
The Partial Rehabilitation of Propositional ResolutionAllen Van Gelder Fumiaki KamiyaBaskin Center for Computer Engineering and Information SciencesUniversity of California, Santa Cruz 95064UCSC-CRL-96-04E-mail avg@cs.ucsc.edu kamiya@cs.ucsc.edu.July 26, 1996AbstractResolution has not been an e�ective tool for deciding satis�ability of propositional CNF formulas, dueto explosion of the search space, particularly when the formula is satis�able. A new pruning method isdescribed, which is designed to eliminate certain refutation attempts that cannot succeed. The methodexploits the concept of \autarky", which was introduced by Monien and Speckenmeyer. New forms oflemma creation are also introduced, which eliminate the need to carry out refutation attempts that mustsucceed. The resulting algorithm, called \Modoc", is a modi�cation of propositional model elimination.Informally, an autarky is a \self-su�cient" model for some clauses, but which does not a�ect the remainingclauses of the formula. Whereas Monien and Speckenmeyer's work was oriented toward �nding a model,our method has as its primary goal to �nd a refutation in the style of model elimination. However,Modoc �nds a model if it fails to �nd a refutation, essentially by combining autarkies. Unlike thepruning strategies of most re�nements of resolution, autarky-related pruning only prunes refutationattempts that ultimately will be unsuccessful; consequently, it will not force the underlying search to�nd an unnecessarily long refutation. The other major innovation is Modoc's lemma management.Building upon the C-literal strategy proposed by Shostak and studied further by Letz, Mayr and Goller,methods for \eager" lemmas, \quasi-persistent" lemmas, and two forms of controlled cut are described.Experimental data based on an implementation in C is reported. On random formulas, Modoc is not ase�ective as recently reported model-searching methods. On more structured formulas, such as circuit-fault detection, it is superior.Key Words:Satis�ability, Boolean formula, propositional formula, autarky, resolution, refutation, model, theorem prov-ing, model elimination.
0

1 IntroductionThe decision problem of Boolean, or propositional, satis�ability is the \original" NP-hard problem. Weassume the reader is generally familiar with it. We shall consider exclusively propositional formulas inconjunctive normal form (CNF), also called clause form. Each clause is a disjunction of literals, and clausesare joined conjunctively. A closely related problem is to determine validity of a formula in disjunctivenormal form. As language recognition problems, satis�ability is in NP , while validity is in co-NP . However,as decision problems, they are essentially equivalent, as both \yes" and \no" answers must be produced. Asa practical consideration, a program may be required to produce \evidence", or a \certi�cate", to supportits decision, an issue discussed by John Slaney at CADE-12 [Sla94]. In this setting, a certi�cate is a �lethat can be processed by an independently written program, to verify the solver's conclusion, using simple,highly trusted, computations. If critical decisions will be based on the program's output, such a proof wouldpermit an independent, and straightforward, veri�cation of the program's conclusion. To our knowledge, nopreviously existing implementations can produce a proof for both \yes" and \no" decisions.Two basic methods have been developed for satis�ability testing: refutation search and model search.1. Refutation search seeks to discover a proof that a formula is unsatis�able, usually employing resolution.If a complete search for a refutation fails, the formula is pronounced satis�able. Model elimination andSL-resolution typify these methods [Lov69, KK71, Lov72].2. Model search seeks to discover a satisfying assignment, or model, for the formula. If a complete searchfor a model fails, the formula is pronounced unsatis�able. The DPLL algorithm, due to Davis, Putnam,Logemann and Loveland [DP60, DLL62] is the basis for manymodern re�nements. A di�erent approachis to treat the problem in terms of integer linear programming [BJL86, JW90, HF90, HHT94].Several methods use incomplete model searches, so they can only report \don't know" and give upbased on resource limits, when they fail to discover a model [SLM92, GW93, SKC95]. However, theyhave succeeded in �nding models on much larger formulas than current complete methods can handle.Current propositional methods are \one-sided" in the information that they can provide to support theiranswers. Speci�cally, refutation methods can produce a proof of unsatis�ability, which is easily checkable,but can only answer \sat" on satis�able formulas. On the other hand, model-search methods can exhibit amodel, again easily checkable, for satis�able formulas, but can only answer \unsat" on unsatis�able formulas.This paper describes an integrated propositional approach that simultaneously searches for either a refutationor a model.In the �rst-order arena there has been some work on searching for a model as well as a refutation, butit does not seem to carry over e�ectively to the propositional case. The method of Fermuller and Leitsch[FL93], which is intended to show decidability of certain classes of �rst-order formulas, �rst performs hyper-resolution to saturation, but this is too expensive in the propositional setting to be practical. The methodof Caferra adds equations soundly to the original formula, again proving decidability of certain �rst-orderclasses [Caf93]. Since the equations are based on unifying substitutions, there is no apparent way to use thismethod in the propositional case. Finally, failure caching on �rst-order Horn formulas has been reported[Elk89, AS92], but propositional Horn formulas are not challenging.Several high performance satis�ability testers have been reported in recent years [Lar92, CA93, ZS94,SFS95, DABC95, JSD95, Pre95, VGT96, inter alia]. Interestingly, they have primarily, if not exclusively,been based upon the model-search paradigm. This contrasts with the situation of �rst-order theorem provers,which are primarily refutation-based.One problem with existing propositional refutation methods is illustrated dramatically in Figure 1. Modelelimination (abbreviated M.E., and regarded as one of the most e�cient refutation strategies) is able to solve1

Unsatis�able Satis�ableFormula Size No. of Extensions No. of ExtensionsVars Clauses Samples Avg. Max Samples Avg. Max14 60 7 11 17 13 184,888 542,25415 64 7 13 20 13 573,794 2,019,49016 69 10 18 39 10 1,016,480 2,462,29017 73 4 21 36 16 2,623,570 9,160,390Figure 1: Comparative performances of model elimination on unsatis�able and satis�able random 3CNFformulas. On satis�able formulas a refutation was attempted with each clause as top clause, and the averagewas computed for that formula. (E.g., some satis�able 10-variable formula averaged 12,068 extensions pertop clause.) Implementation and experimental details are given in later sections, along with results for thenew Modoc algorithm. Unsatis�able Satis�ableAvg. Formula Size No. of Extensions No. of ExtensionsVars Clauses Samples Avg. Max Samples Avg. Max29 41 15 9.5 4929 53 6 217.3 1,042Figure 2: Comparison of model elimination on unsatis�able and satis�able propositional formulas having atleast 12 variables in the TPTP library v1.2.0. Satis�able formulas were handled as described above.unsatis�able random 3CNF formulas with up to 100 variables, but it bogs down on satis�able formulas aboutat 17 variables. It should be noted that, for modern model-search methods, these formulas (both unsatis�ableand satis�able) are considered easy at 100 variables and trivial at 20 variables. The same phenomenon occurson propositional formulas found1 in the TPTP library v1.2.0 [SS95], as shown in Figure 2. Keep in mindthat the numbers shown reect the time for one attempt on a satis�able formula. To conclude that it issatis�able based on M.E., numerous attempts must be made.Three reasons have been mentioned for the lack of high performance propositional refutation systems:1. The search space is too large, particularly for satis�able formulas, as shown in Figure 1.2. The method cannot produce models.3. The most e�cient methods are only guaranteed to �nd a refutation when some top clause is known tobe in a minimal unsatis�able subset of clauses; in some applications such a top clause is not known apriori .The integrated approach of this paper addresses all three of these problems.The main results are summarized in Section 1.1 and informally illustrated with examples in Section 1.2.Notation and terminology is covered in Section 2. Tree structures for M.E. and background are reviewedin Section 3. Autarky pruning is described in Section 5. New lemma creation mechanisms are described inSection 6, which also briey reviews previous work on lemmas in M.E. Experimental results based on ane�cient C implementation are reported in Section 7. Conclusions and future work are in Section 8.1SAT: num285-1, syn086-1, syn087-1, syn091-1, syn092-1, syn302-1; UNSAT: msc007-1.005, puz013-1, puz014-1, puz015-2,puz016-2, puz033-1, syn003-1, syn004-1, syn010-1, syn089-1, syn090-1, syn093-1, syn094-1, syn097-1, syn098-1. TPTP includesformula generators, but these were not used. 2

