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ABSTRACT

This thesis discusses the need for more sophisticated techniques to determine the physical
structure of ribonucleic acid molecules (RNiA)vivo. In particular, we emphasize several shortcomings
in current techniques of secondary structure analysis. These shortcomings commonly stem from each
technique’s focus on individual nucleotide sequences. While the inclusion of phylogenetic sequence
information in structure determination can alleviate such shortcomings, currently available phylogenetic
techniques require substantial manual intervention. To automate RNA structure analysis, we develop a
novel technique called the Tree Model that uses phylogenetic data to automatically model secondary
structure evolution over entire families of related RNA sequences. We test the Tree Model by using it to
find base pairing between multiple alignment columns.

The Tree Model employs Maximum Likelihood inference to generate a model for the evolution of
multiple alignment column pairs. The course of this evolution is modeled through the use of a Markov
Tree to represent the phylogenetic tree. The Markov Tree is developed as an extension of the Markov
process to a tree-shaped graph. For a given multiple alignment column pair, each node of the graph
represents a random variable over possible nucleotide pairs for an individual organism. Leaf nodes
represent observed sequence data from each organism in the multiple alignment. Internal nodes represent
“synthetic ancestors” whose sequence information must be inferred from its descendants. Edges of the
graph represent local genetic relationships between direct descendants that are quantified through a point-
mutation model. The mutation model’s parameters represent the probability of a child having a specific
nucleotide pair, given the parent’s nucleotides for that column pair. We explore three methods of deriving
these parameters from the multiple alignment data.

A Tree Model accepts a multiple alignment column pair and generates a probability distribution
over the possible nucleotide pairs for each internal node of its tree. The probabilities of each possible
evolutionary path through these nodes are then accumulated using Dynamic Programming to determine a
total likelihood for the column pair. Such likelihoods can be generated for a given pair of columns under
each of several Tree Models. These probabilities can then be compared to classify the novel column data,
based on the set of multiple alignment columns used to generate each Tree Model's parameters.

As a test of the Tree Model, we use it to look for base pairings in a family of 1375 16S RNA.
Multiple alignment column data is broken into a training set and a test set for cross validation purposes.
The Tree Model parameters are configured on the training set and then applied to the validation set. The
test set accuracy of this model in discriminating between base paired and non base paired column duos is
shown to be in excess of 90%. Accuracy rises to more than 99% when highly conserved column duos are
removed to reduce data degeneracies. This compares favorably with both the 85% accuracy provided by a
simple frequency based model on the same data, and 60%-80% accuracies reported by other researchers
using energy minimization and manual phylogenetic technigques on similar RNA data. Finally, we propose
extensive directions for further research.
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1 Introduction

1.1 General Motivation

The investigation of the structure and function of the human genome is one of the
grand challenges of modern molecular biologjy4]. As RNA & DNA are believed to
embody the overwhelming majority of genomic functionality, a tremendous amount of
research has been devoted to the investigation of nucleic acid structure and function.
However, while DNA's role is largely limited to the storage of genetic information, RNA
can self-replicate, store genetic information and build complex proteins. These
characteristics bring RNA far closer to being a complete life form then DNA, and
indicate that RNA is the more primal form of nucleic acid. This conception of RNA as
the primal nucleic acid has motivated an acceleration in the effort to understand its
function and structure. As the phenomenon of nucleotide pairing within biological RNA
molecules is critical to both their structure and their function, nucleotide pairing research
is of central importance in this effod][ The current work presents a novel method for
investigating the evolution of such pairing structures in RNA multiple alignments. This
method, which we call the Tree Model, uses a simple local mutation model to develop a
phylogenetically global evolutionary model for RNA multiple alignment columnduos
The extension from the local statistics of point-mutation to a global evolutionary model

iIs accomplished through Maximum Likelihood inference on the structure of a

! The term duo is used to refer to a 2-tuple of nucleotide columns in a multiple alignment. These columns
may or may not interact. The term “pair” will be reserved for those duos that are believed to interact.
Examples of such interactions include: Watson-Crick pairing, helix endcaps and, potentially, tertiary
structure. For a more complete definition of interactions included in the term “paired”, ple&ké see
Data Sourcespager3.
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phylogenetic tree. Once developed, the Tree Model is used to infer the existence,

location and evolutionary behavior of nucleotide column pairs.

Research in molecular biology has made it apparent that theo 3-D structure
of an RNA molecule plays a critical role in its functiof[p]. While a tremendous
amount of nucleotide sequence data has recently become available through initiatives
such as the Human Genome Project (HGP), information on the 3-D structure of RNA
remains sparse. The techniques of Magnetic Resonance Imaging (6JRé)ry
crystallography T] and electron microscopy] have each provided some 3-D models of
simple RNA structure. However, the process of sample preparation requires the
dehydration of the sample, which is expected to have a significant effect on its structure.
Some work has been done towards less destructive electron microscope measurement,

but it is still nascentd].

Due to the present technical barriers preventing the direct measurement of RNA
3-D structurein vivo, information regarding this structure must be inferred from
available data such as nucleotide sequent@s [Traditional efforts to derive 3-D
structure from nucleotide data have been labor-intensive, involving a great number of
researcher-hours spent pondering shared structure among a few available sequences.
Automated computational tools that might assist in the process of structural modeling
have become available but have shown only a modest potential. Such conventional tools
for performing RNA modeling have been derived from principles of the physical

chemistry of large molecules called macromolecules.
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The most fundamental theoretical tools for the investigation of atomic

interactions in a molecule are the equations governing quantum mechanics. While the
smallest molecules might be computationally amenable to quantum modeling, biological
RNA molecules grossly exceed this scald][ To reduce the complexity of
macromolecular simulations, a complex molecule may be separated into a relatively
small number of stable molecular groups, each group having only a few degrees of
freedom L2]. However, even limiting each nucleotide in an RNA molecule to five or six
degrees of freedom produces a computationally intractable assemblage for all but the
smallest biological RNA molecules. Restricting the number of degrees of freedom per
nucleotide further can cripple the ability of a simulation to accurately represent the
complete RNA. As these classical analytic techniques have proven inadequate for the
modeling of interesting RNA molecules, researchers have investigated simplified

heuristics.

One such heuristic technique for the determination of RNA folding structure
involves the definition and minimization of a global energy metric, such as Gibbs free
energy L3][14]. First, a given molecule’s 3-D structure is coarsely parameterized.
Then, these parameters are iteratively altered to reduce the molecule’s measure under the
energy metric. Typical methods for finding optimal parameters for such constrained
nonlinear optimization problems include simulated annealing and gradient descent. This
type of numerical energy minimization has traditionally produced satisfactory solutions
to systems that are intractable to exact analytic modeling. However, when this type of

analysis was applied to the folding of a single RNA sequence into a single RNA
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molecule, energy degeneracy problems arose. Under simply defined approximations to

an RNA molecule’s Gibbs free energy, numerous locally optimal solutions appear with
similar energies but significantly differing folding patterns. The broad variety of
foldings suggested by this technique requires heuristic, and generally manual, post-
processing to produce acceptable results. This is not particularly surprising, as the
interactions within the RNA molecule are sufficiently complex that computationally

feasible energy potential approximations have a margin of error of approximately 10%

[15].

The modeling techniques currently in use, energy minimization and
macromolecular analysis, both concentrate on finding the 3-D structure for a single RNA
sequence. It seems, however, that the underlying complexity of the folding process that
determines the 3-D structure is sufficiently great so as to make these methods either
indeterminate or prohibitively costly. We present a different paradigm for the design of
structure modeling tools, in an effort to overcome these problems. It is hoped that this
approach will yield more effective tools that will accurately and efficiently automate a
large part of the modeling process. To avoid the previously discussed degeneracy
problems, this novel approach abandons the detailed physical investigation of a small
number of sequences in favor of statistical inference over thousands of samples. The
present work seeks to harness the explosion in available primary structure data to provide
folding parameters through the use of Maximum Likelihood inference on a phylogentic

tree.



5
Since the base pairing structure of an RNA molecule in a multiple alignment has

a profound effect on that molecule’sCBstructure, we apply the fore mentioned
statistical methods to develop a tool for investigating this pairing. This tool constructs a
complete probabilistic model for the evolution of multiple alignment column duos using
a phylogenetic tree. The phylogentic tree is modeled as a Markov Tree, a novel
extension of Markov processes to tree-shaped state relationships. The parameters of the
Markov Tree are estimated over a large fraction of the entire multiple alignment,
resulting in a compact, yet general, model for the evolution of RNA nucleotidé duos
[16]. This model can provide interesting insights into the general process of RNA
development over evolutionary time spans. In addition, the evaluation of a single
column duo according to the trained parameters of this model produces a Maximum
Likelihood distribution over all of the possible evolutionary paths for that column duo.
Dynamic programmingechniques I7] can then be applied to this distribution to
calculate a posterior probability for the evolution of the evaluated column duo. When
this posterior probability is compared to that produced by a null model for the same

column duo, a simple yet powerful pairing discriminator is formed.

%2 The recent work of Han & Kim (1993)§] has also used a technique involving a weighted summation
over multiple homologous RNA molecules. However, their techniques were not probabilistic in nature.
Though it did involve the construction of phylogenetic relationships between closely related sequences, it
did not interpret this tree as a statistical process or use statistical inference to derive results. Han & Kim
used arbitrarily constructed editing weights and produced variability coefficients that were not amenable to
probabilistic interpretation. Their work automatically calculated secondary structure for sets of 20 to 40
tRNA molecules with approximately 70% accuracy as opposed to the 90%+ accuracy attained in this work
by the Tree Model3.910 Mode).



1. 2 Technical Overview

1.2.1 TheModeling Process

The primary result of this work is the development of a tool to detect paired
columns in an RNA multiple alignment. However, the ultimate goal of the paradigm that
was used to generate this tool is an automated process by which the complete structure of
an RNA family can be automatically constructed from unaligned RNA sequences
(Figure 1-1) [18]. As the secondary structure detection provided by the Tree Model

occupies a position in this hypothetical modeling process, we briefly describe the

Structural Modeling ﬁ Crude Multiple Alignment
Constraints *

Primary Structure for Family Crude Phylogenetic Tree

of RNA Molecules
Estimate Structure for RNA
Family

Estimate Multiple Alignment
for RNA Family

\

Estimate Phylogenetic
Tree for RNA Family

Prior Phylogenetic
Information

Figure 1-1. Generic Algorithm for RNA Structure Determination

This figure coarsely represents a process for the construction of an RNA structure model. Thick arrows
represent the primary flow of the calculation, while the thin arrows represent data that also influences
calculations. Currently, a large number of skilled researcher-hours is required for the constr

such a model. The current work aims to reduce these subjective factors by automating a piece of the
Estimate Structure module (gray box). This is accomplished through the use statistical Maximum
Likelihood inference applied to the tremendous amounts of newly available primary sequence
information. It is hoped that the application of similar techniques to the other parts of the modeling
process can fully automate this algorithm.
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modeling process and show how the current work contributes to it.

Before discussing the details of our automated RNA structure modeler, it is
imperative that we develop a consistent understanding of the formalisms presently used
to represent RNA molecules. RNA molecules are composed of an ordered chain of
nucleic acid molecules (nucleotides) which are covalently bonded to a linear
phosphate/sugar backbone. Though the nucleotides themselves are fairly complex
molecules, consisting of approximately 10 to 15 individual atob® jnternal
nucleotide structure will not play a significant role in the current work. The internal
structure of the nucleotides may thus be neglected, and the individual nucleotides treated
as unitary. The four nucleotides typically found in RNA are Adenine (A), Cytosine (C),
Guanine (G) and Uracil (U). As the phosphate/sugar backbone to which these
nucleotides are attached may be drawn into a linear form, an RNA’s sequence of
nucleotides may be compactly represent as a string over the alphatietGA)J). This
string is referred to as the RNA molecule’s sequenc®yionary Structure (Figure 1-

1). Recent advances in automated sequencing, have provided a wealth of this type of

data.

1.2.2 The Mutiple Alignment

Certain structurally homologotisribosomal RNA are present in all organisms
that synthesize proteir2@]. It is thus possible to find structurally homologous RNA

molecules in vastly differing organisms. Groups of such related RNA molecules are

3 Structurally homologous RNA molecules are those which have similar shapes. Evolutionary homologues
share a common ancestry and functional homologues fulfill similar biological roles.
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called families and include: Transfer RNA (tRNA), Small Subunit RNA (SSU or 16S
RNA) and Large Subunit RNA (LSU or 23S RNA). The precise number of nucleotides
in each of these molecules varies from organism to organism: Transfer RNA typically
contains 60-130 nucleotides and is the most well understood; Large Subunit RNA
typically contains 2500-5000 nucleotides; and Small Subunit RNA (used in the current
work) typically contains 1200-2000 nucleotides per molecule. In order to highlight the
similarities and differences within a given family of RNA sequences, a multiple
alignment is constructed for the familizigure 1-2serves as an example of the primary

sequence information we given to work with and is discussed in the text that follows.

A multiple alignment is a template containing one column for each possible
nucleotide position in a molecule. Each row of the alignment represents a single species’
contribution (one sequence) to the RNA family. As the number of columns in the
multiple alignment must be at least as large as the number of nucleotides in the largest
molecule of a family, some spaces are inserted into the sequences of the smaller
molecules from that family. These spaces are referred to as gaps or deletes. One primary
purpose of the multiple alignment is to show structural correspondence by displaying
corresponding nucleotides from differing organisms in the same column of the
alignment. There is often heated debate as to which nucleotides are in “structural
correspondence”, and thus a strong subjective element in multiple alignment
construction. Once a multiple alignment has been constructed for a given RNA family,
the genetic similarity between aligned sequences may be used to construct a phylogenetic

tree for the corresponding organisms (Begure 1-3.
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23 UGAGAGUUU- GAU- CCUGLLCUL 272272777 GAUCACCUCCU  GA [6(C CC CC GC CG AA CA
24 . UGAGAGUUU- GAU- CCuGCuC 7277277777 GAUCACCUCCU  GA ce CC (&€] GG (GC] AA CA
25 | UGAGAGUUU- GAU- CCUGLLCUL UG?7277777 GAUCACCUCCU  GA [6(C CC CC GA CG AA CA
26 AUUCCGGUU- GAU- CCUG?70GE UG?77777 GAUCACCUCC? GA G UA (&€] (CV] (GC] -A CA
2/ : AUUCCGGUU- GAU- CCLCLLCGE UG?27777777 GAUCACCUCC? GA [6(C CC CC [CV] CG -A CA
28 : ACUCCGUUU- GAU- CCUGLCGE  UGCOGCUGGAUCACCUCCU L ce CC (&€] GG (GC] -A CA
29 © AGUCCGUUU- GAU- CCUBLCGE UGCGGLCUGGAUCACCUCCU L UA UA CC GA CG -A CA
30 AAUCCGUUU- GAU- CCUGCGE  UG?7?777 7 GAUCACCUCCU  GC UA UA (&€] GA (GC] -A CA
31 AAUCUGUUU- GAU- CCUGCAC UG?72777?77 GAUCACCUCCU  GC UA UA CC GA CG -A CA
1L rgani s 1o rgani s

1: Methanococcus Jannaschii str. JAL-1 (USM Z2bbl) 1/ : Ihernopl asna acl dophilumstr. 122-1B2

2 : Methanococcus voltae str. PS (AICC 332/3) 18 : Archaeogl obus tul gidus str. VG 16 (DSM 4304)

3 Methanococcus vannielll str. EY33 1Y : Ihernmococcus celer str. VU 13 (USM 24/(b)

4 : VBt hanot hernus tervi dus 20 : Methanopyrus kandl eri str. avly (DSM 6324)

5 : Methanobact eri umtorm cl cum (USM 1312) 21 @ Inernoproteus tenax

6 : Methanobrevi bacter rumnantiumstr. M1 22 Ihernotoga maritima str. NMsSB8 (USM 3109)

/ : Met hanobact er 1 um t her npaut ot r ophi cum str. Marburg 23 : Streptococcus bovis (AICC 3331/)

8 : Methanospirillumhungatel str. JkL (USM 864) 24 : Enterococcus taecalls

9 : Methanogeni umcariaci str. JRL (ATCC 35093) 25 : Leuconost oc nesenterol des subsp. nesenterol des
10 : Methanosaeta concl i1l Str. (prikon (USM Z213Y) 26 : Lactobacl |1 us del bruecklil supsp. lactls
11: Haloferax volcanii Str. DS2 (AIUC 2960b) 2( : Lactobacl |1 us acl dophilus (AIUC 4356; NCDO 1/48)
12 : Haloferax mediterranel (AICC 33500) 28 : Pedi ococcus pentosaceus (AICC 33316; LSM 20336)
13 : Hal obacterium cutirubrum clone | anbda- Hc4 29 1 Lactobacillus brevis (AICC 1486Y; NUO 1/4Y)
14 : Hal obacterium hal obl umstr. KRl 30 : Lactobaci |1 us plantarum (AICC 8U14; DSM 20205)
15 : Hal obacterium narismortul | gene = rrnbj 31 : Lactobacl I1us rumnis (AICC 2//80; DSM 20403)

. Hal ococcus norrhuae (AICC 1/082)

Figure 1-2: Sample of Multiple Alignment Data for 16S RNA

Data extracted from the first and last lines of the 16S RNA multiple alignrdéht The multiple
alignment contains 1380 organisms, each having 2688 columns of RNA data. Each organism contained in
the alignment is represented by a single row of data. Most of the data is valid nucleotide data {A,C,G,U}.
There are also gaps labeled “-". These are nucleotides are absent for a particular organism. There are also
several “?” symbols. These represent positions in the alignment for which the data is uncertain, or for
which the columnar structure of the alignment is questionable. The first and last few columns are removed
as they contain nearly all ? symbols. In addition to the raw column data, there are four examples of
column duos that are known to be paired as well as four column duos that were selected at random. It is
noteworthy that column duo Pairddstrongly resembles column duo Rand@mThis is an example of

two independently conserved columns seeming nearly indistinguishable from a conserved paired column
duo. Such degeneracies limit secondary structure determination accuracy as discussed irBsgctions
Results Formaand4.1 Discussion
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1.2.3 The Phylogenetic Tree

A phylogenetic tree is a graph showing a set of evolutionary relationships
between organisms. The graph consists of nodes, representing organisms, and directed
edges, showing evolutionary relationships from each parent organism to its children. For
purposes of organizational uniformity, the phylogentic tree is arranged as a binary tree

with each node having either exactly two children or no childregufe 1-3). The

|Methanosarcina barkeri str. 22‘}'

|Methanosarcina thermophila str. TM-jr

|Methanosarcina acetivorans str. 024\

|Methano|obus siciliae str. T4/M|

|Methanosarcina frisia str. 016|

|Methanosarcina sp. str. WHIL

|Methanococcoides methylutens skr.

|Methanohal0phi|us sp. str. SF|1

[Methanohalophilus mahii

|Methanohalophi|us oregonensis str. WA’_l

|Methano|obus tindarius str. Tindari IB

|Methano|obus vulcani str. PL-12/M|

I |Methanohalobium evestigatum str. Z-730‘3
|
I

|Methanohalophi|us zhilinae str. WeNEf

Figure 1-3: Section of a Phylogenetic Tree

This represents a sub-tree section of a full phylogenetic tree. Sequenced organisms included in the
multiple alignment are found at the leaves and are identified by rectangular boxes. Internal nodes
represent “synthetic ancestors” that have never been seen and are represented by rounded boxes. Due to
technical constraints, the organisms in this tree do not correspond to those f&igurénl-2: Sample of

Multiple Alignment Data for 16S RNAThis graph was obtained from the RBR][and was constructed

using the fastDNAML technique o2f]. The branch lengths shown here have no particular significance.
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nodes with no children are leaf nodes and correspond to data from the multiple

alignment. The internal nodes, which have two children each, represent “synthetic
ancestors”. The precise interpretation of these synthetic ancestors is not completely
clear. While such internal nodes may be seen as representing progenitor organisms that
are now extinct, their more general interpretation is that they simply serve to quantize

genetic proximity.

Except in those rare cases where the course of an organism’s evolution is known
a priori, the internal elements of a phylogenetic tree are typically inferred from its
multiple alignment by measuring the similarity of an alignment’s sequences. While
conflicting subjective processes in the construction of multiple alignments have led to a
substantial amount of contention, the disagreements surrounding heuristic construction

of phylogenetic trees can take on a truly internecine character.

1.2.4 Folding Structure

The final step in the analysis of RNA structure, which is describ&igure 1-1
Estimate Structure, is to look for multiple alignment columns that have statistically
dependent nucleotides. For example, in column duo Raiggdrigure 1-2 we see that
each Uracil nucleotide (U) in column 578 is accompanied by an Adenine nucleotide (A)
in column 559. While this is some evidence that the two columns are statistically

related, it is not strong evidence as this type of behavior could easily be found at random
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in columns that are not found to change during evoldtid@tronger evidence for an
inter-column relationship is found in the consistent covariance of the two columns.
When U in column 578 changes to C (Cytosine), we always see a corresponding change
of column 559 from A to G (Guanine). These correlated changes-(©®) are less

likely to occur under an independent (and random) mutation process than if the
corresponding columns are related through pair bonding in properly folded molecules.
The correspondence of the mutations is therefore a strong indication of statistical
dependence. If we examine the phylogenetic tree and find such parallel mutations are
found within phylogenetically distal groups, then the evidence for a dependency is
extremely strong. This statistical dependence between two columns in a multiple
alignment, once established, is interpreted as strong evidence for some sort of structural
dependence between the nucleotides inhabiting those columns. Chemical bonding
between nucleotides is the primary source of such structural dependencies. As such
chemical bonding can not occur between distal nucleotides, the presence of this bonding
indicates that the nucleotides are proximal when the RNA molecule is foldedo.
Through the combination the distance constraints imposed by this chemical bonding
with a priori knowledge of RNA'’s physical structure, al8structure for an RNA
molecule can be forme®®]. The calculation of this-® structure completes the
Estimate Structure module of the structuring process illustratedrigure 1-1: Generic

Algorithm for RNA Structure Determination

* This could be the result of a critical structural dependency on the existence of a particular nucleotide in a
particular column. If such a nucleotide were to mutate, the target of the mutation would quickly die out,
making it vanishingly unlikely that the target's RNA would be contained in the multiple alignment.
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The techniques described above summarize the process of RNA structure

investigation as illustrated iRigure 1-1 As mentioned irl.1 General Motivatiorthis
process requires tremendous amounts of skilled labor, involves subjective and non-
uniform methods and is not feasible for the large amounts of sequence information
becoming available. To address these shortcomings, various techniques have been
explored to help automate the process of determining: multiple alignn2ai}{ta4][ 25],
phylogenetic trees2p][27][21][28] and nucleotide pairingZ9|[30][18]. While
significant progress has been made for both of the first two processes, development of
automated methods for the determination of pairing have met with only a limited

Success.

The present work was designed to fill the need for an effective pairing structure
detector. As this method relies on the results fromB$temate multiple alignment
and Estimate Phylogentic Tree modules ofFigure 1-] it fits clearly within the
Estimate Structure module. As more sequence data has become available, it has
become plausible to model RNA structure through a statistical description of the known
samples. Statistical modeling can help circumvent complexity problems in physical
modeling, by strictly limiting the total number of degrees of freedom to those supported
by the data. Such statistical techniques model molecular physics indirectly by taking the
physical laws as implicit in the evolution of a family of homologous RNA samples.
Rather then having to decide which physical degrees of freedom are unimpartant,
priori, the current work strives to build a statistical model that represents the population

from which a data sample is drawn. If this task is successfully completed, then the
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relevant physical laws are incorporated implicitly in the model, through the observed

data. Impossible physical interactions are not generally seen in data samples, and thus
are not incorporated into a model. Irrelevant physical interactions are eliminated as
irreducible variance of structureless noise. Such modeling reduces the subjective and

potentially dangerous burden of deciding which approximations to engkieri.

