρ, while maintaining a certain

fraction of the initial ρ as a prior distribution.  This is similar to the Laplacian probability

estimator that initializes the number of observed counts in a count-based system to 1,

before any data has been observed.  The precise fraction of the prior information to use

could be obtained from a Dirichlet prior method as described in [54] and [55] or simple

taken a priori like the q parameter in the Q Model.

Another variant of the Tree Model would eschew the use of randomly generated

column duos for generation of the unpaired model, ModelRand.  Instead, a reference model

would be generated by the explicit assumption of statistical independence.  Thus, the

Rand data would be replaced with an evolutionary history of individual columns,

combined using the independence criterion for nucleotide duos xy, P(xy)=P(x)⋅P(y).  This

would help the nonpaired model to reject any kind of statistical dependency, rather than

rejecting only those forms not found in the Rand sample.

The current Tree Model relies heavily on the correctness of the phylogenetic tree

to quantify genetic relationships.  For a given multiple alignment, the phylogenetic tree is

generally known only approximately, and in some cases differing regions of an alignment

may have differing trees (as in cases of genetic crossover) [56].  For this reason it might

be a good idea to replace the single phylogenetic tree with a phylogenetic matrix
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representing the genetic similarity between each pair of organisms in the multiple

alignment.  Phylogenetic trees may represent a single optimal path through a genetic

mutual information matrix.  However, using the single best estimate for a solution may

be far less robust then estimating an expectation value over all possible solutions.

Dynamic programming techniques might be employed to efficiently estimate secondary

structure over all phylogenetic trees, weighted by each one’s likelihood.

The Tree Model performs discrimination by training two models on differing

classes of data and then comparing the performance of each model on novel data.  It

seems likely from the degenerate situation where both models find the same data

probable, that both of these models are encoding some of the same evolutionary

dynamics.  As a result, it might be wiser to look for a Tree Model based technique that

attempts to model only the differences between the two data sets.  Such a model might

help resolve the column duo degeneracy problem.

4.4. 4  Additional Areas of Interest

Finally, Tree Model is not limited to measurements of RNA. Its evolutionary

methodology should be easily extensible to the modeling of protein evolution.  As a

sensitive detector of structure and phylogeny, this technique might assist in protein

identification, classification and possibly in vitro design.
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5  Appendix A:
Q Model Results

for q=0.0001

The Q Model was run with a q parameter value of 0.0001 as well as the

previously reported value of 0.01.  While the value of 0.01 which is reported in 3.8 Q

Model was found to produce significantly NLL values, this value for q = 0.0001

produced marginally better discrimination accuracy.  As such, it might be of some

interest and is made available here.

Q Model (dependent)
NLL Validation Set Training Set

(bits/base) Rand Data Pair Data Rand Data Pair Data
Rand Model 0.615 0.518 0.615 0.518
PairModel 0.690 0.512 0.690 0.509

Q Model (independent)
NLL Validation Set Training Set

(bits/base) Rand Data Pair Data Rand Data Pair Data
Rand Model 0.569 0.757 0.569 0.758
PairModel 0.574 0.764 0.574 0.763

Table 5—1: Q Model NLL Summary for q=0.0001
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Q Model Classification Accuracy - Simple Discriminator

Actual (train) Actual (validate)
Predicted Rand Pair Rand Pair

Rand 8191 1868 2731 613
Pair 149 1936 49 655

Accuracy 83.39% 83.65%

Q Model Classification Accuracy - Neural Net Discriminator
Actual (train) Actual (validate)

Predicted Rand Pair Rand Pair
Rand 7772 1224 2590 440
Pair 568 2580 190 828

Accuracy 85.24% 84.44%

Table 5—2: Q Model Classification Summary for q=0.0001

Q Model Validation Set Results
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Figure 5-1: Q Model Results Graphical Summary for q=0.0001
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6  Appendix B:
Posterior Probability

Classifier for IO

In the present work, data likelihoods (P(d|Model)) rather than posterior

probabilities (P(Model|d)) are used for the classification of column duos (d).  This

technique is not generally valid according to Bayesian analysis.  However, in the case

that the model prior probabilities are nearly equal (P(ModelRand) ≈ P(ModelPair)), a direct

comparison of data likelihoods should yield similar results to a direct comparison of

posterior probabilities.  While the prior model probabilities are close to one another in

the current work (see 2.2.2 Discrimination), the precise impact of this substitution was

not clear.