S = :a;:b;:c :a;:b; c :a; b;:c :a; b; c a;:b;:c a;:b; c a; b;:c����>:a;:b;:c�� @@����:a ����:b ����:c������a;:b;:c@@����:b ����:c����a; b;:ca ����:c
����>:a;:b;:c�� @@����:a ����:b ����:ca;:b; c ?a; b;:c ?Figure 3: Model elimination search for Example 1.1. (Left) Search fails at lowest :c goal. (Right) Afterbacktracking to alternative choices at :a goal.1.1 Summary of ResultsThis paper reports on the combination of autarky pruning with extended lemma creation methods. Roughlyspeaking, lemmas and autarkies are duals of each other: a lemmapermits curtailment of a resolution attemptthat is certain to succeed, while an autarky permits curtailment of a resolution attempt that is certain tofail. Experimental data is based on an e�cient C implementation.New lemma creation mechanisms, called \eager" lemmas and \quasi-persistent" lemmas are described inSection 6. That section also briey reviews previous work on lemmas in M.E., and discusses the compatibilityof autarky pruning and lemma creation. Quasi-persistent lemmas are a variant of the \C-literal" strategy,adapted for e�ciency in the propositional case. Eager lemmas supplement them to provide substantial furtherreductions in proof searching by providing early identi�cation of refutations that will succeed. Derivation ofeager lemmas is closely related to unit clause propagation.When the refutation of a literal succeeds, the complement of that literal becomes a quasi-persistent lemmaand the complements of certain eager lemmas become quasi-persistent lemmas also. The eager lemmas whosecomplements survive as quasi-persistent lemmas are shown to correspond to articulation points of a graphrelated to the successful refutation. Articulation points can be identi�ed in linear time by a standard graphalgorithm.Several propositional techniques are used that are not possible, or considerably more complex, in �rst-order resolution. These issues are mentioned briey in Section 4.2, Section 6.2, and Section 6.5.1.2 Informal OverviewFor readers familiar with model elimination adapted to tree structures [MZ82, LMG94], we now give simpleexamples of how autarky pruning and eager lemmas work. Other readers may wish to come back to thisexample after reading more of the expository material in Section 3.3

Example 1.1: The formula S consists of all 3CNF clauses on variables a, b, and c, except for the all positiveclause, as shown at the top of Figure 3. Suppose the top clause is all negative. Let us trace out a modelelimination search for a refutation. As shown on the left of Figure 3, literal :a resolves with clause [a;:b;:c],then literal :b resolves with clause [a; b;:c]. In the latter clause, literal a can be reduced with the ancestor(or A-literal) :a, as indicated by the boxed \A". Literal :c remains to be refuted, but the search procedurenow fails, because each clause containing literal c also contains an ancestor literal.If we stop and reect on the meaning of this failure, we see that every clause containing the literal c issatis�ed by a partial assignment consisting of the ancestors (A-literals) on this branch, speci�cally:M = f:a;:b;:cg :(In this case the partial assignment happens to be a total assignment.) But obviously, every clause containingthe literal :c is also satis�ed by M , so we conclude that every clause involving the variable c is satis�ed byM .Model elimination now backtracks and looks for another clause that resolves with :b, and does notcontain the ancestor :a. There are none. We can now extend the conclusion of the previous paragraph tosay that every clause containing either of the variables b or c, either positively or negatively, is satis�ed bythe partial assignment M .Model elimination again backtracks and looks for another clause that resolves with :a (Figure 3, right).There are two such clauses, as indicated. The standard algorithm would continue trying to construct arefutation using one of these clauses, then the other. But notice that both of these clauses are satis�ed bythe partial assignment M mentioned above.After a few moments thought, we can predict that these refutation attempts must fail, without carryingout the search. Intuitively, the reason is that we cannot use a clause that is satis�ed by M to \get outside ofM". Every extension will have a subgoal that is satis�ed byM ; no such subgoal can be handled by reductionbecause all the ancestors are also in M . Eventually, some goal is generated that has no eligible extensions.Finally, we conclude that the partial assignment M satis�es all clauses in which any of the variables a,b, or c appears. This conclusion holds up even if we add additional clauses to S that do not involve thevariables a, b and c. We call such a partial assignment an autarky (see De�nition 5.1).This example illustrates, in an over-simpli�ed way, that:1. Autarky analysis can predict that certain refutation attempts must fail;2. A model for a satis�able formula can be constructed as a series of autarkies.Example 1.2: Figure 4 illustrates the main idea of eager lemmas, introduced in Section 6.5. To avoidclutter, parts of the derivation that are not germane to the discussion are omitted. In Modoc, when subgoal:k is selected, clause [:e; k; f] is \pre-reduced" through unit implication (De�nition 2.3). Then goal :k isextended with clause [a; k], creating subgoal a. Subgoal a creates an eager literal (E-literal) :m by unitclause propagation. In the process, four clauses are \pre-reduced" as shown by the dashed arrows from aand :m. Rather than extending with the clause [:a;:m], we assume the program extends a with [:a; e; c],as shown. This extension creates two subgoals and we assume e is chosen �rst. When e is used to initiateunit clause propagation, a series of six E-literals are derived by unit clause propagation, as shown in doubleboxes, and the empty clause is derived. In this process, additional E-literals might have been derived, butare not shown, and the E-literals normally are not derived consecutively.4

¬a ¬m

¬m

 ¬a e c

e

c

 f i

 ¬i ¬f ¬g

¬g

 g ¬i ¬d

¬d

 d ¬a h

 h

 ¬h ¬a b

 b

 ¬b m ¬h

a

e f

i

¬g

¬d h

b

¬k

a

¬k a

a

¬m

a k

 ¬e k f ¬f ¬a i

Figure 4: Eager lemmas, discussed in Example 1.2.Since the empty clause was derived, we know that e can be refuted. To �nd the clauses relevant to therefutation, we want to work back from the empty clause to e. Remember that there are normally irrelevantE-literals as well. As each E-literal is derived, the clause that led to its derivation, called its eager parent ,is associated with it. Eager parents are shown immediately above their E-literals. Working back from theempty clause, a directed acyclic graph (DAG) is de�ned by constructing edges from an E-literal (e.g., :d)to the E-literals whose complements appear in the clause that derived it (e.g., i and :g), as shown in thelower part of the �gure. This is called the eager dependency DAG . Edges to literals that are higher in thetree than e (shown as dashed lines) are not considered part of the DAG.The key theorem (Theorem 6.1) is that articulation nodes of the DAG are precisely the E-literals whosecomplements become quasi-persistent lemmas (similar to C-literals). Of course, :e, the complement ofthe refuted subgoal, becomes a quasi-persistent lemma, as well. A further interesting property is that thedependencies are found by following the dashed edges from DAG nodes that have a path to the articulationnode.Thus in this example, :h, d and :f become C-literals with dependency a. (The actual lemmas are[:h;:a], etc.) The E-literal :m is not itself a dependency, but the ancestors upon which it depends are; inthis case, :m depends on a only. Also, :e becomes a C-literal with dependencies a and :k. These C-literalscould have been derived by the normal operations of model elimination, but possibly only after lengthyfruitless side trails.2 PreliminariesStandard terminology for conjunctive normal form (CNF) formulas, (disjunctive) clauses, literals, andpropositional variables, is used. A �nite set of propositional variables is �xed throughout the discussion. IfF is a formula, lits(F) denotes the set of literals composed from variables occurring in F .5

