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Abstract

Resolution has not been an effective tool for deciding satisfiability of propositional CNF formulas, due
to explosion of the search space, particularly when the formula is satisfiable. A new pruning method is
described, which is designed to eliminate certain refutation attempts that cannot succeed. The method
exploits the concept of “autarky”, which was introduced by Monien and Speckenmeyer. New forms of
lemma creation are also introduced, which eliminate the need to carry out refutation attempts that must
succeed. The resulting algorithm, called “Modoc”, is a modification of propositional model elimination.
Informally, an autarky is a “self-sufficient” model for some clauses, but which does not affect the remaining
clauses of the formula. Whereas Monien and Speckenmeyer’s work was oriented toward finding a model,
our method has as its primary goal to find a refutation in the style of model elimination. However,
Modoc finds a model if it fails to find a refutation, essentially by combining autarkies. Unlike the
pruning strategies of most refinements of resolution, autarky-related pruning only prunes refutation
attempts that ultimately will be unsuccessful; consequently, it will not force the underlying search to
find an unnecessarily long refutation. The other major innovation is Modoc’s lemma management.
Building upon the C-literal strategy proposed by Shostak and studied further by Letz, Mayr and Goller,
methods for “eager” lemmas, “quasi-persistent” lemmas, and two forms of controlled cut are described.
Experimental data based on an implementation in C is reported. On random formulas, Modoc is not as
effective as recently reported model-searching methods. On more structured formulas, such as circuit-

fault detection, it is superior.
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1 Introduction

The decision problem of Boolean, or propositional, satisfiability 1s the “original” NP-hard problem. We
assume the reader is generally familiar with it. We shall consider exclusively propositional formulas in
congunctive normal form (CNF), also called clause form. Each clause is a digjunction of literals, and clauses
are joined conjunctively. A closely related problem is to determine wvalidity of a formula in disjunctive
normal form. As language recognition problems, satisfiability 1s in NP, while validity is in co- NP. However,
as deciston problems, they are essentially equivalent, as both “yes” and “no” answers must be produced. As
a practical consideration, a program may be required to produce “evidence”, or a “certificate”; to support
its decision, an issue discussed by John Slaney at CADE-12 [Sla94]. In this setting, a certificate is a file
that can be processed by an independently written program, to verify the solver’s conclusion, using simple,
highly trusted, computations. If critical decisions will be based on the program’s output, such a proof would
permit an independent, and straightforward, verification of the program’s conclusion. To our knowledge, no
previously existing implementations can produce a proof for both “yes” and “no” decisions.
Two basic methods have been developed for satisfiability testing: refutation search and model search.

1. Refutation search seeks to discover a proof that a formula is unsatisfiable, usually employing resolution.
If a complete search for a refutation fails, the formula is pronounced satisfiable. Model elimination and
SL-resolution typify these methods [Lov69, KK71, Lov72].

2. Model search seeks to discover a satisfying assignment, or model, for the formula. If a complete search
for a model fails, the formula is pronounced unsatisfiable. The DPLL algorithm, due to Davis, Putnam,
Logemann and Loveland [DP60, DLL62] is the basis for many modern refinements. A different approach
is to treat the problem in terms of integer linear programming [BJL86, JW90, HF90, HHT94].

Several methods use incomplete model searches; so they can only report “don’t know” and give up
based on resource limits, when they fail to discover a model [SLM92, GW93, SKC95]. However, they
have succeeded in finding models on much larger formulas than current complete methods can handle.

Current propositional methods are “one-sided” in the information that they can provide to support their
answers. Specifically, refutation methods can produce a proof of unsatisfiability, which 1s easily checkable,
but can only answer “sat” on satisfiable formulas. On the other hand, model-search methods can exhibit a
model, again easily checkable, for satisfiable formulas, but can only answer “unsat” on unsatisfiable formulas.
This paper describes an integrated propositional approach that simultaneously searches for either a refutation
or a model.

In the first-order arena there has been some work on searching for a model as well as a refutation, but
it does not seem to carry over effectively to the propositional case. The method of Fermuller and Leitsch
[FL93], which is intended to show decidability of certain classes of first-order formulas, first performs hyper-
resolution to saturation, but this is too expensive in the propositional setting to be practical. The method
of Caferra adds equations soundly to the original formula, again proving decidability of certain first-order
classes [Caf93]. Since the equations are based on unifying substitutions, there is no apparent way to use this
method in the propositional case. Finally, failure caching on first-order Horn formulas has been reported
[E1k89, AS92], but propositional Horn formulas are not challenging.

Several high performance satisfiability testers have been reported in recent years [Lar92, CA93, ZS94,
SFS95, DABC95, JSD95, Pre9b, VGTI6, inter alia]. Interestingly, they have primarily, if not exclusively,
been based upon the model-search paradigm. This contrasts with the situation of first-order theorem provers,
which are primarily refutation-based.

One problem with existing propositional refutation methods is illustrated dramatically in Figure 1. Model
elimination (abbreviated M.E., and regarded as one of the most efficient refutation strategies) is able to solve



Unsatisfiable Satisfiable
Formula Size No. of | Extensions No. of Extensions
Vars Clauses || Samples | Avg. Max || Samples Avg. Max
14 60 7 11 17 13 184,888 542,254
15 64 7 13 20 13 573,794 2,019,490
16 69 10 18 39 10 | 1,016,480 2,462,290
17 73 4 21 36 16 | 2,623,570 9,160,390

Figure 1: Comparative performances of model elimination on unsatisfiable and satisfiable random 3CNF
formulas. On satisfiable formulas a refutation was attempted with each clause as top clause, and the average
was computed for that formula. (E.g., some satisfiable 10-variable formula averaged 12,068 extensions per
top clause.) Implementation and experimental details are given in later sections, along with results for the

new Modoc algorithm.