To provide a greater insight into the the use of likelihoods instead of posterior

probabilities, the posterior probabilities were calculated for the IO validation data as

outlined in 2.2.2.  Each column duo (d) in the IO validation set was then reclassified

according the simple discriminator presented in 2.2.2 using posterior model probabilities

rather than likelihoods.  These posterior probabilities were calculated from the

likelihoods using Bayes’ Rule as P(Model|d) = P(d|Model)⋅P(Model)/P(d) where:

|Rand| = Number of column duos in the validation set for Rand =695

|Pair| = Number of column duos in the validation set for Pair = 317
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P(ModelRand) = |Rand|/(|Rand| + |Pair|) = 695/(695+317) = 68.7%

P(ModelPair)  = |Pair|/(|Pair|+|Rand|) = 317/(695+317) = 31.3%

P(d) = P(d|ModelRand)⋅P(ModelRand)+P(d|ModelPair)⋅P(ModelPair).

A summary of these results follows in Table 6-1.

We find that a simple discriminator, based on Bayesian posterior model

probabilities increases classification accuracy by less than 0.05% over a similar

comparison based on data likelihoods.  This lends additional credibility to our

approximation of posterior probabilities as proportional to data likelihoods, for column

duo classification purposes on the present data set.

As a separate investigation, we can estimate the classification error that the Tree

Model would be expected to produce if were it were applied to all possible column duos

in the multiple alignment.  To answer this question, we assume values for |Pair| and

|Rand| consistent with an exhaustive search through all column duos of the multiple

alignment for paired column duos.  We classify each column duo on our data sets

according to the new model priors, and then separate the misclassification rates by data

IO Model Classification Accuracy:
 Simple Discriminator, Validation Data

Likelihood Posterior Probability
Predicted Rand Pair Rand Pair

Rand 2462 134 2467 138
Pair 318 1134 313 1130

Accuracy 88.83% 88.86%

Table 6-1: Comparison of Likelihood vs. Posterior Probability Classification

A discriminator formed from the direct comparison of posterior probabilities performs less than 0.05%
better than the same discriminator using actual posterior probabilities P(d|Model).
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class (Rand & Pair).  Finally, we rescale these error rates to reflect the relative

percentages of unpaired and paired column duos as a fraction of all possible column

duos in the multiple alignment.  This extrapolation relies heavily on the assumption that

the training data in Rand and Pair accurately represent thier generating population

(PopRand and PopPair).  To comply with this condition, we model only those column duos

in the multiple alignment that would meet our 75% valid nucleotide duo criterion.  This

limits us to 19.9% of the all nonpaired column duos and 67.2% of all paired column

duos.

|Pair| = # of paired column duos in 16S alignment = 944⋅0.672 = 634

|Rand| = # of unpaired column duos in alignment =

(# of columns)2-|Pair| = (2,6882-944)⋅0.199

= 1,437,656

P(ModelPair)  = |Pair|/(|Pair|+|Rand|) = 634/(634+1,437,656) = 0.044%

P(ModelRand) = 1.0-P(ModelPair) = 99.956%

The result of this proceedure, along with our estimate of the model’s error rates are found

below in Table 6-2.

IO Model Classification Accuracy:
 Extrapolation to Entire Multiple Alignment

Predicted Actual Data Set Model
Data Set Rand Pair Accuracy

Rand 1,306,819 88 >99.99%
Pair 130,837 546 0.04%

Accuracy
By Data Set 90.90% 86.12% 90.90%

Table 6-2: Posterior Probability Extrapolation

This table contains the results of a posterior probability extrapolation of the Tree Model from Rand and
Pair to the set of all column duos in the multiple alignment.  The cumulative accuracy is in the lower right
cell of the table.
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This extrapolation clearly brings to light a problem with secondary structure

prediction based on column duo classification.  Even given a classification accuracy of

99%, the vastly greater number of unpaired column duos will overwhelm the smaller

number of column pair.  In the previous example, we correctly identified 546 of the

paired duos (86%) and 90% of the nonpaired duos.  However, this left approximately

130,000 nonpaired duos classified as paired, obscuring the 546 which actually were

paired.  If a column pairing detector incorrectly accepts even 0.1% of the random column

duos as paired (about 1,300 in this example), there will still be substantially fewer

corretly identified paired duos than incorrectly classified nonpaired duos!

The effects of this enormous bias may be reduced by tightening the restrictions

on duos that are accepted as paired.  Currently, the model with the higher posterior

probability from a column duo, is assigned to that duo.  We can make this assignment

more stringent by requiring a higher posterior probability (P(ModelPair|d)) before

classifying a column as paired.  As we raise this threshold towards 100%, more paired

duos will be incorrectly be classified as unpaired, but duos accepted as paired will have a

greater certainty of actually being paired.  See Figure 6-1 for a graphical depiction of

this transition.
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At the far left hand side of the chart, the classification threshold is 50%.  At this

point 516 of the 634 paired column duos (81%) are classified as paired, but so are

approximately 175,000 of the 1.8 million unpaired duos.  When the required probability

threshold is raised to 1-10-21 (very close to 1), all 311 of the column duos that are

classified as paired are actually paired, though approximately 51% of the paired duos are

incorrectly classified as unpaired.