De�nition 2.1: (literal, clause, formula, lits, +, {) The expression [p1; : : : ; pk] denotes the disjunctiveclause that consists exactly of those literals. The empty clause is denoted ;. For brevity, unit clause [q] willsimply be denoted as q. Similarly, a formula fCg consisting of a single clause may be denoted as C.We denote disjoint union by \+" which is only de�ned when the operands are disjoint, and set di�erenceby \�" which is only de�ned when the second operand is a subset of the �rst.As an example of overloading, if F denotes a formula (which does not contain the unit clause [q]), thenF + q denotes F [f[q]g.De�nition 2.2: (assignment, satisfaction, model) A partial assignment is a partial function from theset of variables into ffalse; trueg, and is extended to literals, clauses, and formulas in the standard way. Itis conventionally represented by the (necessarily consistent) set of unit clauses that it maps into true. Aclause or formula is satis�ed by a partial assignment if it is mapped to true.Departing somewhat from standard terminology, A partial assignment that satis�es a formula is called amodel of that formula.De�nition 2.3: (unit implication, unit subsumption, strengthened formula) Let M be a partialassignment for formula S. The clause CjM , read \C strengthened by M", is the (possibly empty) set ofliterals CjM = C � fq j q 2 C and :q 2MgThat is, complements of literals in M are removed from C. This operation is called unit implication. Unitimplication applied to a formula consists of applying it to each clause.The operation of unit subsumption takes a partial assignmentM and a formula S and outputs the formulaconsisting of all clauses of S that do not contain any literal of M .The formula SjM , read \S strengthened by M", is the (possibly empty) set of clausesSjM = �CjM �� C 2 S and C contains no literal of M 	That is SjM results from applying both unit implication and unit subsumption to S.Example 2.1: Let S consist of [a; b], [:a; c], and [b; d]. Then Sj fag = f[c] ; [b; d]g, and Sj fa; cg = f[b; d]g.3 Clause and Derivation TreesThis section describes the tree data structures we shall use, which are chosen especially for propositionalresolution. Trees are now recognized as the most appropriate data structures for representation of linearresolution derivations, followingMinker and Zanon [MZ82]. Model elimination originally used a chain format[Lov69]. Recently, Letz et al. have given a uni�ed view of the methods of tableau calculus and clause trees[LMG94]. However, these are geared toward �rst-order application. Our tree data structure is di�erent inthat we need not concern ourselves with substitution. The following technical de�nitions are illustrated inExample 3.1 and Figure 5.De�nition 3.1: (clause-goal tree, goal ancestor) Let a set S of propositional clauses be given (i.e., aformula). Let >, called verum, be a symbol distinct from all propositional variables.A clause-goal tree is a bipartite directed tree with two classes of nodes, called clause nodes and goalnodes. That is, a clause node may have only goal nodes as children and vice versa. Edges are directed from6

the root to the leaves. Recall that a branch of a tree is a path from the root to a leaf. The tree is unorderedin the sense that the order of any node's children is immaterial.Each clause node is labeled with a clause of S, and each goal node is labeled with a literal of lits(S), orwith >. Usually, a node is identi�ed with its label, but when it is necessary to name a speci�c node, weassume some structural naming scheme. We write v(q) to denote the goal node whose structural name is vand whose label is q, and write w[C] to denote the clause node whose structural name is w and whose labelis C.A goal ancestor of a node v is a goal node on the path from the root to v, including v itself if it is a goalnode. Since clause ancestors are not signi�cant, we shall refer to goal ancestors simply as ancestors. The setof all goal ancestors of v is denoted as ancs(v). While ancs(v) is technically a set of nodes, it can also beconsidered as a set of unit clauses made from the nodes' literal labels, i.e., a formula.De�nition 3.2: (propositional derivation tree (PDT), PDT extension) Let S and > be as inDe�nition 3.1. Throughout this de�nition all literals are assumed to be in lits(S) and all clauses are assumedto be in S.A propositional derivation tree (PDT) is a clause-goal tree in which1. Each clause contains a literal complementary to its goal parent (or its parent is >, in which case theclause is called the top clause).2. No clause contains a literal that is a goal ancestor of the clause.3. The goal children of each clause consist exactly of the literals that are not complemented in the clause'sgoal ancestors.A PDT extension adds one clause and the necessary subgoals of that clause to a PDT, maintaining the aboveproperties. The clause is attached as a child of an existing leaf goal node.From the de�nition we see that every PDT is rooted with a goal node, and every goal node either is aleaf or has exactly one child. Also, it is easy to see that a clause node w[C] is a leaf in a PDT if and only ifevery literal in C is complemented in ancs(w).De�nition 3.3: (refutation) If v(q) is the root of a PDT that contains only clause nodes as leaves, thenthis PDT is called a refutation of q with respect to S. If q = >, it is called simply a refutation of S. (Theseterms are justi�ed in Theorem 3.1.)Example 3.1: Figure 5 shows PDT examples. The PDT at the right is obtained by PDT extension usingthe other two. The left side of Figure 3 shows a clause node in which implicit reduction has occurred, asindicated by the boxed \A". (This box is a notation, but not a structural part of the tree.)Let us point out that the terminology \PDT extension" as de�ned above is a combination of modelelimination operations called \extension" and \reduction". In the propositional framework, \reduction" maybe considered mandatory [Sho76]. In a �rst-order framework, both \extension" and \reduction" normallymust be considered, due to di�ering uni�ers, so the goal must be created.For purposes of intuition, a \goal node" means that the goal of the derivation is to refute the literal in thenode, not to validate it. The term \refutation" in De�nition 3.3 is justi�ed by the following theorem, whichessentially states that propositional weak model elimination is sound. This is already well known [Lov69,MZ82, LMG94], and is proved in the new terminology in [VG95].7