There have recently been several efforts to employ this type of statistical
modeling in the analysis of RNA structure. Initially, such methods were based on the
RNA version of nucleotide base pairing, as was posited for DNA by Watson &°Crick
[19][31]. In RNA the hydrogen bonds which form nucleotides into Watson-Crick®pairs
are known to have a profound effect on the 3-D structure and function of an RNA
molecule. When such bonds are found in a helical configuration, they are referred to as
the “secondary structure” of the RNA molecule. Unlike the primary structure (sequence)
of an RNA molecule, then vivo secondary structure can not currently be directly
measured, only inferred. Early modeling efforts concentrated on maximizing the number
of Watson-Crick pairings that could be formed in a multiple alignment. However, these
efforts were not successful as numerous other interactions were found to have a dramatic
effect on 3D structure. Such features include: nucleotide loops, nonpaired end caps for
helices, non-helical hydrogen nucleotide bonds, ionic bonding between nucleotides and

ionic bonding between nucleotides and water. These features are referred to collectively

® It may be amusing for the reader to note that in the original 1953 article published by Watson & Crick,
they explicitly discounted the possibility of helical structure made from ribose sugars rather than
deoxyribose sugars as,.the extra oxygen atom would make too close a van der Waals contact.”.

® The hydrogen bonds in Watson Crick base pairs are found between Adenosine-Uracil and Guanine-
Cytosine nucleotide pairs.
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as the tertiary structure of an RNA molecule. This tertiary structure is believed to be

critical to the 3D structure of RNA, and embodies much of the complexity that is
difficult to modela priori and has hampered previous efforts. It is precisely such subtle
complexity which statistical models such as the Tree Model are designed to

accommodate implicitly, rather thanpriori.

While there have been some substantial results in the area of statistical RNA
structure analysis, prior work has rested either on a purely columnar analysis of a
multiple alignment, or on a small set of closely related molecules. Both of these types of
modeling encounter difficulties because they fail to include important information.
Phylogenetic analysis of a small number of closely related molecules does not consider
enough of the entire homologous multiple alignment to provide a stable base of statistics.
Neither does a small sample include enough evolutionary information to be able to derive
a robust model for the general process of nucleic acid mutation, over evolutionary time
spans. These limitations may evidence themselves as solution degeneracies, similar to
those of the energy minimization technique, or an inability to generalize the model to
larger samples of homologous RNA. While frequency analysis of complete multiple
alignment columns need not suffer from the phylogentic generalization problem, it does
exclude evolutionary relationships completely. The evolution of a nucleotide duo in a
multiple alignment can be a critical factor in determining statistical dependency. Two
column sets from a multiple alignment can have identical nucleotide frequency

distributions, yet have radically differing evolutionary characteristics. These differing
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evolutionary characteristics can be the key to discriminating between independent

behavior and the dependent behavior that indicates base pairing.

1.2.5 TreeModd for Structure Detection

The current work overcomes the limitations of algorithms based solely on a
multiple alignment, as well those based on a small, genetically related sample. The Tree
Model accomplishes this by performing inference on an entire phylogentic tree for each
organism in a multiple alignment that consists of thousands of homologous RNA
sequences. Thus, the Tree Model is superior to previous work in that it actively and
automatically utilizes a far larger amount of the information generated by previous
elements of the structure modeling proceBst{imate Multiple Alignment and

Estimate Phylogentic Tree modules ofigure 1-J).

The Tree Model constructs a complete probabilistic model for the evolution of
multiple alignment column duos, using the phylogenetic tree. The phylogentic tree is
modeled as a Markov Tree, an extension of Markov processes to tree-shaped state
relationships. The parameters of the Markov Tree are estimated over a large fraction of
an entire multiple alignment, resulting in a compact, yet general, model for the evolution
of RNA nucleotide duos. Once the model parameters have been derived, column duos
may be presented to the model to generate an evolutionary model conditioned on that
duo. Through Maximum Likelihood inference, the novel column duo, along with the
model parameters, serves to fix the nucleotide probability distributions for every leaf in

the tree. Measurements of relevant evolutionary quantities can then be generated
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through the calculation of an expectation value over the probability distributions. These

expectation values can be investigated on a column by column basis, or aggregated
across any subset of columns from the multiple alignment to form complete expectation
values for the data set. Thus, the Tree Model can provide numerous measurements of the
general process of RNA development over evolutionary time spans. In particular,
dynamic programmings used to efficiently calculate the sum of the posterior
probabilities of each possible evolutionary path. This produces a posterior probability
for the column duo, given the trained Tree Model. As Tree Model parameters are
extracted from a training set of multiple alignment column duos, Tree Models can be
constructed to reflect any desired evolutionary characteristic for which a training set
exists. Two training sets are thus constructed, one from column duos that are known to
be paired (Pair) and another from randomly selected column duos with known column
pairs excluded (Rand). For every novel column duo, posterior probabilities are
calculated according to each model. These probabilities can then be compared to
determine whether or not the column duo is paired. The current work demonstrates such
a detector that is found to have a validation set misclassification rate of less than 10%,
which declined to less than 1% on some filtered data. This represents a marked
improvement over previous secondary structure detectors based on energy minimization
and heuristic phylogeny comparison that have demonstrated nucleotide pair

misclassification rates ranging from 20% to 3QP%|[32].
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2 Theory

In this chapter we derive the specific equations needed to implement the Tree
Model. The chapter has four sections.2Ih Theoretic Overviewve provide a high-
level description of the notation and techniques that will be derived in the remainder of
this chapter. 1.2 Frequency Modele derive a simple null model called the
Frequency Model. This derivation will further familiarize the reader with the notation
and concepts employed in later sections2.B1Tree Model Topologwe develop the
Markov Tree, a Markov process on a tree shaped state structure, which is central to the
probabilistic modeling of phylogenetic trees in the present work. In the final sez#on,
Mutation Modelswe discuss three point-mutation models that are used to model local

evolutionary relationships between states of the Markov Tree: Q, 10 and IOM.

2.1 Theoretic Overview

In this section we discuss the background required to understand and use the Tree
Model. First, we develop a general description of the notation used to describe the data.
Second, we present an overview of the sample Frequency Model. Third, we provide a
high level description of the Tree Model algorithm. Finally we furnish a brief discussion

of discrimination techniques and over-fitting concerns.

The multiple alignment frorfrigure 1-2: Sample of Multiple Alignment Data for

16S RNAserves to show the kind of raw data that we have to work with. The RNA
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sequence for each organism contributes one line to the multiple alignment. A column

duo @) may, thus, be viewed as a len@kector of nucleotide duosi, whereSis the

number of organisms represented in the multiple alignmentssxS1 Each column in

an alignment is also numbered, allowing the terse representation of a column duo by a
duo of column ID numbers. This representation is used to construct two similarly sized
sets of column duos. The first set contains duos that are known to be paired. The second
set contains duos that are selected independently and at random from the entirety of the
multiple alignment. All column duos that are known column pairs are immediately
removed from the second set. The specific question we are to answer is whether a
column duo is more likely to have been drawn from the population that generated the

paired sample, or the population that generated the nonpaired sample.

The simplest model evaluated here is the Frequency Model. This model does not
make use of the phylogenetic tree. Since the Frequency Model only examines the
distribution of nucleotides in a novel column dijcand not the genetic relationships of
their contributing organisms, this model is used as a null model against which the more
sophisticated phylogentic tree based models are measured. The Frequency Model is
developed using the same notation that is used for deriving the more complex models. It
is hoped that the derivation of this relatively simple model will help the reader become
more comfortable with our notation, facilitating the comprehension of the more

demanding derivations of the 10 Model.

The Tree Model is a general, statistical model of the evolution of RNA based on a

phylogenetic tree. However, the formal derivation of Tree Model statistics is performed
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within the context of base pairing detection. Though the resultant algorithms are

generalizable to other purposes, this work will tailor them to the determination of base

pairing in column duos of a multiple alignment.

The Tree Model uses a number of free parameters that control its statistical
treatment of evolution. These parameters are collectively referred to as the mutation
model, or simply as the Model. The parameters of the Model are extracted from a given
set of training column dud3,i,. The training process seeks to manipulate the Model
parameters so as to maximizeDR{,/Model). Each Model is tuned to detect
membership in a particular population of data. To perform discrimination between
several populations of data, a sample is taken from each population, and a model tailored
to that sample. As we are primarily concerned with discrimination between paired
column duos and nonpaired column duos we need only choose two training samples.
The first training sample is drawn from the population of column duos that are known to
be paired (Pair), and the second at random from column duos not known to be paired
(Rand). The models that are trained with these data sets are deferred to ag;Model
Modekan¢ To classify a novel column duty P(d|Mode},;) and P@|Modeka.g are
compared. Column dubis then assigned to the population whose corresponding model

produced the higher likelihoddor d.

" A likelihood comparison is used here instead of a posterior probability comparison. This substitution is
made because likelihoods are easier to calculate and the similarity in test set size for Rand and Pair
produces a negligible difference between the two comparison2. E28iscriminationfor more details

on this issue.
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To evaluate the accuracy of this classifier, each complete set of Rand and Pair

column duos is broken into two disjoint groupggin andDiest. TheDy.in group is used
to establish a Model’'s parameters, whilgs;is used as cross validation to evaluate the

trained Model and to measure over-fitting.

2. 2 Frequency Modd

This section provides a theoretical description of the Frequency Model. It is
broken into three parts. [&2.1 Derivation of Frequency ModeWe introduce the
notation, motivation and construction of the model. By the end of the first part we have
derived a method for obtaining posterior probabilities for a given column duo according
to both a random model and a paired model2.t2 Discrimination we discuss some
considerations regarding the use of these probabilities to classify the duo. Finally, in
2.2.3Motivation for Markov Treessome theoretical weaknesses of the Frequency Model
are discussed. A desire to overcome these weaknesses provides a motivation for the
development of a more complex model, the Tree Model. In addition, sex8ah
Notation Summarprovides a comprehensive listing of the notation used in the

following derivations as a reference aid.

2.2.1 Derivation of Frequency Model

The Frequency Model calculates column duo probabilitie$M(del), based
solely on the distribution of nucleotide duos in the column dl)dX0]. It is thus
insensitive to the ordering of the nucleotide duos within a given column duo. To train

this model, a probability distribution over the possible nucleotide duos is generated from
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a count of the number of each type of nucleotide dub.i,. The data likelihood

Pd|Model) is then calculated as the product of the individual probabilities for each
nucleotide duo id. Given a numbering of thBorganisms composing the rows of a
multiple alignment (s:4s<S), we can refer to each organism’s contribution to a column
paird asd®. Thus,d® represents the specific nucleotide duo contributed by orgastism
column duod. Treating each nucleotide duo as an independent observation, the

probability P@|Model) can be calculated 6!3 P(d°|Model).
1ss<S

In turn, P¢|Model) is generated from the renormalized distribution of observed

nucleotide duos in all of the column duosiaf,;,. To obtain these model probabilities

we first define a frequency distribution over the 16 possible nucleotide d;ug]swcg

= g [1 iff d* = 1,0 otherwisei . We can then defiie@Model)= ¢, = ¢ / Z Q.
d0Dy i, d>0Od

The distributiond, is, thus, the Maximum Likelihood estimate ofi2{|Dy.ain).

There are on the order of 1000 organisms in the multiple alignment used in this

work. If we assume that the nucleotide duos are uniformly distributed in the multiple

alignment, we might expect to see values fod|Mdel) of P(d°|Model) =
1<s<1000

|1(1/16) = (1/16)°®or approximately 1&*°°. As numbers of such magnitude exceed
1<s<1000

the native floating point precision of most currently available digital computers, it is

8 f the amount of data is small, or some transitions are found to have nearly 0 frequency, then a more
sophisticated technique such as the Laplacian Estimator might be used to convert frequency to probability.
This would take into account the finite amount of data used in the calculation. Such a correcting factor
was not considered necessary in the current experiments.
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convenient to adopt a formalism from information theory to represent such small

numbers by their negative log likelihood (NLL). The NLL value of a probahplity
-logx(p). So long as we use the logarithmic base of 2, this NLL has an information
theoretic interpretation as the mean number of bits required to encode an event of
probabilityp. Typical NLL values for the Frequency Model might then be on the order
of -log,((1/16)"°°Y or about 4000 bits for a column duo. To further reduce this to a more
intuitive level, the NLL value is normalized against the number of nucleotides found in
valid® nucleotide duos in the column duo. For our “typical” column duo of 1000
nucleotide duos this leaves us with 4000 bits¥1(@00) nucleotides or about 2
bits/bas€’. The value of 2 bits/base might seem familiar. One of the simplest
representational models for RNA sequences symbolizes each of the 4 types of
nucleotides by placing them in correspondence with the 4 possible combinations of 2

bits.

When representing Frequency Model values diN¢del) as NLL values, we can

rewrite our equation of R{Model) = |_| P(d°|Model), as NLL(P@|Model)) =
-logy( |_| P(d*|Model)) = - Z log, (P(d°|Model)) . Alternatively, if there are, of each

nucleotide duo (8I<15) in column dud, then P@dModel) could also be written as

—Z[nI [Ibgz(q),)], which is far more computationally efficient. Now that we have

° A nucleotide duo is considered valid if both of its nucleotides are elements of {A ,C, G, U}. Nearly all

column duos contain some invalid characters (“-” or “?”). Nucleotide duos containing one or more of
these invalid characters are ignored by both the posterior probability calculations and the NLL
normalization.
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described how to train a Frequency Model from a set of column dygg)( and to

obtain the posterior probability @Model) for a novel column dushy we may investigate

applications for such probabilities.

2.2.2 Discrimination

In order to perform discrimination for a model class (in this case, the Frequency
Model) we need to tailor a set of model parameters for each classification category. Our
present goal is the separation of paired multiple alignment column duos from nonpaired
duos. We are given representative samples of each column duo population, namely Pair
from the paired population (Pgf) and Rand from the nonpaired population (&ep
Each of these samples is broken into a training3gl, and a validation seD{.s;). We
then use the training data to configure two sets of model parameters. The first set of
model parameters is calculated usihg;,(Pair) and the second set is calculated using
Divain(Rand). The models employing each parameter set will be referred to assModel
and Modek,qrespectively. Given these models and a novel columrddwuhich we
wish to classify, we compute the data likelihoodd|M®bdeb,;) and Pd|Modek,,9 as
described above. Classification then proceeds by comparing these probabilities and
assigningd to the column duo population whose model generates the larger data
likelihood (or lower NLL valuey, that isdOPair iff Pd|Modeb,,) > P@|Modek,n9 and

dOORand otherwise.

Y The term “base” is used interchangeable with the term “nucleotide” in this work.

" The larger probability corresponds to a smaller NLL valu@ap, - logx(p)>log(p,) —
-loga(p1)<-logx(p2) — NLL(p1)<NLL(py).
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This classification scheme is not in strict accordance with the Bayesian model, as

it compares data likelihoods (@Model)) rather than posterior model probabilities
(P(Modeltl)). This substitution of likelihoods for posterior probabilities is not general.
However, in the present work, likelihood comparison provides a very good

approximation of posterior probability comparison.

When we use a likelihood based classifier, we are effectively asking the, “Which
data population, P@g.q0r Pop.i, would be more likely to include ?”. However, this
IS not exactly the question we want to answer. We really want the answer to the
guestion, “To which population dmore likely to belong?”. This second question is
analogous to classification based on the models posterior probability, P(Model|d). In
order to answer the second question, we need some information regarding the relative

sizes of Popyq0r Pop,. This need is demonstrated by the following example.

Let us choose two columns from the multiple alignment at random and call them
column duod. Assume our models producediodeb,i)=.99 and Pd|Modek,.9 =
.003. As these data likelihoods come from differing models, their probabilities need not
sum to 1. Given no other information about the population from wtlishdrawn
(Popy), we would probably argue thdtis a paired duo. However, we have some
information about Pop Namely, we are told thatwas selected at random from the
columns of the multiple alignment.. As there are 2,688 columns in the multiple
alignment, there are at most 1,344 paired column duos. This leaves approximately
2,688-1,344 = 7,224,000 possible unpaired column duos. Given that the populations

which generated Rand and Pair (Rgpand Popy;) are disjoint (PoRy¢) Popai=01)
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and completel{d, dOPopand I POomai), it Seemsa priori thatd is overwhelmingly likely

to have come from Pap,gwith a probability of 7,224,000/(7,224,000+1,344) = 99.98%.
The task left to us is how to combine tla9riori information about Pap with
P(d|Model) to figure out populatiod is more likely to have come from (P(Mod#)|

Bayes rule provides the solution to this problem in its statement of the relation:

P(Modelf) = P@|ModelfP(Model)/Pg).

We have been given P(d|Mogdgl) & P(d|Mode},;). The probability P(Model)
represents the a priori probability dfbeing drawn from Model, given only our
information about Pgp The quantity R{) represents the overall probability of observing
d. Given that the two populations Rgpand Pop,; are disjoint and complete, dj(

may be calculated as:

P(d) = PdModekangP(Modekand + P@|Modekb.) [P (Mode).

For the present example, the posterior probabilities may now be calculated using

Bayes Rule as follows.

P(Modeka) = 7,224,000/(7,224,000+1,344)= .9998
P(Modeb,) = 1,344/(7,224,000+1,344)  =.0002
Pd/Modekand = .003
P@dModebay) =.99

P@) = 9998003 + .0002D9 = .0031974
P(Modekandd) = .9998103/.0031974 = 93.8%
P(Modepy|d) = .000ZD9/.0031974 = 6.2%
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Because the two populations are disjoint and complete;

P(Modekandd)+P(Modep,;ld)

must sum to 1. The result that P(Maggld) > P(Modep,d) clearly indicates thad
should be classified as having come from Bgpather than Pag;. The overwhelming
preponderance of random nucleotide duos in ourgag clearly outweighed the

likelihood’s indication thatl comes from Pag;, .

The above example, while informative, seems to counter our presumption that a
likelihood comparison is acceptable for the present work. The example is presented to
build an intuition for the type and magnitude of effects that might be invoked through
the use of likelihood comparisons rather than posterior probability comparisons. In the
present work, preliminary calculations were performed over similar sized data sets of 695
Rand column duos and 634 Pair column d3 Rreliminary Q Model Study In this
preliminary work, over 99% of the column duos had data likelihoods that differed by
more than a factor of two, and over 90% differed by more than a factor of 1,000. In the
light of these overwhelming likelihoods, the prior probabilities on the order of

634/(634+695% 48% (Pair) and 695/(634+695)52% (Rand) were deemed negligible.

When the data was again filtered, after the preliminary model calculaBicohs (
Secondary Data Preprocessinghe size of the Pair data set was effectively halved.
This resulted in a change in the model priors to P(MggaeF 695/(317+695% 69%
and P(Model,) = 317/(317+695k 31%. These prior probabilities were still

considered negligible for the final experiments. This assumption was borne out by a
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sample posterior probability calculation that showed the difference of less than 0.05%

accuracy between simple discriminators based on posterior probability and likeléhood (

Appendix B: Posterior Probability Classifier for YO

Nonlinearities in the preliminary Q Model results indicated that the simple
probability comparison described above might not be an effective classifier. Thus, a
neural network model was also used to determine column duo classifications. To
preserve data integrity, this classifier was not trained on the validation data. This
nonlinear classifier was found to reduce classification error in the 10 Model from 11.2%
for the simple classifier 11.2% to 9.3%. Details regarding the design, training and use of

this discriminator are provided in sectiBrb Classifiers

2.2.3 Motivation for Markov Trees

The Frequency Model is quite simple. To obtain this simplicity, a number of
guestionable assumptions are made. Potentially, the most crippling of these assumptions
is the assumption that each of irucleotide duos that compodeare independent. For
this independence assumption to be true, each organism that contributes to a column duo
in a multiple alignment must be drawn randomly and independently from some
stationary statistical distribution. Given the RNA sequence similarities between related

families of organisms, this proposition is absurd.

The inaccurate assumption of statistical independence between nucleotides leads
to two important flaws in this model. First, the assumption of independence can lead to

unwarranted statistical biases due to statistically dependent clustering of the data.
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Second, the denial of a dependent structure prevents the Frequency Model from

specifically exploiting data dependencies for modeling purposes.

The multiple alignment is constructed from the sequences of numerous related
organisms. These organisms tend to be found in genetically similar family groups.
Within one group, there may be far less nucleotide sequence variance then between two
differing families. The decision of how many closely related organisms from each family
to include in a multiple alignment is not necessarily based on a desire to provide a
statistically balanced sample over the multiple alignment. Organisms may be included in
a multiple alignment due to their availability, phenotype, or their potential use to the
sequencing party. This can provide a very biased sample of nucleotides from which to
build a model. No model that is derived from a training set of data can be free of
systematic sample set biases in the choice of training set. However, the Frequency
Model’s reliance on independence between nucleotide duos exacerbates its sensitivity to
duo dependence by counting each contribution to the training set as equal, and

completely ignoring the family bias problem.

Rather then being a problem, family sequence biases can be exploited to increase
modeling accuracy. The Frequency Model is barred from any such modeling by its
assumption of independence. The Frequency Model's probability calculations reduce to
a summation over the number of nucleotide duos of each type. This prevents the
exploitation of any information about the location of nucleotide duos within a column
duo. If phylogenetic family groups are clustered together in the multiple alignment, then

we expect to see ranges of similarly distributed sequences. However, the one
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dimensional listing of organisms required by the multiple alignment is inadequate for the

branching structure of family relationships. These family relationships are represented

more accurately by the phylogenetic tree.

The following example demonstrates how a model that takes into account the
phylogenetic relationships between organisms can serve to increase model accuracy over
the Frequency Model. For this example, we limit our nucleotide duos to AU and GC
only. The multiple alignment consists of four organisms numbered 1, 2, 3, and 4 four
multiple alignment columns. The four columns are clustered into two column duos
labeled Case 1 and Case 2. As the nucleotide duo frequency distribution is identical in

both duos (50% AU and 50% GC), any discriminator based solely on the frequency

Case 1: Single Mutation | |Case 2: Multiple Mutations| | Alignment Data

Organism Case Case

ID 1 2
1 GC GC
2 GC AU
3 AU GC
4 AU AU
12| [3fla][af[2] [3][4
Organism ID Organism ID

Figure 2-1:. Exploiting Phylogenetic Distribution Bias

Examples of data that are irresolvable under models based solely on nucleotide duo frequency

distributions. These examples, however, are quite distinguishable under a model that also takes into
account the evolution of the column duo. Each leaf represents a single organism’s contribution to a

multiple alignment column duo. Parenthetical base duos are estimated from children, while leaf duos are
directly observed data. A “?” represents an unknown base. Each case might represent a different column
duo from a multiple alignment with Case 2 showing strong evidence of base pairing and Case 1 showing

weak evidence for such pairing. Arrows represent the direction of evolution.
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statistics would have to classify the two cases identically. However, a model taking into

account the evolution of the nucleotides may come to a very different conclusion.

The above graph represents an imaginary phylogenetic tree with four organisms
in it. The leaf nodes of each tree represent the nucleotide duos that compose a single
multiple alignment column duo of length fol8=4). Each internal node represents the
common ancestor of its child nodes and the arrows represent evolutionary decendency.
The genetic makeup of the ancestors represented by the internal nodes is unknown and

can only be inferred from that of their descendants.

The Case 1 data is likely to have been generated by a single mutation from the
unknown root ancestor. While we can not be certain that only one mutation occurred,
having two children with the same nucleotide duo is strong evidence that the parent
shared that duo as well. In contrast, the tree shown in Case 2 can not be generated
without at least two separate mutation events. As there is a tendency for a Watson-Crick
(AU and CG) paired nucleotides to mutate to another Watson-Crick pair, the
independent observation of two such mutations is stronger evidence of pairing than the
observation of a single such event. Thus, we would expect that Case 2 would be more

likely to be classified as paired then Case 1.