Unsatisfiable Satisfiable
Avg. Formula Size No. of | Extensions No. of | Extensions
Vars Clauses || Samples | Avg. Max || Samples | Avg. Max
29 41 15 9.5 49
29 53 6 | 217.3 1,042

Figure 2: Comparison of model elimination on unsatisfiable and satisfiable propositional formulas having at
least 12 variables in the TPTP library v1.2.0. Satisfiable formulas were handled as described above.

unsatisfiable random 3CNF formulas with up to 100 variables, but it bogs down on satisfiable formulas about
at 17 variables. It should be noted that, for modern model-search methods, these formulas (both unsatisfiable
and satisfiable) are considered easy at 100 variables and trivial at 20 variables. The same phenomenon occurs
on propositional formulas found! in the TPTP library v1.2.0 [SS95], as shown in Figure 2. Keep in mind
that the numbers shown reflect the time for one attempt on a satisfiable formula. To conclude that it is
satisfiable based on M.E., numerous attempts must be made.

Three reasons have been mentioned for the lack of high performance propositional refutation systems:

1. The search space is too large, particularly for satisfiable formulas, as shown in Figure 1.
2. The method cannot produce models.

3. The most efficient methods are only guaranteed to find a refutation when some fop clause is known to
be in a minimal unsatisfiable subset of clauses; in some applications such a top clause is not known a
priovi.

The integrated approach of this paper addresses all three of these problems.

The main results are summarized in Section 1.1 and informally illustrated with examples in Section 1.2.
Notation and terminology is covered in Section 2. Tree structures for M.E. and background are reviewed
in Section 3. Autarky pruning is described in Section 5. New lemma creation mechanisms are described in
Section 6, which also briefly reviews previous work on lemmas in M.E. Experimental results based on an
efficient C implementation are reported in Section 7. Conclusions and future work are in Section 8.

1SAT: num285-1, syn086-1, syn087-1, syn091-1, syn092-1, syn302-1; UNSAT: msc007-1.005, puz013-1, puz014-1, puz015-2,
puz016-2, puz033-1, syn003-1, syn004-1, syn010-1, syn089-1, syn090-1, syn093-1, syn094-1, syn097-1, syn098-1. TPTP includes
formula generators, but these were not used.
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Figure 3: Model elimination search for Example 1.1. (Left) Search fails at lowest —e goal. (Right) After
backtracking to alternative choices at —a goal.

1.1 Summary of Results

This paper reports on the combination of autarky pruning with extended lemma creation methods. Roughly
speaking, lemmas and autarkies are duals of each other: a lemma permits curtailment of a resolution attempt
that 1s certain to succeed, while an autarky permits curtailment of a resolution attempt that is certain to
fail. Experimental data is based on an efficient C implementation.

New lemma creation mechanisms, called “eager” lemmas and “quasi-persistent” lemmas are described in
Section 6. That section also briefly reviews previous work on lemmasin M.E., and discusses the compatibility
of autarky pruning and lemma creation. Quasi-persistent lemmas are a variant of the “C-literal” strategy,
adapted for efficiency in the propositional case. Eager lemmassupplement them to provide substantial further
reductions in proof searching by providing early identification of refutations that will succeed. Derivation of
eager lemmas is closely related to unit clause propagation.

When the refutation of a literal succeeds, the complement of that literal becomes a quasi-persistent lemma
and the complements of certain eager lemmas become quasi-persistent lemmas also. The eager lemmas whose
complements survive as quasi-persistent lemmas are shown to correspond to articulation points of a graph
related to the successful refutation. Articulation points can be identified in linear time by a standard graph
algorithm.

Several propositional techniques are used that are not possible, or considerably more complex, in first-
order resolution. These issues are mentioned briefly in Section 4.2, Section 6.2, and Section 6.5.

1.2 Informal Overview

For readers familiar with model elimination adapted to tree structures [MZ82, LMG94], we now give simple
examples of how autarky pruning and eager lemmas work. Other readers may wish to come back to this
example after reading more of the expository material in Section 3.



Example 1.1: The formula .S consists of all 3CNF clauses on variables a, b, and ¢, except for the all positive
clause, as shown at the top of Figure 3. Suppose the top clause is all negative. Let us trace out a model
elimination search for a refutation. As shown on the left of Figure 3, literal —a resolves with clause [a, —=b, —¢],
then literal —b resolves with clause [a, b, —¢]. In the latter clause, literal @ can be reduced with the ancestor
(or A-literal) —a, as indicated by the boxed “A”. Literal —¢ remains to be refuted, but the search procedure
now fails, because each clause containing literal ¢ also contains an ancestor literal.

If we stop and reflect on the meaning of this failure, we see that every clause containing the literal ¢ is
satisfied by a partial assignment consisting of the ancestors (A-literals) on this branch, specifically:

M = {—a,—b,—c}.

(In this case the partial assignment happens to be a total assignment.) But obviously, every clause containing
the literal —c is also satisfied by M, so we conclude that every clause involving the variable ¢ is satisfied by
M.

Model elimination now backtracks and looks for another clause that resolves with —b, and does not
contain the ancestor —a. There are none. We can now extend the conclusion of the previous paragraph to
say that every clause containing either of the variables b or ¢, either positively or negatively, is satisfied by
the partial assignment M.

Model elimination again backtracks and looks for another clause that resolves with —a (Figure 3, right).
There are two such clauses, as indicated. The standard algorithm would continue trying to construct a
refutation using one of these clauses, then the other. But notice that both of these clauses are satisfied by
the partial assignment M mentioned above.

After a few moments thought, we can predict that these refutation attempts must fail, without carrying
out the search. Intuitively, the reason is that we cannot use a clause that is satisfied by M to “get outside of
M?” . Every extension will have a subgoal that is satisfied by M; no such subgoal can be handled by reduction
because all the ancestors are also in M. Eventually, some goal is generated that has no eligible extensions.

Finally, we conclude that the partial assignment M satisfies all clauses in which any of the variables a,
b, or ¢ appears. This conclusion holds up even if we add additional clauses to S that do not involve the
variables a, b and e. We call such a partial assignment an autarky (see Definition 5.1).