����>.....b;:f�� @@����b ����:f ����b.......:b;:d; f������:d ����f ����>.....b;:f�� @@����b ����:f.......:b;:d; f������:d ����fFigure 5: Propositional derivation trees (PDTs) discussed in Example 3.1. Left: A PDT with top-clause[b;:f]. Center: The extension clause [:b;:d; f] may be thought of as a single-clause PDT. Right: the resultof PDT extension.Theorem 3.1:(A) If there is a PDT T that is a refutation of q w.r.t S, then S has no model in which q is true.(B) If there is a PDT that is a refutation of S, then S is unsatis�able.4 Search TreesThis section describes \propositional derivation search trees". These structures have some similarity inpurpose to tableau search trees [LMG94]. However, there are some essential structural di�erences, asdiscussed in Section 4.2, which are again based on exploiting the simpli�cations available in the propositionallogic. Propositional model elimination can be viewed as exploring PDSTs.4.1 PDST BasicsDe�nition 4.1: (propositional derivation search tree (PDST)) Let S and > be as in De�nition 3.1.A propositional derivation search tree (PDST) is a clause-goal tree that di�ers from a PDT (De�nition 3.2)only in that a nonleaf goal node, instead of having one clause child, has a clause child for each clause thatmight appear in that position in a PDT.It is convenient to visualize a PDST as a three-dimensional tree, in which goal children of a given clauseare arranged left to right, and clause children of a given goal are arranged front to back (see Figure 6,discussed next). Again, it is easy to see that a clause node w[C] is a leaf in a PDST if and only if everyliteral in C is complemented in ancs(w).Example 4.1: Consider the clause set S shown in Figure 6. The PDST with top clause [b;:f] is also shown.Observe that [c;:d] does not occur in the PDST. The boxed \A"s are not a structural part of the tree, butare notations to indicate literals that are subject to implicit reduction.8

S = b;:f :b;:d; f c; d c;:d c;:f :c; e :c;:e����>.....b;:f����� XXXXXX����b ����:f.......:b;:d; f:b;:d; f���� @@����:d.....c; d����c.......:c; e :c;:e����e ����:e.....:c;:e :c; ea a
����f HHH����:b ����:d.....c; d����c.......:c; e :c;:e����e ����:e.....:c;:e :c; ea a

.......c;:f����c.......:c; e :c;:e����e ����:e.....:c;:e :c; ea aFigure 6: A completed propositional derivation search tree (PDST) with top clause [b;:f].De�nition 4.2: (failed goal node, completed PDST, universal PDST) A failed goal node in a PDSTis a leaf node v(q) such that every clause of S that contains :q also contains some literal in ancs(v(q)); thebranch ending at v(q) is called a failed branch.A PDST is said to be completed if every leaf that is a goal node is failed. In this case no further PDSTextension is possible.A universal PDST for S is constructed as follows: for each clause C(j) 2 S create a completed PDST forS with C(j) as top clause, then merge all their roots.We now state some structural properties of PDSTs ([VG95]), which provide the foundation for our imple-mentation of propositional model elimination. The algorithm searches the universal PDST by constructinga representation of the strengthened formula mentioned in the next lemma, using e�cient data structures.Lemma 4.1: Let T be a PDST for S with root v(q), where q is a literal. Let w[C] be a child of v. Then aPDST for Sj fqg with top clause Cj fqg (call it T 0) may be formed as follows:1. The root of T 0 is v0(>);2. The single subtree of v0 is a copy of the tree rooted at w, except the clause labels are strengthened byfqg. 9

����>.....a;:b;:c������:b ����:c.....b;:c����:cFigure 7: A PDST for a strengthened formula, as discussed in Example 4.2.Lemma 4.2: Let T be a PDST for S with top clause node w[C]. Let v(q) be a child of w. Then the treerooted at v is a PDST for S with top goal q.Corollary 4.3: For a given formula S and a given top clause C or given top goal q, the completed PDSTis unique, up to reordering of children. Also, this is true for the universal PDST.Example 4.2: Consider the PDST on the left of Figure 7. The strengthening of S with :a yieldsSj:a = f[:b;:c] ; [:b; c] ; [b;:c]gTo illustrate Lemma 4.1, the completed PDST for Sj:a with top clause [:b;:c] is essentially the left branchof left PDST of Figure 7, with the goal :a replaced by >. Clauses containing literal a are replaced by theirstrengthened forms, producing the PDST shown on the right.4.2 Di�erence from Tableau Search TreePDSTs do not generalize straightforwardly to the �rst-order case. The reason is that a substitution mustbe applied throughout the derivation tree, not just to the subtree where the goal is uni�ed with a clause.Consequently, in tableau search trees [LMG94], a search tree node is labeled with an entire derivation tree.An example of a tableau search tree is shown in Figure 8. In a �rst-order version of this example, the �veoccurrences of the goal :a would in general be di�erent due to di�ering substitutions in the various searchnodes.5 AutarkiesThis section de�nes \autarky" and indicates how the concept is used in Modoc. The potential value ofautarkies is suggested in Lemma 5.1, following the de�nition. Theorems 5.2 and 5.3 establish connectionsbetween autarkies and PDSTs. The application to refutation search e�ciency is sketched at the end of thesection. All topics of this section are described in more detail in another report [VG95].10

����:a.................����:aa;:b;:c����:b ����:c����:aa;:b; c����:b ����c.................����:aa; b;:c����b ����:c.....����:aa;:b;:c����:b ����:cb; a;:ca ����:cFigure 8: The tableau search tree that corresponds to the PDST on the left of Figure 7.The concept of \autarky" was (to our knowledge) introduced into logic by Monien and Speckenmeyer,who proposed a new model searching algorithm based on it [MS85]. The word \autarky", used mainly ineconomics, literally means \self-su�cient country or region".De�nition 5.1: (autarky, autsat , autrem) Let S be a set of CNF clauses. A partial assignment M(De�nition 2.2), possibly de�ned on some variables that do not occur in S, is called an autarky of S if Mpartitions S into two disjoint sets, S = autsat(S;M) + autrem(S;M)such that each clause in autsat(S;M) is satis�ed by M and each clause in autrem(S;M) has no variablesin common with the variables that occur in M . In particular, no literal of a clause in autrem(S;M) iscomplemented in M .Lemma 5.1: Let M be an autarky of formula S.(A) SjM = autrem(S;M).(B) If S is unsatis�able, then autrem(S;M) is also unsatis�able.(C) If S is satis�able, then M can be extended to a model of S.Example 5.1: As in Example 2.1, let S = f[a; b] ; [:a; c] ; [b; d]g11

����d.................:b;:d; fc;:d�� @@����:b ����f ����c.......:c; e :c;:e����e ����:e.....:c;:e :c; ea a.....b;:f c;:f����:f ����c.......:c; e :c;:e����e ����:e.....:c;:e :c; ea aFigure 9: A completed propositional derivation search tree (PDST) with top goal d for the same formula asFigure 6.Then fa; cg is an autarky of S, with autsat(S; fa; cg) = f[a; b] ; [:a; c]gautrem(S; fa; cg) = f[b; d]gHowever, fag is not an autarky because of clause [:a; c].As seen in the previous example, another way to characterize an autarky M is that SjM � S, that is,no clauses are shortened by the strengthening, although some clauses may be deleted.The following theorems indicate how autarkies can interact with a refutation search. The �rst theoremshows that clauses satis�ed by an autarky can be ignored, and the second shows how autarkies can beexpanded by failed refutation searches.Example 5.2: The next theorem is illustrated by Example 4.1 and Figure 6. Let M = f:b;:fg, which isan autarky. We see that there is no refutation beginning with the top clause [b;:f], so the theorem holds inthis case.Now consider a di�erent PDST for the same S, this time with top goal d, which has two clause children,[:b;:d; f] and [c;:d], as shown in Figure 9. The theorem asserts that a refutation attempt cannot succeedby choosing the �rst clause, because M satis�es it. Indeed, if the program did choose the �rst clause, then itwould need to refute the resulting subgoal that occurs in M , which is :b. The program's next choice wouldnecessarily be among clauses that were satis�ed by M , in this case [b;:f]. But now the goal :f fails.Theorem 5.2: Let T be a completed PDST for formula S, and let M be an autarky for S. Assume thatthe root of T is labeled either with > or a literal q such that :q is not in M . If clause C 2 autsat(S;M),then C does not occur in any PDT with the same root as T that refutes S.12