The Tree Model is developed to quantitatively exploit the evolutionary structure
displayed inFigure 2-1by modeling the evolutionary relationships between organisms’
RNA sequences. To this end we construct the Markov Tree, which serves as the central

engine of the Tree Model. The Markov Tree represents the process of evolution as a
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Markov process originating from the unknown common ancestral “root” of a

phylogenetic tree and terminating with the known organisms in the “leaves” of the tree.
We expect to see the Tree Model outperform the Frequency Model in two particular
ways. First, we expect an increase in the ability of the Tree Model to represent the
population from which the training set is drawn. This would be observed as a higher
P([Dws{Model) for the Tree Model then for the Frequency Model. Second, we expect to
see better differentiation between Magdgland Model,;, for the Tree Model then for the

Frequency Model. This will be observed as a higher accuracy in the discrimination

between paired and nonpaired column duos.

2.3 TreeMode Topology

This section is developed in five subsections.2.1 Phylogenetic Treeve
introduce and describe the phylogenetic tree2.812 Markov Modelwe review the
properties of Markov Models that are relevant to the derivation of the Markov Tree. In
2.3.3Markov Treewe develop the Markov Tree by applying the inference methods of
Markov processes to the topology of the phylogenetic tre.3ld Notation Summary
we provide a concise notation summary for easy reference. Finaly3.BiTree Model
Sample Calculationwe calculate an example of discrimination using the Markov Tree.
This example includes a complete sample computation of a posterior probability for a

column duo, R{iModel).
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2.3.1 Phylogenetic Tree

As we will describe a mathematical model based on the evolutionary relationships
embodied in a phylogentic tree, it is important to develop both an intuitive understanding
of the tree Figure 2-2 and a convenient notation with which to describe the model. A
phylogenetic tree is a directed graph representing the evolution of all known organisms
from a single progenitor organism. This graph conforms to the combinatoric definition

of a tree in that it is completely connected, and contains no cycles. In particular, a

Ais |Methanosarcina barkeri str. 2

A1 |Methanosarcina thermophila str. TN |

Ass |Methanosarcina acetivorans str. C |

Ass |Methano|obus siciliae str. T4 |

IAN |Methanosarcina frisia str. C |

I Asg |Methanosarcina sp. str. W |

Asg |Methanococcoides methylutens |

As

Ao |Methanoha|ophilus sp. str. S |

All

Asr |Methanoha|ophi|us malt |

Ax |Methanoha|ophi|us oregonensis str. W/ |

Ao

Az |Methanolobus tindarius str. Tindai |

A12

Ao |Methanolobus vulcani str. PL-12 |

I Ags |Methanoha|obium evestigatum str. Z-7 |

I Age |Methanoha|ophilus zhilinae str. We |

Figure 2-2: Nodal Notation for Phylogenetic Tree

This represents a sub-tree of a full phylogenetic #dg [This figure represents the same organisms as
Figure 1-3: Section of a Phylogenetic Tré@wever, inFigure 2-2nodes are labeled to demonstrate the
notation. The root nod&, represents the primeval ancestor from which all of the life represented in this
tree descended.
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phylogenetic tree is a binary tree where each node in the tree has either two descendants

or none. Nodes with two descendants are referred to as “internal nodes”, while nodes

with no descendants are referred to as “leaf nodes”.

In a phylogenetic tree, all of the known organisms are found at the leaves.
Internal nodes represent “synthetic ancestors”. While these synthetic ancestors might be
taken as organisms that are believed to have existed but have not been observed, they
more generally represent some degree of unexplained commonality between their
children. Synthetic ancestors serve to group genetically similar organisms into proximal

areas of the tree.

One objection to this scheme is that it does not allow a known organism to be a
direct descendent of another known organism. There is strong biological evidence that
the ancestor species of some currently living species still persist. This shortcoming is
overcome when the concept of branch length is introduced later with the IOM Model
2.4.410M Model At that point it will become clear that the phylogenetic tree described

above can also represent such ancestral relationships.

Notationally, each node in the tree is given a unique t3b&l A given the
multiple alignment column duo fixes the nucleotides at the leaf nodes. The internal

nodes represent random variables that could take on the value of any possible nucleotide

12 As the phylogenetic tree is a binary tree, the number of total nodes and the number of branches are fixed
by the number of leaves. If there arkeaves, then there axel internal nodes,X21 total nodes andx22
branches. When nodes are labeled will range from 0 to 2x-2, inclusively.
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duo. The probability distribution over nucleotide duos for each internal node is

determined by the data at the root and leaf nodes, as describh8dBiMarkov Tree

2.3.2 Markov Mode

The statistical inference used to develop the Tree Model derives from the
calculation techniques used in Markov Models. As such, we digress into a brief
discussion of Markov processes. We will subsequently employ existent formalisms and
intuitions about Markov models in our Tree Model construction. A full treatment of
Markov processes is not given here, s&g for a tutorial. Instead we focus on the
aspects of first-order Markov models that we will employ in the derivation of the Markov
Tree. These characteristics include initial state assumptions, limited memory capacity,

state transition probabilities and limited statistical independence between states.

| Four State, first order Markov Model (M) |

State(M) State(M)
:WO :Wl
State(M) State(M)
=W, =W3

State(M)=w,: Markov Model M is in state wy

——  Represents possible state transitions

Figure 2-3: First Order Markov Model

Example of a first-order Markov modkl. The model has 4 stategtow; and is completely connected in
that any state can transition to any other state with some (possibly 0) probability.
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A first-order Markov modeM (Figure 2-3 is generally defined as a

mathematical 4uple {W, X Y, Z} whereW s a set of statesW] = 4 in this case)Xis
set of possible transitions between statelS\\W&W) between state¥[1W is an initial
state an&[JW is a set of terminal states. NotationaN,is a random variable ovéy
indicating the state d¥l at timet. Thus, Pi=w|X,Y,Z) represents the probability that
the modeM is found in statev, at integral time step>0. Att=0 the initial state may be
defined deterministically adly = Y, or probabilistically as Mo=w;)) = P(Y=w;). The
transition matrixX, ., represents the probability per unit time thatn statew; will be
found in statev,, one time step later, or:
Xim = PMu: 1=Wi[Me =W, Y, 2).
Given a probability distribution over states at some tinRfM=w;), we can calculate the

state probability distribution at tinte1 as:

PMu1=w) =
3 [P(M.. = WM, =w,)R(M, = w,)] =

Z[le (M, =w,)].

This is referred to as the Markov induction property.

The above inductive step of the Markov model embodies several features that are
critical to our later derivations. First, the initial state=@ must be defined in order to
determine the state probabilities at a later time. In the first-order Markov model this
initial state distribution is given as part of the model. Second, this model has only a
limited memory capacity. The only contextual information passed from one time period

to the next is the state of the system itself. Third, probability distribution over the
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possible values foM,; (P(Mu1=W,)) is completely determined by the probability

distribution oveM; (P(M=w;)) and the model paramet&y,, (PMu1=wn|M=w;)). It

does not matter which route through the model states was taken to get to the state
distribution PM..1=w,). This property, while relatively obvious, is crucial to
computational efficiency. Otherwise we might have to maintain a set of possible path
histories that could grow exponentially with increasing-inally, the state transition
matrix is a relatively compactW|x|W]) structure that embodies all of the dynamic
behavior of the system. If we were interested in the state distrilitibme steps in the
future, we could raise the transition matkxo the power ofAt and apply it to the
current state distribution to obtain the state distributioftaime steps in the future.
Also, future state distributions in a Markov model have a limited form of statistical
independence over time. That is, given a state probability distributiovpvEeM=w,),

the distribution (oven),

PMe1=WoM=W, M, 1=Wiy) = PMe1=W,|M=w;)

and

P M 1=Wir|M=W M .1=W;,) = PMi1=Wr|M=w;)

While this characteristic may seem a trifling extension of the limited memory property of
Markov models, its analogous implications for the Tree Model will be imperative for

computational viability.
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2.3.3 Markov Tree Synthesis

We now have described the biological phylogenetic genetic 2t8€l), and the
Markov process we intend to implement on that t&e8.9). Now we combine them to

derive the Markov Tree that plays a critical role in our development of the Tree Model.

Our treatment of the probabilities derived from the Markov Tree will be identical
to the treatment of the probabilitiesdMlodel) from2.2 Frequency Model However,
now we use a more sophisticated model that takes into account phylogenetic
dependencies between organisms. We will thus be replacing the likelihd|btb&él)
generated by the Frequency Model witldBee[lModel). Separate versions of the

mutation model, Model, will be trained as Moggland Model,;. These will be used to

Two State, Three Node, Markov Tree

A():O A():l

DI

A]_:O A]_:l A2=O A2=1

A=l : Node A; of Markov Tree is in state .

—_— Represents a possible state transition.

Figure 2-4: Markov Tree Model

Only a limited number of state transitions are allowable in the Markov Tree. The Markov Tree can have
no cycles. States in the Markov Tree are organized into nodes where eacAhoeferdsents a discrete
random variable. In this figure, each random variable can take on the value 0 or 1. In a biological
application, each possible value for the random variable might correspond to a nucleotide duo such as AU
or GC. As all nodes in the tree represent dafg@j+P@i=1) = 1 for allA. Another unusual feature of

the Markov Tree is that state transitions can only take place from the states of a parent node to the states
of its child nodes.
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produce Pd|Modek.,9 and P{|Modeb,;) that will be compared to form a pairing

discriminator.

For the Markov Tree derivation, it is convenient to draw several analogies
between the Markov Tree and the Markov Model. It is also useful to limit the scope of
the derivation to calculations on a single, given, columndiofthe multiple alignment.

This assignment fixes the contribution of each organigmo(the tree to a single
nucleotide dua®d. These duos are found at the leaf nodes of the tree. Each tree node
A corresponds to a discrete random variable over the 16 possible nucleotide duos. This
Is conveniently thought of as eadhhaving 16 possible states, as we can then depict the
probability distribution over the statég0<I<15) of A, as PA=l). Probabilities
conditioned omA=I can also be represented. One of the most important of'tHisse
Pd(A)IA=l) which represents the probability of all column duos contributed by
organisms in the phylogenetic tree that are descendedAr@i(d)), given thath; is in

statel.

Our goal is to compute BY, the likelihood of all of the nucleotide data at the

leaves of the tree. If we knewdp{o=I) for eachl, then we could easily calculatedp,(

sincé* P(d)= Z[P(d(Ab)| A=) A =1)]. Asitis relatively easy to derive a value

for P(Ao=l); we will tackle that first, before the more complex calculation of

13 Conditioning on the phylogenetic tree and mutation model parameters is not explicitly expressed in the
clause P4i=l|d). However, under the Tree Model, this probability does presuppose knowledge of both the
tree and the mutation model. To avoid the cumbersome necessity of writingAgelfdPreeImodel),

our remaining references to probabilities will presuppose conditioning on the tree and model. This does
not affect our essential mathematics but does simplify our notation.

14 As A = A, (the root node)d(A) is all of the data descended from the root node that is all of theddata,
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Pd(A)|A=l). We take as ow priori state probability distribution, the same nucleotide

duo distribution generated by the Frequency Model. This distribution was produced

from a renormalized count of the nucleotide duos in the trainingggtand represented

by P@o=I) = ¢,. Our probability estimate BY now becomesZ[P(d (AIA=)D].

However, this derivation still requires knowledge ofl(&)|Ai=I), for the root node

wherei=0.

We next derive some notation that we will need to bredkA) A=) down into
an iterative calculation that will terminate in the leaves of the tree. The above chart
(Figure 2-5 shows the relationship among three specific nodgs\(andA), the root
nodeA, and the column dud whered = d(-A)Ad(A) = d(-A)Ad(A)Ad(AY). In this
figure, the Markov Tree is partitioned into several distinct sections whésdhe direct
parent ofA; andA,. The symbotl(A) represents all of those nucleotide ddd&! d that
are contributed by organisms descended from Wgdehile d(A,) represents those duos
descended from . In additiond(-A) = d(-A)’Ad(-A)” represents the nucleotide duos
from all of those branches of the phylogenetic tree that are “outside” of the sub-tree
whose root is af. If i=0, thenA, is the root nodé, andd(-A) is the null set, as all data

is descended from the root node.
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LN J LR N J

[Leof nodes d(-A,v)J [Leof nodes d(-A,)”j
LN L N J

[ Leaf nodes d(Aj)] [Leof nodes d(Ak)j

Figure 2-5: Phylogenetic Tree Node Structure

All nodes and data descend from the root nAgleThe complete column dubconsists of a set of
nucleotide duos contained in leaf node sa#y)’, d(A), d(A) andd(-A)". Hered(A) andd(Ay) represent
all of the leaf node data descended frann the phylogenetic tree a$A)=d(A)Td(A). Internal nodes
A, andA are the sole children &. The leaf nodes id(-A)’ and d(-A)” contain all of the nucleotide
duos that are not directly descended frano the left and right oA in the Tree. AsI(-A)’ and d(-A)”
are never found independently in the following derivations, they are referred to collectivihAas
whered(-A)= d(-A)’ Od(-A)". In set theory notatiod(-A)=d/d(A).

Given the relationships depicted igure 2-5 we now derive the general
expression for RA(A)|A=I). We replacel(A) with d(A)Ud(Ay), thus transforming,

PA(A)IA=I) into
PA(A) Dd(AYIA=1)
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We can use conditional decomposition to rewrite

P@A(A)Dd(A)IA=) as
PE(A)Id(A)UA=T) P (A IA=!).
As any data irml(A;)) must be descended frofy and similarly, data inl(A) must come

from A,, we can rewrite

PAA)IdA)DA=)PA(AYIA=I) as

D PA(A)DA= M AD A JEy R A0 & hA )

This sort of expansion is referred to as conjunctive inference. Through another

application of conditional decomposition we can rewrite this as:

D[PAANA=MOId AT A DR A hE A A ]
§[P(d(mm:nm: OR A= 1 A )]5.

At this point, we can leverage the Markov model independence property. In
section2.3.2 Markov Modelwe pointed out the seemingly trivial Markov Model
property that, given a state probability distribution oMgr P(M=w,), the distribution
(overn)

PMe.1=Wp[M=wW[M; 1=Wp) = PM¢.1=W,|M=w;) and
P Mg 1=WiM=wW [M¢.1=W,,) = PMy =W |[M=W)).
Markov Trees have a similar property. Namely, that givssm, any datad(A)
descended from a nodeis independent of any state information outside the sub-tree
descended from. As we are looking at this derivation as a Markov process with an

increasing, A corresponds td/; from the first-order Markov model. Similarlg(A)
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corresponds to the state informationhdf, for t'>t. State probability distributions

outside the sub-tree originatingAtcorrespond tdA;-, for t"’<t. This allows that
PE(A)IA=MOd(A) CA=T) = PAA)IA=M)
asd(Ay) andA are outside the sub-tree rooteddat Thus,d(A) andA; can not affect
Pd(A)) once the state @ is given. Similarly,
PA(AYIAENDA=])
is independent oA=l and therefore is equal to
PA(AJIAEN).

While, PA&=m|d(A)UA=I) is equal to P=m|Ai=I). This leaves us with B(A)IA=I) =

SPaAIA=md AT A DRA nes A ]
SIPAANA = 0 A R A= 1 e )]

D [PEANA =M A= hA= 5 [Rd A A= TR A= InA g

We have now reduced our original probabilityd@()|A=I) to a calculation that
relies solely on probabilities ové’s children, P4(A)IA=m) & P(d(A)|A=n), and our
model’s state transition probabilitiesAXm|A=l) & P(A=n|A=l). As the tree model
uses a uniform state transition probability for all nodes in the tree, we can represent the
probability P&=m|A=I) as a matrix indexed blyandm (p,). The source of this
distribution will be addressed in great detail later in this work in se@iéMutation

Models At the current level of abstraction, just accept that we have generated this
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transition matrix from measurements madeDgg,. This further reduces our statement

of PE(A)|A=]) from

D [PEANA=MR A= A= JHEy [Rd A A= TR A= InA Jfgto
> [PacA)A =m b, |55 [Fd Al A= a5

Our derivation has only relied on the relative positionsipof; andA, . As our
derivation did not rely on any particular position fgiwithin the tree, we may merely
seti=0 and recursively calculatedfy)|A.=I). This recursive calculation will eventually
require some R(A)|A=m) and PA(AJ)IA=n) where one or both ok andA, are leaf
nodes. The leaf nodes represent the genetic contributions of known organisms, thus
these nodes are in a completely determined state. The state distribution for some leaf
nodeA, , whereA, represents some organism numbesed the phylogenetic tree, is
given by

Pd(A)|A=n) = 1 iff n corresponds to nucleotide dddb
and O otherwise.

This is illustrated by the following figuré-igure 2-9.



Root
Node

Node A in tree: Internal node, “Synthetic Ancestor”

||
0 1 2 3 4 5 6 7
P(Ai = AA) | P(Ai = AC) | P(Ai= AG) | P(Ai = AU) | P(Ai = CA) | P(Ai = CC) | P(Ai = CG) | P(Ai = CU)
=7 =7 =7 =7 =7 =7 =7 =7
8 9 10 11 12 13 14 15
P(Ai= GA) | P(Ai=GC)|P(Ai = GG)| P(Ai = GU) | P(Ai = UA) | P(Ai = UC) | P(Ai = UG) | P(A; = UU)
=7 =7? =7? =7? =7 =7 =7 =7
Node A in tree: Leaf Node, “Nicotiana tabacum -- Node A in tree: Leaf Node, “Glycine max --
chloroplast” (GU) chloroplast” (UA)
0 1 2 3 0 1 2 3
P(A = AA) | P(Aj = AC) | P(Aj = AG) | P(A; = AU) P(A« = AA) | P(Ax = AC) | P(Ax = AG) | P(Ax = AU)
=0 =0 =0 =0 =0 =0 =0 =0
4 5 6 7 4 5 6 7
P(A; = CA) | P(Aj=CC) | P(A = CG) | P(A = CU) P(A« = CA)|P(A« = CC)|P(A« = CG)|P(A« = CU)
=0 =0 =0 =0 =0 =0 =0 =0
8 9 10 11 8 9 10 11
P(Aj= GA) | P(A; = GC) | P(A; = GG)| P(A; = GU) P(Ax = GA) | P(A« = GC)|P(A« = GG)| P(A« = GU)
=0 =0 =0 =1 =0 =0 =0 =0
12 13 14 15 12 13 14 15
P(A; = UA) | P(A; = UC) | P(A; = UG) [ P(A; = UU) P(A« = UA)|P(A« = UC)|P(A« = UG)|P(A« = UU)
=0 =0 =0 =0 =1 =0 =0 =0

Figure 2-6: Phylogenetic Tree Leaves

Two sibling leaves of the phylogenetic tree and their parent node for column duo (89,168). The
probability distribution over leaf states is defined by the nucleotides in the column duo. The distribution
over states in the parent node is determined from the leaves by maximum likelihood inference through the
mutation model which determineg.

As the probability R{(A)|A=I) plays a critical role in further derivations and
experiments, we develop some special notation for it. We thus dig{ikel) =

PA(A)IA=l). Whered is clear from context, it may be omittedlga=I). Because this

probability calculation requires the knowledge of only those data inside the sub-tree
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descended from, the distribution is referred to as thesidedistribution ovel for A

andd. A concise summary of the derivation of this inside probability follows:

P@) = S [PAANA = N RA =] e Definition.
= Z[P(d S-S I ) PO Definition of .
= Z[Id(Ao D1 Y] Definition of I(A=1).

Next, we develop a recursive definitionlgfA=l) that uses only fixed model parameters
and nodes that are closer to the leaves faeMVe then establish the base case where
is a leaf node.

[q(A=D = PAA)IAZD e Definition of I4(A=l). If A is not a
leaf node, see following recursive

definition. If A is a leaf node, then
I4(A=1) = 1 if A’s organism supplies
nucleotide pail to d and O

otherwise.
=PE(A)EAAIIAED) o Definition of d(A), d(A) & d(Ay).
=PE(A)|d(AYEA=NPAA)IA=!). o Conditiond Decomposition.

=) PA(A)DA= Md AT A )Ly RA A0 & hA )

...................................................................... Markov conjunctive inference.
= [PAA)A=MId A0 A DRA ha A =A [
&[P(d(ww nd A= IORCA= i A )]5

...................................................................... Conditional Decomposition
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D [PEANA=mMR A= hA= JHy [Rd Bl A= IR A= In A

...................................................................... Markov independence property.
= i[ld(Aj =mp,,| g&[ IL(A =n) @’Ln]g ......... Definition™ of 14 andp.

Equation 2-1: Summary Derivation of Inside Probability Distribution

2.3.4 Notation Summary

Tree. oo Phylogenetic tree.

Pair & Rand............ Sample set of multiple alignment column duos representing paired data or randomly
selected unpaired data.

POfpair & POPrang.«----- The Populations from which samples Pair and Rand are respectively drawn.

[ Logical conjunction (“and” operation).

ACA& A Nodes in the Markov Tree generated from the phylogenetic tree. Where there is an
ancestral relationship between the nodess the parent ofy andA..

LM Represent states of nod&sA andA, respectively. States are numbered O to 15

and correspond to the 16 possible nucleotide duos: AA, AC, AG, AU, CA, CC, CG,
CU, GA, GC, GG, GU, UA, UC, UG & UU respectively.

(o [T A multiple alignment column duo. This is a nucleotide duo vector of legth
whereSis the number of organisms in the multiple alignment. Each organism
contributes one nucleotide duo to this vector.

(o R Nucleotide du of column duad.

A(A) e, Those nucleotide duos in column diithat correspond to leaves of the Tree that
are descended from node

A-A) e, Those nucleotide duos in column diithat correspond to leaves of the Tree that
arenotdescended from nodg , d(-A) = d/d(A).

Do A set of multiple alignment column duos, also referred to as a data set.

Dirainee.eeeeeeeeiieernnrennn. A data set which is used to derive mutation model parameters.

Diegteeeeernriieieeiiiieeennn. A data set which is used for cross validation on a mutation model trained with a

Dyain. EachDy,in has a correspondiriges; that is drawn randomly from the same
population a®y.in , but is necessarily disjoint froBy,in.

Lg(A=]) e Pd(A)|A=D). If Ajis not a leaf node, this is defined recursivelyAlis a leaf node
thenly(A=1) is 1 if A’s organism contributes nucleotide phitod and 0 otherwise

Model........cccceennnnns A given mutation model, one of: Frequency, Q, IO or IOM &délutation
Models.

'%1f one of Ay’s children, sayA is invalid, then there is nd(A). In this case RI(A)IA=I) = PAA)IA=]) =

214 (A=
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Modekang - eeeeeeerernnnn. Or Modek,;. A mutation model trained on a data set which is known to be paired
(Pair) or not known to be paired (Rand).

¢(Model).......coeee..n. Thea priori probability of staté for any node in a Tree evaluated under Model.
This is a vector of length 16 whose components sum to 1. Each component
corresponds to one of the 16 possible nucleotide duos. Generally this is derived
from a renormalized count of the number of each kind of nucleotide duo found in
Dyain for Model. Where Model is clear from context, this may be abbreviat¢d as
(see2.2.1Derivation of Frequency Model

p.m(Model)............... Thea priori state transition probability from stdtén a parent node to statein a
child node for Model. This is calculated in differing ways for differing mutation
models. Where Model is clear from context, this may be abbreviamgd.asor
the 10 mutation model this corresponds to the expectation value for
PA=m|A=IATreenModelnDyain) over all nodesy, A U Tree, wheré); is the parent
of A, see2.4.310 Model

pi.m(r,Model)............ For the IOM mutation model, the state transition mairig also a function of the
length of the branch connecting two directly related négesdA,. The parameter
ris used to indicate a bin number corresponding to a range of branch lengths, for
which thisp is applicable. Se2.4.410M Modelfor more details on this parameter.
Wherer or Model are clear from context, they may be omitted,awill be
referred to ap .