This example illustrates, in an over-simplified way, that:

1. Autarky analysis can predict that certain refutation attempts must fail;

2. A model for a satisfiable formula can be constructed as a series of autarkies.

[

Example 1.2: Figure 4 illustrates the main idea of eager lemmas, introduced in Section 6.5. To avoid
clutter, parts of the derivation that are not germane to the discussion are omitted. In Modoc, when subgoal
-k is selected, clause [—e, k, f] is “pre-reduced” through unit implication (Definition 2.3). Then goal —k is
extended with clause [a, k], creating subgoal a. Subgoal a creates an eager literal (E-literal) —m by unit
clause propagation. In the process, four clauses are “pre-reduced” as shown by the dashed arrows from a
and —m. Rather than extending with the clause [—a, =m], we assume the program extends a with [—a, e, ¢],
as shown. This extension creates two subgoals and we assume e is chosen first. When e is used to initiate
unit clause propagation, a series of six E-literals are derived by unit clause propagation, as shown in double
boxes, and the empty clause is derived. In this process, additional E-literals might have been derived, but
are not shown, and the E-literals normally are not derived consecutively.



-k a -m
AN A\ AN
S

(— (9

Figure 4: Fager lemmas, discussed in Example 1.2.

Since the empty clause was derived, we know that e can be refuted. To find the clauses relevant to the
refutation, we want to work back from the empty clause to e. Remember that there are normally irrelevant
E-literals as well. As each E-literal is derived, the clause that led to its derivation, called its eager parent,
is associated with it. Eager parents are shown immediately above their E-literals. Working back from the
empty clause, a directed acyclic graph (DAG) is defined by constructing edges from an E-literal (e.g., =d)
to the E-literals whose complements appear in the clause that derived it (e.g., ¢ and —g), as shown in the
lower part of the figure. This is called the eager dependency DAG. Edges to literals that are higher in the
tree than e (shown as dashed lines) are not considered part of the DAG.

The key theorem (Theorem 6.1) is that articulation nodes of the DAG are precisely the E-literals whose
complements become quasi-persistent lemmas (similar to C-literals). Of course, —e, the complement of
the refuted subgoal, becomes a quasi-persistent lemma, as well. A further interesting property is that the
dependencies are found by following the dashed edges from DAG nodes that have a path to the articulation
node.

Thus in this example, =h, d and —f become C-literals with dependency a. (The actual lemmas are
[—h, —a], ete.) The E-literal —im is not itself a dependency, but the ancestors upon which it depends are; in
this case, =m depends on a only. Also, —e becomes a C-literal with dependencies @ and —k. These C-literals
could have been derived by the normal operations of model elimination, but possibly only after lengthy
fruitless side trails. []

2 Preliminaries

Standard terminology for conjunctive normal form (CNF) formulas, (disjunctive) clauses, literals, and
propositional variables, is used. A finite set of propositional variables is fixed throughout the discussion. If
F is a formula, lits(F) denotes the set of literals composed from variables occurring in F.



Definition 2.1: (literal, clause, formula, lits, 4+, —) The expression [p1, ..., pi] denotes the disjunctive
clause that consists exactly of those literals. The empty clause is denoted (. For brevity, unit clause [¢] will
simply be denoted as ¢. Similarly, a formula {C'} consisting of a single clause may be denoted as C.

We denote disjoint union by “+” which is only defined when the operands are disjoint, and set difference
by “—” which is only defined when the second operand is a subset of the first. []

As an example of overloading, if F' denotes a formula (which does not contain the unit clause [¢]), then
F + q denotes F U {[q¢]}.

Definition 2.2: (assignment, satisfaction, model) A partial assignment is a partial function from the
set of variables into {false, true}, and is extended to literals, clauses, and formulas in the standard way. It
is conventionally represented by the (necessarily consistent) set of wunit clauses that it maps into true. A
clause or formula is satisfied by a partial assignment if it is mapped to true.

Departing somewhat from standard terminology, A partial assignment that satisfies a formula is called a
model of that formula. []

Definition 2.3: (unit implication, unit subsumption, strengthened formula) Let M be a partial
assignment for formula S. The clause C'|M, read “C strengthened by M”, is the (possibly empty) set of
literals

CIM=C—-{q|qeCand ~qe M}

That is, complements of literals in M are removed from C'. This operation is called unit implication. Unit
implication applied to a formula consists of applying it to each clause.

The operation of unit subsumption takes a partial assignment M and a formula S and outputs the formula
consisting of all clauses of S that do not contain any literal of M.

The formula S| M, read “S strengthened by M?”, is the (possibly empty) set of clauses

S|IM = {C|M | C € S and C contains no literal of M }
That is S|M results from applying both unit implication and unit subsumption to S. []

gxample 2.1: Let S consist of [a,b], [0a, ], and [b,d]. Then S|{a} = {[c],[b,d]}, and S|{a,c} = {[b,d]}.

3 Clause and Derivation Trees

This section describes the tree data structures we shall use, which are chosen especially for propositional
resolution. Trees are now recognized as the most appropriate data structures for representation of linear
resolution derivations, following Minker and Zanon [MZ82]. Model elimination originally used a chain format
[Lov69]. Recently, Letz et al. have given a unified view of the methods of tableau calculus and clause trees
[LM@G94]. However, these are geared toward first-order application. Our tree data structure is different in
that we need not concern ourselves with substitution. The following technical definitions are illustrated in
Example 3.1 and Figure 5.

Definition 3.1: (clause-goal tree, goal ancestor) Let a set S of propositional clauses be given (i.e., a
formula). Let T, called verum, be a symbol distinct from all propositional variables.

A clause-goal tree is a bipartite directed tree with two classes of nodes, called clause nodes and goal
nodes. That 1s, a clause node may have only goal nodes as children and vice versa. Edges are directed from



the root to the leaves. Recall that a branch of a tree is a path from the root to a leaf. The tree is unordered
in the sense that the order of any node’s children is immaterial.

Fach clause node is labeled with a clause of S, and each goal node is labeled with a literal of lits(S), or
with T. Usually, a node 1s identified with its label, but when it is necessary to name a specific node, we
assume some structural naming scheme. We write v(q) to denote the goal node whose structural name is v
and whose label is ¢, and write w[C] to denote the clause node whose structural name is w and whose label
1s C.