Example 5.3: The next theorem is also illustrated by Example 4.1 and Figure 6. This time, consider thecompleted PDST rooted at the goal :f . Let M be the empty set, which is an autarky. There is no PDTrefutation of :f with top clause [b;:f], so the theorem asserts that M can be extended to some autarkyM 0 that contains :f . Simply adding :f is insu�cient, due to [:b;:d; f]. However, adding both :f and :bmakes M 0 an autarky.Theorem 5.3: Let T be a completed PDST for formula S with root v(q), where q is a literal, such thatthere is no PDT refutation of q with the same top clause as T . Let M be an autarky for S such that neitherq nor :q is in M . Then there is an autarky M 0 � M such that q (interpreted as a unit clause) is in M 0.Moreover, M 0 �M � lits(S).5.1 Propositional Application for Autarky AnalysisBased upon Theorem 5.3, we arrive at the following idea for autarky construction during a refutation search(additional details in [VG95]).1. When the search for a refutation of a speci�c goal q begins, an \initial autarky" M0 (possibly ;) ispassed in. By the next step, we can assume that neither q nor :q is inM0. This set will be augmentedto a \current autarky" Mj whenever a clause extension fails to deliver a refutation.2. Any clause C(j) (1 � j � k) that is eligible for extension, but is satis�ed by the current autarky isbypassed (and the current autarky is unchanged). This is the crucial autarky pruning operation.3. For each eligible clause C(j) that is tried as an extension, the current autarky Mj�1 is passed downinto a recursive search, enabling pruning in the subtree. If the extension fails to lead to a refutation,then the recursively called procedure passes back an \autarky increment" �Mj, and a new \currentautarky"Mj = Mj�1+�Mj is computed. The increment is supplied by a goal child of C(j) that couldnot be refuted.4. If all clauses fail to lead to a refutation of q, then the procedure passes backP�Mj+q. This becomesan autarky increment at the higher level.For e�ciency of implementation, Modoc applies unit subsumption (De�nition 2.3) at the time q is added tothe autarky increment, and undoes it later if the autarky increment is discarded (because some alternativerefutation succeeded).Example 5.4: Again consider Example 4.1 and Figure 6. With [b;:f] as the initial top clause, a refutationprocedure (selecting literals depth-�rst, left-right) would refute goal b at level 1, then search for a refutationof :f at level 1. This leads to an extension, then to the failed goal :b at level 2. Thus :b is passed backto level 1 as the �nal autarky increment. Back at level 1, there are no more clauses to try, so the autarkyincrement from level 2 is combined with this goal, and passed up to level 0 as f:b;:fg. At the top level wehad M0 = ;, so M1 = f:b;:fg. This is an autarky for the entire formula S.Now we know that S is unsatis�able if and only if autrem(S;M1) is. In other words, clauses [:b;:d; f]and [c;:f] do not need to be considered as alternate top clauses for new refutation attempts. Since M1 isnow the \current autarky" at level 0, the procedure sketched above bypasses them. In this example, anynew top clause selected from autrem(S;M1) leads to a successful refutation. In general, the next top clausemight also fail, and M1 would be expanded to a larger autarky M2, etc.13

6 Lemmas and C-LiteralsIn the model elimination procedure a \lemma" may be recorded upon the completion of any (sub)refutation[Lov69, FLSY74, Lov78], although this is not necessary for completeness. Shostak proposed an e�cient\C-literal" mechanism to maintain such lemmas in model elimination chains [Sho74, Sho76]; Letz et al.generalized it to trees with an ingenious time-stamping method, and also proposed a pruning strategy basedon C-literals, called \strong regularity" [LMG94]. Lemma strategies have been studied empirically for �rst-order theorem proving using chains [FLSY74, AS92, Sti94], as well as trees [LMG94], but we are aware ofno empirical studies of lemma strategies on propositional problems. This section sketches how lemmas areincorporated into the implementation of the Modoc algorithm. We introduce and describe a strategy for\quasi-persistent" lemmas and \eager" lemmas as well as two forms of \cuts" that permit refutations to beaccelerated.In Modoc, autarky pruning is compatible with the use of lemmas, and largely orthogonal. Clauses thatare pruned by an autarky cannot participate in a successful refutation (at the point where they are pruned),whether or not lemmas are used to shorten the refutation.6.1 Background on LemmasSuppose the refutation of a literal q is completed in a PDT. Let B be the subset of ancestors of q that wereactually used for reductions in q's refutation (say B = fp1; : : : ; pmg, where m may be 0). Then a lemmaclause, [:q;:p1; : : : ;:pm], can be derived soundly [LMG94].Example 6.1: Recall the refutation search described in Example 5.4, based on Figure 6. To refute e, thegoal is extended with the clause [:c;:e], which has no subgoals, due to mandatory reduction with ancestorc. Therefore, the lemma [:e;:c] follows. However, this is already a clause in the formula.But this also completes the refutation of c. No proper ancestors of c were used for reductions, so thelemma [:c] follows.Similarly, the refutation of goal :d is now complete. This refutation used goal c for reduction, but c isbeneath :d in the tree, so is not part of the lemma. The lemma is simply [d].In the lemma [:q;:p1; : : : ;:pm], literal :q is called a \C-literal" and is attached to the lowest ancestor(say pc) among fp1; : : : ; pmg. (If m = 0, attach it to the root of the PDT, which is normally >.) TheC-literal can only be used in the subtree of pc, and in this context its operational behavior is somewhat likereduction with an ancestor. Hence, the operation is sometimes called \C-reduction".If the PDT is abandoned (because some other part of the refutation fails) then the lemma is forgotten.If the (sub)refutation of pc is completed, the lemma is also forgotten in the sense that it is not used later inother (sub)refutations. Because of the limited application and lifetime of the lemma, it su�ces to \attach"the C-literal :q to the lowest ancestor pc, and not record the dependencies B. Modoc cannot adopt thissimple strategy because it does not completely abandon a PDT when some part of the refutation fails, asdiscussed in the next section.6.2 Quasi-Persistent LemmasOur strategy varies from the C-literal strategy described above in that lemmas derived during failed (sub)-refutations are not necessarily forgotten. Normally, a PDT is not completely abandoned, but only the subtreewhere the refutation fails is abandoned. (In the �rst-order case, substitutions need to be backed out, as well.)The lemma can function as a C-literal until the subtree rooted at pc is abandoned, or the refutation of pc iscompleted (where pc and other terminology is continued from the previous subsection).14