Table2—1. Notation Summary

2.3.5 TreeModel Sample Calculation

As the recursive definition of BjtredImodel) is rather complex, an example is
presented here to show this recursive process in action. In order to focus on the process,
the complexity of the model is reduced. The Phylogenetic tree has only four organisms,
and thus four leaves and three internal nodes. This example reflects the tree shown in
Figure 2-7 Tree Model Example Genetic Datdor simplicity, only two possible

nucleotide duos are allowed at each node, AU or GC.
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Case 1: Single Mutation | |Case 2. Multiple Mutations| | Alignment Data

Organism Case Case

ID 1 2
(AU) 2?) 1 GC GC
2 GC AU
3 AU GC
au | [ au cc | | au 4 AU AU
1]f2] [3|faf[a][2] [3][4
Organism ID Organism ID

Figure 2-7: Tree Model Example Genetic Data

This figure represents the data used in this example. One phylogenetic tree with simulated nucleotide duo
information for four organisms, for each of two multiple alignment column duos (Case 1 and Case 2). The
purpose of this example will be to calculate(®R)|treexmodel) for the given model parameters.

The state transition matrpxand root node state distributignare approximated
from actual 16S RNA dati(seeTable 2—2: Mutation Model Parameters for Exanple
As described in th2.2 Frequency Moddboth Modek,,qand Model,;; are presented and

P(d|treé_model) is calculated for each model on each of the two example column duos.

Paired Model
P(AU- AU ) = .954 P(AU- GC) = .046 P(AU) =.182
P(GC-AU) =.011 P(GC-GC) =.989 P(GC)=.818

Nonpaired (Random) Model
P(AU-AU) =.975 P(AU-GC) =.025 P(AU) =.361
P(GC-AU) = .027 P(GC-GC) =.973 P(GC) =.639

Table2—2: Mutation Model Parameters for Example

These numbers were derived from actual results obtained frot4t8#0O Model The probability of no
mutation occurring was maintained and the residual probability assigned to a mutation to the
complimentary nucleotide duo. For theriori state distribution, the relative proportions of AU and GC
were maintained from the IO Model calculations, scaled up to total 100%.

® These transition probabilities are from the 10 Model as calculated in sex8d® Model after
normalization to account for the use of only 4 of 256 transition probabilities.
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First we apply the multiple alignment nucleotide duos to the leaf nodes, then we

calculate probabilities for the internal nodes of each model. This calculation requires the
computation of R{(A)|A=n), for every staten of each node\ in the tree,. This
calculation begins at the leaves of the tree and progresses up to its root node. To save
space, only one example of such a calculation (Case 1 data, Paired model) is given here.

The others follow similarly.

P(dIModel) = Y P(d(A)| A = IOModelIP(4 = Model)

1=0,1

(.0408 0.182) + (.00981.818) = .021

Ao
P(d(A0)lA=AU) | P(d(A0)lA=GC)
=.0408 =.0098
A 1 A 2
P(d(A)|A=AU) | P(d(A.)]A;=GC) P(d(A2)|A2=AU) [ P(d(A2)|A:=GC)
=0.0021 =9781 =0.9101 =0.0001
A 3 A 4
P(d(As)|As=AU) | P(d(A3)|A:=GC) | | P(d(As)|A=AU) | P(d(A4)|A=GC)
=0.00 =1.00 =0.00 =1.00 /
A 5 A 6
P(d(As)|As=AU)| P(d(As)|As=GC) | | P(d(As)|As=AU) | P(d(As)|As=GC)
=1.00 =0.00 =1.00 =0.00

Figure 2-8 Calculation Tree for Example (Case 1, Modggl)

This tree shows the calculation process used to compute the posterior data probdfittgmodel) for

the column dual described ifFigure 2-7: Tree Model Example Genetic Dat&he leaf nodes are
initialized from the known nucleotide duo values. Other probabilities are derived from descendants
according to the inference equation developed abouEgimation 2-1: Summary Derivation of Inside
Probability Distributior.



51
The calculations of Bl{Model) as described by the exampld-igure 2-8leaves

us with the following resultsTable 2—3

P(d|Model) for Model Type
Datad Tree,; Treeyan Freg,; Fretkan
Case 1 .02101 .02364 .05321 .02216
Case 2 .00073 .00066 .05321 .02216
NLL(P(d|Model)) for Model Type, (bits/base)
Datad Trees,; Treezan Frec,; Freran
Case 1 0.697 0.675 0.529 0.687
Case 2 1.302 1.321 0.529 0.687

Table2—3: Example Posterior Probability Result Summary

Summary of data likelihoods according to Markov Trees derived from Rand and Pair data. A sample
calculation using the Frequency Mod2lZFrequency Modglis also made using the same nucleotide duo
frequency distribution as was used for the Markov Tree calculations.

The Frequency Model cannot distinguish between the column duos froniCase
and Case as it must assign them equal probabilities, based on their identical nucleotide
distributions. On the other hand, the Tree Model does distinguish between the two cases
assigning Casg a higher probability (lower NLL) according to Tpgethan Tre@,q It
can therefore be classified as a paired column duo. Alternatively, the single conserved
mutation in Casd is not sufficient evidence to generate a more favorable probability
from Modeb,;, than from Model..g thus, Casd is classified as unpaired. The data
from Casel may have come from a part of the RNA molecule that is evolutionarily

stable, but suffered a random mutation at an early genetic ancestor.
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The reader may find it unexpected that the Frequency Model provided data

likelihoods that were about as high, or higher than those computed from the Markov
Tree. This would tend to indicate that the Frequency Model is more accurately
representing the sample data. The explanation for this lies in the fact that a mutation is a
relatively rare event. From the statisticsTiable 2—2 we would expect to see a
mutation rate (per branch of the Markov Tree) of 0[0&46+0.818).011 = 1.7% for

paired column duos and 0.381025+0.63®.027 = 2.6% for nonpaired column duos.
Thus, our sample data is improbable in that it contains one or two mutations for only
three branches. Given such improbable data, it is not surprising that the Frequency
Model, which is insensitive to such mutation events, provided a higher data likelihood

than the Markov Tree.

2.4 Mutation Models

Up to this point, we have concentrated on developing the Tree Markov Model

formalism that we use to derivedftteexmodel). We have assumed that the evolutionary

model parameterg, = P(A=I|Model) andp = P(A=m|A=ICModel) were somehow
derived from the training s&.;,. In this section, we formulate the derivation of these
parameters and discuss the roles that they play in modeling the evolutionary process in a

Markov Tree.

This section is broken up into four subsections2.th1 Rho and Phig and¢)
we review the specific form of the mutation models’ parameters and discusses their

meanings. 112.4.2Q Mode] we present the Q mutation model which deripésom a
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biological interpretation of state transitions as a point-mutation procesa4.Bl0O

Model we present the 10 Model which calculafethrough a purely statistical process
of Expectation Maximization over a training set of column duos2.410M Mode|
the final subsection, we incorporate phylogenetic tree branch lengths into the 10 Model

to create the most sophisticated mutation model in this work, the IOM Model.

2.4.1 Rhoand Phi (p and ¢)

A local mutation model represents the process of nucleotide evolution between a
parent organism and its children. This process is represented in two probability
distributions PA=l|tree Model) and PA,=j|A=ICtreeZModel). For a given model, these
distributions are represented by the 16-element vegtand the 1816 matrixp,m,
respectively. A%, is computed in an identical fashion for each Model presented herein,
the distinguishing characteristics of each model are represented completely in the

calculation ofp,,,. As¢, is the simpler distribution, it will be discussed first.

The probability distributiond, = P(Ai=l|model) over 8I<15, represents tha
priori state distribution for all nodes in the Markov Tree. As described in the derivation
of the Frequency Model, this distribution is computed through a maximum likelihood
estimation over the training set of column digg;,,. The values i, are computed by

normalizing a simple count of the number of each type of nucleotide duo folygin

For each value df cﬁ is equal to the number of nucleotide duos of tyfmind inDy4jn,

thus¢, = (h/z(ﬁ . The interpretation of this distribution is very straightforward. Given
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only that column dud is selected at random from the population that geneitgd

our best Maximum Likelihood guess of the state distribution of a randomAaal¢he
Markov Tree operating od would be that P4=I) = ¢,. While it seems that such a
distribution must have a profound impact on each step of a Markov Tree based
calculation, we see that this is not the case. Nearly all of our calculations are conditioned
on the assumption of a given column dband progress iteratively from this known leaf
data. Thus, we are only required to rely¢gpras a boundary condition at the root node.
The assertion of Rg=I) = ¢, for the Markov Tree’s root and the nucleotide ddbat the
Markov Tree’s leaves, constitute a complete set of boundary conditions for the Markov
Tree. These boundary conditions allow us to fix the state (nucleotide duo) probability
distributions throughout the rest of the tree using the state transition npaftoix

Maximum Likelihood inference on the architecture of the tree.

The state transition matrip is significantly more complex thagy, in both
calculation and interpretation. As witl) p is extracted from calculation over the
training setDy,n Wherep, is an approximation to the expectation value of
PA=m|A=IAtreenD), whereD is the population from whicDy,, is drawn. This is the
expectation value of the probability that a child négeill be found in staten, given
that its direct parent nodg was found in state Each node in a phylogenetic tree
represents an organism either synthetic, for internal nodes, or observed, for leaf nodes.
Thus, the biological interpretation pfy, is the probability that an organismyX which

evolved directly from another organisiy) has a particular nucleotide dum)(in a



55
particular column duo of the multiple alignment, given that its parent had some given

nucleotide duolf in that same column. While mathematicglly, is interpreted as a
conditional probability distribution, it is also a reasonable definition of a point-mutation
model. Both interpretations @f ,, are critical to the subsequent work and should be

thoroughly understood before continuing.

According to the above definitiong,, can be interpreted as the probability per
branch of the phylogenetic tree, that nucleotide duo of ltyfmesnot mutate, to some
new nucleotide duo. We can thus represent the mutation rate per branch of the
phylogenetic tree, for nucleotide typeas 1p,;. If each branch of the phylogenetic tree
Is taken to represent a certain amount of chronological time, then this could represent a

mean rate of mutation per unit of time, for nucleotide tip&/e could similarly

interpre as the mean mutation rate per unit of time over all nucleotide
t tEy |, th tat t t of t Il nucleotid

duos.

While this biological interpretation g ,, will be important to our derivation of
Pi.m from Dy.in, @and thus our original search forditeeIModel), it may also be of
significant interest to researchers in the field of evolutionary molecular biology. In
particular, the methods used to derpyg for the 10 and IOM Models will also provide
an improved means for determining a plethora of other interesting evolutionary

characteristics, including: columnar mutation rates, ancestral nucleotide distributions for
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closely related organisms and mean dependence of nucleotide mutation rates on

evolutionary time span (phylogenetic branch lerigth)

Returning to the problem of deriving difeé Model), we are left with two
similar interpretations fop, , which we can leverage to derive its components. The Q,
IO and IOM mutation models each deriyg, in a different way. The Q Model is the
most primitive and assumes an a priori mutation gatdiich is used along witth, to
approximatep, .. In this casep, , is derived according to the biological interpretation of
pi.m as the measurement of evolutionary change per branch of the phylogenetic tree. The
IO Model computes the componentsppf, through a more statistical interpretation of
pim as the conditional probability distribution&Xm|A=ICtree). To generatg , under
this model, we begin with a Q Model approximation fpy. We then employ an
iterative process of Expectation Maximization to calculate the total number of state
transitions actually observed in the Tree Model over some training set of column duos
Duwain- This count of state transitions between nodes is then normalized to become the
new estimate fop,,. The reestimation calculation is then repeated using theppew
until no significant change is observedpip,. Finally, the IOM Model uses nearly the
same technique to evaluamsg, as does the IO Model. However, unlike both the 10 and
the Q Models, IOM takes into account varying phylogentic tree branch length in its
reestimation op,,. Each branch of the phylogenetic tree has been assigned an

evolutionary length by the program that generated the @&8e [This branch length

I It is expected that the statistics gathered from this process will be superior to those gathered directly
from measurements of a multiple alignment column duo in the same way that the Tree Model was able to
resolve structure that the Frequency Model was not. The precise methods used to make such
measurements will be discusse®i4.310 Model
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represents a measure of genetic difference between a child organism and its parent.
Under the interpretation of this length as a measure of time, the IOM Model groups
branches of similar length. Each branch length group is then used to calculate a separate
p.m- This allows for a crude variation of mutation rate with increasing evolutionary
distance without having to state the form of the variatigumiori. The IOM Model also
addresses the problem of having sequence data from both parent organisms and their
descendants in the phylogenetic tree at the same time. This problem is alleviated through
the device of zero-length branches. For a detailed description of how this is

accomplished, se24.410M Model

2.4.2 Q Model

The Q Model leverages the biological interpretatiop®d approximate its
component®, ,. Under this interpretation, a generic mutation probability per branch is
givena priori asq [34][35]. If no mutation occurs between a chil)(and its parent
(A), then we would expect the parent’s state distribution to be the same as that of its
child. This is represented as an identity transition mat#x=HA=mdCno mutation) =
P e ™" = 1 if I=mand 0 otherwise. We model the case that a “mutatiatves
occur as a state change to one drawn randomly from the madwii®ri state
distribution. This is represented by the state transition mat%"*""= P@=m/model)
= ¢ . As we are interested in forming a transition matrix, embodying both the

possibility of mutation, and the possibility of conservation (non-mutation) we take our

18 The term “mutation” is used loosely in the context of the Q Model transition function. The result state
of a “mutation” modeled by the random selection of a new state accordppg ¢ould be any state. As it
is possible to randomly select the original state, a state change is not guaranteed under a Q Model
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compositep to be a linear combination of the two transition matrices blended according

toqasp,m = () mlymmutation +(1-q) @l,mno mutation

B qld,, if [#m
Pin =g, +(1-q) ifI=m

Equation2-2. Q Model Mutation Probabilities

The mutation probability parametgirepresents the probability per branch that a point-mutation will
occur. If no mutation occurs, a child’s state distribution is the same as its parents. If a “mutation” does
occur the child’s state distribution is set to equalahpeiori state distributiond. This does allow =m
(no change) as a possible result from a mutation event. As it is not kanpwari whether or not a
mutation event occurs, a linear superposition of these possibilities is used at each state transition.

The above probability distributiorequation 2-2 was proposed by Felsenstein
[34] for use in phylogenetic tree construction. While this Q Model is relatively crude
and requires an empirical determination of the optimal valueg,fdrdoes serves as a
plausible preliminary estimate fpr Tree Model calculations derived using this estimate
for p serve as a basis against which to measure the performance of the more detailed 10
and IOM Models. One serious argument against this model is that thera igriooi
reason to believe that the result of a mutation event can be accurately drawn at random

from the stationary distributio®. This would indicate thdfl,I’,;m,IZzm|I’ Zm p, m = P m,

which seems intuitively unlikely.

For the purpose of comparison with 10 and IOM Models, the Q Model has 16
degrees of freedom. This is becayskas 16 independent parameters which are

normalized to unity, reducing the number of degrees of freedogn by 1. The

“mutation”.
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mutation rate parametgradds one additional degree of freedom. Thus, the number of

degrees of freedom ig|+ip| = 1+(161) = 16.

2.4.3 10 Mode

Since the 10 Model is appreciably more complex than the Q Model, its derivation
Is broken into four separate subsections2.th3.110 Model Overviewve provide a
general overview of the reestimation process used to calqufaben Dy,i,. 1n 2.4.3.2
Frequency Reestimatiome derive the specific cumulative frequency function that is
renormalized to fornp. In2.4.3.30utside Probabilitywe derive a new state probability
distribution called the “outside” distribution that is critical for the calculation of the
cumulative frequency function. h4.3.4Summarywe combine the derivations of the

previous subchapters into a compact representation for the reestimation process.

2.4.3110 Model Overview

The 10 Model is so named for to its similarity to tingide-Outsidenethod for
the training of Stochastic Context Free Gramma&@ [ 37]. This model directly
estimates the parametersppf, from a given Markov Tree and a training set of column
duos referred to a3y,i,. This model is significantly more complex then the Q Model as
each element of the 66 state transition matrig ,, is reestimated independently. As
each row of the matrix p,, iS required to be normalized, one degree of freedom is
removed for each of the 16 rows in the 256-element matrix. This yields a total number
of degrees of freedom for the 10 Model ¢f+ [p| = (161) + (256:16) = 255, which is

much larger than the 16 degrees of freedom of the Q Model.
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The parameterg andp of the IO Model are initialized from the corresponding

parameters of the Q Model. A value fprs givena priori, ¢ is extracted fronDy,;, as

for the Frequency Model and these are combined to construct the initial estimatg for

We now present each elemdatiiDy,, at the leaves of the tree and use dynamic
programming to fill in the conditional state probability distribution8#l(d) at each

node. Once this calculation is complete, we aggregate the number of times that we
observe a state transition from each skatba parent nodé; to each staten of a child

nodeA,.

As the Markov Tree is probabilistic, state transitions are not observed as discrete
events. Rather, they are observed as probabilities that a particular state was occupied
PA=1|d), multiplied by the probability that a particular transition was made from a state
| of Aj to some staten of its child A, P@A=m|A=I0d). Thus the number of transitions
observed between each pair of stales)( from parent nodé to its childA, is
represented as REMA=IUA)[PA=I[d). Further, we know that REm|A=10d) P A=l |d)
is equal to P&=mCA=I|d) by conditional decomposition. Such transitions are referred
to as fractional transitions as the sum of all fractional transitions to states of a given child
A from its paren®y must total to 1. These fractional transitions are then aggregated over

all child-parent combinations in the Markov Tree. This aggregation is equivalent to the

summation ZP(A =10A= nld) = fA,’m(d). The matrix fAl,m(d) then contains
J

I
A parent ofy

the relative frequencies of the state transitiomm in the Markov Tree generated dy
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These transitions are then be accumulated ovef . to form f, . = S f,.(d).
dDD‘raln

As we are summing over allDy,n, andDy4i, is assumed to be drawn at random from
the population of column duos that we are attempting to model, no additional weighting
is required to reflect R{Model). This is becauskis expected to appear Dyin
approximately as often as it appears in the population from viyighis drawn. Thus,

the frequency statistics generated from measurementswii automatically be

weighted by the number of times tltbappears iDg,in.

Once we havef,

Im?

we can normalize it to obtain our next estimategigras

f,m/z fA,Ym.. This iterative reestimation process @, represents the heart of the
£

Expectation Maximization metho@8§]. This method is guaranteed to produce a model

which locally maximizes BY;,,|model) over the componentsmf,.

2.4.32 Frequency Reestimation

The reestimation procedure described above relies on the computation of the
probability distribution P&=ICA=m|d). In this section we attempt to formulate this
probability distribution in terms of Model parameters, and the boundary conditions of
the phylogenetic tree at its leave. (We will discover that we can not do this directly
and will, instead rely on the calculation of two recursively defined probability
distributions. Both of the recursive calculations needed to derive the distributions will
eventually terminate with either a model paramepgr ¢r a boundary condition at a tree

leaf (d).



PASIOA=MIA) oo Initial quantity.
= PA=IOA=MIA)PE)/PE) oo Multiplicative Identity.
= PASIOA=MOA)/P) .o Bayes’ Rule.

Note: P() is simply defined asy [14(A =1)[®,], as in2.3 Tree Model Topology
|

= PA=I0A=mMOA(-A)Od(A))/PM) . Definition of d (Figure 2-5.

= P@=md(A)|A=I0d(-A)) PA=I0A(-A))/P@) ... Conditional Decomposition.

= P@A=mOd(A)|A=NPA=IOACA)PA) ool Markov Independence o

= PAA)IA=MOA=1)PA=mA=)PA=ITd(-A))/P@d) .. Conditional Decomposition.

= PA(A)|IA=MOA=D ) nPA=I0A-A))/P@) ... Definition of p; m,

= P(A) Td(AYIA=MOA=!) By P (A=ID(-A))/P) ... d(A) = d(A) (A

= PA(A)A=mMUA=!) P (A IA=MUA=]) B P (A=ICd(-A))/P()

................................................................................ Independence od(A) and
d(A) givenAi=l.

= PA(A)IA=M)P@(AJIA=mLA=)P) P A=ITA(-A))/P@)

................................................................................ Independence od(A) and

A=l givenA=m.

= 14(A=m) P @A) IA=mMOA=1) [P P (A=I0d(-A))/P(d) .. Definition of I4(A=m).
= PA(A)IA=mMOA=!) TH(A=m) [py P (A=ITd(-A))/P () . Rearrange terms.

= PAAYIA=) DL(A=m) [, nPA=I0A(-A))/P@)........... Independence oA=m and
d(Ay) givenA=l.

= Z P(A =n0d(A)l A= ) Iy(A=m) (B, nPA=I0d(-A))/Pd)

SR SPRPPRY @30 ) o1 ¥ ] (o1 (\Y/=H g1 (=] (=1 g [ol=X

= S [PA(A)A=n0 A= DR A= A )] TiA=m) B, PA=I0d(-A))/PE)

et e e e e emeeeene . OONDITIONAI DECOMpoSItion.

= Y [PE(ANA =0 A= ¥p,,] T(A=M) B PA=ITH(-A))PE)

................................................................................ Definition of p; .
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= 3 [PEAI A = 0 B, THA=M) B, PA=ITd(-A))/PE)

................................................................................ Independence betwednhand

d(Ay) givenA=n.

= Z[Id(Ak =n) @)Ln] M(A=m) P, [P (A=10d(-A))/P(d) . Definition of I4(A=n).

Equation2-3: IO Model Transition Frequency Reestimation Derivation (Part I)

By the end ofEquation 2-3we have reduced our state transition frequency
measurement to summations over model paramaigrpreviously derived values (@)(
andlg(A=m)), and PA=I0d(-A)). This last term is troubling as it is not readily
reducible to model parameters and boundary values. If we can calculate this probability
distribution, our frequency reestimation will be complete. Fortunately, there is such a

calculation.

Just as the inside distribution was defined for a given node Adtas a
recursive calculation on the nodes of the sub-tree rooté¢g ate can define a
corresponding recursive calculation, which we will call thwsidedistribution. This
distribution is over the states of a given node, sudk,d®wever, it involves only those
nodesoutsideof the sub-tree roots #&. Clearly it is just such a calculation that is

needed to derive REI0d(-A)) from the boundary conditions outsideAyf namelyd(-

A).
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2.4.33 Outside Probability

The outside distributio®y(Ai=I) = P(A=I0d(-A;)) will take into account all of the
leaf node data that fall outside @fA). As we will see, the calculation Gf(A=I) will
proceed recursively beginning at the root node and working towards the leaves. This is
exactly the opposite direction that the inside calculation took. Because the inside
probability distribution relies solely on model parameters and known boundary
conditions, it will be assumed that this distribution has already been calculated at every
node. This is necessary, as we will be using the inside distribution in our formulation of
the outside distribution. In addition, it will conserve our notation if we define our
outside distribution oi®4(A=m) rather tharO4(A=I). This is merely a notational
convenience and has no underlying mathematical significance. Once this distribution is
calculated, we will plug it into the missing step in the frequency estimation and we will

be able to completely reestimate the IO Mquphrameters.

We begin with the unresolved reduction from our previous transition frequency

calculation, namelfy:

Oy(A=m) = PA=mLd(-A) Ld(Ay).-
= Z PA=MOA=IO o AN d(A)) coorvrerereenns Conjunctive Inference.

=Y P(A=mOd(A)| A=ID & A)) P(A=D é( A))
......................................................................... Conditional Decomposition.

= Z P(A=mOd(A)|A=I0 & A)) O( A=l) ..... Definition of Outside.