A goal ancestor of a node v is a goal node on the path from the root to v, including v itself if it 1s a goal
node. Since clause ancestors are not significant, we shall refer to goal ancestors simply as ancestors. The set
of all goal ancestors of v is denoted as ancs(v). While anes(v) is technically a set of nodes, it can also be
considered as a set of unit clauses made from the nodes’ literal labels, i.e., a formula. []

Definition 3.2: (propositional derivation tree (PDT), PDT extension) Let S and T be as in
Definition 3.1. Throughout this definition all literals are assumed to be in lits(S) and all clauses are assumed
to be in S.

A propositional derivation tree (PDT) is a clause-goal tree in which

1. Each clause contains a literal complementary to its goal parent (or its parent is T, in which case the
clause is called the top clause).

2. No clause contains a literal that is a goal ancestor of the clause.

3. The goal children of each clause consist exactly of the literals that are not complemented in the clause’s
goal ancestors.

A PDT extension adds one clause and the necessary subgoals of that clause to a PDT, maintaining the above
properties. The clause is attached as a child of an existing leaf goal node. []

From the definition we see that every PDT is rooted with a goal node, and every goal node either is a
leaf or has exactly one child. Also, it is easy to see that a clause node w[C] is a leaf in a PDT if and only if
every literal in C' is complemented in ancs(w).

Definition 3.3: (refutation) If v(q) is the root of a PDT that contains only clause nodes as leaves, then
this PDT is called a refutation of ¢ with respect to S. If ¢ = T, it is called simply a refutation of S. (These
terms are justified in Theorem 3.1.) []

Example 3.1: Figure 5 shows PDT examples. The PDT at the right is obtained by PDT extension using
the other two. The left side of Figure 3 shows a clause node in which implicit reduction has occurred, as
indicated by the boxed “A”. (This box is a notation, but not a structural part of the tree.) []

Let us point out that the terminology “PDT extension” as defined above i1s a combination of model
elimination operations called “extension” and “reduction”. In the propositional framework, “reduction” may
be considered mandatory [Sho76]. In a first-order framework, both “extension” and “reduction” normally
must be considered, due to differing unifiers, so the goal must be created.

For purposes of intuition, a “goal node” means that the goal of the derivation is to refute the literal in the
node, not to validate it. The term “refutation” in Definition 3.3 is justified by the following theorem, which
essentially states that propositional weak model elimination is sound. This is already well known [Lov69,
MZ82, LMG94], and is proved in the new terminology in [VG95].



Figure 5: Propositional derivation trees (PDTs) discussed in Example 3.1. Left: A PDT with top-clause
[b,—f]. Center: The extension clause [-b, =d, f] may be thought of as a single-clause PDT. Right: the result
of PDT extension.

Theorem 3.1:
(A) If there is a PDT T that is a refutation of ¢ w.r.t .S, then S has no model in which ¢ is true.

(B) If there is a PDT that is a refutation of .S, then S is unsatisfiable.

4 Search Trees

This section describes “propositional derivation search trees”. These structures have some similarity in
purpose to tableau search trees [LMG94]. However, there are some essential structural differences, as
discussed in Section 4.2, which are again based on exploiting the simplifications available in the propositional
logic. Propositional model elimination can be viewed as exploring PDSTs.

4.1 PDST Basics

Definition 4.1: (propositional derivation search tree (PDST)) Let S and T be as in Definition 3.1.
A propositional derivation search tree (PDST) is a clause-goal tree that differs from a PDT (Definition 3.2)
only in that a nonleaf goal node, instead of having one clause child, has a clause child for each clause that
might appear in that position in a PDT. [

It is convenient to visualize a PDST as a three-dimensional tree; in which goal children of a given clause
are arranged left to right, and clause children of a given goal are arranged front to back (see Figure 6,
discussed next). Again, it is easy to see that a clause node w[C] is a leaf in a PDST if and only if every
literal in C' is complemented in ancs(w).

Example 4.1: Consider the clause set S shown in Figure 6. The PDST with top clause [b, = f] is also shown.
Observe that [¢, ~d] does not occur in the PDST. The boxed “A”s are not a structural part of the tree, but
are notations to indicate literals that are subject to implicit reduction. []



Figure 6: A completed propositional derivation search tree (PDST) with top clause [b, = f].

Definition 4.2: (failed goal node, completed PDST, universal PDST) A failed goal node in a PDST
is a leaf node v(q) such that every clause of S that contains =¢ also contains some literal in ancs(v(g)); the
branch ending at v(q) is called a failed branch.

A PDST is said to be completed if every leaf that is a goal node is failed. In this case no further PDST
extension is possible.

A universal PDST for S is constructed as follows: for each clause C) € S create a completed PDST for
S with CU) as top clause, then merge all their roots. []

We now state some structural properties of PDSTs ([VG95]), which provide the foundation for our imple-
mentation of propositional model elimination. The algorithm searches the universal PDST by constructing
a representation of the strengthened formula mentioned in the next lemma, using efficient data structures.

Lemma 4.1: Let T be a PDST for S with root v(q), where ¢ is a literal. Let w[C] be a child of v. Then a
PDST for S|{¢} with top clause C|{q} (call it T") may be formed as follows:

1. The root of T" is v'(T);

2. The single subtree of v/ is a copy of the tree rooted at w, except the clause labels are strengthened by

{1}



Figure 7: A PDST for a strengthened formula, as discussed in Example 4.2.

Lemma 4.2: Let 7' be a PDST for .S with top clause node w[C]. Let v(¢) be a child of w. Then the tree
rooted at v is a PDST for .S with top goal ¢. |

Corollary 4.3: For a given formula S and a given top clause C or given top goal ¢, the completed PDST
is unique, up to reordering of children. Also, this is true for the universal PDST. [

Example 4.2: Consider the PDST on the left of Figure 7. The strengthening of S with —a yields
Sla = {[-b, =], [=b, ], [b, ~]}

To illustrate Lemma 4.1, the completed PDST for .S|—a with top clause [-b, —¢] is essentially the left branch
of left PDST of Figure 7, with the goal —a replaced by T. Clauses containing literal a are replaced by their
strengthened forms, producing the PDST shown on the right. []

4.2 Difference from Tableau Search Tree

PDSTs do not generalize straightforwardly to the first-order case. The reason is that a substitution must
be applied throughout the derivation tree, not just to the subtree where the goal is unified with a clause.
Consequently, in tableau search trees [LMG94], a search tree node is labeled with an entire derivation tree.
An example of a tableau search tree is shown in Figure 8. In a first-order version of this example, the five
occurrences of the goal =a would in general be different due to differing substitutions in the various search
nodes.