Modoc maintains lemmas attached at pc until the tree rooted there is abandoned or its refutation iscompleted. The previously described strategy of Letz et al. e�ectively deletes the lemma as soon as therefutation of any clause ancestor of q fails. There are pros and cons of both strategies. Our strategy makesit unnecessary to re-derive the same lemma at the same attachment point so often, but it makes it necessaryto record the full lemma. Also we did not see a way to adapt their time-stamping method to the situationin which only a small part of the tree is abandoned when a goal fails: some kind of \roll-back" of the time-stamps is needed. In summary, the structural di�erences between the PDST and the tableau search treenecessitate di�erences in lemma handling.Our strategy is incompatible with the heuristic called \strong regularity", introduced by Letz et al.That is, Modoc may undertake to refute a goal :q in the subtree (rooted at pc) where :q is attached as alemma. The \strong regularity" heuristic consists of avoiding such attempts. \Strong regularity" was shownto be complete under certain conditions, but quasi-persistent lemmas do not meet those conditions, and acounter-example can be constructed if the two heuristics are combined.Example 6.2: This example continues the refutation search begun in Example 6.1, based on Figure 6.While refuting b the procedure would be able to attach C-literals :c, d, :f , and :b at the root. Whenthe refutation fails in the right branch, the traditional C-literal technique forgets all of them. Our quasi-persistent method does not, because they are still sound as C-literals. When the refutation search tries adi�erent top clause, the C-literals :c and d are available and might shorten the search. (In fact, [c;:d] nowsucceeds immediately.) This can also happen without backtracking to the top level.The quasi-persistent heuristic holds lemmas longer, but spends more time per lemma in bookkeeping,compared to the traditional C-literal method. There is no apparent way to determine which method performsbetter except empirical testing.6.3 Lemma-Induced CutsWe now describe the method by which Modoc exploits complementary C-literals. Suppose, as describedabove, the C-literal :q is attached at pc and the goal :q occurs in a subtree of pc. Should the refutation of:q be successful, there results a new lemma whose C-literal is q. Now complementary C-literals have beenderived on one branch. Let the full form of the second lemma be [q;:r1; : : : ;:rn]; that is, fr1; : : : ; rng isexactly the set of ancestors used in the refutation of :q. Again, let rc be the lowest ancestor among the ri,or the root > if n = 0.Now consider the lower of the two goal nodes pc and rc. The situation is symmetric, so let us suppose itis rc. Let A0 be the ancestors of rc. Now add a \virtual clause" [:rc; q;:q] to the formula; this is a tautology,so it is harmless. However, extending rc with this virtual clause creates goals q and :q, both of which areimmediately closed by the lemmas. Thus the goal rc is immediately refuted, even though the tree in whichthe lemmas q and :q were derived is never completed to a refutation.Introduction of the \virtual clause" described above is essentially a form of the cut rule [LMG94]. If Sis the original set of clauses, we have discovered (S + A0) ` q and (S + A0) ` :q. Now the cut rule infers(S + A0) ` ;.While the introduction of a tautologous clause is always sound, it normally is not practical because theprover has no way to anticipate that each of the complementary literals has a short refutation. However, ifa pair of complementary C-literals have been derived, then the prover has that information in hand.This methodology also can be applied to �rst-order proofs where the prover is not using strong regularity.In this case, a most general uni�er of the complementary C-literals would be applied before creating the\virtual clause". 15

6.4 C-Reduction-Induced CutsAs mentioned earlier (Section 4), when Modoc selects an ancestor, it strengthens the formula with thisancestor. Strengthening is the combination of unit subsumption and unit implication (De�nition 2.3).Similarly, when Modoc installs a C-literal, it applies unit implication with this C-literal, which amountsto a form of \eager C-reduction". If this creates an empty clause, then a C-reduction-induced cut may occur.Suppose the original clause C = [:r1; : : : ;:rn] shrinks to 0 length due to unit implication by a newC-literal rc. Without loss of generality, assume that r1 is the lowest ancestor or C-literal among r1; : : : ; rn,chosen to be an ancestor if possible. Let q1 be the ancestor at the depth of r1. (If r1 is an ancestor,q1 = r1 6= rc.) If q1 = r1, then extension of q1 by C refutes it immediately. If q1 6= r1, we extend q1 bythe \virtual clause" [:q1;:r1; r1], again using a form of \cut". Subgoal :r1 is C-reduced and subgoal r1 isimmediately refuted by extension with C.The e�ect of this cut is similar to the lemma-induced cuts (Section 6.3) in that (possibly) an intermediategoal node can be refuted without completing the refutation in progress for it.6.5 Eager Lemma AssertionUnit-clause propagation is of interest because of its e�ciency, and its frequent use as a subroutine in model-searching algorithms, such as DPLL. Dalal and Etherington have shown that unit-clause propagation can beimplemented in linear time [DE92]. This implementation is practical, as well as theoretical, and is used bynumerous implementers. Modoc uses it to derive eager lemmas.When Modoc selects a new goal node e, besides performing unit implication with it (De�nition 2.3), itperforms unit-clause propagation with any clauses whose (strengthened) length reduces to 1. All such clausesare asserted as E-literals attached to the goal node e. Like C-literals, E-literals are logical consequences ofancs(e), and can be used in the same manner in the refutation search below e.An interesting situation arises when the above unit-clause propagation directly derives the empty clause.Clearly, this implies that a refutation of e exists. To extract the quasi-persistent lemma with :e, theappropriate dependencies must be determined. The derivation of E-literals creates a directed acyclic graph(DAG) of dependencies among E-literals and the selected goal node e, as illustrated in the lower part ofFigure 4, and discussed in Example 1.2.Let us call this the eager dependency DAG . To simplify the remainder of this discussion, let us call e anE-literal, too. In this DAG, the edge p! q denotes that q is an E-literal attached to the selected goal e, andthe clause Cp that derived p by unit propagation contains :q. Further, let us call Cp the eager parent of p,and let us call the complements of the literals in Cp � p, other than E-literals, the nonlocal dependencies ofp. Finally, let C0 be the clause that became empty. Then C0 is the source node of the DAG; edge C0 ! qdenotes that q is an E-literal attached to the selected goal e, and C0 contains :q; the complements of theliterals of C0, other than E-literals, are the nonlocal dependencies of C0.Theorem 6.1: With the foregoing notation, if p is an articulation point in the eager dependency DAG,then there is a refutation of e in which :p becomes a C-literal at a depth less than the depth of e. Moreover,the dependencies of :p are the nonlocal dependencies of nodes having a path to p in the DAG.Corollary 6.2: With the foregoing notation, dependencies of the C-literal :e are the nonlocal dependenciesof all nodes other than e in the eager dependency DAG.If p is not an articulation point, then the refutation implied by the eager dependency DAG uses somereduction with a node later in the DAG, and the C-literal :p would be attached there, and would be discardedby the time e was refuted. 16

Pigeon-Hole FormulasModoc Model Elim.Pigeons Vars Clauses CPU Secs. CPU Secs.8 56 204 1.26 1.229 72 297 11.43 10.8510 90 415 114.84 107.4411 110 561 �1200.00 �1200.0012 132 738 �1200.00 �1200.00Pigeon-Hole Formulas less �rst binary clauseModoc Model Elim.Pigeons Vars Clauses CPU Secs. CPU Secs.8 56 203 0.16 1.099 72 296 1.28 9.5810 90 415 11.54 95.9811 110 561 180.55 �1200.0012 132 738 �1200.00 �1200.00Figure 10: Comparative performances on pigeon-hole formulas (unsat), and pigeon-hole formulas with onebinary clause removed (sat). For M.E., one refutation was attempted with the �rst binary clause of theformula as top clause. Times are for a Sun Sparcstation 10/41.7 Experimental ResultsAn e�cient implementation of Modoc was programmed in C. Hereinafter, we refer to this C implementationof Modoc as modoc. Important data structure issues will be the subject of a future report. This sectionreports on performance tests. The CPU time for a Sun Sparcstation 10/41 is reported.The results contain substantial evidence that autarky pruning overcomes the major ine�ciency of modelelimination. Modoc is not yet competitive with the leading model-search methods on random formulas,but outperforms them on formulas generated from an automated test pattern generation (ATPG) program[Lar92]. (Hereinafter, we call these formulas circuit formulas. These formulas are satis�able if and only ifthe outputs of the fault-free and faulty circuits di�er for some common input.)7.1 E�ect of Autarky PruningThis section compares modoc to model elimination without autarky pruning2. Both programs used all lemmaand cut options described in earlier sections (these options improve performance). For model elimination,only one refutation was attempted to keep running times within reason, even though one failed attemptyields no conclusion about the formula.Recall that Figure 1 showed that model elimination su�ered a rapid performance degradation on smallsatis�able random formulas even with all lemma and cut options in e�ect. Figure 13 shows that autarkypruning overcomes this problem.Figure 10 shows results on pigeon-hole formulas and modi�ed pigeon-hole formulas. Recall that the k-2Program was obtained by disabling autarky pruning from modoc.17