9 please note that we have redefined our node notation here. In the transition frequency reestimation, we
were left with PA=ILd(-A)) unresolved. As we have relabel&dasA for notational convenience(-A)

must be relabeled a%-A)0d(A). This can be made more clear by a glandé@ire 2-4: Markov Tree

Model If we relabel the nodd asA;, then the leaf nodes that were previously covered(#y) will now

include the nevd(-A) as well as the data descended from the Agthat isd(Ay).
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=Y P(A=m|A=I OdE A)D d( A P(d( A)l A0 é( A)) O(A=I)
......................................................................... Conditional Decomposition.

= Y P(A=m|A=1)D(A=1) [P@(A)| A=I DdE A))

......................................................................... Independence al(-A), d(A) and
A givenA=l.

= Z p .. [O(A=1)PA(A)| A=l OdE A)) e Definition of p; .

=Y .. (A=) PA(A) D A=nIA=IT d¢ A))g

......................................................................... Conjunctive Inference.

=Y ., (A=) Y [PE(A) A=n DAZID df AY P(A=NIA=D d( A5

......................................................................... Conditional Decomposition.

_<4g _ _ _ U
=Y P OA=ND[PAANA=DA D& AVA A ha g
......................................................................... Indep. ofd(-A) andA, givenA=Il

=Y . (A =D TY [PAAN A =D (A =1 A= )]
......................................................................... Independence odi(A) given
A=n.

= Z E)"m (A =)y [I(A =) @m]% ............. Definition of p;,*°.
Equation2-4: IO Model Outside Probability Distribution Derivation

The final form of the derivation diquation 2-4gives us a recursive formula for
the calculation of the outside probabilities in terms of model parameters, inside
probabilities and previously calculated outside probabilities. However, we still have not

established the recursive terminating condition at the root node. This anchor step is:

21f A has no valid sibling\ then there is nds = d(A). In this cas@y(A=m) = PA=md(-A)d(AJ))
becomes R{=mLH(-A)) = %(pl m©g (A =)
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O(A=m) =PM(-A)Cd(A)L AFm)
ZP(ATM) o As Ay is the root node, it has no

sibling nodeA, andd(Ay) is null.
Similarly, asA; has no parent
node, sal(-Ay) is null.

T e Definition of ¢,

2.4.34 Summary

In section2.4.3.2 Frequency Reestimatiome established our state transition

probability estimation ag,,, = ﬂm/z f,., wheref, = % f,.(d). We have further
m d rain

established thaf| ,(d) =

zP(A =10A= md) =
Apalréjntotﬁj

S [1a(Ac= ) ] TiA=M) By P (A= TA(-A))/P().

With the addition of our newly derived outside probability distribution and an

expansion of the HJ term, ﬂ’m (d) may be conclusively rewritten as:

S [16(Ac= 1) B, T A=M) B, Os(A=]) [ > [ua=nm]

Equation 2-5: IO Model Transition Frequency Reestimation Derivation (Part I1)

24.4 |OM Model

While the 10 Model expands significantly on the adaptability of the Q Model, it
still leaves open the problem of broadly differing branch lengths in the phylogenetic tree.
The 10 Model treats all branch lengths in the phylogenetic tree as having equal length.

These branch lengths represent the amount of genetic diversity between a child organism
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and its parent. If mutation is taken to be a stochastic process, then it is reasonable to

assume that a larger branch length represents a greater amount of chronological time.
The branch lengths found in our phylogenetic tree span five orders of magnitude. Itis
reasonable to expect that providing some model variance to represent this range would
lead to an increase in modeling accuracy. In addition, there remains the unresolved
problem of observed organisms that are descended from other observed organisms. As
the organization of the phylogenetic tree forces all observed organism data to be at the
leaves of the tree, it seems that no observed organism may be represented as the
descendent of another. Clearly there is biological evidence to contradict this structure.
The IOM Model (nside-Outside-Multipleis designed to address both the branch length
variance issue and the decendency issue. This is accomplished through the modeling of

differing phylogenetic branch lengthg (vith differing state transition matric@gm(r).

Our concept of evolutionary time assumes that there is some underlying point-
mutation process occurring continuously with time. Let us define a n\frsimilar to
our p;,m matrix, which represents the probability per unit of evolutionary ihinéhat a
given nucleotide duo typlewill mutate into a nucleotide duo type If the mutation
process corresponds to our model, we would expect that observed mutation rate could be
modeled over any time periddas M. ThisM would thus embody both long and
short time period behavior for such randomly selected mutations. This kind of process
corresponds exactly to the first-order Markov process described in s2@i@Markov

Model
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Given such a mutation process, as well as a measure of evolutionary time for each

branch length on our tree, we would expect that we could reestimate the matrix M as well
as the branch lengths of each branch in the Markov Tree. A problem arises, however, in
the transition frequency reestimation process of the 10 Model. In the reestimation
equations derived above (sectid4.3.9, we assume that all observed transition counts
in the tree occur over the same period of time. This is embodied in the equation
S P(A =10A=md = f,,(d),

A parint o
where all node descendaw{ parent ofA) are considered equally related. In a model
that takes into account relative branch lengths (evolutionary time), the state transitions
observed between a givénandA are drawn from a mutation process over a potentially
unigue amount of evolutionary tinTg;. Thus, each unique combination nodgsould
yield an estimate for the generic mutation fisltever a different time scale. When we
are done aggregating the fractional state transitions in the Markov Tree we will thus have
a series of estimates f over differing scales of time in the form BK™29, M4,
M9 where eacfT1, T2, T3... represent the evolutionary time between a unique pair
of nodesi(, j1), (i2, j2), (i3 j3)... While such a computation could easily be performed, it
is unclear how the resulting estimates could be combined into a single estimidte for
Many techniques are known for exponentiating and taking the roots of such square
matrices. These could be combined, for example, to take the geometric mean of the
observed matrices. However, there is no method known to the author for combining

these matrices into a single estimatd/othat preserves the behaviorMf™ over both
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long and short time periods. This task is made particularly complex by the presence of

uncertainty in the estimation data.

To circumvent this issue, a nonparametric method was chosen that did not rely on
the explicit exponentiation d¥l. This method allows variation @f; with differing
branch lengths by grouping the branches into bins based on their branch lengths. Bin
boundaries are collateral, non-overlapping and constructed so as to provide
approximately the same number of branches in each bin. The set of all bins is defined as
R, while each bin is enumerated such thak@ < (JR]-1). All of the branches within a
given groupr, are then treated as having the same branch length. Within each branch
length range, the transition probability reestimation proceeds exactly as with the 10
Model. The single difference is that only branches withgontribute to the reestimation
of p;j(r). While this process is crude, it allows for a variation of the mutation frequency
matrix p;;(r) with greatly differing evolutionary spaffs In some ways, this non-
parametric method is potentially preferable to one that requires a particular form of time
variation forp;;(r). While the non-parametric method employed here allows for only a
crude time variation of;(r), it does allow the form of the variation to be completely
driven by the training data. This form can then be examined to gain further
understanding regarding the time varianc@,gf A more restrictive parameterization of

pi;(r) runs the risks of misfitting the data or mismodeling the evolutionary process. The

2L While not explored in this work, the comparisons of the mutation maipjgesfor differingr may

provide interesting insights into the way molecular RNA evolution occurs on differing time scales. In
particular, a comparison of the eigenvectors and eigenvalues of these matrices could provide evidence for
or against the hypothesis that molecular evolution is a stateless process, and thus representable over any
time scale by a mutation rate matkikraised to some evolutionary time comporE(’).
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current model foip;;(r) might provide the information needed to build an accurate

parametric model fop;;(r). Furthermore, the present model fyj(r) allows us to
elegantly resolve the problem of concurrently observed ancestors and descendants in the

phylogenetic tree.

The use of differing branch lengths to represent differing degrees of evolutionary
time allows us to represent such ancestral relationships among observed organisms
through the device of 0 length branches. The setting of a branch length to 0 indicates
that there is no difference between an ancestor organism and its descendent, as no
evolutionary time had passed. As shown belowigure 2-9 any ancestral relationship
can be represented in our phylogenetic tree, while limiting observed organisms to the leaf
nodes. In the IOM Model, a special bixQ) is set aside to represent O length branches.
This matrixp;;(0) is set to the identity matrix priori to prevent any transitions from
taking place ag;j(0) = 1 iffi=j, and O otherwise. This process is described graphically

in the following figure.

Figure 2-9: Use of Zero Length Branches in Phylogenetic Tree

The above phylogenetic trees are computationally identical. Rectangular boxes represent observed
organisms, while boxes with rounded corners represent internal “synthetic ancestors”. The device of zero-
length branches can be used to move observed ancdsjorsq leaf nodes. When the branch length is 0,

then no evolutionary time is considered to have passed. Nodes connected by branches of length 0 must
have the same state distribution. Observed organisms can not be connected by branches of length 0 unless
their genetic makeups are identical.
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We expect that the increased complexity of the IOM Model over the 10 Model

will yield additional modeling accuracy. However, this increased complexity does not
come without additional cost. The 10 Model providégp| = (161) + (256-16) = 255
degrees of freedom. For an IOM Model wiR} bins, we would haved|+(RJ-1)0p|
degrees of freedom. The magnituggi$ decremented by one becapgg0) is forced to

unity, and thus provides no additional freedom. For the experiments in this Rjork? .|

This the IOM Model has nearly 1,455 degrees of freedom, nearly 6 times as many as
does the 10 Model. With so many degrees of freedom the specter of over-fitting arises
and we must ask whether our model is really capturing salient characteristics of the
Dyain'S population. Perhaps we are merely encoding the exact informatioyg;pin the
parameters of the Model. To maintain vigilance against this possibility, the available
data sets are broken into disjoint training and validation sets. The difference between
each Model’s performance on training data is diligently compared to its performance on
the validation data. If the performance on the two data sets begins to diverge, we expect
that we are over-fitting the data. However, at this point our subject matter has left the
proper realm of our theoretical development for Chaptdiheory We are now ready to
move into the experimental domain of Chap3erExperiments Model validation,

parameter selection and other such important issues will be addressed therein.
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3 Experiments

This chapter is broken into ten sections which follow the experimental
development of the Tree Model. 3nl Data Sourceswe discuss the source and format
of the multiple alignment, phylogenetic tree, paired and random column duos used in
these experiments. After obtaining the data, it had to be filtered as descriB& in
Preliminary Data Preprocessing remove unusable sections. This filtered data was
then tentatively evaluated under the Q Model describeéd3rPreliminary Q Model
Studyto obtain an approximately optimal value &pr The results of the initial Q Model
investigation indicated a need for cross validation and some further filtering of the data,
as described i8.4 Secondary Data Preprocessingn addition, the initial Q Model
results exhibited certain nonlinearities which were addressed through the development
of a more sophisticated classification scheme set forf85Classifiers As the results
presented here are relatively compl@>§ Results Formaprovides a brief overview of
the graphical, and statistical format which will be used to present the final results.
Finally, the results of each Model are reviewed and discussed briefly in the last four

sections:3.7 Frequency Model3.8Q Mode| 3.910 Model and 3.1010M Model

3.1 Data Sources

All of the data used in the following experiments was obtained through the
Ribosomal Data Project (RDP) of the University of Chicago, Urbana-Champa#jn [
In particular, we used data from prokaryotic Small Subunit (SSU) RNA also known as

16S RNA. This family of ribosomal RNA was selected because it has nearly as many
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known sequences as the shorter tRNA, yet is approximately 25 times as long, providing a

greater challenge for structural modeling.

Three essential data files were retrieved from the RDP: a multiple alignment
(SSU_Prok.gh)4Q], the phylogenetic tree (SSU_Prok.newick)][and a list of column
duos which are known to be paired (paisd][ These files were from revision 3.0 of the
RDP database. All of the experimental results derived herein stem solely from these
three data files. The multiple alignment data file fixed the SSU primary sequence data
into 2688 columns and contained alignments for 1381 organisms. This alignment is, at
the time of this writing, a comprehensive listing of sequenced 16S RNA. Alignment has
been performed by hand through contributions of numerous research biologists over
years of work. The phylogenetic tree data file contained 1376 organisms and was
generated by the fastDNAmI program, version 1.@8,[which is also available from
the RDP. The phylogenetic tree and multiple alignment had 1375 organisms in common,
the rest of the data was disregarded. The paired column duo file contained a list of
2-tuples of column identification numbers for those multiple alignment columns that are
believed to chemically interactThese column pairs included column duos that are
believed to compose: helixes (secondary structure), end-caps for helixes and individual
pairs (tertiary structure). The paired column duo data did not include any duos related

solely by ternary (3 nucleotide) interactions.
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3.2 Préiminary Data Preprocessing

Several aspects of the initial data received from the RDP made it difficult to use.
To insure a uniform data set for experimentation, sey@eglrocessingteps proved

necessary.

First, the organism names in the phylogenetic tree data file had to be coordinated
with the names in the multiple alignment. Since the naming conventions were similar,
but not exactly the same, and there was no common keying field, name space
coordination was accomplished by hand through the addition of a tag line to each entry
in the multiple alignment data filetp]. This line contained the phylogenetic tree’s

organism name for each corresponding multiple alignment sequence.

Next, a list of random column duos was generated to sample the nonpaired
(Rand) population. All paired column duos (Pa#3|[found in the nonpaired sample
were removed. Since there were more symbols in the multiple alignment than the
nucleotide designators (&, G, U), both Pair and Rand data were filtered to insure a
certain amount of valid data in each column duo. Additional characters included

symbols representing gaps (-), omissions (.) and uncertain sequencing dtal}Y,

In all Models, only “valid” nucleotide duos contributed to the probability
calculations. A nucleotide duo was considered valid if each of its constituent bases was

one of {A, C, G, U}. Both Rand and Pair were filtered to insure that each column duo

22 Only duos from the nonpaired set which were found in the paired set were removed. If a nonpaired duo
had one column in common with a paired duo, it was not removed from the nonpaired data set. A

nonpaired column duo could have both of its columns present in paired duos, so long as those columns
were not themselves paired. This filtering was chosen to represent experimental conditions where the Tree
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contained at least 75% valid nucleotide duos. This process reduced Rand and Pair from

3500 and 944 column duos to 695 and 634 column duos respectively. In probability
calculations, non-valid duos in a column duo were treated as noneXist&lhresultant

NLL scores for column duos were then normalized by the number of nucleotides in valid
nucleotide duos for each column duo. This normalization maintained a consistent
interpretation of NLL as the mean number of bits of information per valid base in the

data set.

3.3 Préiminary Q Mode Study

After the data had been filtered, the preliminary studies using the Q Model were
performed in order to determine a working value for the mutation frequency par@neter
NLL values for both Rand and Pair data were calculated under gsialgies of: 0.99,

0.9, 0.5, 0.1, 0.01, 0.001, 0.0001 and 0.00001. Since no cross validation was being
implemented at this phase of the work, all column duos were included in the calculations
used to generate the following results. In this preliminary work, a Dirichlet mixture was
used to determine the values fiprwhich was combined with to constructp. The
Dirichlet values were drawn from earlier work by Brown et. &l]] The actual values

used are available ihable 3—landTable 3—4

Model would be exhaustively scanning a multiple alignment for possible paired column duos.

2 For leaf nodes of a Markov Tree, a node is considered valid if its corresponding nucleotide duo is valid.
For internal nodes, the node is valid if either of its children are valid. Please refer to fd@ootpage

47 for calculation of the inside probability distribution when one child is invalid. Please refer to footnote
20 on page65for calculation of outside probability when a sibling node is invalid. State transition
frequency estimations omit from summation any fractional state transition to an invalid child.
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Left Ri ght Base Base | Rel ative
Base A C G U Nane Fr eq.
A 0.160 | 0.135 | 0.193 | 1.591 A 0. 26
C 0.177 | 0.135 | 3.404 | 0.163 C 0.21
G 0.219 | 1.719 | 0.247 | 0.533 G 0.18
U 2.616 | 0.152 | 0.784 | 0.249 U 0. 20
Table3—1: Nucleotide Pair Relative Frequency Table3—4:
o _ NucleotideRelative
This distribution is renormalized to compute the Dependent Frequency

model¢ for the preliminary Q Model study.

This is renormalized to compute
the Independent or null modglfor
the preliminary Q Model study.

As there was n®@,,, available at this point in the experimentation, Maggl

was constructed by calculatiggusing the relative individual nucleotide frequency from

Preliminary Q-Model Results for q=.01 (9.8% error)
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Nonpaired Model NLL - Paired Model NLL (Bits per Base x 100)

‘I Nonpaired (Random) Column Duos OO0 Paired Column Duos ‘

Figure 3-1: Preliminary Q Model Study - Result Sample for g=0.01

The Negative Log Likelihood (NLL) scores reported here represent the difference in mean values or,
NLL(P(d|Modekang) - NLL(P(d|Modek,;)) for a given column dud. Note that most of the column duos

are at the far edges of the graphs where the bars go off the end of top -@ixikdy more than an order

of magnitude. Classification error is calculated as the total overlap between these the two distributions
divided by 2 (se&quation 3-1: Preliminary Q Study Err@alculation.
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Table 3—4under the assumption of nucleotide independéﬁce/lodelpairwas

constructed by takingd to be the nucleotide duo distribution for paired duos found in
Table 3—1 For each of the two modelog,(P(d|treé Model)) was calculated for each
column duo ¢) in both the Pair and Rand data sets. For eatie NLL value under
Modek,;, was subtracted from the NLL value under Meggl This yielded a net score

that was expected to be less than zero for nonpaired column duos, and greater than zero
for paired column dudd Each net NLL score was then divided by the number of valid
bases in valid nucleotide duos for the column duo to determine the mean NLL score in

units of bits of per base.

The above grapH-{gure 3-1) represents the NLL scores fgr0.01, as applied to
Modek..gand Modeb,;. Similar NLL score distributions were calculated for each of
several values of the model paramegerTo determine the error rate for each

distribution, the percentage of overlap between the distributions was calculated as

follows.
N Number of Bins of NLL scores.
un(n) Percentage of unpaired data that is in bin n.
Pr(n) Percentage of paired data that is in bin n.

1
Error Rate = = DZ Min(Un(n),Pr(n))
2 L=

Equation 3-1: Preliminary Q Study Error Calculation

%4 The nucleotide independence assumption is that for a nucleotidey,de@y) = PK)[P(y).

2% |f P(d|Model(Pair)) < P(d|Model(Rand)), then NLL(P(d|Model(Pair))) > NLL(P(d|Model(Rand))) and
thus NLL(P(d|Model(Rand))) - NLL(P(d|Model(Pair))) < 0. This is basically a posterior probability
classifier.
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These error rates were calculated for eqefalue (0.00001, 0.0001, 0.001, 0.01,

0.1, 0.5, 0.9 and 0.99). The results of these error calculations are as féllgure @3-

2):

Preliminary Q Study Error Rates

18

m17.7
m17.4

17
m16.6
16

15 A

14

Error Rate %

13

12

11 w109
m10.2 m10.1
10 W99 Tgls
9 :
0.00001 0.0001 0.001 0.01 0.1 1

Value of Q parameter

Figure 3-2 Preliminary Q Model Error Rates

According to the above, the valuegf 0.01 was found to provide the lowest
error rate. Consequently, this value was used as an initial estimate of the vghoe of

the following Q Model studies.

3.4 Secondary Data Preprocessing
After the preliminary Q Model studies were completed, both the Rand and Pair

data sets were filtered again; this time to insure uniqueness and remove column duos that
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were inverses of one anotfRr This additional filtering did not effect Rand, which

remained at 695 column duos. However, by eliminating inverses in Pair, that data was
effectively halved, leaving 317 column duos. These remaining duos were oriented
consistently, with the column having the lower column ID number to the left. This is
considered biologically plausible due to the inherent direction in an RNA nucleotide

sequence induced by asymmetry in the molecule’s phosphate backbone.

To address concerns of over-fitting in the more complex 10 and IOM Models, it
was decided that cross validation should be implemented. To this end, Rand and Pair
were each divided randomly into 4 sets of approximately equal size (Rand: 173, 173,
173, 176; Pair: 79, 79, 79, 80). Cross validation was implemented by training on three
of the four sets, and then validating on the fourth. Each possible combination of three
training sets and one validation set will be referred to as a partition. Partitions are
numbered RandRand4 and PairPair4. A partition’s number corsponds to the

number of that partition’s validation set.

The training and testing of the nonlinear classifier B&eClassifierg required
training examples, as well as test examples from both Rand and Pair. This provided
sixteen groups of train/test data, one group for each combination of one Rand and one
Pair partition. The same three sets from each partition that was were to derive a Model
were also used to train the classifier. The fourth set from each partition served as the

validation (test) set for both the model, and the classifier. This preserved validation

%6 A column duo is stored as an ordered 2-tuple of column identification numbers x,y. If y,x is also found
in the data set, it was removed. All tuples were then arranged with the lower column identification number
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integrity while allowing each column duo to serve as validation data for some training

set.

3.5 Classifiers

Once a Model had been constructed from a training set, it was used to produce

likelihoods for eacllIDs; Pd|ModelITree). Up to this pointg was classified based
on the Model that provided the higher likelihood. IflR{odek..9 > P@d|Mode},;) then
d was classified as nonpaired, otherwise it was classified as Paifgs classification

scheme will be referred to as the “simple discriminator”. During the preliminary Q

IOM Model Validation Set Linearity IOM Model Validation Set
Away From Origin NonLinearity Near Origin
1.5 0' 0.17 - v m——
g o8B | T 015 & X
£ 12 . 2N 013 o8,
s 11 ﬁ S o
§ ot - % 0.09
2 08 = 0.07 -
5 07 Z 005 .
o | 0.03 ! ‘
05 10 15 0.03 0.08 0.13
Random Model NLL (bits/base) Random Model NLL (bits/base)

X=Y ‘

\ ¢ RandData [l PairData X:Y‘ ‘ ¢ RandData M PairData

Figure 3-3: Typical Nonlinearity Near Origin for NLL Values

While a direct comparison of posterior probabilities is suitable for tuples with relatively small posterior
probabilities (large NLLS), it serves as a poor classifier for higher probabilities (small NLLs). These
graphs represent the probability generated for each given column duo by each model . The X=Y line
represents the boundary for the simple classifier. These plots contain about 50% of the total data from the
IOM Model calculations. For a complete chart of these results which includes the data in this chart, please
seeFigure 3-11: IOM Model Results Graphical Summary

first, i.e. X,y where x<y. Column duos of the form x,x were removed as well.

" Please see sectioBL.2Discriminationand6 Appendix B: Posterior Probability Classifier for or a
justification of the use of likelihoods @¥1odel)), rather than posterior model probabilities (P(Makiel|
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Model study, it was found that there were certain nonlinearities in the distribution of the

data points that might foil the simple classifier (Begure 3-3. In particular, NLL

values from both data sets tended to be unexpectedly low, according teMadetn

the data was highly probable according to both Models. This did not come as a complete

surprise as the data sets contained a number of highly conserved column duos that are

assigned high likelihoods under both Mgggand Modet,.¢ These dada are nearly

indistinguishable under the Tree Model. The problems arising from this sort of data are

discussed at considerable lengtiiDiscussion and Conclusion

Linear Sigmoidal Sigmoidal
Activation Activation Activation
Function Function Function
A . A . A
Completely @ Completely O
‘ P(d|Moderan.) Connected from| @ | Connected from
O Layer 2- Hidden| @ | Layer 3- Hidden
| P(dModera) . ® to
Layer 3 - Hidden % Layer4 - Output
Layer 1 Layer 2 Layer 3 Layer 4
2 Input 3 Hidden 15 Hidden 2 Output
Units Units Units Units

Figure 3-4: Neural Net Discriminator

A four layer, feed forward, neural net is used to aid in discrimination. Raw NLL values are fed into the
input units. The linear activation function in Layer 2 serves to rescale the NLL scores. Layers 3 and 4
provide the actual discrimination computation. Learning is accomplished through a classical back
propagation technique. The Output layer training values are tuples of either (0,1) or (1,0) which indicate
paired or nonpaired data respectively. Novel inputs produce a tuple of real numbers that represents the
strength of the net’s belief that the input data are from a paired or nonpaired column duo respectively.
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To overcome this difficulty, a second, nonlinear discriminator was implemented

as an artificial neural network (ANN or “Neural Net Discriminator”, segure 3-9.