5 Autarkies

This section defines “autarky” and indicates how the concept is used in Modoc. The potential value of
autarkies is suggested in Lemma 5.1, following the definition. Theorems 5.2 and 5.3 establish connections
between autarkies and PDSTs. The application to refutation search efficiency is sketched at the end of the
section. All topics of this section are described in more detail in another report [VG95].
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Figure 8: The tableau search tree that corresponds to the PDST on the left of Figure 7.

The concept of “autarky” was (to our knowledge) introduced into logic by Monien and Speckenmeyer,
who proposed a new model searching algorithm based on it [MS85]. The word “autarky”, used mainly in
economics, literally means “self-sufficient country or region”.

Definition 5.1: (autarky, autsat, autrem) Let S be a set of CNF clauses. A partial assignment M
(Definition 2.2), possibly defined on some variables that do not occur in S| is called an autarky of S if M
partitions .S into two disjoint sets,

S = autsat(S, M) + autrem(S, M)

such that each clause in autsat(S, M) is satisfied by M and each clause in autrem(S, M) has no variables
in common with the variables that occur in M. In particular, no literal of a clause in autrem(S, M) is
complemented in M. [

Lemma 5.1: Let M be an autarky of formula S.
(A) SIM = autrem(S, M).
(B) If S is unsatisfiable, then autrem(S, M) is also unsatisfiable.

(C) If S is satisfiable, then M can be extended to a model of S.

Example 5.1: As in Example 2.1, let

S = {[aa b] ) [_'aa C] ) [ba d]}

11



Figure 9: A completed propositional derivation search tree (PDST) with top goal d for the same formula as
Figure 6.

Then {a, ¢} is an autarky of S, with

autsat (S, {a, c}) = {[a,b], [a, ]}
autrem(S, {a,c}) = {[b,d]}

However, {a} is not an autarky because of clause [—a, c]. [J

As seen in the previous example, another way to characterize an autarky M is that S|M C S, that is,
no clauses are shortened by the strengthening, although some clauses may be deleted.

The following theorems indicate how autarkies can interact with a refutation search. The first theorem
shows that clauses satisfied by an autarky can be ignored, and the second shows how autarkies can be
expanded by failed refutation searches.

Example 5.2: The next theorem is illustrated by Example 4.1 and Figure 6. Let M = {=b,—f}, which is
an autarky. We see that there is no refutation beginning with the top clause [b, = f], so the theorem holds in
this case.

Now consider a different PDST for the same S, this time with top goal d, which has two clause children,
[-b,—d, f] and [c, ~d], as shown in Figure 9. The theorem asserts that a refutation attempt cannot succeed
by choosing the first clause, because M satisfies it. Indeed, if the program did choose the first clause, then it
would need to refute the resulting subgoal that occurs in M, which is =b. The program’s next choice would
necessarily be among clauses that were satisfied by M, in this case [b, =f]. But now the goal —f fails. []

Theorem 5.2: Let T be a completed PDST for formula S, and let M be an autarky for S. Assume that
the root of T is labeled either with T or a literal ¢ such that —q is not in M. If clause C' € autsat(S, M),
then C' does not occur in any PDT with the same root as T that refutes S. |
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Example 5.3: The next theorem is also illustrated by Example 4.1 and Figure 6. This time, consider the
completed PDST rooted at the goal —=f. Let M be the empty set, which is an autarky. There is no PDT
refutation of —f with top clause [b, = f], so the theorem asserts that M can be extended to some autarky
M’ that contains —f. Simply adding —f is insufficient, due to [-b, —d, f]. However, adding both —f and —b
makes M’ an autarky. [

Theorem 5.3: Let T be a completed PDST for formula S with root v(q), where ¢ is a literal, such that
there is no PDT refutation of ¢ with the same top clause as T'. Let M be an autarky for S such that neither

g nor =g is in M. Then there is an autarky M’ O M such that ¢ (interpreted as a unit clause) is in M".
Moreover, M’ — M C lits(S). 1

5.1 Propositional Application for Autarky Analysis

Based upon Theorem 5.3, we arrive at the following idea for autarky construction during a refutation search

(additional details in [VG95]).

1. When the search for a refutation of a specific goal ¢ begins, an “initial autarky” My (possibly ) is
passed in. By the next step, we can assume that neither ¢ nor —q is in My. This set will be augmented
to a “current autarky” M; whenever a clause extension fails to deliver a refutation.

2. Any clause C'7) (1 < j < k) that is eligible for extension, but is satisfied by the current autarky is
bypassed (and the current autarky is unchanged). This is the crucial eutarky pruning operation.

3. For each eligible clause CU) that is tried as an extension, the current autarky M;_1 is passed down
into a recursive search, enabling pruning in the subtree. If the extension fails to lead to a refutation,
then the recursively called procedure passes back an “autarky increment” AM;, and a new “current
autarky” M; = M;_1 +AM; is computed. The increment is supplied by a goal child of CU) that could
not be refuted.

4. If all clauses fail to lead to a refutation of ¢, then the procedure passes back >~ AM; +¢. This becomes
an autarky increment at the higher level.

For efficiency of implementation, Modoc applies unit subsumption (Definition 2.3) at the time ¢ is added to
the autarky increment, and undoes it later if the autarky increment is discarded (because some alternative
refutation succeeded).

Example 5.4: Again consider Example 4.1 and Figure 6. With [b, —f] as the initial top clause, a refutation
procedure (selecting literals depth-first, left-right) would refute goal b at level 1, then search for a refutation
of =f at level 1. This leads to an extension, then to the failed goal —b at level 2. Thus —b is passed back
to level 1 as the final autarky increment. Back at level 1, there are no more clauses to try, so the autarky
increment from level 2 is combined with this goal, and passed up to level 0 as {—b, = f}. At the top level we
had My = 0, so My = {=b,—f}. This is an autarky for the entire formula S.