quasi- quasi-persis- quasi-persistentformula num. none persistent tent, cuts cuts, eagerclass fmlas avg max avg max avg max avg maxrand100 200 �1200 �1200 141.32 484.75 19.01 73.07 1.54 4.74rand141 200 �1200 �1200 �968.04 �1200 481.23 1686.62 25.39 89.95bf2670 53 �1175 �1200 �831.52 �1200 395.50 6124.36 7.15 181.49ssa2670 12 �1200 �1200 �1200 �1200 239.75 867.76 30.42 118.78Figure 11: Improvement in search time (CPU time) using various lemma strategies and cuts. rand100 is200 random 3CNF formulas of 100 variables and 427 clauses; rand141 is the same except with 141 variablesand 602 clauses. bf2670 and ssa2670 are circuit formulas generated from ATPG.quasi- quasi-persis- quasi-persistentformula persistent tent, cuts cuts, eagerclass t p t p t prand100 - - 17.6660 0.0000 18.2451 0.0000rand141 - - - - 16.6882 0.0000bf2670 - - - - 2.6673 0.0102ssa2670 - - - - 2.7124 0.0202Figure 12: Student's t-test to test the signi�cance of improvement due to lemma strategies and cuts.Comparison is to the left column. (For \quasi-persistent", it is relative to no lemma strategies and cuts.)See Figure 11 for brief explanation of formula classes. `-' means that not all data were available to make thecomparison.pigeon problem states the constraints that k pigeons �t into k�1 holes, and no hole contains two distinctpigeons. On pigeon-hole formulas modoc and model elimination perform essentially the same, because therefutation is found without any backtracking from failed attempts.Satis�able versions of pigeon-hole formulas were created by removing the �rst binary clause. Modoc hasan easier time with the satis�able modi�cations, while model elimination has greater di�culty.7.2 E�ectiveness of Lemmas and CutsThe previous section showed the importance of autarky pruning. This section examines the relative e�ective-ness of the lemma and cut options described in Section 6. Experiments were made on random formulas andon two sets of circuit formulas. Figure 11 shows the average and maximum search time (CPU time) for eachformula class using various lemma strategies and cuts. Figure 12 shows the signi�cance of improvementsfor random formulas and circuit formulas using Student's t-test [WEC91]. The use of Student's t-test wasadvocated in [VGT96, Appendix A]. Recall that a larger t indicates greater di�erence, while smaller pindicates that the observed improvement is less likely to be by chance.18

0.01

0.1

1

10

100

600 800 1000 1200 1400 1600 1800 2000

nu
m

be
r

of
 C

P
U

 s
ec

on
ds

 (
lo

g
sc

al
ed

)

number of literals

Growth Comparison of CPU Time on Random Formulas

Modoc
DPLL

2cl

Figure 13: Growth comparison on Random Formulas.7.3 Comparison with other Satis�ability TestersIn order to assess its competitiveness (or lack of), modocwas run against two satis�ability testers|DPLL and2cl|both of which are model-searching programs. The DPLL program, due to Davis, Putnam, Logemannand Loveland [DP60, DLL62] is e�ciently implemented using the unit propagation method of Dalal andEtherington [DE92]. The 2cl program is one of the best performing all around satis�ability programsreported in the literature [VGT96].Results on random3CNF formulas are summarized in Figure 13. These formulas were generated accordingto the constant-clause-width model: every clause contains 3 di�erent variables and any combination of literalpolarities is equally likely.The di�erence in modoc performance between satis�able and unsatis�able formulas grows as the numberof variables (and hence the number of literals) is increased. The ratio (avg. unsatis�able time/avg. satis�abletime) at the level of 50 variables, was 2.64; it was 3.16 at 141 variables. However, the growth plot showsthat modoc still underperforms model-searching methods on random formulas.Results on some circuit formulas are summarized in Figure 14. The same formulas reported in [VGT96]were used. In all but one circuit family, modoc ran faster than 2cl on the average. Indeed, on the harderfamilies it ran 30{40 times faster.As witnessed in Section 7.1, the performance of Modoc strongly depends on autarky pruning. This impliesthat if the formula is not \partitionable", Modoc would not perform as intended. Generally speaking, in arandom formula, it is expected that the variables are distributed evenly and thus the formula may be harderto partition. Whereas in the case of more structured formulas, such as circuit formulas, many variables occurlocally, only in subcircuits, and thus may be amenable to partitioning.19

Circuit Ave. # of Ave. # of Ave. CPU Time (sec)Family Variables Literals modoc 2clssa0432 433 2347 0.17 0.77ssa2670 1320 7414 29.16 1539.60ssa6288 10406 87355 0.31 39.45ssa7552 1495 7945 0.10 1.93bf0432 886 7703 25.02 5.85bf1355 2266 18192 3.37 41.81bf2670 1300 7904 7.91 439.01Figure 14: CPU time comparison of Modoc and 2cl on circuit formulas.8 Conclusions and Future WorkWe have introduced a method to incorporate autarky analysis into propositional resolution procedures.Experimental results indicate that substantial gains of e�ciency can be achieved. We have introduced theeager lemma strategy and two forms of controlled cut, all of which further improve performance measurably.Future work should proceed along several directions, including heuristics for guiding the resolution search,further improvements to lemma caching, and an extension to �rst-order theorem proving. Another openquestion is the worst-case complexity of Modoc or an improved version of Modoc.AcknowledgmentsThis work was supported in part by NSF grant CCR-95-03830, by equipment donations from Sun Microsys-tems, Inc., and software donations from Quintus Computer Systems, Inc. We thank Dr. Reinhold Letz forhelpful discussions on many aspects of model elimination and tableau methods.References[AS92] O. L. Astrachan and M. E. Stickel. Caching and lemmaizing in model elimination theoremprovers. In D. Kapur, editor, Automated Deduction - CADE-11. Proceedings of 11th InternationalConference on Automated Deduction (Saratoga Springs, NY, USA, 15-18 June 1992), pages 224{38. Springer-Verlag, Berlin, Germany, 1992.[BJL86] C. E. Blair, R. G. Jeroslow, and J. K. Lowe. Some results and experiments in programmingtechniques for propositional logic. Comput. & Operations Research, 13(5):633{645, 1986.[CA93] J. Crawford and L. Auton. Experimental results on the cross-over point in satis�ability problems.In Proceedings of the Eleventh National Conference on Arti�cial Intelligence; AAAI-93 and IAAI-93 (Washington, DC, USA, 11-15 July 1993), pages 21{7. Menlo Park, CA, USA: AAAI Press,1993.[Caf93] R. Caferra. A tableaux method for systematic simultaneous search for refutations and modelsusing equational problems. Journal of Logic and Computation, 3(1):3{25, February 1993.20