This class of discriminator is capable of finding locally optimal classification strategies
given even a strongly nonlinear training set. In addition, the classification strategy found
by the neural network was derived from a training set of exemplars and required virtually

no manual intervention.

The primary difficulty in implementing the neural network discriminator was the
selection of training and test data. Since this type of network required examples from
both Rand and Pair, careful preparation of training and test set partitions was required to
prevent any contamination of the validation data from the training set. The network was
trained and tested 16 times, corresponding to each of the 16 possible combinations of
Pair & Rand data partitions (s8et Secondary Data PreprocessjngNetwork training
was performed on the same elements used to train Model, and tested on Model’s

validation column duos.

For each individual train/test cycle, each element of the ANN training set
consisted of two NLL values fad according to Model,;, and Modek,,gand an
additional 2tuple containing the correct classificationdf This 2tuple consisted of
(1,0) if thed was nonpaired column duo and (0,1§ Mvas paired. After training was
complete, the classifier would accept two NLL values generated by Mgaeld
Modekangfor a novel column dud. The ANN then produced a real valued output
2-tuple (X,Y) where X was the network’s belief ththtvas not paired and Y was the

network’s belief that was paired. Due to the network architecture and choice of
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training techniques, X and Y fell within the constraints theX,¥<1 and X+Y = 1.

Final classification ofl was done by comparing X and Y and predicting thia¢longed

the data class corresponding to the output with the larger magnitude.

The Neural Network Discriminator performed as expected, providing superior
discrimination performance on all of the training data (up to 26% fewer errors). The
ANN also significantly improved discrimination performance on validation data for the
IO and IOM Models (up to 17% fewer errors). However, the ANN actually decreased
the validation set classification accuracy for the Q and Frequency Models (13% & 5%
more errors). This degradation in validation set discrimination is attributed to the
ANN’s over fitting of the relatively simple Q and Frequency Model training sets. Please

see the following table for a more complete description of the ANN'’s performance.

Model Mean Training Error % Mean Validation Error %
Type Simple | ANN A Simple| ANN A
Frequency|] 13.74 11.88 1.86 14.38 | 15.09| -0.71
Q 14.87 13.02 1.85 14.77 | 16.70| -1.93
10 8.65 6.37 2.28 11.27 9.34 1.93
IOM 9.42 7.21 2.21 | 12.38| 10.50, 1.88

Table3—2: Discrimination Error for Simple Classifier vs. ANN Classifier

All numbers listed are percentages. Numbers listed under “Simple” and “ANN” columns are the
misclassification rates of each discriminator, for each evolutionary model. The “Improve” column is the
percentage reduction in the misclassification rates from the Simple classifier to the ANN classifier. In
every case, the ANN classifier decreases discrimination error against the Simple classifier for the training
set. However, the validation data classification error rate increases for the Q & Frequency Models,
presumably due to the over learning on the part of the ANN model.
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As an in depth treatment of Artificial Neural Networks (ANN'’s) is not within the

scope of this work, interested parties are referred3pdnd (6] for a general treatment

of ANN'’s. The network configuration and computation was programmed in PldRet [

3. 6 Results Format

The results for each Model class (Frequency, Q, IO & IOM) are summarized in its
own section 3.7, 3.8 3.9& 3.10. In each of these sections, there is a numerical
summary of the results for the corresponding model, as well as a graphical summary.
The numerical summary presents the performance of the model in terms of mean
posterior probability and classification accuracy, for both the training data and the test
data of Rand & Pair. The graphical summary presents a coarse visual representation of

each models encoding and classification performance.

The mean data likelihood for each set is represented in units of bits per base
(NLL). The lower the NLL value, the greater the mean probability of the data given the
model, and thus the better the fit of the model to the data. In general, the NLL values
derived from training set data measure how well the model fits the training data. The
NLL values derived from for validation data measure how well the model generalized to
the training sample’s generating population. A substantial increase in mean NLL values
between the training set and the testing set is often an indication that the model is over-
learning. Over-learning occurs when a model begins to represent statistical fluctuations
in the training sample that are not representative of the population from which the

sample was drawn.
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In the results section for each model, there is also a numerical summary of the

classification accuracy for each of the two classifiers describ8dbi@lassifiers This
summary displays the number of nucleotide duos from each of the Rand and Pair data
sets, and how they were classified. Data sets are presented in columns (“Actual”) with a
differing evaluation model on each row (“Predicted”). This a count in the Pair column
and Rand row represents a paired column duo which was classified as nonpaired by the

discriminator

Training data is displayed separately from validation data. A substantial drop in
classification accuracy from the training set to the validation set is a likely indicator of
over-learning by the classifier. This is relevant only for the neural net discriminator as
the simple discriminator is not trained. It is realistic to expect the optimal validation
classification accuracy to be lower than the neural net training accuracy and higher than

the greater of the simple classifier accuracy, and the neural net validation accuracy.

It may seem odd that the total number of column duos represented in the data
columns of the classification summaries are greater than the number of column duos in
the data set. This is due to the cross validation data partitioning descriBed in
Secondary Data Preprocessind\ccording to this data partitioning, each data type
(Rand/Pair) is partitioned four different ways. In each of the four partitionings, all of
column duos are separated into two sets with 75% of the data for training and a disjoint
25% for validation. As each of Pair and Rand are configured into four such
partitionings, there are sixteen possible combinations of one Rand partition and one Pair

partition. A classifier is trained and tested separately for each of these sixteen
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combinations. The results are then accumulated for Rand and Pair across all sixteen

partition combinations. Separation between training set statistics and validation set
statistics is maintained across this accumulation. For the Rand data set of 695 unique
column duos, the number of counts in the Actual columns of the classification summary
will be 160(69525%) = 2,780 validation duos and(@®575%) = 8,340 training duos.
Clearly, each validation set column duo is used in discrimination four times, once with
each Pair partition. Each training duo is used in discrimination twelve times, three times
with each Rand partition. Similarly the number of counts in the Actual columns for the
317 column duo Pair data set arel(B&7125%) = 1,268 for the validation set and

16[(B1775% ) = 3,804 for the training set.

In addition to the numerical results, the results summary section for each model
class contains a chart that summarizes model performance for the validation results for
that model. This graph is relatively complex and requires some explanation. As outlined
above, each validation set column dugenerates four validation probability tuples, for
example ifdiD(Pair) then we would have the four tuples {dModeb,;),
Pd|Model(RandX)) for (¥X<4). Each of these four tuples would be plotted as a
separate point with the NLL generated by Magdgimodel as the X-axis coordinate and
the NLL generated Modgj;, as the Y-axis coordinate. As we expect to see data from the
paired data set] generate R{Modek,;) > Pd|Modeka.nd, we would expect this data to

cluster below the X=Y lif®. Similarly, we would expect to see data drawn from Rand

8 \We are plotting NLL values rather then probabilities. For a given probability p, NLL{pystp). Thus
a higher probability indicates a lower NLL value. Thus a datum with a high likelihood under a given
model will be found near the origin of the axis corresponding to that model.
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cluster above the X=Y line. In general, this was found to be the case. In addition, the

data was found to cluster strongly near the origin on both axes. To compensate for this,
the graphs are plotted in ldgg format to provide for a more uniform graphical
distributiorf®. To allow for direct comparisons, all of these charts use the same scaling
and numerical X and Y-axis range (0.01 to 10). In the case of the Frequency Model
results, however, all of the data was found to cluster in a relatively small region, and thus

a linearlinear detail of the area of interest is included.

In all of these charts, there is a secondary Y axis providing some additional
information about the accuracy of the simple classifier. The separation between the
Rand and Pair data sets seems to decrease closer to the origin. This seems to indicate
that the classification accuracy could be increased by ignoring certain data elements that
had high probabilities according to both Moglgland Modeka,¢ This would
correspond to a three way classification scheme that would classify each coluhn duo
into one of three classes: Paired, Rand and Unknown. The thick gray line labeled
Accuracy onFigure 3-5:Sample Graphical Summarindicates the classification
accuracy of the Simple Classifier. Each point on this line represents the cumulative
classification accuracy for all data to right of that point (duos with larger MggdBILL
values). This line is used to show how model classification accuracy improves as data

with lower Rand Model NLL values are excluded from the classification validation set.

29 Due to a 4000 data point limitation in the graphing software (Microsoft's Excel), 25% of the data tuples
were removed at random to keep the number of plotted points below the maximum allowed. As these
points were selected at random, their removal is not expected to affect the shape of the distributions,
though there is a chance that individual, potentially interesting, outliers might be absent.
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Example Comparison Plot
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Figure 3-5: Sample Graphical Summary

The data for this plot (400 duos) was generated synthetically to highlight the chart chart’s characteristics.
For actual Tree Model data, a tuple of per base NLL values are computed for each column duo according
to Modeb,: and Modet.ng A simple classifier assigns the data to the model with the higher probability
(lower NLL value). The area above the X=Y line is the region of Rand Data classification, and the region
below the X=Y line is the region of Paired Data classification. The synthetic data above does reflect lower
classification accuracy near the origin. Each point on the gray line represents the classification accuracy
(right hand ¥axis) of all data points to its right, thus showing how the simple discriminator’s accuracy
increases as points near the origin are excluded as ambiguous. The gray squares are dividers that mark
every 10% of the data points excluded (every 40 data points).

This use of Random Model NLL scores may seem arbitrary, however, there is a

theoretical motivation for it. The Random Model NLL value for a columndii®a
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reasonable, though crude, indication of the number of mutationd treet undergone

during its evolution. Because the Tree Model bases its calculations predominantly on the
mutation process, column duos that are highly conserved and thus experience few
evolutionary changes, may be far more difficult to classify then those which mutate

frequently. By this reasoning, such slowly mutating column duos might be excluded as

classification candidates.

As the Modeb,qis trained from a set of non-paired columns drawn randomly
from the multiple alignment, it is a reasonable approximation of the mean evolutionary
process for a given mutation model class (Frequency, Q, 10 or IOM). By measuring the
state transition rates from the 10 Model, the mean mutation rate per branch of the
phylogenetic tree is calculated to be approximatéy03. Unlike they parameter in the
Q Model, this is the priori probability that over a given phylogenetic tree branch a
given parental nucleotide pair will change tdifierentnucleotide pair in a given child.

Any evolutionary model with similar mutation rates will thus penalize the probability of
column duos that have high mutation rates with high NLL values. The magnitude of this
penalty will be approximatelyog,(0.03) = 1.58 bits per mutation. Assuming that the
distribution of individual nucleic acids is relatively uniform, each base that does not
mutate would contribute approximatelpg,(1.0-0.03) = 0.044 bits per non-mutation

branch. As the Phylogentic Tree is a binary¥réeere are approximately twice as many

% For brevity, the calculation of this value is not shown. It is derived from the state transition counts for
training set 1 of the Rand data. The nucleotide conservation rate was 96.51%, and thus the mutation rate
was 3.49% that is approximated as 3% for this rough calculation.

1 Each node is either a leaf node or has exactly 2 children. Thus, if there are N leaves thete are N
internal nodes, for a total of 2N-1 nodes and 2N-2 branches (transitions).
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branches as there are leaves, and each valid leaf contains two bases. Thus, to the extent

that the mean NLL per base over a column duo is greater than

0.044bits/branchx (# of brancheg # ofbases¥ 0.044 bits/base,
the NLL of the column duo derives predominately from the mutations encountered,
rather than the static nucleotide composition of the coldfmmss the Rand Model NLL
values are uniformly above 0.03 bits/base, and the vast majority are above 0.044
bits/base, they are a reasonable estimator of the number of mutations encountered in a
column duo’s evolution. These NLL values are thereby anticorrelated with the strength
of the conservation in the column duo. The interpretation of Mgd®&LL value as a
measure of genetic stability, is invoked to construct the accuracy line, which successively
excludes the most conserved remaining data (as measured by random model NLL on the
X-axis of the graph) as the line progresses to the right. The increase in discrimination
accuracy with increasing exclusion of conserved column pairs may be a more
informative measure of the resolving power of the model, then the model’s overall
accuracy. To facilitate the interpretation of this accuracy line, square markers are placed
for each 10% of the data that is excluded. Thus, if there are 100 data points, solid
squares will be found on the cumulative accuracy line at the frastiX data position
(0% excluded), the 11'th (10% excluded), the 21’st (20% excluded) and so forth until the

last at the 91’st position (90% excluded).

%2 Plus a small factor to determine the initial configuration of the system. This decreases quickly as 1/N
where N is the number of evolutionarily unchanged base duos. As this approximation is for columns that
are highly conserved, and thus relatively stable over evolutionary periods, this factor is neglected.
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3. 7 Frequency Model

The Frequency Model is the simplest model class. It is used as a “null” model
against which to compare other models. The Frequency Model computes posterior
probabilities for a given column dubbased on the assumption that all nucleotide duos

dOD are independent observations drawn from the distributi@y..;,), Pd|Model) =

|_| ¢ ., or alternatively NLL(Pg[Model)) = - Z log,(¢,.). As in all models discussed
d>0d

dsod

in this work, ¢, is the nucleotide frequency distribution found in the training set for a
given data class (Rand or Pair).dfD,.i» then the nucleotide duaSid were included

in the calculation ob. If dODg;, or from the data class opposite thatdpthend is not

used in the calculation @f. The independent model mentioned below differs from the
dependent model in the calculationgof In the independent model, the probability
distribution over nucleotide duos is computed from the marginal probability distribution
over individual nucleotides, assuming that the marginal nucleotide distributions are
statistically independent. Thus, for a given nucleotidexjuehich corresponds to state

I, & = PKky) = P&)[P(y). An independent model is constructed for the Frequency Model
only as a verification of the hypothesis that randomly selected column duos will produce
a nucleotide duo distribution that is similar to the independent joint distribution of
individual nucleotides. This hypothesis is borne out by the following tables that show

that NLL scores generated by the independent and dependeniMgalel quite similar.
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Frequency Model (depende
NLL Validation Se Training Se
(bits/base | Rand Dat Pair Dati Rand Dat Pair Dati
Rand Mode 1.99¢ 1.90¢ 1.97¢ 1.90¢
PairMode 3.007 1.39( 3.007 1.24¢
Frequency Model (independe
NLL Validation Se Training Se
(bits/base | Rand Dat Pair Dati Rand Dat Pair Dati
Rand Mode 1.99( 1.96( 1.981 1.96(
PairMode 2.05¢ 2.03] 2.06( 1.887

Table 3—3: Frequency Model NLL Summary

One common null model used in NLL calculations for RNA is to merely assume
that all nucleotides are drawn independently from a uniform distribution. This would
yield a per base NLL value elbg,(1/4) = 2bits/base. It is interesting to noteat the
Pair Model statistics are an extremely poor representation of the Rand data class,
requiring 3bits/base for the data. This is significantly worse than the simflgs/Base
null model. This distribution is so bad that the independent probability distribution
generated by the Pair Model is a better measure of the Rand data cldsits(Ra%e)
than the dependent model (3fs/base). The Bits/base model is upheld by the
statistics generated by the Rand Model indicating a nearly uniform NLL score ®{01.9
bits per base over all data sets. In the case of a model being applied to its own training
data, the NLL scores ihable3—3: Frequency Model NLL Summamgay be interpreted
as the entropy, or self information content, of that training set. For the pairwise model,
this is 1.3 bits/base, indicating a strong, but not perfect trend towards pairing in

nucleotide duos in paired column duos.
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Frequency Model Classification Accuracy - Simple Discrimir

Actual (train) Actual (validate
Predictel Ranc Paii Ranc Paii
Ranc 6912 2417| 2291 8¢
Pail 142¢ 3567 48¢ 117¢
Accuracy) 86.26% 85.72%

Frequency Model Classification Accuracy - Neural Net Discrimit

Actual (train) Actual (validate
Predictel Ranc Paii Ranc Paii
Ranc 7382 48E 245¢ 29(C
Pail 95¢ 331¢ 321 97¢
Accuracy) 88.12% 84.91%

Table3—4: Frequency Model Classification Summary

The classification accuracy tabl€able 3—23 shows some unusual features as
well. This table shows that the classification accuracy for the nonlinear classifier (Neural
Net Discriminator) is actually worse than the simple classifier for the validation set.
While no definitive explanation for this was sought, it seems likely that this was due to
over fitting of the training data by the network. As showrrigure 3-6: Frequency
Model Results Graphical Summary (detaithe clustering of data is fairly
straightforward. The Neural Network complexity needed to fit the more complex 10 &
IOM Model results, probably goes to fit noisy fluctuations in the training set. This
enhances training set discrimination at a cost in validation set accuracy. The over-fitting
hypothesis is supported by the neural network classification accuracies that are higher

than the simple classifier for the training sets, but slightly lower for the validation sets.
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Frequency Model Validation Results
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Figure 3-6: Frequency Model Results Graphical Summary (detail)

See als@ Appendix C: Data Separation Chartpagel40for seperation chart of this data.

The above graph{gure 3-9 indicates that the Random represents all of the data
in 1.6 to 2.4bits/base. Much of the discrimination capability comes from the paired
model statistics that spread column duo encodings from 0.5 twtS/base. The results

from this model also differ from those of the Q, IO and IOM Models in that they are
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clustered in a relative small region. For comparison purposes, the following graph is

drawn to the same scale as the graphs for other mdtiglg'¢ 3-7). Clearly, only a tiny

fraction of the total scale is used to represent all of the available data.

Frequency Model Validation Results
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Figure 3-7: Frequency Model Results Graphical Summary
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3.8 Q Model

The results fronfigure 3-2: Preliminary Q Model Error Ratesdicate that the
optimal value for the parameter is around 0.01. To the order of magnitude calculations
that were performed, this is consistent with the mutation rate parameter of 0.03 obtained
from the IO Model ir3.5 Classifiers An additional exploratory value gf0.0001 was
attempted and found to have a marginally better cross validation discrimination
accuracy. However it had far higher NLL values, and the difference in classification
accuracy was deemed sufficiently small to be insignificant. Thus, the performance of the
Q Model atg=0.01 is considered to be more indicative of its peak performance. For a
summary of results fag=0.0001, please s&Appendix A Due to resource constraints,

it was not feasible to explore other valueg dbr this work.

Q Model (dependent)
NLL Training Set Validation Set
(bits/base)| Rand Data| Pair Data | Rand Data| Pair Data
Rand Mode 0.389 0.329p 0.389 0.3%9
PairModel 0.462 0.306 0.462 0.3%20

Table3—5: Q Model NLL Summary for g=0.01

The difference in NLL values between the Frequency Motkhle3—3 and the
Q Model (Table 3—5% are striking. While the Frequency Model provided validation
NLLs on the order 2.08its/base for Rand column duos under Magghnd 1.4bits/base
for Pair column duos under Moggl, the Q Model produces 0.39 and 0d&/base

respectively. This tremendous savings indicates that even for such a crude local
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evolution model as the Q Model, the phylogenetic tree holds a tremendous amount of

information.

Q Model Classification Accuracy - Simple Discriminator

Actual (train) Actual (validate)
Predicted Rand Pair Rand Pair
Rand 8172 163§ 2720 547
Pair 168 2164 51 21
Accuracy 85.13% 85.23%

Q Model Classification Accuracy - Neural Net Discriminator

Actual (train) Actual (validate)
Predicted Rand Pair Rand Pair
Rand 788§ 1129 2620 517
Pair 452 2671 160 792
Accuracy 86.98% 83.28%

Table3—6. Q Model Classification Summary for q=0.01

The validation set NLLs for a given data set indicate the degree to which a model
fits the data population. However, it is the difference between the NLL values generated
by Modek.,qand Mode},, on the same data that should be indicative of the
discrimination power of the Model. For the Q Model, we see a much better fit of the
model to the data than we saw in the Frequency Model. However, we see very little
differentiation in NLL values produced by Modgl;and Modei,;,, on the same data.

This leaves us with a discrimination capability that is similar to that of the Frequency

Model, about 85% accuracydble 3—®&.
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As the following graph indicates-{gure 3-8, all data points are clustered

sharply around the X=Y line, and are somewhat difficult to distinguish. It is thus not
surprising under such a simple distribution that the Neural Network’s 17% validation set
error rate is so much higher than the 13% training set error rate. This 17% validation

error rate is even higher than the Simple Discriminator error rate of 15%. This is strong

Q Model Validation Set Results
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Figure 3-8 Q Model Results Graphical Summary for g=0.01

See als@ Appendix C: Data Separation Chartpagel4lfor seperation chart of this data.
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evidence of over learning in the training of the Neural Network. It might reasonably be

assumed that the validation accuracy of an optimal classifier would lie somewhere in the
range between the accuracy of the Neural Network on the training data and its accuracy

on the validation data.

We can see, from the above chart both data sets are clustered tightly around the
X=Y line. This indicates poor distinction between Rand and Pair under the Q Model.
What is more difficult to see is that this indeterminacy is most severe near the origin. As
points lying near the origin are excluded, the classification accuracy rises from its base
rate of 85%, to 89% with 10% excluded, 95% with 30% excluded to 98% with 50%
excluded. Itis reasonable to ask why these data points are so difficult to classify. Data
points near the origin are those with relatively high probabilities according to both
models (Rand and Paired). In general, these are the data points with few mutations, as
transition to a differing nucleotide pair is a relatively rare eventse€lassifiers& 3.6
Results Format As the Tree Model derives the bulk of its efficacy from making
approximations of the evolutionary history of a column duo, those duos with little
mutation in their evolution have few distinguishing characteristics. For these column
duos, only the composition of the column duo remains as a distinguishing factor. At this
point the Q Model is expected to perform differentiation with accuracy similar to that of
the Frequency Model. For example, a perfectly uniform column duo provides little
information to indicate whether it is composed of two randomly selected columns that

are independently conserved, or whether it is a highly conserved paired column duo.
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3.9 I0Modd

The IO Model was initialized from the state transition maprgenerated by the
Q Model withqg set to 0.0001. This model was then trained through repeated
reestimation of the probability transition matpx2.4.310 Mode) for approximately 10
iterations at which point the change in training set NLL value was less than 0.01%. The
resultant values fop were then saved and applied to the validation data as described

above.

10 Model (depender
NLL Validation Se Training Se
(bits/base | Rand Dat Pair Dati Rand Dat Pair Dati
Rand Mode 0.31¢ 0.36¢ 0.31: 0.36¢
PairMode 0.49¢ 0.28: 0.49¢ 0.26(

Table3—7: 10 Model NLL Summary

The difference between the Q Modéhple 3—5% and IO Model Table 3—7J
NLL values for each data set on its own validation data is relatively small. The Rand
data NLL values dropped from 0.389 to 0.316 bits/base while those of the Paired Data
dropped from 0.320 to 0.283 bits/base. This shows nowhere near the dramatic shift that
was observed between the Frequency Model (treeless) and the Q Model (uses tree).
What is more significant is the change in the separation between meanpjj@del
Modek.,¢NLLS on the same data. For the IO Model validation set, the difference
between the Modgl,NLL and Mode},, NLL was 0.180 bits/base for Rand data and

0.081 bits/base for Pair data. This is a tremendous improvement from the Q Model’s
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differences of 0.073 and 0.009 bits/base. These differences represent the separation of

the centroids of Rand and Pair data clusters, on the graphical summaries. For tightly

clustered data, this separation is expected to indicate the resolving power of the model.

Another effect we did not see in either of the simpler Frequency or Q Models is
the beginning of over fitting in the NLL values. For Maggland Model,; results we
see a degradation in NLL values between the Training Set and the Validation set of 0.003

and 0.023 bits/base respectively.