Now we know that S is unsatisfiable if and only if autrem(S, M;) is. In other words, clauses [-b,—d, f]
and [e, —f] do not need to be considered as alternate top clauses for new refutation attempts. Since M; is
now the “current autarky” at level 0, the procedure sketched above bypasses them. In this example, any
new top clause selected from autrem(S, M;) leads to a successful refutation. In general, the next top clause
might also fail, and M; would be expanded to a larger autarky M-, etc. [
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6 Lemmas and C-Literals

In the model elimination procedure a “lemma” may be recorded upon the completion of any (sub)refutation
[Lov69, FLSYT74, Lov78], although this is not necessary for completeness. Shostak proposed an efficient
“C-literal” mechanism to maintain such lemmas in model elimination chains [Sho74, Sho76]; Letz et al.
generalized 1t to trees with an ingenious time-stamping method, and also proposed a pruning strategy based
on C-literals, called “strong regularity” [LMG94]. Lemma strategies have been studied empirically for first-
order theorem proving using chains [FLSY74, AS92 Sti94], as well as trees [LMG94], but we are aware of
no empirical studies of lemma strategies on propositional problems. This section sketches how lemmas are
incorporated into the implementation of the Modoc algorithm. We introduce and describe a strategy for
“quasi-persistent” lemmas and “eager” lemmas as well as two forms of “cuts” that permit refutations to be
accelerated.

In Modoc, autarky pruning is compatible with the use of lemmas, and largely orthogonal. Clauses that
are pruned by an autarky cannot participate in a successful refutation (at the point where they are pruned),
whether or not lemmas are used to shorten the refutation.

6.1 Background on Lemmas

Suppose the refutation of a literal ¢ is completed in a PDT. Let B be the subset of ancestors of ¢ that were
actually used for reductions in ¢’s refutation (say B = {p1,...,pm}, where m may be 0). Then a lemma
clause, [=¢, —p1, ..., 7 Dm], can be derived soundly [LMG94].

Example 6.1: Recall the refutation search described in Example 5.4, based on Figure 6. To refute e, the
goal is extended with the clause [—¢, —e], which has no subgoals, due to mandatory reduction with ancestor
¢. Therefore, the lemma [—e, —¢] follows. However, this is already a clause in the formula.

But this also completes the refutation of ¢. No proper ancestors of ¢ were used for reductions, so the
lemma [—¢] follows.

Similarly, the refutation of goal —=d is now complete. This refutation used goal ¢ for reduction, but ¢ is
beneath —d in the tree, so is not part of the lemma. The lemma is simply [d]. [

In the lemma [—q, —p1, ..., <pm], literal —q is called a “C-literal” and is attached to the lowest ancestor
(say p.) among {p1,...,pm}. (If m = 0, attach it to the root of the PDT, which is normally T.) The
C-literal can only be used in the subtree of p., and in this context its operational behavior is somewhat like
reduction with an ancestor. Hence, the operation is sometimes called “C-reduction”.

If the PDT is abandoned (because some other part of the refutation fails) then the lemma is forgotten.
If the (sub)refutation of p. is completed, the lemma is also forgotten in the sense that it is not used later in
other (sub)refutations. Because of the limited application and lifetime of the lemma, it suffices to “attach”
the C-literal —¢ to the lowest ancestor p., and not record the dependencies B. Modoc cannot adopt this
simple strategy because it does not completely abandon a PDT when some part of the refutation fails, as
discussed in the next section.

6.2 Quasi-Persistent Lemmas

Our strategy varies from the C-literal strategy described above in that lemmas derived during failed (sub)-
refutations are not necessarily forgotten. Normally, a PDT is not completely abandoned, but only the subtree
where the refutation fails is abandoned. (In the first-order case, substitutions need to be backed out, as well.)
The lemma can function as a C-literal until the subtree rooted at p. 1s abandoned, or the refutation of p. is
completed (where p, and other terminology is continued from the previous subsection).
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Modoc maintains lemmas attached at p. until the tree rooted there is abandoned or its refutation is
completed. The previously described strategy of Letz et al. effectively deletes the lemma as soon as the
refutation of any clause ancestor of ¢ fails. There are pros and cons of both strategies. Our strategy makes
it unnecessary to re-derive the same lemma at the same attachment point so often, but it makes it necessary
to record the full lemma. Also we did not see a way to adapt their time-stamping method to the situation
in which only a small part of the tree is abandoned when a goal fails: some kind of “roll-back” of the time-
stamps 1s needed. In summary, the structural differences between the PDST and the tableau search tree
necessitate differences in lemma handling.

Our strategy is incompatible with the heuristic called “strong regularity”, introduced by Letz et al.
That is, Modoc may undertake to refute a goal —¢ in the subtree (rooted at p.) where —q is attached as a
lemma. The “strong regularity” heuristic consists of avoiding such attempts. “Strong regularity” was shown
to be complete under certain conditions, but quasi-persistent lemmas do not meet those conditions, and a
counter-example can be constructed if the two heuristics are combined.

Example 6.2: This example continues the refutation search begun in Example 6.1, based on Figure 6.
While refuting b the procedure would be able to attach C-literals —e¢, d, —=f, and —b at the root. When
the refutation fails in the right branch, the traditional C-literal technique forgets all of them. Our quasi-
persistent method does not, because they are still sound as C-literals. When the refutation search tries a
different top clause, the C-literals ¢ and d are available and might shorten the search. (In fact, [e, ~d] now
succeeds immediately.) This can also happen without backtracking to the top level. []

The quasi-persistent heuristic holds lemmas longer, but spends more time per lemma in bookkeeping,
compared to the traditional C-literal method. There is no apparent way to determine which method performs
better except empirical testing.

6.3 Lemma-Induced Cuts

We now describe the method by which Modoc exploits complementary C-literals. Suppose, as described
above, the C-literal —q is attached at p. and the goal —¢q occurs in a subtree of p.. Should the refutation of
—¢q be successful, there results a new lemma whose C-literal is ¢. Now complementary C-literals have been
derived on one branch. Let the full form of the second lemma be [¢, =7y, ..., —ry,]; that is, {ry, ..., 7.} is
exactly the set of ancestors used in the refutation of —¢q. Again, let r, be the lowest ancestor among the r;,
or the root T if n = 0.