Decrease in False Pair Classification With Increasing Classification Threshold
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Figure 6-1: Duos Classified as Paired vs. Classification Threshold

The above chart shows how the number of nonpaired column duos classified as paired drops off quickly
as the classification threshold increases, while the number of paired duos drops off more slowly.  Points
are drawn at x axis values of .5, .1, 0.01 and every each factor of 10 thereafter.  The final point is at
x=10-21.  At this point all of the 311 column duos classified as paired are actually paired.  For the purposes
of logarithmic representation, the number of nonpaired column duos at X=10-21 is represented as 1 rather
than 0.
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While no unpaired duos were classified as paired at as classification  threshold of

1-10-21, it should be noted that the results for thresholds near 100% may be statistically

unreliable.  This is because we are extrapolating performance on a very large set of

unpaired column duos (1,437,656) from a relatively small discrimination validation set36

of 2780 (paired, nonpaired) example 2-tuples.  This discrimination set is, in turn, derived

from an even smaller set of 695 unpaired column duos.  The result is that each original

discrimination set element counts for 1,437,656/2780 ≈ 517 elements in the extrapolated

data.  The result of this data leveraging is that the three rightmost points in the Rand

Duos data set in Figure 6-1, which represent approximately 3500, 2000 and 500

misclassified unpaired column duos, are generated by only 7, 4, and 1 discrimination set

elements.  These in turn could be generated from as few as 2, 1 and 1 unpaired column

duos, respectively.  While the threshold for the correct classification of these last

unpaired column duos seems visually consistent with the previous data in the chart, it is

hardly statistically robust.

                                                
36 Each element of the discrimination validation set is a 2-tuple of column duo probabilities, namely
P(ModelRand|d) and P(ModePair|d).  As we are using four fold cross validation, there are four paired models
against which to classify each Rand column duo.  As we have 695 unpaired column duos, each of which is
used exactly once for validation, we have 4⋅695 = 2780 unpaired elements of the discrimination validation
set.
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7  Appendix C: Data Separation Charts

This section contains graphs that were deemed useful, but were generated too late

for formal inclusion into the main body of the thesis.  These graphs are generated from

the same data that was used to generate the NLL graphical results summary figures for

each model in 3 Experiments.  These summaries are found in:

Figure 3-6: Frequency Model Results Graphical Summary (detail) on page 94

Figure 3-8: Q Model Results Graphical Summary for q=0.01 on page 98,

Figure 3-9: IO Model Results Graphical Summary on page 102 and

Figure 3-11: IOM Model Results Graphical Summary on page 107.

As the data in these summaries was found to cluster strongly around the X=Y line

on each chart, it was frequently difficult to pick out salient data characteristics.  To

further distinguish the clusters, the following charts were produced.  The data points on

each chart in this section correspond to the data points found on the graphical summaries

mentioned above.  For each Model, except Frequency, this section contains two charts,

an overview and a detail.  The overviews are all scaled similarly to provide a common

reference for comparison.  The details are scaled separately to represent the area of

greatest interest.  The X-axis on of each chart represents the Rand model NLL score for

each column duo in a validation set, just like the graphical summaries.  All X-axes are

identical in range and scale to one another, as well as to the graphical summaries.

However, the Y-axes of the following charts represents the directed distance from a given

graphical summary data point, to its X=Y line.  Specifically, this Y-axis value is

(NLL(P(d|ModelPair))-NLL(P(d|ModelRand))) / 2
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and is scaled linearly in units of bits per base.  Thus, all of the data points above the X-

axis are classified as unpaired, and all of the data below the X-axis are classified as

paired by the simple classifier.  For brevity, the chart legends refer to correctly classified

data are as good and incorrectly classified data as bad.  Thus, the all data in the half-

plane above the X-axis would be Good Rand or Bad Pair, having been classified as

unpaired.  Similarly, all data below the X-axis is Bad Rand or Good Pair, having been

classified as paired.  The Frequency Model’s data presents a special case. As it was

tightly and uniformly clustered, it is presented in a single graph with a linear X-axis.  No

detail of this graph was deemed necessary.

Frequency Model Data Class Seperation Overview
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Figure 7-1: Frequency Model Likelihood Separation Chart
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Q Model Data Class Seperation Overview
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Figure 7-2: Q Model Likelihood Separation Chart -- overview

Q Model Data Class Seperation Detail

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.01 0.10 1.00 10.00
Rand Model NLL -- log scale (Bits/Base)

Good Rand Good Pair Bad Pair Bad Rand

Figure 7-3: Q Model Likelihood Separation Chart -- detail
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IO Model Data Class Seperation Overview
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Figure 7-4: IO Model Likelihood Separation Chart -- overview

IO Model Data Class Seperation Detail
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Figure 7-5: IO Model Likelihood Separation Chart -- detail
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IOM Model Data Class Seperation Overview
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Figure 7-6: IOM Model Likelihood Separation Chart -- overview

IOM Model Data Class Seperation Detail
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