10 Model Classification Accuracy - Simple Discriminator

Actual (train) Actual (validate)
Predicted Rand Pair Rand Pair
Rand 7443 15 246p 134
Pair 897 365] 318 1134
Accuracy 91.35% 88.83%

IO Model Classification Accuracy - Neural Net Discriminator

Actual (train) Actual (validate)
Predicted Rand Pair Rand Pair
Rand 7970 404 262p 244
Pair 370 3400 154 1044
Accuracy 93.63% 90.66%

Table3—38: 10 Model Classification Summary



102
As might be expected from the marked increase in data cluster centroid

separation, we do see a strong increase in accuracy over the Q Model. Validation set

error drops from approximate®/15% to 9%. For the first time we also see possible

IO Model Validation Set Results
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Figure 3-9: IO Model Results Graphical Summary

See als@ Appendix C: Data Separation Chartpagel42for seperation chart of this data.

% As the validation accuracy of the Neural Network classifier was lower than the accuracy of the Simple
classifier, the accuracy of the Simple classifier was thought to be a more accurate representation of overall
resolving power. Thus the simple classifier's statistics are used for comparison.
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results of over learning displayed in the Simple Discriminator, whose error rate rises

from 9% to 11% between training set and validation set. In the Q and Frequency Models
no such change was evident. This is clearly not a result of over-learning in classifier
training, as the simple classifier is not trained. Rather, it is more indication of the

beginning of some over-learning of the 10 Model.

As with the Q Model, the 10 Model's classification accuracy rises dramatically as
degenerate data near the origin is excludeigyre 3-9. Simple Discriminator
classification accuracy rates rise from an 89% baseline, to 92% with 10% exclusion,
97% with 30% exclusion and over 99% with 50% exclusion. It is important to reiterate
that the above graph is rendered in-log scale, thus a spatial difference of 0.003
bits/base near the lower left edge of the data would appear as large as a difference of 1.0
bits/base near the upper right edge of the data. Despite this monumental change in
scaling, data points clustered near the origin appear far closer to the X=Y line then those
far from the origin. This indicates a tremendous increase in resolving power as the
number of mutations in a column duo increase. In particular, the capacity of the Pair
Model to reject elements of the Rand Data set has increased, as is indicated by the broad
fan of Rand Model data points in the upper left region of the graph. As there is no
similar spread of points to the lower right of the X=Y line, it may be conjectured that
most of the discrimination is coming from the Paired Model, as the Rand Model fits both

Pair and Rand data equally well.
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3.10 IOM M odel

For the IOM experiments the number of transition matrices was arbitrarily chosen
to be 7. This allowed one identity matrix for zero-length branches, one matrix to model
outliers with near-zero branch lengths, and five matrices for the bell shaped distribution
containing the remaining branch lengtk$glure 3-10. Each matrix accounted for 236,

20, 499, 499, 499, 499, 496 branches respectively.

Distribution of Branch Lengths In Phylogenetic Tree
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Figure 3-10: Phylogenetic Tree Branch Length Distribution

The dark curve represents the branch length frequency distribution, by length. As the range of branch
lengths is broad, a logarithmic scaling is used on tfexiX. This means that bins containing the same
number of branches may not appear to have the same area under the frequency density curve. The height
of the gray bars may be read on th@xs as the number of branches in the bin whose ceiling is-thesx

location of the gray bar. As branches of length zero may not be represented on a logarithmic plot, the
length zero bin is represented as a point neat de the Xaxis.
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In the above figure, the-4xis is in a logarithmic scale, thus the area under the

density curve may not be equal for bins that contain equal numbers of branches. The
height of the gray bin markers is a correct representation of the number of branches in a
bin, and the location of a bin marker on theXs is the location of the upper boundary

of the bin.

IOM Model (dependen
NLL Validation Set Training Set
(bits/base | Rand Dat Pair Dati Rand Dat Pair Dati
Rand Mode 0.304 0.363 0.302 0.363
PairMode 0.541 0.281 0.541 0.2572

Table3—9: IOM Model NLL Summary

The change in NLL results between the 10 Modell{le 3—7J the IOM Model
(Table 3—9 was disappointing. Despite the greater complexity of IOM, and its
potentially greater evolutionary accuracy, only modest improvements in NLL values were
observed. Validation NLLs for Rand and Pair data sets dropped from 0.313 and 0.260
bits/base to 0.302 and 0.252 bits/base respectively. The separation between mean NLL
values between Modgl, and Modek,,q Oover the same data, did increase from the 10
modem to the IOM Model. The difference in the mean NLL values for Rand data
increased from 0.182 bits/base to 0.239 bits/base, and for Pair data the difference
increased from 0.105 to 0.111 bits/base. While this seems to indicate an increase in the

resolving power, the following accuracy results show that this is not the case.

A negligible increase in NLL values between training and validation data served

to lower fears of over fitting. Despite an approximately 6-fold increase in the number of
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model parameters, the difference between Training and Validation NLL values remained

constant at 0.003 bits/base between IO and IOM on Rand data. The NLL separation for

Pair increased slightly from 0.023 to 0.029 bits/base.

IOM Model Classification Accuracy - Simple Discriming

Actual (train) Actual (validate)
Predicte: Ranc Pail Ranc Pail
Rand 74085 20 243P 140
Pair 935 3591 341 1148
Accuracy) 90.58% 87.62¥%

IOM Model Classification Accuracy - Neural Net Discrimini

Actual (train) Actual (validate)
Predicte Ranc Pail Ranc Pail
Rand 7917 453 260P 254
Pair 423 3351 171 1014
Accurac) 92.79% 89.50¥%

Table3—10: IOM Model Classification Summary.

While an increasing separation in mean NLLs between Mgdahd Modet,ng
might be expected to indicate an increase in resolving power, we actually observe a
uniform decrease in classification accura€galfle 3—19. Validation set accuracy for
the Simple Discriminator dropped from 89% to 88% between IO and IOM, while the
Neural Net Discriminator accuracy dropped from 91% to 90%. Though this drop may

not seem significant, it is still disheartening given that an increase had been expected.
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IOM Model Validation Set Results
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Figure 3-11: IOM Model Results Graphical Summary

See als@ Appendix C: Data Separation Chartpagel43for seperation chart of this data.

A comparison between the scatter plots for theR{@yre 3-9 and IOM Model
(Figure 3-1) serves to resolve some of the questions regarding the lack of increase in

resolving power between the 10 and IOM Models.
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The fan of Rand points in the upper left corner of the plot is more uniformly

distributed in the IOM chart then it is in the 10 chart. In the 10 chart, more of these
points clustered closer to the X=Y axis. This accounts for a greater variance in Rand
Model scores. We find that correctly classified points were being driven further into
their classification zone (away from the X=Y axis), while the resolution of ambiguous
points was not being increased. As most of our errors came from points near the origin,
which have low NLL values from both models, the increasing certainty about relatively
well classified points served to separate data cluster centroids, without increasing their
classification error rate. This is supported by a comparison of the accuracy lines on plots
of the 10 and IOM data. For smallakis values, the accuracy line is about 1% lower on
the IOM chart then it is on the 10 chart. However as more ambiguous points are
removed, the difference in classification accuracy quickly diminishes until, at the 50%
exclusion marker, the lines meet. At the far right of the chart, IOM accuracy is slightly
higher than 10 accuracy, with IOM reaching 100% accuracy after 80% of the data has

been excluded while 10 does not reach this accuracy even at 90% exclusion.
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4  Discussion and Conclusion

This final chapter is broken into four sections.4lfh Discussionwe summarize
and compare the most important quantitative results from the experimental section.
Results from the 1O and IOM Models are given the most attentiod.2lAlgorithm
Speed and Siage provide an informal derivation of the asymptotic resource use of the
Tree Model, as well as the actual running time needed to compute the experiments in this
work. In 4.3 Author’'s Note and Conclusione review the results of this work
gualitatively and informally in the context of modeling processes in general. Finally, in
4.4 Future Directionswe propose some follow-on and closely related research and

propose new applications for the Tree Model.

4.1 Discussion

This subsection provides a comparative summary of our experimental work.
First, the issue of discrimination accuracy is addressed focusing mainly on the 10 and
IOM Models. The major sources of ambiguity in the data are addressed. Next, the NLL
values generated by the Models are discussed. As these NLL values are derived directly
from data likelihoods, the NLLs represent how well a given model fits a training set
(training data NLL) or the population from which the training data is drawn (validation
data NLL). This section closes with a reconciliation of the IOM Model’'s superior data

modeling with its less impressive discrimination capability.
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It is critical to note that nearly all of the Tree Model classification error comes

from the regions where both Mogg)} and Modek.,gaccept the data with high
probability (low NLLs). This effect becomes progressively more evident as the
sophistication of the mutation models increases. Overall, the RNA structure is highly
conserved across RNA evolution: the IO Model produces a mean phylogenetic tree
mutation rate of 0.03 mutation/branch. This mutation rate is consistent with the 0.01
mutation/branch order of magnitude calculationdorThus, mutations are relatively rare

and much of the NLL value comes from these mutations during evolution. To this
extent, the NLL values for the models trained on randomly selected data may be used as

a rough approximation of the mutation frequency for a given column duo.

Clearly, the Tree Models discriminate more poorly when the data is relatively
uniform, with few mutations and low NLL values. This makes a certain amount of
intuitive sense, as the observation of a highly conserved column duo such as AU (a
classic Watson-Crick base pair) gives little information as to whether the duo is highly
conserved because it is paired, or highly conserved because its constituent columns are
conserved independently. While such a conserved column duo will generate a
marginally lower NLL under a paired mutation model than under a random one, the
difference is small and thus the discrimination ability poor. However, the knowledge of
this phenomenon could be used to place confidence bounds on discrimination
predictions. Such bounds would be parameterized by the NLL values of dygded

well as the difference in NLL values between models.
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The increase in prediction accuracy with decreasing pair conservation, as

approximated by Modgl.¢NLL, clearly demonstrates the superior resolving power of
the more complex mutation models. As each column duo was used exactly once as
validation data, there were a total of 1012 column duos used for validation, 317 of these
were paired and 695 were unpaired. When 45% of the most conserved data was removed
(557 duos remaining), both the 10 and IOM Models were able to correctly identify the
remaining data with greater than 99% accuracy. The Q Model did not reach this
accuracy until 75% of the most conserved data had been removed (253 remaining duos),
and the Frequency Model did not reach a 99% accuracy level even after 90% of the most
conserved data had been removed (101 remaining duos). This is clear evidence of the
accuracy gains that may be realized when phylogenetic bias in the mutation statistics is
considered through the use of the Tree Model. These values compare favorably with the
70%-80% accuracies obtained by previous methods of secondary structure detection

[32)[48].

The use of a neural network as a nonlinear classifier provided some additional
accuracy over a simple NLL comparison classifier for the 10 and IOM Models.
However, error rates for the Frequency and Q Models actually rose when this technique
was applied from 14% to 15% and 14% to 17% respectively. As the complexity of the
mutation model grew, so did the effectiveness of this nonlinear classifier. The IO
Model’s error rate dropped from 11.27% to 9.34%, and the IOM Model’s error rate
dropped from 12.38% to 10.50% accounting for 17% and 15% of the total residual error,

respectively (se€&able 4—).
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Model Training Data Error % | Validation Data Error %
Type Simple ANN Simple ANN
Frequency] 13.74 11.88 14.38 15.09
Q 14.87 13.02 14.77 16.70
10 8.65 6.37 11.27 9.34
IOM 9.42 7.21 12.38 10.50

Table4—1: Tree Model Classification Error Summary

All numbers listed are percentages. Numbers listed under “Simple” and “ANN” columns are the
misclassification rates of each discriminator, for each evolutionary model. This table is excerpted from
Table 3—2: Discrimination Error for Simple Classifier vs. ANN Classifier

While there were some concerns of over-fitting the Neural Network training data,
the 3% increase in error between the training set and the validation set is also reflected in
the simple NLL-based discriminator. This tended to indicate that the mild over-fitting

observed was occurring in the modeling of the Markov Tree, rather than in the training

Rand Data Pair Data
Model | Training Set| Validation Training Set| Validation
Class (bits/base) | (bits/base) A (bits/base) | (bits/base) A
Frequency| 1.978 1.996 0.014 1.244 1.390 0.1§6
Q 0.398 0.398 0.00¢ 0.306 0.320 0.0lL4
10 0.313 0.316 0.003 0.260 0.283 0.0p3
IOM 0.302 0.305 0.007 0.252 0.281 0.0p9

Table4—2: NLL Overfitting Summaryby Model Class

Table shows the mean NLL value (bits/base) for each model on its own data se,ModdRand Data

and Mode},; on Pair Data. The greater the difference in NLL scores between the training set and the
validation set, the larger the expected over-fitting. Beyond the Frequency Model, the more complex the
model, the greater the number of degrees of freedom and the greater the potential for over fitting. The Q
Model has 16 degrees of freedongiand¢. The 10 Model has 255 degrees of freedorh endp. The

IOM Model has 1,455 degrees of freedombiand its 6 configurablp distributions. The column labeled

A represents the arithmetic difference between the training NLL value and the validation NLL value.
Substantial increases imay represent over-fitting by the Tree Model.
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of the classifier. This hypothesis was also supported by the slight increase in the

separation between training set accuracy and validation set accuracy for the simple
classifier. This separation rose from 2.6% in 10, with 255 degrees of freedom to 3.0% in

IOM, with 1,455 degrees of freedom.

In general, IOM showed some improvement in NLL values and no improvement
in classification accuracy over 10 (séable 4—2andTable 4—Irespectively). The
overall error rate of IOM was marginally higher than that of 10, 10.5% as compared to
9.3%. However, the error rate for IOM did decline faster than that of 10, as more and
more of the most conserved column duos were excluded from the test set. The IOM
Model actually had a lower error rate than the 10 Model after 50% of the most conserved
data was removed. In addition, the IOM Model had lower validation set NLL values and

greater mean NLL differentiation between Madghnd Modeang

Model Class Rand Pair
(bits/base)| (bits/base)
Frequency 1.996 1.390
Q 0.389 0.320
10 0.316 0.283
IOM 0.305 0.281

Table4—3: NLL Summaryby ModelClass

This table summarizes the Validation set results for each model. It is summarizetafotet—4for

clarity. The values represent mean bits/base of the validation set for each model. These numbers
summarize how well each model represents the data population from which the training sample is derived.
Lower values represent a better mean fit, and a highgsfMiDdel).

The mean Rand validation set NLL values werg05bits/base under IOMnqg

and0.541bits/base under IOM;, as compared with.316bits/base for IQ;,gand0.496
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bits/base for 1@,. As Rand was given a 9% higher NLL by I@Mthan by 1Q, we

may infer that the IOM; is better able to reject Rand data thapO

Rand Data Pair Data
Model Rand Model| Pair Model Rand Model| Pair Model
Class (bits/base) | (bits/base)| A (bits/base) | (bits/base)| A
Frequency 1.996 3.007 1.01] 1.906 1.390 0.5|L6
Q 0.389 0.462 0.071 0.329 0.320 0.0p9
10 0.316 0.496 0.18( 0.364 0.283 0.0B1
IOM 0.305 0.541 0.236 0.363 0.281 0.0B2

Table4—4: Summary of Separation of Mean Data Set NLL Values

This table shows the difference in mean NLL score (bits/base) between different models on the same

validation data. For the tightly clustered data sets in Q, 10 and IOM the largAr the better the
expected discrimination for that data set.

The paired validation data was given a 4% lower NLL by Nhan by 1Q,; .

This is evidence indicating that IOM is modeling the population from which Pair is

drawn better than IO does (s€able 4—4. However, this ability to more accurately

model the Rand and Pair populations did not translate into higher classification
accuracy. This is consistent with the idea that IOM is more sensitive than IO over more

volatile column duos, while IOM performs no better than IO on more consistent column

duos with few mutations in their evolutionary history.
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4. 2 Algorithm Speed and Size

The calculation of the inside probability

WA =D =5 [, =m B ] [1A =0 )5

(Equation 2-1: Summary Derivation of Inside Probability Distribufion
requires an accumulation of probability from each stgtef(a tree nodeA;) to each
state (W& n) of its descendant’s node4; (& A,). If there areN organisms in the
phylogenetic tree anfl states corresponding to the possible nucleotide duos, then this
calculation requires () time for each column duo. If we wish to check every
possible column duo in a multiple alignment\dfcolumns, then our running time will
be bounded in time by ®&M?) and space by G(S+M?). UsuallySwill remain fixed
at 16 for the 16 possible nucleotide duos in RNA. However, if other symbols such as the

gap symbol are added to the alphabet, this term may grow.

The calculation of the outside probability
O(A=m=Y B, M(A=)F[LA=1B,]5
(Equation 2-4: 10 Model Outside Probability Distribution Derivatjon

seems to require &) calculations for each staSof each nodéy of the tree, due to its
nested calculation over the inside probabilitiegytf sibling, I4(A=n)(@;,,. This would

yield a complexity of QYS) for each column duo. However, the nested section of this
calculation is also computed during the inside calculation and may be stored for later
use. This leaves us with B8). As the inside calculation, which is a prerequisite, is
also ONS) we have a total bound on the time to calculate the outside distribution of

O(NS) per column duo.
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As with the outside distribution calculation, the frequency reestimation formula

(@)= B, ©O,(A= ) [1(A =1 B,]5

(Equation 2-5: 10 Model Transition Frequency Reestimation Derivation (Part II)

appears to require &) operations between each parent and child nége A and

A - A). However, at the heart of this equation is the same nested loofy(@wen)[p,

that was found in the outside derivation. This was stored for us during the inside
calculation, leaving us with an ®€) calculation for each column duo in the training

set.

This leaves us with an NLL evaluation algorithm for column dtiat is ONS)
in both space and time per column duo. The training algorithm also requiN&®) @(
space and time for a column duo. However, as this algorithm is iterative, it is not
absolutely clear how and Seffect the number of iterations through algorithm
convergence. For the experiments in chapténe algorithm never required more than a
small number of iterations (7-10) over the training set to converge to a change of less

than 0.01% in the training set NLL values per iteration.

The Tree Model experiment8 (Experimentswere implemented in the Gnu
Project’s gcc (C++) version 2.5.5 on a Digital Equipment Corporation, DECstation
3000/400 APX (with a RISC microprocessor running at over 150 MHz). The operating
system was DEC’s OSF/1 Version 3.0. The standard level of compiler optimization was
used (gcc -O). The resultant program required approximately 1.9 seconds to produce an
NLL value for a column duo of approximately 1000 valid nucleotide duos, under both of

the 10 & IOM models. The program took approximately 5.5 seconds to gef(ejete
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a single training set column duo, when no other appreciable activity was occurring on the

computer. To generate two sets of transition matrices (Rand and Pair) over a training set
size of 521+238 = 759 column duos using 10 iterations of expectation maximization,
required approximately 11.6 hours. The generation of the 174+79 = 253 validation set
NLL values required an additional 8 minutes. This process was repeated four times,
once for each train/test partition. The program required approximately 11 megabytes of
memory in which to run, and no excessive virtual memory swapping was observed

during program execution.

While the NLL value generation for the validation set was negligible in the
present work, an exhaustive search for secondary structure using this technique might
prove cumbersome. Given 2,688 columns is 16S RNA, there would be?25688
7,225,344 column duos to examine. On the hardware employed here, this would require
approximately 159 days of uninterrupted CPU time. This running time is not completely
unreasonable, given that the present level of hardware is available as a workstation.
Nonetheless, the NLL generation for each column duo may be performed concurrently.
Thus, thirty similar workstations should be able to complete such an exhaustive

calculation in 1/30 of the time required by one workstation, or approximately 5.5 days.

Our software was not tuned especially well, and software refinement should be
able to increase performance substantially. No effort was made to unroll loops, or
replace arrays with pointers. In addition, the broad range of probabilities encountered
during calculation required a special implementation of floating point numbers. As

probabilities on the order of2°°are quite commonly encountered during frequency
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reestimation, the standard C Language double precision floating point representation was

insufficient. To circumvent this problem, a C++ class cafteob was obtained from the
computational biology group at the University of California at Santa Ct8jz [This

class maintained a logarithmic representation of a number, thus reducing the number’s
precision, but enhancing its range. This logarithmic representation made multiplication
of probabilities a very cheap operation, but addition expensive. While this class aided
phenomenally in ease of coding and portability, it might be faster to maintain the

probabilities in a NLL form explicitly, without the overhead of an abstract class.

4. 3 Author’sNote and Conclusion

Well, here we are, nearly at the end of this work. Before this work continues into
4.4 Future Directionsspending several pages talking about what didn’t get done, a little
time is spent in this section ruminating over what has been done. If the reader is put off
by long sentences, first person narrative, wild conjecture or self congratulatory prose, it is
suggested that the reader skip this section and go on to the critiques presdmned in
Future Directions This section provides an insight into some of the personal motivation

for, and achievements in, the completion of this work.

| began this document by introducing a relatively new paradigm into the field of
RNA modeling, a field where more traditional techniques rely on physical modeling.
Physical modeling requires a very large number of simplifying assumptions in order to
model any system larger than a single atom (and a simple one at that). The choice of

these simplifying assumptions must be magwiori through subjective decisions based
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on the particular expertise of the model’s builder. From a scientist’s perspective, this

process is a little like playing the lottery. If a researcher makes the correct assumptions,
then the researcher is rewarded with positive results that can bring fame, glory and
continued funding. If a researcher guesses incorrectly, they can lead an entire branch of
the physical sciences down a blind alley for years. Especially if they are an authority in
their field. In addition, extensions can only be made to such physical models by people
deeply schooled in a diversity of fields including: numerical computation, modeling
theory and the specific physical science involved (which in this case is molecular
biology). In the place of physical modeling, | advocate a new paradigm. This paradigm
replaces the exciting, technically arcane, labor intensive, fundamentally exploratory and
eminently fundable, procedures of physical modeling with a boring, simple, automatic
and reliable process of statistical modeling. | certainly hope that this statistical process is

fundable as well.

The statistical paradigm directly addresses issues of generalization, over-fitting
and data support for model complexity. These issues are implicit in, and ignored by,
most physical modeling techniques. The techniques of physical modeling were well
suited to situations where a large amouna @friori information had to be employed,
without the benefit of much data, to model a process of great complexity. However, in
the field of molecular genetics, the plethora of sequence information has obviated the
physical technique to some extent. Direct probabilistic modeling techniques are now
feasible. In a sense, the tables have turned. Formerly the observational statistics of a

system were implicit in a model derived from physical properties. Now the physical
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properties of a system are implicit in the observational statistics used to derive the model.

An exciting reversal of roles!

As the language of machine learning is the very language of statistical inference,
it is only reasonable to use machine learning techniques whenever they are supported by
a sufficient amount of physical data. There may always be a margin on the frontiers of
science where sparse observational data, in the face of complex systems, renders physical
modeling mandatory. However, the application of automated data collection techniques
to fundamental research is continually narrowing that margin. If the statistical assertions
implicit in physical models are made explicit, then physical properties could easily be
included as priori information in a statistical model. Sparse amounts of data could
then be combined with these statistically represented physical laws, to further shrink the

realm over which physical modeling holds primacy.

While the nucleotide base pair detector developed herein is of relatively low
complexity, it serves marvelously as an example of this new paradigm. Very little
knowledge of chemistry is required to understand the concepts behind the model. While
the equations of statistical inference were moderately complex to derive, they require
only a cursory grasp of probability theory to understand. The modeling process arises
directly from the data, requiring no specialized knowledge, tweaking or ttini@mly
three parameters were chosen inaahhocmanner: the number of cross validation

partitions (4), the percentage of valid nucleotides required in a valid column duo (75%),

34 While this is strictly true, the experiments performed herein utilized a 16S multiple alignment that had
been carefully constructed by both hand tuning and automated techr§le$\hile the Tree Model
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and the number of branch length bins in the IOM model (7). All other relationships in

the Tree Model were inferred from the data sets. With somewhat greater resources, all of
the arbitrary parameters could have been selected statistically. Finally, potential
problems in over-fitting are addressed automatically through cross validation. While the
comparison of training values with validation values was treated informally here, there

are statistical methods for determining and limiting its effects.