Now consider the lower of the two goal nodes p. and r.. The situation is symmetric, so let us suppose it
is 7.. Let A’ be the ancestors of r.. Now add a “virtual clause” [—r., ¢, 7q] to the formula; this is a tautology,
so 1t 1s harmless. However, extending r, with this virtual clause creates goals ¢ and —¢, both of which are
immediately closed by the lemmas. Thus the goal r. is immediately refuted, even though the tree in which
the lemmas q and —q were derived s never completed to a refutation.

Introduction of the “virtual clause” described above is essentially a form of the cut rule [LMG94]. If S
is the original set of clauses, we have discovered (S + A’) F ¢ and (S + A’) - —¢. Now the cut rule infers
(S+ A)E 0.

While the introduction of a tautologous clause is always sound, it normally is not practical because the
prover has no way to anticipate that each of the complementary literals has a short refutation. However, if
a pair of complementary C-literals have been derived, then the prover has that information in hand.

This methodology also can be applied to first-order proofs where the prover is not using strong regularity.
In this case, a most general unifier of the complementary C-literals would be applied before creating the
“virtual clause”.
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6.4 C-Reduction-Induced Cuts

As mentioned earlier (Section 4), when Modoc selects an ancestor, it strengthens the formula with this
ancestor. Strengthening is the combination of unit subsumption and unit implication (Definition 2.3).
Similarly, when Modoc installs a C-literal, it applies unit implication with this C-literal, which amounts
to a form of “eager C-reduction”. If this creates an empty clause, then a C-reduction-induced cut may occur.

Suppose the original clause C' = [-ry, ..., —r,] shrinks to 0 length due to unit implication by a new
C-literal r.. Without loss of generality, assume that r; is the lowest ancestor or C-literal among ry,...,r,,
chosen to be an ancestor if possible. Let ¢; be the ancestor at the depth of r. (If v, is an ancestor,
@ =r1 £ re.) If @ = ry, then extension of ¢1 by C refutes it immediately. If ¢; # r1, we extend ¢1 by
the “virtual clause” [—qq, —ry, r1], again using a form of “cut”. Subgoal —r is C-reduced and subgoal 71 is
immediately refuted by extension with C'.

The effect of this cut is similar to the lemma-induced cuts (Section 6.3) in that (possibly) an intermediate
goal node can be refuted without completing the refutation in progress for it.

6.5 Eager Lemma Assertion

Unit-clause propagation is of interest because of its efficiency, and its frequent use as a subroutine in model-
searching algorithms, such as DPLL. Dalal and Etherington have shown that unit-clause propagation can be
implemented in linear time [DE92]. This implementation is practical, as well as theoretical, and is used by
numerous implementers. Modoc uses it to derive eager lemmas.

When Modoc selects a new goal node e, besides performing unit implication with it (Definition 2.3), it
performs unit-clause propagation with any clauses whose (strengthened) length reduces to 1. All such clauses
are asserted as E-literals attached to the goal node e. Like C-literals, E-literals are logical consequences of
ancs(e), and can be used in the same manner in the refutation search below e.

An interesting situation arises when the above unit-clause propagation directly derives the empty clause.
Clearly, this implies that a refutation of e exists. To extract the quasi-persistent lemma with —e, the
appropriate dependencies must be determined. The derivation of E-literals creates a directed acyclic graph
(DAG) of dependencies among E-literals and the selected goal node e, as illustrated in the lower part of
Figure 4, and discussed in Example 1.2.

Let us call this the eager dependency DAG. To simplify the remainder of this discussion, let us call e an
E-literal, too. In this DAG, the edge p — ¢ denotes that ¢ is an E-literal attached to the selected goal e, and
the clause C), that derived p by unit propagation contains —¢. Further, let us call C}, the eager parent of p,
and let us call the complements of the literals in C}, — p, other than E-literals, the nonlocal dependencies of
p. Finally, let Cy be the clause that became empty. Then Cy i1s the source node of the DAG; edge Cy — ¢
denotes that ¢ is an E-literal attached to the selected goal e, and Cy contains —¢; the complements of the
literals of Cy, other than E-literals, are the nonlocal dependencies of Cy.

Theorem 6.1: With the foregoing notation, if p is an articulation point in the eager dependency DAG,
then there is a refutation of e in which —p becomes a C-literal at a depth less than the depth of e. Moreover,
the dependencies of —p are the nonlocal dependencies of nodes having a path to p in the DAG. |

Corollary 6.2: With the foregoing notation, dependencies of the C-literal —e are the nonlocal dependencies
of all nodes other than ¢ in the eager dependency DAG. |

If p is not an articulation point, then the refutation implied by the eager dependency DAG uses some
reduction with a node later in the DAG, and the C-literal =p would be attached there, and would be discarded
by the time e was refuted.
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Pigeon-Hole Formulas
Modoc | Model Elim.
Pigeons Vars Clauses | CPU Secs. CPU Secs.

8 56 204 1.26 1.22
9 72 207 11.43 10.85
10 90 415 114.84 107.44
11 110 561 >1200.00 >1200.00
12 132 738 >1200.00 >1200.00

Pigeon-Hole Formulas less first binary clause
Modoc | Model Elim.
Pigeons Vars Clauses | CPU Secs. CPU Secs.

8 56 203 0.16 1.09
9 72 296 1.28 9.58
10 90 415 11.54 95.98
11 110 561 180.55 >1200.00
12 132 738 >1200.00 >1200.00

Figure 10: Comparative performances on pigeon-hole formulas (unsat), and pigeon-hole formulas with one
binary clause removed (sat). For M.E.; one refutation was attempted with the first binary clause of the
formula as top clause. Times are for a Sun Sparcstation 10/41.

7 Experimental Results

An efficient implementation of Modoc was programmed in C. Hereinafter, we refer to this C implementation
of Modoc as modoc. Important data structure issues will be the subject of a future report. This section
reports on performance tests. The CPU time for a Sun Sparcstation 10/41 is reported.

The results contain substantial evidence that autarky pruning overcomes the major inefficiency of model
elimination. Modoc is not yet competitive with the leading model-search methods on random formulas,
but outperforms them on formulas generated from an automated test pattern generation (ATPQG) program
[Lar92]. (Hereinafter, we call these formulas circuit formulas. These formulas are satisfiable if and only if
the outputs of the fault-free and faulty circuits differ for some common input.)