[DABC95] O. Dubois, P. Andre, Y. Boufkhad, and J. Carlier. SAT versus UNSAT. In D. S. Johnson andM. Trick, editors, Cliques, Coloring, and Satis�ability: Second DIMACS Implementation Chal-lenge., DIMACS Series in Discrete Mathematics and Theoretical Computer Science. AmericanMathematical Society, 1995.[DE92] M. Dalal and D. Etherington. A hierarchy of tractable satis�ability problems. InformationProcessing Letters, 44:173{180, December 1992.[DLL62] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving. Communi-cations of the ACM, 5:394{397, 1962.[DP60] M. Davis and H. Putnam. A computing procedure for quanti�cation theory. Journal of theAssociation for Computing Machinery, 7:201{215, 1960.[Elk89] C. Elkan. Conspiracy numbers and caching for searching and/or trees and theorem-proving. InEleventh Int'l Joint Conf. on Arti�cial Intelligence, pages 20{25, Palo Alto, CA, 1989. MorganKaufmann.[FL93] C. Fermuller and A. Leitsch. Model building by resolution. In E. Borger, G. Jager, H. Kleine Bun-ing, S. Martini, et al., editors, Computer Science Logic. 6th Workshop, CSL '92. (San Miniato,Italy, 28 Sept.-2 Oct. 1992), pages 134{48. Berlin, Germany: Springer-Verlag, 1993.[FLSY74] S. Fleisig, D. W. Loveland, A. K. Smiley, and D. L. Yarmush. An implementation of the modelelimination proof procedure. JACM, 21(1):124{139, 1974.[GW93] I. P. Gent and T. Walsh. Towards an understanding of hill-climbing procedures for SAT. InProceedings of the Eleventh National Conference on Arti�cial Intelligence; AAAI-93 and IAAI-93 (Washington, DC, USA, 11-15 July 1993), pages 28{33. Menlo Park, CA, USA: AAAI Press,1993.[HF90] J. N. Hooker and C. Fedjki. Branch-and-cut solution of inference problems in propositional logic.Annals of Mathematics and Arti�cial Intelligence, 1:123{139, 1990.[HHT94] F. Harche, J.N. Hooker, and G.L. Thompson. A computational study of satis�ability algorithmsfor propositional logic. ORSA Journal on Computing, 6(4):423{35, Fall 1994.[JSD95] B. Jaumard, M. Stan, and J. Desrosiers. Tabu search and a quadratic relaxation for thesatis�ability problem. In D. S. Johnson andM. Trick, editors, Cliques, Coloring, and Satis�ability:Second DIMACS Implementation Challenge., DIMACS Series in Discrete Mathematics andTheoretical Computer Science. American Mathematical Society, 1995.[JW90] R. Jeroslow and J. Wang. Solving propositional satis�ability problems. Annals of Mathematicsand Arti�cial Intelligence, 1:167{187, 1990.[KK71] R. Kowalski and D. Kuehner. Linear resolution with selection function. Arti�cial Intelligence,2(2/3):227{260, Winter 1971.[Lar92] T. Larrabee. Test pattern generation using Boolean satis�ability. IEEE Transactions onComputer-Aided Design, 11(1):6{22, January 1992.[LMG94] R. Letz, K. Mayr, and C. Goller. Controlled integration of the cut rule into connection tableaucalculi. Journal of Automated Reasoning, 13(3):297{337, December 1994.21

[Lov69] D. W. Loveland. A simpli�ed format for the model elimination theorem-proving procedure.Journal of the Association for Computing Machinery, 16(3):349{363, July 1969.[Lov72] D. W. Loveland. A unifying view of some linear Herbrand procedures. Journal of the Associationfor Computing Machinery, 19(2):366{384, April 1972.[Lov78] D. W. Loveland. Automated Theorem Proving: A Logical Basis. North-Holland, Amsterdam,1978.[MS85] B. Monien and E. Speckenmeyer. Solving satis�ability in less than 2n steps. Discrete AppliedMathematics, 10:287{295, 1985.[MZ82] J. Minker and G Zanon. An extension to linear resolution with selection function. InformationProcessing Letters, 14(3):191{194, June 1982.[Pre95] D. Pretolani. E�ciency and stability of hypergraph SAT algorithms. In D. S. Johnson andM. Trick, editors, Cliques, Coloring, and Satis�ability: Second DIMACS Implementation Chal-lenge., DIMACS Series in Discrete Mathematics and Theoretical Computer Science. AmericanMathematical Society, 1995.[SFS95] J. Slaney, M. Fujita, and M. Stickel. Automated reasoning and exhaustive search: Quasigroupexistence problems. Computers and Mathematics with Applications, 29(2):115{32, 1995.[Sho74] R. E. Shostak. A Graph-Theoretic View of Resolution Theorem-Proving. PhD thesis, Centerfor Research in Computing Technology, Harvard University, 1974. Also available from CSL, SRIInternational, Menlo Park, CA.[Sho76] R. E. Shostak. Refutation graphs. Arti�cial Intelligence, 7:51{64, 1976.[SKC95] B. Selman, H. A. Kautz, and B. Cohen. Local search strategies for satis�ability testing. InD. S. Johnson and M. Trick, editors, Cliques, Coloring, and Satis�ability: Second DIMACSImplementation Challenge., DIMACS Series in Discrete Mathematics and Theoretical ComputerScience. American Mathematical Society, 1995.[Sla94] J. Slaney. The crisis in �nite mathematics: Automated reasoning as cause and cure. InA. Bundy, editor, Automated Deduction - CADE-12. Proceedings of 12th International Conferenceon Automated Deduction (Nancy, France, June/July 1994), pages 1{13. Springer-Verlag, 1994.[SLM92] B. Selman, H. Levesque, and D. Mitchell. A new method for solving hard satis�ability problems.In Proceedings of the Tenth National Conference on Arti�cial Intelligence (AAAI-92), pages 440{446, San Jose, CA., July 1992.[SS95] C. B. Suttner and G. Sutcli�e. TPTP v1.2.0. Technical Report AR{95{03, Institut fur Informatik,TU Munchen, Germany, November 1995.[Sti94] M. E. Stickel. Upside-down meta-interpretation of the model elimination theorem-provingprocedure for deduction and abduction. Journal of Automated Reasoning, 13(2):189{210,October1994.[VG95] A. Van Gelder. Simultaneous construction of refutations and models for propositional formulas.Technical Report UCSC{CRL{95{61, UC Santa Cruz, Santa Cruz, CA., 1995. (submitted forpublication). 22

[VGT96] A. Van Gelder and Y. K. Tsuji. Satis�ability testing with more reasoning and less guessing.In D. S. Johnson and M. Trick, editors, Cliques, Coloring, and Satis�ability: Second DIMACSImplementation Challenge., DIMACS Series in Discrete Mathematics and Theoretical ComputerScience. American Mathematical Society, 1996.[WEC91] J. Welkowitz, R. B. Ewen, and J. Cohen. Introductory Statistics for the Behavioral Sciences.Harcourt Brace Jovanovich College, fourth edition, 1991.[ZS94] H. Zhang and M. Stickel. Implementing the Davis-Putnam algorithm by tries. Technical report,Dept. of Computer Science, The University of Iowa, 1994.

23