However, all of this wonderful automation comes to naught if the process
performs worse than other currently available processes. So, how good is the statistical
model provided here? The answer is very good indeed! The secondary structure detector
developed here is found to have 90%-99% accuracy in detecting secondary structure.
Techniques based on energy minimization and manual phylogenetic analysis have shown
accuracies of 70%-80%, and require a substantial amount of experienced manual
arrangement. Not only that, but staggering probabilistic gains in model accuracy are
hidden in the use of NLL values. The mean Tree Model validation set NLL for a
nucleotide was found to be about 0.3 bits, for both paired (0.28 bits) and nonpaired (0.31
bits) nucleotides. This translates into a data likelihood of approximatély 21%.

This is compared to the frequency model that generated mean NLL scores around 1.4 bits
for paired nucleotides or 1.9 bits for unpaired nucleotides, or 38% and 27% respectively.
If we look at an entire column in a multiple alignment (about 2000 nucleotides) we find
that the improvement in data likelihood is 28%.38°° = 10°*" for paired nucleotides or

.81%°%9 27 = 1°** for unpaired nucleotides. This is 500 to 1@d0ers of magnitude

could easily be applied a less refined cruder alignment, the accuracy levels may not be as high.
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of data probability that was unaccounted for by the Frequency NModEb get such
statistics for the entire multiple alignment, we can make the crude assumption that the
column duos are all independent. A model assuming some form of dependence should
do better, but even under this relatively weak independence assumption we may raise our
astronomical ratio to the power of approximately 1000 (column duos per alignment) and
arrive at nearly a million orders of magnitude likelihood increase over the entire multiple
alignment! This means that the observed multiple alignment data is approximately
10499°%%imes more likely under the Tree Model than it was under the Frequency
Model, without substantially overfitting the training set. Moreover, this Frequency
Model was about as good at ferreting out nucleotide pairing (about 85% accuracy) as

current physical modeling techniques (70-80% accurdd®})32][ 50].

These results are generated by a first generation modeling technique. A Bayesian
analyst might scoff at the Tree Model’s restricted use of prior information. Numerous
prior data such as columnar mutation rates and nucleotide dependency between adjacent
columns, are not explicitly exploited by the Tree Model. To this l.s&kcellent! By
all means, go ahead and develop more accurate priors and evolve the statistical

paradigm! This model is designed merely as a road sign pointing in an alternative

% | do acknowledge a certain amount of hyperbole in this number. The Frequency Model is relatively
weak from an information-theoretic point of view as it does not use mutual information from neighboring
nucleotide duos within a given column duo, much less any of the more complex frequency weighting
schemesq1][52]. The Tree Model does use this information. Recent, and very preliminary, results based
on the self-information of each column duo has yeilded some striking results. Though this self-
information model attained approximately the same discrimination accuracy as the 10 Model, its mean
NLL values were much higher. The NLL values were 0.50 bits per base for paired (dependent) nucleotide
data and .58 bits per base for unpaired (independent) data. This would reduce the per-column-duo
likelihood advantage of the Tree Model to factors df1& 10'®* respectively.
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direction to current processes, a relatively accessible first step down a long inferential
path.

This is by no means to say that the Tree Model is a toy. While this pair detector
has significant uses in the area of RNA base pair modeling, its potential for other sorts of
measurement is tremendous. Remember that during the process of deriving posterior
probabilities for column duos, we calculate a nucleotide duo state distribution for every
ancestor in the phylogenetic tree. This is a statistical depiction of the entire evolutionary
process for that column duo, from the primordial cell to each and every observed
organism that contributes to the multiple alignment. Merely using this process to
compute the posterior probability of the column duos is like swatting a fly with a

telephone pole.

Through the use of the probability distributions in this tree, one need no longer be
limited in genetic measurements to a single value for statistics, nor a single arguably
“correct” ancestral nucleotide configuration. Measurements of genetic quantities such as
mutation rates, genetic composition and phylogenetic branching distances, can now be
calculated as expectation values over all possible evolutionary developments.
Furthermore, instead of calculating a single quantity, one could calculate probability
distributions over a range of possible values. The replacement of a single arguable
statistic with a distributions over possible values is as fundamental to the analysis of

uncertain data as is the concept of the Gaussian distribution.
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While the grandiose statements made in this section might seem out of character

with the rest of this work. well... they are. The research leading to this work was
designed to be conservative and self critical so as to present a lower bound on the
reasonable expectations for its type of approach. However, behind every difficult and
drawn out research effort, there must be at least a flicker of excitement guiding the work
through its darker periods. While much of the motivating enthusiasm can become
smothered by the rigorous constraints of academia, | felt that this work would not be
complete without a taste of the excitement that drove it to completion. You will now be

returned to your regularly scheduled academic skepticism.

4. 4 FutureDirections

This section provides some potentially interesting areas for future research and is
broken into four sections. In, we look at some additional tests that could be run using
the current Tree Model to verify its accuracy and generality. In, we look at some new
experiments which might be run with the Tree Model. In , we look at ways that the
Tree Model might be theoretically extended. Finally, in , we propose another
application for the Tree Model. In general, each idea for further work is kept to its own

paragraph and no attempt is made to connect the ideas.

44.1 TreeMode Verification

It would be interesting to apply the models generated with 16S data to 23S RNA.
A strong positive result with 23S RNA would provide convincing evidence that the

evolutionary model developed here has general validity. More detailed studies of the
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tRNA family might as well be able to discern novel tertiary pairing structure, as the

tRNA structure is known well enough to provide a training set of tertiary column duos.
One preliminary test of this method would be to use the nucleotide duo mutual
information content of a column duo as a M@geland the individual nucleotide mutual

information content as a corresponding Magel

During the work leading t8.3 Preliminary Q Model Studgeveral of the
nucleotide duos that were known to be paired distinguished themselves by scoring very
poorly under @, values ofq> 0.1 . These columns were found to be composed
predominantly of non-Watson-Crick base pairs (some of these duos were found to be
helix end caps). These were originally used to construct a third model called-)pdel
However due to the small number of these samples (approximately 10) as well time
constraints, the investigation of Modgli. had to be terminated and these column duos
were returned to the Pair data set. It might be of interest to perform a similar experiment
by constructing an IO or IOM model solely to represent those column duos from Pair that
scored appreciably better under Maggithan they did under Modg}. Such an
experiment could provide transition matrices that would be particularly useful in
ferreting out the most difficult to detect paired nucleotide duos, and thereby reducing

false negatives under Moggl

The Frequency Model is a particularly weak null model as it incorporates neither
mutual information between nucleotide duos in a column duo, nor any explicit weighting
for phylogenetic similarity between organisna8]. Techniques for addressing these

concerns have been explored in the field of protein structure detebfifp6g]. These
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methods involve weights for column duos based on their degree of nucleotide variability,

as well as weighting to help account for the similarity between phylogenetically related
organisms (they do not use a full phylogenetic tree). Such techniques could be applied to

RNA and used as a stronger non-phylogenetic-tree based opponent for the Tree Model.

It is unclear how much of the effectiveness of the Tree Model stems from our use
of a well developed multiple alignment. To test the Tree Model with less refined data, a
more primitive multiple alignment could be developed using a completely automated
alignment technique such as those found.B) fnd 29]. This alignment could then be

used to test the Tree Model’s performance under more adverse circumstances.

4.4.2 Experimental Tree Model Extension

The filtering for valid pairs significantly reduced the useful range of testing and
training data, especially for the randomly generated data. As it is exactly this data that is
to be scanned automatically for pairing structure, some way should be found to expand
the field of valid pairs. By far, the most commonly rejected symbol was the gap symbol
(-). While a biological interpretation of this symbol is relatively complex, it should not
be excessively difficult to incorporate this symbol into the known alphabet. However,
while this extension may be technically simple, the inclusion of gap information in the
pairing decision process might make the resultant model’s decisions too dependent on
structural information introduced during the alignment process. In particular, a gap
symbol in a multiple alignment does not necessarily correspond to a physical object.

Thus, it would be unclear exactly what the inclusion of this symbol would be modeling.
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Despite these trepidations, the inclusion of gap information in the terminal alphabet

would appreciably expand the range of acceptable data, and would allow the exploitation
of evolutionary nucleotide insertion and deletion information. One might reasonably
expect that the evolutionary insertion of a gap into a paired column is far less likely to be
genetically stable then the introduction of such a state into an unstable column. Thus the
evolutionary production of many gaps would be evidence against pairing. Since the
major source of error stems from a lack of rejection on the part of the models, this should

provide a marked increase in performance.

While it is clear that the Tree Model performs better on column pairs with larger
numbers of mutations in their evolutionary histories, the exact relationship between the
numbers of mutations and discrimination accuracy is not clear. Further research in this
area could provide estimated probability bounds on column duo classifications. These
bounds could be included in a context-sensitive model that would take into account the
classifications of adjoining column duos in its determination of pairing status of the
given column duo. Such a method could provide the templates used by a Stochastic

Context Free Grammag9] for complete secondary structure determination.

4.4.3 Theoretical Tree Model Extension

While it does not seem that the overfitting is an issue for the 10 or IOM models, it
might become so if these methods are applies to smaller data sets, such as 23S. In this
case, a variant of the Q Model might serve to bridge the complexity gap between the Q

Model and the 10 Model. This variation would involve the use of J&rameters rather
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than a single value far. Each of these would correspond to a particular source state in

the transition matriyp,,. This would allow greater flexibility in the transition matrix
which could then be calculated @g, = ql$, for | = m, andq§+(1-q;) otherwise $3].

The values fog, could then be calculated through Expectation Maximization.

Currently, the branch length is incorporated into the modeling in a relatively
coarse nonparametric manner. If a provably correct parametric method could be
developed, a common mutation transition function could be developed which
concentrated all of the available sequence data. There are numerous problems in mixing
counts from differing branch lengths, however, and even theoretically this problem is not
trivial. If solved, though, this might produce a marked improvement in resolution. In
addition, a parametric time-mutation model would allow the reestimation of the branch
lengths in the tree. This could be of tremendous use to biologists, who currently use
more biased statistics derived directly from multiple alignments, as well as individual
expert knowledge, to hand tune their phylogenetic trees. As more data becomes
available, and the trees grow larger, this hand manipulation will become more and more
cumbersome and techniques for automated generation and refinement of the

phylogenetic trees will become increasingly necessary.

In the current work, both the 10 and the IOM Models heavily leverage the mean
model parameter andp to determine R{model). However, the use of these mean
statistics can lower the resolution of the model. It is quite possible that improved

resolution could be obtained by executing the expectation maximization training
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algorithm on each column duo presented to a model. This would prodpce a

specifically tailored to that column dud, Such a method once more raises the specter
of over-fitting the model to each specific column pair. It may be possible to avoid this,
however, by using only a fraction of the reestimape@vhile maintaining a certain
fraction of the initialp as a prior distribution. This is similar to the Laplacian probability
estimator that initializes the number of observed counts in a count-based system to 1,
before any data has been observed. The precise fraction of the prior information to use
could be obtained from a Dirichlet prior method as describe84hgnd [B5] or simple

takena priori like theq parameter in the Q Model.

Another variant of the Tree Model would eschew the use of randomly generated
column duos for generation of the unpaired model, M@gelInstead, a reference model
would be generated by the explicit assumption of statistical independence. Thus, the
Rand data would be replaced with an evolutionary history of individual columns,
combined using the independence criterion for nucleotide xdyd3xy)=PX)[P{y). This
would help the nonpaired model to reject any kind of statistical dependency, rather than

rejecting only those forms not found in the Rand sample.

The current Tree Model relies heavily on the correctness of the phylogenetic tree
to quantify genetic relationships. For a given multiple alignment, the phylogenetic tree is
generally known only approximately, and in some cases differing regions of an alignment
may have differing trees (as in cases of genetic cross®&}r) [For this reason it might

be a good idea to replace the single phylogenetic tree with a phylogenetic matrix
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representing the genetic similarity between each pair of organisms in the multiple

alignment. Phylogenetic trees may represent a single optimal path through a genetic
mutual information matrix. However, using the single best estimate for a solution may
be far less robust then estimating an expectation value over all possible solutions.
Dynamic programming techniques might be employed to efficiently estimate secondary

structure over all phylogenetic trees, weighted by each one’s likelihood.

The Tree Model performs discrimination by training two models on differing
classes of data and then comparing the performance of each model on novel data. It
seems likely from the degenerate situation where both models find the same data
probable, that both of these models are encoding some of the same evolutionary
dynamics. As a result, it might be wiser to look for a Tree Model based technique that
attempts to model only the differences between the two data sets. Such a model might

help resolve the column duo degeneracy problem.

4.4.4 Additional Areasof Interest

Finally, Tree Model is not limited to measurements of RNA. Its evolutionary
methodology should be easily extensible to the modeling of protein evolution. As a
sensitive detector of structure and phylogeny, this technique might assist in protein

identification, classification and possibtyvitro design.
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5 Appendix A:
Q Model Results
for g=0.0001

The Q Model was run with g parameter value of 0.0001 as well as the
previously reported value of 0.01. While the value of 0.01 which is reporte@ iQ
Modelwas found to produce significantly NLL values, this value for g = 0.0001
produced marginally better discrimination accuracy. As such, it might be of some

interest and is made available here.

Q Model (depender

NLL Validation Se Training Se
(bits/base | Rand Dat Pair Dati Rand Dat Pair Dati
Rand Mode 0.61f 0.51¢ 0.61f 0.51¢
PairMode 0.69( 0.517 0.69( 0.50¢

Q Model (independer

NLL Validation Se Training Se
(bits/base | Rand Dat Pair Dati Rand Dat Pair Dati
Rand Mode 0.56¢ 0.75] 0.56¢ 0.75¢
PairMode 0.57¢ 0.76¢ 0.57¢ 0.76:

Table5—1: Q Model NLL Summary for g=0.0001
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Q Model Classification Accuracy - Simple Discrimini

Actual (train)

Actual (validate

Predicte Ranc Pail Ranc Pail
Ranc 8191 186¢ 2731 612
Pail 14¢ 193¢ 49 65k
Accuracy) 83.39¥% 83.65%

Q Model Classification Accuracy - Neural Net Discrimin

Actual (train)

Actual (validate

Predicte: Ranc Pail Ranc Pail
Ranc 777z 1224 259( 44C
Pail 56¢ 258( 19C 82¢
Accuracy) 85.24% 84.44%

Table5—2: Q Model Classification Summary for g=0.0001
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6 Appendix B:
Posterior Probability
Classifier for 10

In the present work, data likelihoods @pYlodel)) rather than posterior
probabilities (P(Modet])) are used for the classification of column dudk (This
technique is not generally valid according to Bayesian analysis. However, in the case
that the model prior probabilities are nearly equal (P(Mgdgk P(Modeb,;,)), a direct
comparison of data likelihoods should yield similar results to a direct comparison of
posterior probabilities. While the prior model probabilities are close to one another in
the current work (se2.2.2 Discriminatior), the precise impact of this substitution was

not clear.

To provide a greater insight into the the use of likelihoods instead of posterior
probabilities, the posterior probabilities were calculated for the 10 validation data as
outlined in2.2.2 Each column duaodj in the 10 validation set was then reclassified
according thesimple discriminatopresented i2.2.2using posterior model probabilities
rather than likelihoods. These posterior probabilities were calculated from the

likelihoods using Bayes’ Rule as P(Model|d) = P(d|Mdg@jodel)/P(d) where:

|Rand| = Number of column duos in the validation set for Rand 695

|Pair| = Numberof column duos in the validation set for Pair = 317
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P(Modekand = |Rand|/(JRand| + |Pair|) = 695/(695+317) =

P(Modeb,;) = |Pair|/(|Pair|+|Rand]) =  317/(695+317) =
Pd) = PA|Modekan) P(Modekang+PdModeby) P(Modeb:).

68.7%
31.3%

A summary of these results followsTable 61.

IO Model Classification Accuracy:
Simple Discriminator, Validation Data
Likelihood Posterior Probability
Predicted Rand Pair Rand Pair
Rand 2462 134 2467 138
Pair 318 1134 313 1130
Accuracy 88.83% 88.86%

Table6-1: Comparison of Likelihood vs. Posterior Probability Classification

A discriminator formed from the direct comparison of posterior probabilities performs less than 0.05%
better than the same discriminator using actual posterior probabilities P(d|Model).

We find that a simple discriminator, based on Bayesian posterior model
probabilities increases classification accuracy by less than 0.05% over a similar
comparison based on data likelihoods. This lends additional credibility to our
approximation of posterior probabilities as proportional to data likelihoods, for column

duo classification purposes on the present data set.

As a separate investigation, we can estimate the classification error that the Tree
Model would be expected to produce if were it were applied to all possible column duos
in the multiple alignment. To answer this question, we assume values for |Pair| and
|Rand| consistent with an exhaustive search through all column duos of the multiple
alignment for paired column duos. We classify each column duo on our data sets

according to the new model priors, and then separate the misclassification rates by data
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class (Rand & Pair). Finally, we rescale these error rates to reflect the relative

percentages of unpaired and paired column duos as a fraction of all possible column
duos in the multiple alignment. This extrapolation relies heavily on the assumption that
the training data in Rand and Pair accurately represent thier generating population
(POofkangand Pop,i). To comply with this condition, we model only those column duos

in the multiple alignment that would meet our 75% valid nucleotide duo criterion. This

limits us to 19.9% of the all nonpaired column duos and 67.2% of all paired column

duos.
|Pair| = # of paired column duos in 16S alignment 9440.672 = 634
|Rand| = # of unpaired column duos in alignment =
(# of columns}-|Pair| = (2,688-944)0.199
= 1,437,656
P(Modep,) = |Par|/(|Pair|+|Rand|) = 634/(634+1,437,656) = 0.044%
P(Modekand = 1.0-P(Modes,) = 99.956%

The result of this proceedure, along with our estimate of the model’s error rates are found

below inTable 62.

IO Model Classification Accuracy:
Extrapolation to Entire Multiple Alignment

Predicted Actual Data Set Model
Data Set Rand Pair Accuracy
Rand 1,306,819 88 | >99.99%
Pair 130,837 546 0.04%
Accuracy
By Data Sef 90.90% 86.12% 90.909

Table6-2: Posterior Probability Extrapolation

This table contains the results of a posterior probability extrapolation of the Tree Model from Rand and

Pair to the set of all column duos in the multiple alignment. The cumulative accuracy is in the lower right
cell of the table.
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This extrapolation clearly brings to light a problem with secondary structure

prediction based on column duo classification. Even given a classification accuracy of
99%, the vastly greater number of unpaired column duos will overwhelm the smaller
number of column pair. In the previous example, we correctly identified 546 of the
paired duos (86%) and 90% of the nonpaired duos. However, this left approximately
130,000 nonpaired duos classified as paired, obscuring the 546 which actually were
paired. If a column pairing detector incorrectly accepts even 0.1% of the random column
duos as paired (about 1,300 in this example), there will still be substantially fewer

corretly identified paired duos than incorrectly classified nonpaired duos!

The effects of this enormous bias may be reduced by tightening the restrictions
on duos that are accepted as paired. Currently, the model with the higher posterior
probability from a column duo, is assigned to that duo. We can make this assignment
more stringent by requiring a higher posterior probability (P(Megld)) before
classifying a column as paired. As we raise this threshold towards 100%, more paired
duos will be incorrectly be classified as unpaired, but duos accepted as paired will have a
greater certainty of actually being paired. $egure 6-1for a graphical depiction of

this transition.



137

Decrease in False Pair Classification With Increasing Classification Threshold
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Figure 6-1. Duos Classified as Paired vs. Classification Threshold

The above chart shows how the number of nonpaired column duos classified as paired drops off quickly
as the classification threshold increases, while the number of paired duos drops off more slowly. Points
are drawn at x axis values of .5, .1, 0.01 and every each factor of 10 thereafter. The final point is at
x=10%%, At this point all of the 311 column duos classified as paired are actually paired. For the purposes
of logarithmic representation, the number of nonpaired column duos at*Xisli@presented as 1 rather

than 0.

At the far left hand side of the chart, the classification threshold is 50%. At this
point 516 of the 634 paired column duos (81%) are classified as paired, but so are
approximately 175,000 of the 1.8 million unpaired duos. When the required probability
threshold is raised to-10%! (very close to 1)all 311 of the column duos that are
classified as paired are actually paired, though approximately 51% of the paired duos are

incorrectly classified as unpaired.
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While no unpaired duos were classified as paired at as classification threshold of

1-10%%, it should be noted that the results for thresholds near 100% may be statistically
unreliable. This is because we are extrapolating performance on a very large set of
unpaired column duos (1,437,656) from a relatively small discrimination validati®in set

of 2780 (paired, nonpaired) example 2-tuples. This discrimination set is, in turn, derived
from an even smaller set of 695 unpaired column duos. The result is that each original
discrimination set element counts for 1,437,656/2¥8Q7 elements in the extrapolated
data. The result of this data leveraging is that the three rightmost pointsRaulide
Duosdata set inFigure 6-1 which represent approximately 3500, 2000 and 500
misclassified unpaired column duos, are generated by only 7, 4, and 1 discrimination set
elements. These in turn could be generated from as few as 2, 1 and 1 unpaired column
duos, respectively. While the threshold for the correct classification of these last
unpaired column duos seems visually consistent with the previous data in the chart, it is

hardly statistically robust.

% Each element of the discrimination validation set is a 2-tuple of column duo probabilities, namely
P(Modekandd) and P(Modgyd). As we are using four fold cross validation, there are four paired models
against which to classify each Rand column duo. As we have 695 unpaired column duos, each of which is
used exactly once for validation, we hav&3 = 2780 unpaired elements of the discrimination validation

set.
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7 Appendix C: Data Separation Charts

This section contains graphs that were deemed useful, but were generated too late
for formal inclusion into the main body of the thesis. These graphs are generated from
the same data that was used to generate the NLL graphical results summary figures for
each model ir8 Experiments These summaries are found in:

Figure 3-6: Frequency Model Results Graphical Summary (detaiage4
Figure 3-8: Q Model Results Graphical Summary for g=@lpage8,
Figure 3-9: 10 Model Results Graphical Summarypagel02 and

Figure 3-11: IOM Model Results Graphical Summarypagel07.

As the data in these summaries was found to cluster strongly around the X=Y line
on each chart, it was frequently difficult to pick out salient data characteristics. To
further distinguish the clusters, the following charts were produced. The data points on
each chart in this section correspond to the data points found on the graphical summaries
mentioned above. For each Model, except Frequency, this section contains two charts,
an overview and a detail. The overviews are all scaled similarly to provide a common
reference for comparison. The details are scaled separately to represent the area of
greatest interest. The X-axis on of each chart represents the Rand model NLL score for
each column duo in a validation set, just like the graphical summaries. All X-axes are
identical in range and scale to one another, as well as to the graphical summaries.
However, the Y-axes of the following charts represents the directed distance from a given

graphical summary data point, to its X=Y line. Specifically, this Y-axis value is

(NLL(P(d|Modeb.;))-NLL(P(d|Modekand)) / ~2
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and is scaled linearly in units of bits per base. Thus, all of the data points above the X-

axis are classified as unpaired, and all of the data below the X-axis are classified as
paired by the simple classifier. For brevity, the chart legends refer to correctly classified
data are agoodand incorrectly classified data bad Thus, the all data in the half-
plane above the X-axis would be Good Rand or Bad Pair, having been classified as
unpaired. Similarly, all data below the X-axis is Bad Rand or Good Pair, having been
classified as paired. The Frequency Model’s data presents a special case. As it was
tightly and uniformly clustered, it is presented in a single graph with a linear X-axis. No

detail of this graph was deemed necessary.

Frequency Model Data Class Seperation Overview
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Q Model Data Class Seperation Overview
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10 Model Data Class Seperation Overview
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IOM Model Data Class Seperation Overview
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