7.1 Effect of Autarky Pruning

This section compares modoc to model elimination without autarky pruning?. Both programs used all lemma
and cut options described in earlier sections (these options improve performance). For model elimination,
only one refutation was attempted to keep running times within reason, even though one failed attempt
yields no conclusion about the formula.

Recall that Figure 1 showed that model elimination suffered a rapid performance degradation on small
satisfiable random formulas even with all lemma and cut options in effect. Figure 13 shows that autarky
pruning overcomes this problem.

Figure 10 shows results on pigeon-hole formulas and modified pigeon-hole formulas. Recall that the k-

2Program was obtained by disabling autarky pruning from modoc.
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quasi- quasi-persis- quasi-persistent
formula  num. none persistent tent, cuts cuts, eager
class fmlas avg max avg max avg max avg max
rand100 200 | >1200 >1200 141.32  484.75 | 19.01 73.07 | 1.54 4.74
randi41 200 | >1200 >1200 | >968.04 >1200 | 481.23 1686.62 | 25.39 89.95
bf2670 53 | >1175 >1200 | >831.52 >1200 | 395.50 6124.36 | 7.15 181.49
$sa2670 12 | >1200 >1200 >1200 >1200 | 239.75  867.76 | 30.42 118.78

Figure 11: Tmprovement in search time (CPU time) using various lemma strategies and cuts. rand100 is
200 random 3CNF formulas of 100 variables and 427 clauses; rand141 is the same except with 141 variables
and 602 clauses. b£2670 and ssa2670 are circuit formulas generated from ATPG.

quasi- quasi-persis- quasi-persistent
formula | persistent tent, cuts cuts, eager
class t p t p t p
rand100 | - - | 17.6660 0.0000 | 18.2451 0.0000
randi41 | - - - - | 16.6882 0.0000
bf2670 | - - - - | 2.6673 0.0102
$sa2670 | - - - - | 27124 0.0202

Figure 12: Student’s ?-test to test the significance of improvement due to lemma strategies and cuts.
Comparison is to the left column. (For “quasi-persistent”, it is relative to no lemma strategies and cuts.)

[

See Figure 11 for brief explanation of formula classes. -’ means that not all data were available to make the

comparison.

pigeon problem states the constraints that k& pigeons fit into £—1 holes, and no hole contains two distinct
pigeons. On pigeon-hole formulas modoc and model elimination perform essentially the same, because the
refutation is found without any backtracking from failed attempts.

Satisfiable versions of pigeon-hole formulas were created by removing the first binary clause. Modoc has
an easier time with the satisfiable modifications, while model elimination has greater difficulty.

7.2 Effectiveness of Lemmmas and Cuts

The previous section showed the importance of autarky pruning. This section examines the relative effective-
ness of the lemma and cut options described in Section 6. Experiments were made on random formulas and
on two sets of circuit formulas. Figure 11 shows the average and maximum search time (CPU time) for each
formula class using various lemma strategies and cuts. Figure 12 shows the significance of improvements
for random formulas and circuit formulas using Student’s ¢-test [WEC91]. The use of Student’s ¢-test was
advocated in [VGT96, Appendix A]. Recall that a larger ¢ indicates greater difference, while smaller p
indicates that the observed improvement is less likely to be by chance.
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Growth Comparison of CPU Time on Random Formulas
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Figure 13: Growth comparison on Random Formulas.

7.3 Comparison with other Satisfiability Testers

In order to assess its competitiveness (or lack of ), modoc was run against two satisfiability testers—DPLL and
2cl—both of which are model-searching programs. The DPLL program, due to Davis, Putnam, Logemann
and Loveland [DP60, DLL62] is efficiently implemented using the unit propagation method of Dalal and
Etherington [DE92]. The 2¢1 program is one of the best performing all around satisfiability programs
reported in the literature [VGT96].

Results on random 3CNF formulas are summarized in Figure 13. These formulas were generated according
to the constant-clause-width model: every clause contains 3 different variables and any combination of literal
polarities is equally likely.

The difference in modoc performance between satisfiable and unsatisfiable formulas grows as the number
of variables (and hence the number of literals) is increased. The ratio (avg. unsatisfiable time/avg. satisfiable
time) at the level of 50 variables, was 2.64; it was 3.16 at 141 variables. However, the growth plot shows
that modoc still underperforms model-searching methods on random formulas.

Results on some circuit formulas are summarized in Figure 14. The same formulas reported in [VGT96]
were used. In all but one circuit family, modoc ran faster than 2¢cl on the average. Indeed, on the harder
families 1t ran 30-40 times faster.

As witnessed in Section 7.1, the performance of Modoc strongly depends on autarky pruning. This implies
that if the formula i1s not “partitionable”, Modoc would not perform as intended. Generally speaking, in a
random formula, it is expected that the variables are distributed evenly and thus the formula may be harder
to partition. Whereas in the case of more structured formulas, such as circuit formulas, many variables occur
locally, only in subcircuits, and thus may be amenable to partitioning.
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Circuit  Ave. # of Ave. # of | Ave. CPU Time (sec)
Family Variables Literals | modoc 2cl

ssa0432 433 2347 0.17 0.77
$8a2670 1320 7414 | 29.16 1539.60
5526288 10406 87355 0.31 39.45
ssa7552 1495 7945 0.10 1.93
bf0432 886 7703 | 25.02 5.8b
bf1355 2266 18192 3.37 41.81
bf2670 1300 7904 7.91 439.01

Figure 14: CPU time comparison of Modoc and 2¢l on circuit formulas.

8 Conclusions and Future Work

We have introduced a method to incorporate autarky analysis into propositional resolution procedures.
Experimental results indicate that substantial gains of efficiency can be achieved. We have introduced the
eager lemma strategy and two forms of controlled cut, all of which further improve performance measurably.

Future work should proceed along several directions, including heuristics for guiding the resolution search,
further improvements to lemma caching, and an extension to first-order theorem proving. Another open
question is the worst-case complexity of Modoc or an improved version of Modoc.
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